

Glitch		
Aggressor		
Victim		
Ian 2003	ASPDAC03 - Physical Chin Implementation	15

- Specifies the boundary conditions, I.e. the location and layer of the ideal voltage sources
- IR Drop and EM simulations use the information and it must be correct, for example for BGA style pads, the centers of the bumps should be used

Antenna Ratio Limits

- Standard solution: limit antenna ratio
- Antenna ratio = (A_{poly} + A_{M1} + ...) / A_{gate-ox}
- E.g., antenna ratio < 400</p>
- A_{Mx} = metal(x) area that is electrically connected to node without using metal (x+1), <u>and</u> not connected to an active area

Subwavelength Optical Lithography — Technology Limits

Implications of Moore's Law for feature sizes

Steppers not available; WYSIWYG (layout = mask = wafer) fails after .35µm generation

Optical lithography

- ◆ circuit patterns optically projected onto wafer
- ◆ feature size limited by diffraction effects
- Rayleigh limits
 - \sim resolution *R* proportional to λ / *NA*
 - \sim depth of focus DOF proportional to λ / NA²
- Available knobs
 - ◆ amplitude (aperture): OPC
 - ◆ phase: PSM

Optical Proximity Correction (OPC)

- Cosmetic corrections; complicates mask manufacturing and dramatically increases cost
- Post-design verification is essential

Rule-based OPC apply corrections based on a set of predetermined rules fast design time, lower mask complexity suitable for less aggressive designs Jan. 2003 ASPDAC03 -

Model-based OPC use process simulation to determine corrections on-line longer design time, increased mask complexity suitable for aggressive designs

ASPDAC03 - Physical Chip Implementation

OPC Features Serifs - for corner rounding Hammerheads - for line-end shortening Gate assists (subresolution scattering bars) ef at the set of the terms of an end of the set of the for CD control Serif Hammerhead Diffusion Gate biasing - for CD control Affects custom, hierarchical and reuse-based layout methodologies Polysilicon Gate Biasing Features Jan. 2003 ASPDAC03 - Physical Chip Implementation

Gate Shrinking and CD Control

Analyze input layout

- Induce constraints for output layout
 - ◆i.e., PSM-induced (shape, spacing) constraints
- Compact to get phase-assignable layout
- Key: Minimize the set of new constraints, i.e., break all odd cycles in conflict graph by deleting a minimum number of edges.

```
Jan. 2003
```

Find min-cost set of perturbations needed to eliminate all "odd cycles"

Density Control for CMP

- Layout density control
 - density rules minimize yield impact
 - uniform density achieved by post-processing, insertion of dummy features
- Performance verification (PV) flow implications
 - accurate estimation of filling is needed in PD, PV tools (else broken performance analysis flow)
 - filling geometries affect capacitance extraction by > 50%
 - is a multilayer problem (coupling to critical nets, contacting restrictions, active layers, other interlayer dependencies)

```
Jan. 2003
```


- Modern foundry rules specify layout density bounds to minimize impact of CMP on yield
- Density rules control local feature density for w × w windows
 - e.g., on each metal layer every 200um × 200um window must be between 35% and 70% filled
- Filling = insertion of "dummy" features to improve layout density
 - typically via layout post-processing in PV / TCAD tools
 boolean operations on layout data
 - ♦ affects vital design characteristics (e.g., RC extraction)
 - accurate knowledge of filling is required during physical design and verification

Jan. 2003

Limitations of Current Density Control Techniques

- Current techniques for density control have three key weaknesses:
 - (1) only the average *overall* feature density is constrained, while local variation in feature density is ignored
 - (2) density analysis does not find *true* extremal window densities - instead, it finds extremal window densities only over fixed set of window positions
 - (3) fill insertion into layout does not minimize the maximum variation in window density
- In part, due to PV tool heritage: Boolean operations, inability to touch layout, etc.

```
Jan. 2003
```


Filling Problem in Fixed-Dissection Regime

Given

- ◆ fixed *r*-dissection of layout
- ◆ feature *area*[T] in each tile T
- ♦ slack[T] = area available for filling in T
- \diamond maximum window density U

Find total fill area p[T] to add in each T s.t.

any $w \times w$ window W has density $\leq U$ and min_W $\sum_{T \in W}$ (area[T] + p[T]) is maximized

Jan. 2003

Synthesis of Filling Patterns

- Given area of filling pattern p[i,j], insert filling pattern into tile T[i,j] *uniformly* over available area
- Desirable properties of filling pattern
 - •uniform coupling to long conductors
 - either grounded or floating

Jan. 2003

ASPDAC03 - Physical Chip Implementation

91

<section-header><image><text><text><page-footer>

Reticle Enhancement Roadmap

	0.25 um	0.18 um	0.13 um	0.10 um	0.07 um	
Rule-based OPC				igodot		
Model-based OPC				ightarrow		
Scattering Bars				ightarrow		Lith
AA-PSM				igodot		
Weak PSM				igodot		
Rule-based Tiling				igodot		
Optimization-driven MB Tiling			0	•		CIMP
Number Of Affe	cted Laye	rs Increa	ises / Ge	neratio		
🔵 248 nn	1					
248/19	3 nm		W. Grobm	an, Motorola	a – DAC-20	01
Jan. 2003	1 ASPDAC03 -	Physical Chir	Implementat	ion		

Mask Data and \$1M Mask NRE

Too many data formats

- Most tools have unique data format
- ◆ Raster to variable shaped-beam conversion is inefficient
- ♦ Real-time manufacturing tool switch, multiple qualified tools → <u>duplicate fractures</u> to avoid delays if tool switch required

Data volume

- ◆ OPC increases figure count acceleration
- ♦ MEBES format is flat
- ♦ ALTA machines (mask writers) slow down with > 1GB data
- ◆ Data volume strains distributed manufacturing resources

Refracturing mask data

♦ 90% of mask data files manipulated or refractured: process bias sizing (iso-dense, loading effects, linearity, ...), mask write optimization, multiple tool formats, ...

```
Jan. 2003
```


Extraction: Partial Inductance and Return-Limited Inductance

Return-Limited Inductance Extraction

- Need to determine which mutual inductances to discard and wish to use the power-ground network as an "alwaysavailable" current return.
- To do this, we:
 - Use the power-ground distribution to divide the interconnect into disjoint interaction regions. Mutual inductances between interaction regions are discarded.
 - Power-ground wires within the interaction region act as a "distributed ground plane".
- A set of geometry-based matrix decomposition rules guide the interaction region definition (halo rules).

Sylvester/Shepard, 2001

