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Abstract—In double patterning lithography (DPL) layout de-
composition for 45 nm and below process nodes, two features
must be assigned opposite colors (corresponding to different
exposures) if their spacing is less than the minimum coloring
spacing. However, there exist pattern configurations for which
pattern features separated by less than the minimum coloring
spacing cannot be assigned different colors. In such cases, DPL
requires that a layout feature be split into two parts. We address
this problem using two layout decomposition approaches based on
a conflict graph. First, node splitting is performed at all feasible
dividing points. Then, one approach detects conflict cycles in the
graph which are unresolvable for DPL coloring, and determines
the coloring solution for the remaining nodes using integer linear
programming (ILP). The other approach, based on a different
ILP problem formulation, deletes some edges in the graph to
make it two-colorable, then finds the coloring solution in the new
graph. We evaluate our methods on both real and artificial 45 nm
testcases. Experimental results show that our proposed layout
decomposition approaches effectively decompose given layouts
to satisfy the key goals of minimized line-ends and maximized
overlap margin. There are no design rule violations in the final
decomposed layout.

Index Terms—Double patterning lithography (DPL), integer
linear programming (ILP), layout decomposition, node splitting.

I. Introduction

AS MOORE’S LAW continues to drive performance and
integration with smaller circuit features, lithography is

pushed to new extremes. For 32 nm node patterning, though
immersion ArF (IArF) is already in use, the realization of
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extreme ultraviolet (EUV) lithography still faces significant
technology obstacles. As a result, double patterning lithogra-
phy (DPL) technology is attracting more and more attention.1

An EUV imaging system is composed of mirrors coated
with multilayer structures designed to have high reflectivity
at 13.5 nm wavelength. There are significant technical hurdles
to implementation of EUV lithography in terms of mask-
blank fabrication, high output power source, resist material,
etc. Challenges to production use of IArF include very high-
refractive index fluids (to enable NA = 1.55–1.6), and accom-
panying advances in high-index resists and optical materials.

DPL involves the partitioning of dense circuit patterns into
two separate exposures, whereby decreased pattern density in
each exposure improves resolution and depth of focus. DPL
is likely to play an even more important role than previously
anticipated, since the EUV adoption timeline has been delayed
[8], [15]. However, DPL increases manufacturing cost in two
fundamental ways: 1) reduced fab throughput by complex
process flows due to double exposure patterning, and 2) tight
overlay control between the two patterning exposures.

There are distinct approaches to DPL, notably double
patterning (DP), double exposure (DE) and spacer double
patterning (SDP) [6]. In the DP approach [15], [29], the first
etch step transfers the pattern of the first resist layer into an
underlying hardmask [16], [20] which is not removed during
the second exposure. Photoresist is re-coated on the surface
of the first process for a second exposure. The second mask,
having patterns separated from the first mask, is exposed and
then the flow finishes up with the hardmask and resist of
second exposure. Unlike the DP approach with two separate
lithography/etch steps, the DE approach incorporates two
lithographic exposures with only one etch step, where the
image formed by the first exposure may interact with the image
formed by the second exposure [7]. In the SDP approach [18],
[21], the patterns for the first layer are transferred into the
hardmask and then nitride spacers are formed on the sidewalls
of the patterns. A spacer is formed by deposition or reaction of
the film on the pattern, followed by etching to remove all the
film material except for the material on the sidewalls. Then,
film material between spacers produces the patterns for the
second layer [19], [22]. In this paper, we focus on DP/DE

1It is our understanding (Chul-Hong Park) that at the leading edge of
technology development for logic processes, DPL is currently (November
2009) viewed as necessary at 22 nm and 20 nm, and may be extended to the
15 nm node.
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Fig. 1. Example of feature splitting to resolve the coloring conflict with
minimum coloring spacing t: (a) Coloring conflict occurs between features
p1 and p3, and (b) after splitting feature p3 into p4 and p5, each pair of
features within minimum coloring spacing t can be assigned opposite colors.

types of DP technology. The major concern of DPL is overlay
control, which leads to requirements for more accurate overlay
metrology, more representative sampling, reduction in model
residuals, and improved overlay correction [13]. Regolli et al.
[14] analyzed overlay margin in DE patterning. According to
the ITRS [6], DPL requires overlay control of between 9 nm
and 6 nm, a major hurdle for deployment.

A key issue in DPL from the design point of view is the
decomposition of the layout for multiple exposure steps [12].
This recalls strong alternating phase-shift mask (AltPSM) col-
oring issues and automatic phase conflict detection and resolu-
tion methods [9]. DPL layout decomposition must satisfy the
following requirement: two features must be assigned opposite
colors (corresponding to mask exposures) if their spacing is
less than the minimum coloring spacing. However, there exist
pattern configurations for which features within this minimum
coloring spacing cannot all be assigned different colors [7],
[23]. In such cases, at least one feature must be split into two
or more parts. Fig. 1 gives an example of using feature splitting
to resolve the coloring conflict, where the minimum coloring
spacing is t. In (a), because the distances between features p1,
p2, and p3 are all less than t, coloring conflict occurs between
features p1 and p3, i.e., they can not be assigned opposite col-
ors. In (b), after splitting feature p3 into p4 and p5, each pair
of features within minimum coloring spacing t can be assigned
opposite colors. The feature splitting increases manufacturing
cost and complexity due to 1) generation of additional line-
ends, which cause yield loss due to overlay error in double-
exposure, as well as line-end shortening under defocus, and
2) resulting requirements for tight overlay control, possibly be-
yond currently envisioned capabilities. Other risks include line
edge (critical dimension, or CD) errors due to overlay error,
and interference mismatch between different masks. Therefore,
a key optimization goal is to reduce the total cost of layout
decomposition, considering the above-mentioned aspects.

Yuan et al. [27] propose an algorithm to minimize the
number of conflicts and stitches simultaneously based on a
grid layout model and integer linear programming (ILP) [27].
Their proposed algorithm is based on a grid layout model
and cannot process irregular layouts (i.e., with different
line widths and line spacings). Moreover, overlay control
is not considered in the algorithm, which is necessary for
the stitches [12]. Cho et al. [28] propose a detailed routing
algorithm for double patterning technology to improve layout
decomposability and minimize the indecomposable wirelength
and the number of stitches. Cork et al. [30] investigate the
challenges involved in triple patterning of contact layouts. The
time complexity of their three-coloring algorithm is O(3N ),

which is not practical for full-chip pattern splitting. Though
pattern splitting and routing algorithms can solve the DP
problem, they both introduce stitches. Lucas et al. [31] show
that even with the same optical proximity correction (OPC)
technology, different splitting points may have different error
rates. Therefore, to produce safe stitches, it is important to
choose safe splitting points (e.g., with corresponding overlap
lengths that satisfy the given overlap margin) rather than
risky splitting points on a given layout.

We formulate the optimization of DPL layout decomposition
using ILP. A pre-processing step fractures polygonal layout
features into rectangles according to vertex coordinates of
neighboring features. The fractured rectangular features are
further split by a node splitting process that resolves coloring
conflicts and enlarges the solution space for DPL coloring. We
then optimize the coloring of the rectangles with a process-
aware cost function that avoids small jogging line-ends, and
maximizes overlap at dividing points of polygons. The cost
function may also be revised to make preferential splits at
landing pads, junctions and long runs [12]. A layout partition-
ing heuristic helps achieve scalability for large layouts.

We present two different layout decomposition approaches.
The first approach performs conflict cycle detection (CCD) to
find and report coloring conflicts (i.e., design changes such
as layout modifications are needed) then finds the coloring
solution on the remaining features using an ILP formulation.
The second approach [referred to as pure ILP (PILP)] directly
computes the coloring solution on the rectangles after polygon
splitting, along with the minimum number of necessary layout
modifications, using a more sophisticated ILP formulation.
Both of these methods are used to wholly color each feature,
i.e., every feature appears on either one mask or the other.
However, to enable enough overlap between the features on
the two exposure masks, it may be desirable to assign one
feature to both masks [24]. Our DPL coloring methods can be
easily extended to allow one feature to have multiple colors
(see Appendix). Our contributions are as follows.

1) Our conflict cycle detection algorithm efficiently finds
patterns with unresolvable color assignment. Because
such patterns cannot be manufactured by DPL even
despite layout decomposition, this detection step enables
fast feedback to the designer to modify the layout
pattern.

2) Our node splitting method resolves the coloring conflicts
considering the pre-specified overlay margin and en-
larges the solution space for DPL coloring, from which
the optimal coloring solution is obtained using our ILP
formulation.

3) Our ILP-based color assignment algorithms (with both
CCD and PILP approaches) optimize a weighted com-
bination of the number of line-ends, the overlap lengths
in the decomposed layout, and the number of design
rule violations. Our PILP color assignment also min-
imizes the number of coloring conflicts (i.e., layout
modifications are needed).

4) Our layout partitioning technique improves scalability of
the ILP-based coloring solution, whose runtime would
otherwise increase unmanageably with layout size.
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Fig. 2. DPL layout decomposition flow using the CCD approach.

The remainder of this paper is organized as follows. Section
II gives the overall flow of our layout decomposition system.
Section III formally states the DPL color assignment problem
and gives details of the node splitting and color assignment
techniques. Section IV describes testcases, experimental setup
and experimental results. Section V concludes with ongoing
research directions.

II. DPL Layout Decomposition Flow

Before stating our DPL layout decomposition flow, we
introduce key terminology. We use feature to represent either a
layout polygon or a rectangle after the polygons are fractured.
Polygons or rectangles can be split at the dividing points. After
DPL color assignment, where there are two touching rectan-
gles with different colors, there is a cut, which corresponds to
two line-ends. In our conflict graph, each rectangle after poly-
gon fracturing is represented as a node. In most cases rectan-
gles and nodes can be used interchangeably, e.g., node splitting
means the splitting of one or more rectangles into smaller ones.

A. CCD Approach

Fig. 2 shows the overall flow for DPL layout decomposition
using the CCD approach.

1) Layout fracturing: Given a layout, the polygonal layout
features are first fractured into a set of nonoverlapping
rectangles using a minimum-sliver fracturing algorithm
[17]. The minimum-sliver fracturing algorithm mini-
mizes the number of slivers (=small rectangles) and
helps simplify downstream operations.

2) Graph construction: A conflict graph is constructed over
the rectangular features according to the given minimum
coloring spacing, t (see Section III-B). Each node in the
graph represents a rectangular feature. There are two
types of edges in the graph: touching edges and conflict
edges. A touching edge exists between two nodes if the
corresponding features touch each other, and a conflict
edge exists between two nodes if the corresponding
features do not touch each other, but are separated by a
distance less than t (see Fig. 9 for an example). When
a conflict graph is two-colored, a touching edge implies
that the corresponding nodes may be assigned different
colors, but a conflict edge implies that the corresponding
nodes must be assigned different colors. To make the
conflict graph two-colorable, it may be necessary to
remove some touching and conflict edges.

3) Node splitting and graph update: In the CCD approach,
we cast DPL layout decomposition as a problem of mod-
ifying the conflict graph by decomposing selected layout
feature nodes (thus, adding new nodes and inducing
new edges) so that the graph can be properly two-
colored. To this end, the key is the removal of conflict
cycles (CCs), which are the odd-length—and hence not
two-colorable—cycles of conflict edges in the conflict
graph.2 We perform node splitting to remove the conflict
cycles. To find all possible dividing points on the layout
feature nodes, we adopt the concept of node projection,
details of which are discussed in Section III-C. For each
node in the graph, we compute its projections from adja-
cent nodes connected with conflict edges. Based on the
projections, feasible dividing points can be computed.
Two important considerations are: 1) not all layout
features have feasible dividing points, for which the
resulting overlap lengths exceed the required overlap
margin, and 2) a given layout feature may have several
dividing points at which the feature can be split into sev-
eral smaller features. When the feasible dividing points
are computed, the layout features will be split at those
dividing points, and the conflict graph will be updated
with the newly generated nodes and edges. In fact,
the layout fracturing may also be regarded as dividing
point selection and node splitting, where the projections
are not computed and the required overlap margin is
not guaranteed. Note that node splitting is required to
remove a conflict cycle while generating line-ends with
overlap length greater than the required overlap margin.
Besides node splitting, the only means of removing a
conflict cycle is through costly layout change.

4) CCD: Most conflict cycles will be removed by node
splitting, such that nodes on the cycle become two-
colorable at the cost of more line-ends. However, for
some conflict cycles there is no feasible dividing point
for any node on the cycle. Such a conflict cycle is
detected and reported as an unresolvable conflict cycle
(uCC) which must be flagged to the designer for design
change. We use a breadth-first search (BFS)-based
conflict cycle detection algorithm to find such conflict
cycles in the conflict graph.3

5) ILP-based DPL color assignment: After all conflict
cycles have been detected and reported, the remaining
graph after removing those conflict cycles becomes
two-colorable. We perform ILP-based coloring on the
conflict cycle-free graph to find an optimal coloring
solution, optimizing the weighted combination of the
overlap lengths, the number of cuts and design rule
violations. Post-processing functions include analysis

2Conflict cycles do not contain touching edges because such coloring
conflicts can be removed by flipping the colors of the nodes incident to
touching edges.

3Depth first search (DFS)-based cycle detection may also be used. The BFS-
based conflict cycle detection is more efficient for conflict cycles with fewer
edges (e.g., ≤ 10), whereas DFS-based detection is more efficient for conflict
cycles with more edges (e.g., > 10). Since most conflict cycles in the layouts
we have studied have fewer than seven edges, we adopt BFS-based CCD.
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Fig. 3. Example of the conflict graph with conflict edges (green) and
touching edges (dark blue), and layout coloring according to the DPL flow
using the CCD approach along with an unresolvable conflict cycle (green
dashed line). (a) Input layout. (b) Fractured layout and conflict graph with
feasible dividing points on layout features (black dashed line). (c) Updated
conflict graph after node splitting. (d) ILP-based DPL coloring.

of the overlap lengths for all pairs of touching features
(= adjacent split parts of an original layout feature,
which have been assigned different mask colors), and
design rule checking in the final mask solution.

Fig. 3 illustrates layout decomposition and coloring accord-
ing to the CCD approach. Polygonal layout features in (a)
are fractured into rectangles, over which the conflict graph
is constructed with conflict edges (green) and touching edges
(dark blue) as shown in (b). To remove the conflict cycles
in the conflict graph, node splitting is carried out along the
computed dividing points denoted by the dark dashed lines
in (b). After node splitting, the conflict graph is updated
with newly generated nodes and updated edges shown in (c).
Unresolvable conflict cycles which cannot be removed by the
node splitting process are reported and marked (green dashed
lines) as shown in (d). When unresolvable conflict cycles are
detected by CCD, their edges are marked and deleted to make
the remaining graph two-colorable. Finally, ILP-based coloring
is used to obtain a final coloring solution for the two-colorable
conflict graph in (d), where the weighted cost of the overlap
lengths, number of line-ends and design rule violations is
minimized. Here, touching edge e1 is deleted as a result of
a cut specified in the coloring solution.

B. PILP Approach

Fig. 4 shows our PILP flow for DPL layout decomposition.
The flow is similar to CCD except 1) there is no CCD, and 2) a
more sophisticated ILP formulation is used to find a coloring
solution with minimized coloring conflicts. More precisely,
given a layout, the steps of “layout fracturing,” “graph con-
struction,” “node splitting,” and “graph update” are the same as
in the CCD approach, and yield an updated conflict graph on
the split layout feature nodes. Although most coloring conflicts
(conflict cycles in the CCD approach) are resolved during
node splitting, the updated graph is not guaranteed to be two-
colorable. In other words, some conflict edges may require
deletion for a feasible coloring solution to exist. Our ILP-
based color assignment is performed on the conflict graph to
find the coloring solution that minimizes a weighted sum of

Fig. 4. DPL layout decomposition flow using the PILP approach.

Fig. 5. Example of the conflict graph with conflict edges (green) and
touching edges (dark blue), and layout coloring according to our PILP DPL
layout decomposition flow. (a) Input layout. (b) Fractured layout and conflict
graph before node splitting. (c) Node splitting and graph updating. (d) ILP-
based graph coloring.

the number of coloring conflicts,4 cuts, design rule violations
and overlap lengths. Besides the ILP-based coloring algorithm,
phase conflict detection [9] and node-deletion bipartization
[10] methods could conceivably be adopted with better runtime
efficiency but possibly degraded solution quality [2].

Finally, a post-processing phase reports the number of
coloring conflicts (i.e., the number of deleted conflict edges),
the minimum, average, and standard deviation of the overlap
lengths for all pairs of touching features with different colors,
and any design rule violations in the final mask solution.

Fig. 5 illustrates the PILP layout decomposition flow.
Polygonal layout features in (a) are fractured into rectangles,
over which the conflict graph is constructed. In the conflict
graph, the conflict edges are green and the touching edges
are dark blue. We compute projections for all nodes in the
conflict graph, according to which feasible dividing points
are computed as indicated by the dashed lines in (b). Then
node splitting is carried out at the feasible dividing points and
the conflict graph is updated with newly generated nodes and
updated edges as in (c). Finally, ILP-based color assignment
obtains the final coloring solution given in (d), where conflict
edge e1 and touching edge e2 in (c) are deleted to make the
graph two-colorable.

4By increasing the spacing between adjacent features to be greater than
the minimum coloring spacing, the conflict edge between the corresponding
nodes can be deleted. In our implementation, we try to preserve the conflict
edges between features of the same cell instance, and preferentially delete
conflict edges between features of different cell instances. This is because a
spacing perturbation between cell instances is much easier to accomplish than
a spacing perturbation within a cell instance.
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Fig. 6. Example of color assignment problem: feature n2 (resp. n3) is
assigned a different color from n4 (resp. n5) because d2,4 < t (resp. d3,5 < t).

Fig. 7. Two examples of dividing points. (a) Extended features at the
dividing point cause coloring violation. (b) Extended features at the dividing
point still satisfy the minimum coloring spacing rule.

III. DPL Color Assignment Problem

A. Problem Formulation

Fracturing and DPL Color Assignment Problem
Given: Layout L, and maximum distance between two features
(i.e., polygons), t, at which the color assignment is constrained.
Find: A fracturing of L and a color assignment of fractured
features to minimize total cost.
Subject to: 1) Two nontouching fractured features correspond-
ing to nodes ni and nj with 0 < di,j ≤ t must be assigned
different colors, and 2) two touching features with di,j = 0, if
assigned different colors, incur a cost ci,j .

Fig. 6 illustrates the color assignment problem. Feature
n2 (resp. n3) is assigned a different color from n4 (resp.
n5), because d2,4 < t (resp. d3,5 < t). Since d1,2 > t and
d1,3 > t, there is no need for the pairs of features n1 and
n2, and n1 and n3, to be assigned different colors. Note that
when two touching fractured features, e.g., n2 and n3 in the
figure, are assigned different colors, the two features raise the
manufacturing cost (i.e., risk) due to overlay error. We should
maximize the overlap between the respective mask layouts of
n2 and n3 in this case, as we now discuss.

When a feature is split into two parts, the two line-ends
at a dividing point (DP) must be sufficiently overlapped. In
Fig. 7, the extended features (EF) that address the overlap
requirement must still satisfy DPL design rules: the spacing
between features at the dividing point must be greater than
the minimum coloring spacing. Fig. 7 shows how two divid-
ing points lead to different minimum spacings after layout
decomposition. In the figure, each layout decomposition is
two-colorable. However, when extending features for overlay
margin, the dividing point in Fig. 7(a) causes violation of the
minimum coloring spacing, t. The dividing point in Fig. 7(b)
maintains the minimum coloring spacing even after line-end
extension for overlay margin.

Fig. 8. Example of minimum-sliver fracturing. (a) Polygonal layout fea-
ture. (b) Horizontal fracturing. (c) Vertical fracturing. (d) Minimum-sliver
fracturing.

Fig. 9. Example of conflict graph construction: every (rectangular) feature
is represented by a node, each pair of touching features are connected by a
touching edge, each pair of nontouching features within minimum coloring
spacing t are connected by a conflict edge, and no touching feature entirely
blocks two nontouching features connected by conflict edges.

B. Fracturing and Conflict Graph Construction

We use a minimum-sliver fracturing algorithm [17] to fracture
the layout polygons into a set of nonoverlapping rectangles
so that distance computation and other feature operations
(e.g., feature splitting) become easier. The minimum-sliver
fracturing algorithm minimizes the number of small rectangles
and thereby helps avoid minimum design rule violations. Fig. 8
shows an example of minimum-sliver fracturing. Polygonal
layout feature in (a) is fractured in horizontal direction in
(b), in vertical direction in (c), and using minimum-sliver
fracturing in (d). Both horizontal and vertical fracturing meth-
ods generate a sliver as shown in the figure. Such a sliver,
when its adjacent touching features are assigned different
colors, may violate a minimum design rule even after line-
end extension for overlay margin. Though ILP-based coloring
(Section III-G) helps avoid such minimum design rule viola-
tions, it would be helpful to avoid as many slivers as possible
at the beginning.

Our layout decomposition begins with construction of a
conflict graph based on the fractured layout. As illustrated
in Fig. 9, given a (post-fracturing) rectangular layout LR,
the conflict graph G = (V, EC ∪ ET ) is constructed by:
1) representing each feature (i.e., rectangle) by a node n;
2) for any two nontouching features within distance t, connect-
ing the two corresponding nodes with a conflict edge ec; and 3)
for any two touching features, connecting the two correspond-
ing nodes with a touching edge et . A further condition for 2) is
that two nontouching features connected by a conflict edge in
the graph must either belong to different polygonal layout fea-
tures, or belong to the same polygonal layout feature with no
other touching feature between them (i.e., no touching features
entirely block the two nontouching features). In Fig. 9, EC =
{ec

1,3, ec
3,5, ec

5,6} are conflict edges and ET = {et
1,2, et

2,3, et
3,4,

et
4,5} are touching edges. There is no conflict edge between

n2 and n4 since node n3 blocks these two nodes.
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Fig. 10. Node projection examples.

C. Node Splitting

Now we describe our node splitting technique used in both
the CCD and PILP approaches.

Definition 1: The node projection Pi,j from node ni to node
nj is a set of points on nj that have distance to node ni less
than minimum coloring spacing t.

Fig. 10 shows two examples of node projections from node
ni to nj . Node projections can have complicated shapes includ-
ing circular sectors, rectangles, etc.; the figure shows only the
projections on the surface of node nj . In our implementation,
the projections are approximated as rectangles to reduce the
computational complexity.

Fact 1: In the conflict graph, node projections between each
pair of nodes connected with a conflict edge are nonempty.

Definition 2: Node projections are separable in horizontal
(vertical) direction if there exists at least one horizontal
(vertical) splitting line that separates the projections into two
parts without cutting on any projections.

Definition 3: The overlap length between two touching
nodes is the maximum length that the two nodes can be
overlapped by extending them in opposite directions toward
each other without introducing new edges in the conflict graph.

In the conflict graph, wherever there is a pair of touching
nodes, there is a dividing point, i.e., the touching nodes were
generated by splitting the original feature at the dividing point.
Rule-based node splitting: Given a node ni ∈ G, if 1) the
projections on ni are separable in horizontal (resp. vertical)
direction, 2) the resulting overlap length of the horizontal
(resp. vertical) splitting is not less than the given overlap
margin, and 3) there are no design rule violations after
splitting, then node ni can be horizontally (resp. vertically)
split into two nodes. The dividing point (i.e., splitting line)
may be chosen anywhere in between the projections such that
no projections are cut, and no violations of the required overlap
margin or design rules occur. According to Definition 3, the
overlap length is not affected by the position of the dividing
point in the overlap area. In this paper, we prefer to set the
dividing point at the center of the overlap area such that each
touching node can be extended by half of the overlap length. In
design rule checking, we consider the extended layout features
on each exposure mask rather than the features immediately
after node splitting. While the size of a node after splitting may
violate a minimum design rule, the node size after extension
for overlay margin may be acceptable. During node splitting
and design rule checking, we compute the sizes of extended
nodes based on the projections and overlap length, which is
more accurate and appropriate with DP technique.

Fig. 11 shows an example of rule-based node splitting. In
the figure, node projections Pj,i, Pl,i, and Pk,i on node ni

corresponding to nodes nj , nl, and nk are separable with the
overlap length not less than the given overlap margin. Hence,

Fig. 11. Example of rule-based node splitting: op,q is the overlap length and
the dividing point is at the center of the overlap area.

Fig. 12. Example of overlap length calculation: o4,5 is the overlap length
between nodes n4 and n5.

node ni can be split into two new nodes np and nq at the
dividing point, with the corresponding overlap length op,q. The
dividing point is set at the center of the overlap area between
the lower point of Pl,i and the upper point of Pk,i. A more
detailed illustration of overlap length is given in Fig. 12, where
the two touching features n4 and n5 are assigned different
colors, and thus the overlap between n4 and n5 is required to be
greater than the given overlap margin to guarantee successful
manufacturing. The overlap length of the touching features n4

and n5 is denoted as o4,5. When computing overlap length,
two features of the same color cannot be extended such that
the distance between them is less than the minimum coloring
spacing t (e.g., in the figure, n4 cannot be extended downward
to touch the projection of feature n7).

Our node splitting is applied to all the nodes with feasible
dividing points in the conflict graph, so that we may eventually
obtain a graph which becomes two-colorable after removing
the minimum number of conflict edges or reporting the min-
imum number coloring conflicts (i.e., the conflict cycles). We
perform the rule-based node splitting for each node with fea-
sible dividing points. To compute the feasible dividing points,
projections are calculated for each node from its adjacent
nodes connected with conflict edges in the conflict graph.
According to the projections of a given node, the overlap
length for each possible dividing point is computed. For each
dividing point with achievable overlap length greater than the
required overlap margin, node splitting is used to split the node
into two nodes at the dividing point. After node splitting at
all feasible dividing points, the conflict graph is updated.

D. CCD

After node splitting, there may still be coloring conflicts in
the updated conflict graph due to some special layout pattern
configurations. To detect such coloring conflicts, in our CCD
approach we find odd-length cycles of conflict edges in the
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Fig. 13. Example of minimal conflict cycle of node n0.

conflict graph. In the following part of this subsection, unless
otherwise specified, all cycles and paths are for conflict edges
rather than touching edges.

Definition 4: Given a conflict graph G, a conflict cycle is
an odd-length (odd number of conflict edges) cycle in G.

Definition 5: Given a conflict cycle C in conflict graph G,
assume for any two nodes u, v ∈ C, path Pu,v in C is of
odd length and path P ′u,v in C is of even length, then C is
a minimal conflict cycle if there is no odd-length path in G

between u and v shorter than Pu,v and no even-length path
between u and v in G shorter than P ′u,v.

Definition 6: Given a conflict graph G, a BFS-induced
graph of node n is a subgraph of G, which has been visited
by the BFS search from node n when the first conflict cycle
is detected.

Definition 7: A minimal conflict cycle of node n is a
minimal conflict cycle in the BFS-induced graph of node n.

Details of our BFS-based CCD algorithm along with proof
of optimality is given in the Appendix. Fig. 13 shows an
example. Starting from node n0, BFS search is performed.
When reaching the first conflict cycle {n0, n2, n5, n7, n6, n3,
n1}, the BFS-induced graph of node n0 is {n0, n1, n2, n3,
n4, n5, n6, n7}, and the minimal conflict cycle of n0 in the
BFS-induced graph is {n3, n4, n5, n7, n6}. From the example,
from different starting nodes, different minimal conflict cycles
can be found, e.g., starting from node n8, the minimal conflict
cycle of n8 will be found as {n6, n7, n8}.

When a conflict cycle is detected, we must report it for
removal by design change (e.g., by increasing the spacing
between feature nodes in the cycle, so as to remove one or
more conflict edges) since node splitting has already been
performed. CCD and reporting is carried out in an iterative
manner: after each conflict cycle is detected, conflict cycle
reporting is invoked to mark the conflict cycle and remove
it from the conflict graph by deleting all the conflict edges
in the cycle. Further rounds of detection and reporting are
performed until no conflict cycles exist in the graph, i.e., the
graph is two-colorable.

The runtime of CCD and reporting depends on the number
of conflict cycles and the density of the conflict graph. As
described in the experimental results in Table III, total runtime
for the whole process, including the CCD and reporting,
and min-cost color assignment, is reasonable: around 2.2 h
for layouts of 45 nm design ART-C45 with more than 3.2M
polygons (more than 10M rectangles after fracturing).5

5This runtime includes all stages: layout partitioning, all rounds of conflict
cycle detection and reporting, ILP-based color assignment, etc. The total
runtime of BFS-based CCD across all CCD rounds is less than 13 s for
t = 91 nm.

Fig. 14. Example of unresolvable conflict cycle (uCC). (a) uCC with no
dividing point. (b) uCC with nonzero overlap length that is less than the
required overlap margin.

E. Unresolvable Conflict Cycle (uCC)

We now discuss why not all conflict cycles can be
eliminated by the node splitting method. DPL layout
decomposition fails when layout features within the coloring
spacing lower bound cannot be assigned different colors.
Such a failure, which we call an uCC, consists of two cases:
1) among all the feature nodes there is no dividing point
with nonzero overlap length to remove the conflict cycle, and
2) even if there is a possible dividing point to remove the
conflict cycle, the overlap length is less than the required
overlap margin. Fig. 14 illustrates these two types of uCCs,
where conflict edges are drawn between the features. In
Fig. 14(a), the projections are not separable on any of the
three nodes in the conflict cycle denoted by bold conflict
edges. Removal of the conflict cycle may be achieved by
design change, e.g., by increasing the spacing between two
neighboring features to be > t. In Fig. 14(b), the overlap
length at the dividing point is less than the required overlap
margin. Again, a fix by design change is needed.

After CCD and reporting, we apply ILP-based coloring
(Section III-G1) to decide which nodes to split in the final
decomposition result. The ILP optimizes a weighted objective
of number of cuts, design rule violations, and overlap lengths.

In our PILP approach, the conflict graph may not be
two-colorable after the node splitting. We apply a more
sophisticated ILP-based coloring method (Section III-G2) to
compute a minimized number of conflict edges for deletion.
The deleted conflict edges will be reported and marked for
design changes. To reduce the cost of the design change,
we preferentially delete conflict edges between features of
different cell instances, so that the desired design changes may
be obtained by shifting the cell instances. Besides minimizing
the number of coloring conflicts, the ILP also determines
which nodes to split (i.e., the corresponding pair of touching
nodes are assigned different colors) in the final decomposed
layout to optimize a weighted objective of number of cuts,
design rule violations, and overlap lengths.

F. Layout Partitioning

In most placements, the conflict graph between cells is
sparse: due to the required poly-to-cell boundary distance, as
well as whitespace between cells, there are not many edges
between the cells. As a result, many “islands” (connected
components) can be found in the conflict graph. At the same
time, runtimes of our ILP-based coloring algorithms increase
dramatically when the number of nodes and edges in the
graph is large. Therefore, we merge the nodes into small
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Algorithm 1 Layout Partitioning Algorithm
Input: Conflict graph G and the mapping information from nodes to polygons.
Output: A set of clusters of nodes such that no edge or node pair from any single layout

polygon exists in between any pair of clusters.
1: Make a new graph G′ on polygons with each node n′ representing a polygon;
2: for all e = (u, v) ∈ G do
3: Set edge e′ ← (u′, v′) ∈ G′, where u′ and v′ correspond to the polygons in which

rectangles of u and v are, respectively, located;
4: while there is an unvisited node n′

i
∈ G′ do

5: Make a new cluster c′
i

containing n′
i
;

6: Perform breadth-first search from n′
i

and add all visited nodes into c′
i
;

7: for all clusters c′
i

do
8: Make cluster ci on the nodes of the polygons in c′

i
;

clusters according to the connectivity information, with no
edges or nodes of a given polygon occurring in multiple
clusters. Each cluster has its separate conflict graph, and
ILP-based coloring may be performed on each cluster in
sequence. Because there are no edges between clusters, and
no polygon has nodes in more than one cluster, the final
solution is simply the union of solutions for all the clusters,
with no degradation of solution quality.

Our layout partitioning algorithm is given in Algorithm 1.
The time complexity of Steps 2–4 is O(E), the complexity
of Steps 5–8 is O(V ′ + E′), and the complexity of Steps
9–11 is O(C′ + V ), where V is the total number of nodes,
E is the total number of edges between nodes, V ′ is the
total number of polygons, E′ is the total number of edges
between polygons, and C′ is the total number of clusters on
polygonal layout features. From the above analysis, our layout
partitioning algorithm runs in linear time in the size of the
conflict graph. For dense graphs which can be induced by
a large minimum coloring spacing t, cluster sizes after layout
partitioning may still be large. Graph partitioning methods [25]
may be adopted to partition large clusters into smaller ones
to further reduce the runtime of ILP-based coloring, but this
is at the cost of introducing suboptimality into the coloring
solutions. In our implementation, we preferentially delete
touching edges to partition the clusters to avoid incurring
unnecessary design changes. Furthermore, to avoid violating
the required overlap margin, only when the overlap length
between the corresponding touching nodes is greater than the
overlap margin can a touching edge be deleted.

G. Min-Cost Color Assignment Problem Formulation

1) CCD Approach: Min-cost color assignment is formu-
lated as the following ILP:

Objective: Minimize
∑

ci,j × yi,j

Subject to

xi + xj = 1 ∀ ec
i,j (1)

xi − xj ≤ yi,j ∀ et
i,j (2)

xj − xi ≤ yi,j ∀ et
i,j (3)

where xi and xj are binary variables (0/1) for the colors of
rectangles ri and rj , and yi,j is a binary variable for touching
edge et

i,j ∈ ET , i.e., for any pair of touching rectangles ri

and rj . Constraint (1) specifies that nontouching rectangles ri

and rj within distance t should be assigned different colors.
Constraints (2) and (3) are used for evaluating the cost when

Fig. 15. Example of cost function: l5 < l6 < FSmin, c4,5 = α/l5 +β+γ/o4,5,
c5,6 = α · FSmin/(l5 · l6) + β + γ/o5,6, o4,5 > o5,6, c5,6 > c4,5.

touching rectangles ri and rj are assigned different colors. The
cost for touching rectangles is defined as

ci,j = α · f (wi,j)/(f (li) · f (lj)) + β + γ/oi,j (4)

where wi,j is the width of the rectangle edge between rectan-
gles ri and rj , li and lj are the lengths of the rectangle edges
of ri and rj which are opposite to the touching edge between
ri and rj ,6 oi,j (= oj,i) is the overlap length between nodes ni

and nj , and α, β and γ are user-defined parameters to weight
the different optimization objectives. Function f is defined as

f (x) =

{
FSmin ∀x ≥ FSmin

x ∀x < FSmin
(5)

where FSmin is minimum feature size, i.e., the threshold on
the features, below which a design rule violation will occur.
Our ILP problem formulation seeks to minimize the weighted
cost over the design rule violations, the number of cuts on the
layout polygons, and the overlap lengths between touching
features of different colors.

a) Minimizing Design Rule Violations: During layout
fracturing, small rectangles may be generated due to certain
polygonal layout features (e.g., n5 and n6 in Fig. 15). Accord-
ing to (4), higher costs will be assigned to smaller-size pairs
of touching rectangles. Thus, the ILP aims to minimize design
rule violations in the final layout.

b) Minimizing the Number of Cuts: The cuts on the
layout features will introduce more line-ends, which is unde-
sirable due to line-end shortening effects and overlay errors.
In (4), setting the second term (β) to be greater than the first
term, gives cut minimization higher priority relative to design
rule violations.

c) Maximizing the Overlap Length: Maximum overlap
length satisfying the required overlap margin is also desirable.
In (4), a larger γ value corresponds to more emphasis on
overlap length maximization.

Fig. 15 illustrates the cost function computation, where
1) l5 < l6 < FSmin; 2) c4,5 = α·f (w4,5)/(f (l4)·f (l5))+β+γ/o4,5

= α/l5 +β+γ/o4,5; 3) c5,6 = α·f (w5,6)/(f (l5)·f (l6))+β+γ/o5,6

6As mentioned in Section III-C, touching line ends are extended across each
other to ensure the required overlap margin. So, the sizes of touching features
are computed after their extension based on the precomputed projections.
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= α·FSmin/(l5 ·l6)+β+γ/o5,6; 4) o4,5 > o5,6;7 and 5) c5,6 > c4,5.
From this computation, we get c5,6 > c4,5. Given such costs
on the touching rectangles, the ILP solver can output the color
assignment results as illustrated in Fig. 15. Since the length of
rectangle n5, l5, is less than the minimum feature size FSmin

(even after the extension for overlap), the design rule will be
violated if n5 is assigned a different color than n6. In this
way, the cost function supports the minimization of design
rule violations.

2) PILP Approach: Min-cost color assignment is formu-
lated using a different ILP. In addition to the variables xi and
yi,j , we introduce a new binary variable zi,j for conflict edge
ec
i,j ∈ EC. zi,j = 0 when xi �= xj , while zi,j = 1 when xi = xj .

We then have:
Objective: Minimize

∑
yi,j × (β + γ/oi,j) +

∑
λ× zi,j

Subject to{
2xi − xj − xk ≤ 1
xj + xk − 2xi ≤ 1 ∀ et

i,j, e
t
i,k and li < FSmin

(6)

xi = xj ∀ et
i,j and li < FSmin (7)

xi = xj ∀ et
i,j and oi,j < OM (8){

xi − xj ≤ yi,j

xj − xi ≤ yi,j ∀ et
i,j and oi,j ≥ OM

(9)
{

xi + xj − 1 ≤ zi,j

1− xi − xj ≤ zi,j ∀ ec
i,j

(10)

where li, FSmin, oi,j are defined as above, and OM is the
required overlap margin.

Constraints (6) and (7) avoid design rule violations. In
Constraint (6), if the size of rectangle ri is less than the
minimum feature size and ri touches rectangles rj and rk on
two sides, then ri should be assigned the same color as one
or both of rj and rk. In Constraint (7), if the size of rectangle
ri is less than the minimum feature size and ri only touches
rectangle rj , then ri should be assigned the same color as rj

to avoid a design rule violation.
Constraint (8) enforces the required overlap margin: if

the overlap length between touching rectangles ri and rj is
less than the required overlap margin, then ri and rj should
be assigned the same color. Constraint (9) is related to the
objective of maximizing the final overlap length. When the
overlap length oi,j between a pair of touching rectangles ri

and rj is greater than the required overlap margin OM, a cost
γ/oi,j is incurred when ri and rj are assigned different colors
(xi �= xj), i.e., yi,j = 1.

Constraint (10) is related to the objective of minimizing the
number of coloring conflicts, i.e., the conflict edge removal
process which removes the conflict edges between rectangles
by changing the design. A cost λ is incurred for a conflict
edge ec

i,j if ri and rj are assigned the same color (xi = xj), i.e.,
zi,j = 1. β, γ and λ are user-specified parameters for balancing
the different objectives, e.g., a larger β corresponds to more

7In Fig. 15, the dividing point between n4 and n5 (resp. n5 and n6) is
obtained by layout fracturing, so it is not at the center of the overlap area
between n4 and n5 (resp. n5 and n6). However, the overlap length between
the touching nodes can still be obtained by the computed projections from
adjacent nodes, and the overlap length between n4 and n5 is larger than that
between n5 and n6.

TABLE I

Testcase Parameters

Design #Cells #Polygons #Rects

AES90 17 304 90 394 362 380
ART-A90 50 288 309 232 1 162 560
ART-B90 100 127 615 703 2 314 740
ART-C90 300 381 1 847 109 6 944 220
ART-D90 500 186 3 075 754 11 563 320

AES45 26 026 65 201 176 131
ART-A45 100 098 641 673 2 187 963
ART-B45 300 026 1 923 301 6 558 031
ART-C45 500 088 3 205 788 10 931 028

Testcases of 90 nm designs are suffixed by “90” and 45 nm designs are suffixed
by “45.” For 90 nm testcases, minimum spacing (140 nm) and minimum
line width (100 nm) on poly layer are scaled by 0.5× to 70 nm and 50 nm,
respectively. For 45 nm testcases, minimum spacing and minimum line width
on poly layer are 70 nm and 50 nm, respectively.

emphasis on the minimization of the number of line-ends, a
larger γ relates to more improvement of overlap length, and a
larger λ indicates that the number of coloring conflicts should
be minimized. The results reported below are obtained with
β = 1, γ = OM, and λ = 1e2.8

IV. Experimental Results

We empirically test our CCD and PILP approaches
on both real and artificial designs. We evaluate our DPL
solutions with respect to: 1) solution quality, 2) scalability,
and 3) correctness. Note that our previous work [2] has
explored application of alternating-aperture phase-shift mask
(AAPSM) conflict resolution methods—specifically, edge
deletion bipartization (EDB) and node deletion bipartization
(NDB)—to the DPL layout decomposition problem. However,
the AAPSM and DPL layout decomposition problems seek
different solutions (respectively, feature spacing versus feature
splitting), and methods for the former require a planar conflict
graph. Reference [2] shows that, due to the suboptimality
introduced by the planarization step in EDB, or the heuristic
method in NDB, the previous AAPSM methods are inferior
(in the DPL pattern splitting context) to the PILP and CCD
methods that we present here.
A. Experimental Setup

Our layout decomposition system is implemented in C++.
We use one real design (AES) implemented using both Artisan
90 nm library and Nangate 45 nm open cell library [26] by
Synopsys Design Compiler v2003.06-SP1 [4]. Because real
synthesized netlists do not use all of the available standard-
cell masters, we also run experiments with artificial designs
using the same 90 nm and 45 nm libraries. Our 90 nm artificial
designs instantiate more than 600 different types of cell mas-
ters, and our 45 nm designs instantiate more than 120 different
types of cell masters. The testcases are placed with row
utilizations of 70% and 90% using Cadence SoC Encounter
(v07.10) [5].9 Table I shows key parameters of the testcases,

8To preferentially delete conflict edges between features of different cell
instances, the edge deletion cost for those edges is set to λ/2.

9The cell masters in the artificial designs are randomly chosen from the
library such that each type of cell master corresponds to approximately the
same number of cell instances. Since no netlist is available, the artificial
designs are placed into rows in random order, with only the utilization
(density) constraint.
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TABLE II

Experimental Results of Layout Decomposition System Using

CCD Approach on the Poly Layer

of Scaled 90 nm Designs (70% and 90% Utilization)

Design t CEs DTEs uCCs Cuts Min. Mean σ CPU
AES90 76 85 729 0 0 130 15 131.03 112.94 30.7
(70%) 77 87 241 0 1 128 35 124.36 114.40 30.9
ART-A90 76 363 357 0 0 8578 25 254.60 167.71 196.4
(70%) 77 367 053 0 0 8679 20 255.05 169.65 199.2
ART-B90 76 723 143 0 0 17 079 25 258.08 169.11 548.0
(70%) 77 730 474 0 0 17 291 20 257.86 170.57 589.1
ART-C90 76 2 170 312 0 0 51 214 25 255.97 168.25 4657.3
(70%) 77 2 192 325 0 0 51 864 20 256.26 169.95 4882.4
ART-D90 76 3 612 466 0 0 85 304 25 256.35 168.42 10 509.7
(70%) 77 3 649 073 0 0 86 394 20 256.72 169.97 10 993.1
AES90 76 85 632 0 0 130 15 137.16 114.15 31.1
(90%) 77 87 149 0 1 128 35 130.67 115.92 31.2
ART-A90 76 363 336 0 0 8567 25 255.69 168.58 195.1
(90%) 77 367 047 0 0 8684 20 255.83 170.16 198.2
ART-B90 76 723 619 0 0 17 056 25 255.80 168.14 548.6
(90%) 77 730 978 0 0 17 256 20 255.24 169.60 536.6
ART-C90 76 2 170 098 0 0 51 227 25 256.53 168.18 5483.6
(90%) 77 2 192 132 0 0 51 819 20 256.43 169.77 5403.0
ART-D90 76 3 613 640 0 0 85 296 25 256.15 168.41 14 921.1
(90%) 77 3 650 513 0 0 86 388 20 256.52 170.01 11 055.8

where testcases of 90 nm designs are suffixed by “90” and
45 nm designs are suffixed by “45.” In the 45 nm layouts,
minimum spacing between features is 70 nm and minimum
feature size is 50 nm. In the 90 nm layouts, minimum spacing
between features is 140 nm, and minimum feature size is
100 nm. To match the 45 nm layouts with smaller feature sizes,
we scale the 90 nm layouts by a factor of 0.5×, which results
in 70 nm minimum spacing and 50 nm minimum feature size.

B. Experimental Results

1) Solution Quality: We sweep the coloring spacing lower
bound as well as placement utilization to test our DPL color
assignment approaches. For the CCD approach, we evaluate
the solution quality according to number of unresolvable
conflict cycles, and minimum, average and standard deviation
of overlap lengths. Tables II and III show the experimental
results of our layout decomposition system using the CCD
approach, where “t” is the minimum coloring spacing, “CEs”
is the number of conflict edges between features before
node splitting, “DTEs” is the number of deleted touching
edges between features in graph partitioning to reduce the
ILP problem size (see Section III-F), “uCCs” is the number
of unresolvable conflict cycles,10 “Cuts” is the number of
touching rectangle pairs with different colors, and “CPU” gives
the total runtime of our layout decomposition algorithm in
seconds. The minimum, average and the standard deviation
of the overlap length values for all the cuts in the final
decomposed layout are also reported, i.e., “(min., mean, σ).”
Since node splitting is already performed before CCD, all the
detected conflict cycles are unresolvable, i.e., the number of
detected conflict cycles is equal to the number of uCCs.

From Tables II and III, the number of uCCs will increase
as the minimum coloring spacing t increases. Note that in the
results we do not count the cuts related to features within
unresolvable conflict cycles. Thus, as the number of unre-
solvable conflict cycles increases, the reported total number
of cuts may decrease. Tracking the uCC metric across 70%

10Because node splitting is already performed before CCD, the number of
uCCs gives the iterations of the CCD process, i.e., for each iteration of CCD,
one uCC will be reported (unless there is no conflict cycle in the remaining
conflict graph).

TABLE III

Experimental Results of Layout Decomposition System Using

CCD Approach on the Poly Layer

of 45 nm Designs (70% and 90% Utilization)

Design t CEs DTEs uCCs Cuts Min. Mean σ CPU
AES45 90 45 750 8 0 3409 38 360.64 261.44 20.2
(70%) 91 45 764 11 0 3410 34 359.21 262.19 20.2
ART-A45 90 628 733 188 0 25 521 8 355.57 251.43 378.6
(70%) 91 636 038 195 0 25 560 9 353.85 251.99 378.3
ART-B45 90 1 884 320 477 0 76 550 10 355.44 252.88 2316.8
(70%) 91 1 906 267 510 0 76 609 9 353.66 253.11 2391.2
ART-C45 90 3 142 308 791 0 127 935 8 358.18 255.35 7895.8
(70%) 91 3 178 851 898 0 128 100 8 356.75 255.86 7991.6
AES45 90 46 098 14 0 3489 40 367.14 258.92 20.1
(90%) 91 46 109 12 0 3491 36 364.89 258.67 20.2
ART-A45 90 637 186 204 0 26 629 13 364.86 259.47 391.2
(90%) 91 644 574 260 0 26 698 9 363.12 260.02 395.6
ART-B45 90 1 912 100 962 0 79 836 10 364.08 258.08 2355.2
(90%) 91 1 934 210 980 0 79 929 8 362.66 258.46 2388.0
ART-C45 90 3 181 602 1477 0 132 303 8 362.74 257.20 8205.0
(90%) 91 3 218 341 1537 0 132 563 8 361.34 257.72 8513.1

and 90% placement utilizations, we can infer that unresolvable
conflict cycles mainly exist within each cell instance rather
than between cell instances, i.e., there is only a small impact
from the different placement utilizations. Higher placement
utilization may not result in more unresolvable conflict cycles
because unresolvable conflict cycles have a local property
and depend more on relative positions between neighboring
features. Most conflict cycles between cell instances can be
removed using our node splitting and ILP node coloring
methods. Figs. 16 and 17 show small examples of our layout
decomposition solutions, where all layout is correctly decom-
posed with respect to the pre-specified overlap margin.

From the columns under “min.” and “mean,” we can see
that all overlap lengths in the final mask decomposition are
greater than the pre-specified overlap margin (8 nm overlap
margin in 45 nm node [6]), which confirms the effectiveness of
our layout decomposition system. In most cases, the minimum
overlap length decreases as t increases when there are no
coloring conflicts (i.e., when the number of uCCs or DCEs
is 0). However, for ART-A45 with 70% placement utilization,
the minimum overlap length increases as t increases. We
attribute this to different deleted touching edges (DTEs) which
introduce suboptimality to the coloring solution. (For example,
when the overlap length related to a deleted touching edge
is 8 nm and the corresponding touching nodes, which are
partitioned into different clusters, are assigned different colors,
the minimum overlap length in the final solution will be 8 nm
even ILP obtains a greater overlap length in each cluster.)

For the PILP approach, we evaluate solution quality ac-
cording to number of deleted conflict edges, overlap length
and number of cuts. Tables IV and V show the experimental
results, where “t” gives the minimum coloring spacing, “CEs”
gives the number of conflict edges before node splitting in
the conflict graph, “DTEs” is the number of deleted touching
edges between features in graph partitioning to reduce the ILP
problem size (see Section III-F),11 “DCEs” gives the number
of deleted conflict edges, “Cuts” gives the number of touching
feature pairs with different colors, the columns under “min,”
“mean,” and “σ,” respectively, give minimum, average and

11The number of deleted touching edges is very small compared with
the total number of partitions generated during layout decomposition. For
example, for ART-C45 (90%) with t = 91 nm in Table V, the number of deleted
touching edges (DTEs) is 1537. By contrast, the total number of partitions is
92 615 (the ratio is 1.66%).
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TABLE IV

Experimental Results of Our Layout Decomposition System

Using PILP Approach on the Poly Layer

of Scaled 90 nm Designs (70% and 90% Utilization)

Design t CEs DTEs DCEs Cuts Min. Mean σ CPU
AES90 76 85 729 0 0 128 15 131.23 113.84 32.6
(70%) 77 87 241 0 1 126 35 124.51 115.30 33.3
ART-A90 76 363 357 0 0 8572 25 258.31 169.21 239.0
(70%) 77 367 053 0 0 8680 20 258.35 170.62 243.9
ART-B90 76 723 143 0 0 17 076 25 261.31 170.32 624.6
(70%) 77 730 474 0 0 17 292 20 262.52 171.58 679.8
ART-C90 76 2 170 312 0 0 51 217 25 259.62 169.79 5678.4
(70%) 77 2 192 325 0 0 51 872 20 260.71 171.54 6022.3
ART-D90 76 3 612 466 0 0 85 311 25 260.05 170.09 11 985.4
(70%) 77 3 649 073 0 0 86 403 20 260.56 171.25 14 672.3
AES90 76 85 632 0 0 128 15 137.46 115.04 33.3
(90%) 77 87 149 0 1 126 35 130.92 116.83 33.4
ART-A90 76 363 336 0 0 8568 25 259.21 169.93 243.6
(90%) 77 367 047 0 0 8685 20 260.38 171.01 241.1
ART-B90 76 723 619 0 0 17 054 25 259.70 169.99 646.1
(90%) 77 730 978 0 0 17 258 20 259.94 171.22 630.9
ART-C90 76 2 170 098 0 0 51 216 25 260.20 169.85 6233.8
(90%) 77 2 192 132 0 0 51 824 20 260.74 171.36 4972.4
ART-D90 76 3 613 640 0 0 85 316 25 259.88 170.17 12 171.7
(90%) 77 3 650 513 0 0 86 394 20 260.41 171.40 11 823.5

TABLE V

Experimental Results of Our Layout Decomposition System

Using PILP Approach on the Poly Layer

of 45 nm Designs (70% and 90% Utilization)

Design t CEs DTEs DCEs Cuts Min. Mean σ CPU
AES45 90 45 750 8 0 2973 40 387.15 264.93 40.3
(70%) 91 45 764 11 0 2977 36 384.90 266.93 40.2
ART-A45 90 628 733 188 0 24 290 8 361.07 253.92 564.6
(70%) 91 636 038 195 0 24 331 19 360.02 254.70 578.6
ART-B45 90 1 884 320 477 0 72 828 10 360.87 255.57 2887.4
(70%) 91 1 906 267 510 0 72 904 9 359.48 255.60 3219.2
ART-C45 90 3 142 308 791 0 121 916 8 364.40 258.20 8291.2
(70%) 91 3 178 851 898 0 122 125 9 362.66 257.80 8612.0
AES45 90 46 098 14 0 3071 40 397.33 259.73 41.0
(90%) 91 46 109 12 0 3078 36 393.49 259.30 40.9
ART-A45 90 637 186 204 0 25 432 13 370.20 262.31 612.1
(90%) 91 644 574 260 0 25 493 9 369.48 262.74 596.4
ART-B45 90 1 912 100 962 0 76 292 10 370.46 261.05 2892.2
(90%) 91 1 934 210 980 0 76 415 8 368.90 261.04 2912.4
ART-C45 90 3 181 602 1477 0 126 238 8 369.20 260.20 8129.2
(90%) 91 3 218 341 1537 0 126 482 8 367.38 259.88 8209.6

TABLE VI

Experimental Results of Layout Decomposition System Using

CCD Approach on Metal 1 and Metal 2 Layers

of AES45 with 90% Placement Utilization

Design t CEs DTEs uCCs Cuts Min. Mean σ CPU
54 2351 0 0 202 22 165.24 136.63 12.2
55 2385 0 0 202 16 165.07 136.79 12.3

AES45-M1
56 4225 0 2 369 10 214.08 166.37 12.7
57 4285 0 6 363 10 219.18 173.81 12.7
54 47 384 0 269 2069 14 318.19 569.12 5.4
55 47 425 0 270 2069 8 314.24 568.21 5.5

AES45-M2
56 47 585 0 286 2071 10 310.30 567.20 5.5
57 47 591 0 837 1447 20 424.20 633.44 5.5

standard deviation of the overlap lengths, and “CPU” gives
the total runtime in seconds. From the experimental results,
our PILP method deletes some conflict edges to make the
conflict graph two-colorable. The minimum overlap length is
again always larger than the pre-specified overlap margin 8 nm.
Comparing the results from the CCD and PILP approaches,
the number of reported unresolvable conflict cycles (uCCs) is
equal to that of deleted conflict edges (DCEs). In the CCD
approach, when a conflict cycle is detected and reported as a
uCC, all the conflict edges of the cycle will be removed to
make the graph two-colorable. Then, another round of CCD
starts, until no conflict cycles exist. That is, for each detected
uCC, more than one edge will be deleted, and the deleted
edges may further remove other conflict cycles. Hence, the
reported number of uCCs may be less than or equal to the
number of deleted conflict edges.

Tables VI and VII show the experimental results of our
CCD and PILP approaches on Metal 1 and Metal 2 layers of

TABLE VII

Experimental Results of Our Layout Decomposition System

Using PILP Approach on Metal 1 and Metal 2 Layers

of AES45 With 90% Placement Utilization

Design t CEs DTEs DCEs Cuts Min. Mean σ CPU
54 2351 0 0 200 22 162.96 129.68 22.4
55 2385 0 0 200 16 163.21 129.70 22.5

AES45-M1
56 4225 0 2 366 10 216.94 165.04 23.0
57 4285 0 6 360 10 221.12 172.63 22.7
54 47 384 0 270 2079 14 312.48 555.25 20.7
55 47 425 0 271 2079 8 310.59 562.40 20.6

AES45-M2
56 47 585 0 287 2082 10 305.57 555.49 21.6
57 47 591 0 840 1456 20 416.76 621.58 23.5

Fig. 16. Example of DPL layout decomposition in the poly layer.

Fig. 17. Example of DPL layout decomposition in the M1 layer.

AES45 with 90% placement utilization (t = 54–57 nm). Again,
the minimum overlap length is larger than the pre-specified
overlap margin 8 nm. Comparing the results from the CCD
and PILP approaches, the number of uCCs is less than the
number of DCEs. We have discussed the reason for that above.
From the results, Metal 2 layer is more difficult than Metal
1, i.e., for the same t value more uCCs are detected on Metal
2 layer. That is because the router (i.e., we use Cadence SoC
Encounter) prefers to choose higher metal layers than Metal
1 layer to avoid local congestion. As a result, Metal 2 layer is
likely to be more congested than Metal 1 layer, which results
in more uCCs on Metal 2.

We do not directly compare the CCD and PILP approaches
with respect to all metrics, as different methods and objective
functions in problem formulations are used. For example, with
the CCD approach the number of unresolvable conflict cycles
(uCCs) captures layout pattern configurations which are not
two-colorable; in the PILP approach the number of deleted
conflict edges captures the minimum number of coloring
conflicts. The PILP approach has larger runtime than the CCD
approach because in the PILP approach, though there is no
conflict cycle detection (which runs very fast), the number of
constraints is larger than that in the CCD approach.

Note that different t values are used for different designs
(i.e., 76–77 nm for the scaled 90 nm designs, 90–91 nm for
the 45 nm designs, and 54–57 nm for Metal 1 and Metal
2 layers). By sweeping t values, we want to find example
t values where the number of deleted conflict edges or uCCs
is 0 (i.e., no layout changes are needed). If t values of 90–
91 nm are used for the scaled 90 nm designs, there would be
many deleted conflict edges or uCCs. The results show that the
45 nm designs can have larger t values with no layout changes.
We attribute this to the more regular cell master patterns in the
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Fig. 18. ILP runtime: typical versus with layout partitioning.

Fig. 19. Example of the BFS-induced graph and minimal conflict cycle C of
node n0: nodes ni1, ni2, and ni3 have shortest distance d1 to n0; only one path
(i.e., the path between nodes ni1 and ni3 of length d2) can be of odd length
and its length is greater than the other two paths in C, because otherwise the
graph is not a BFS-induced graph of n0; adjacent nodes nj and nk are of
maximum distance D = (d2 − 1)/2 + d1 from n0.

Fig. 20. Overlap between two mask exposures: (a) Original layout, and
(b) superimposed post-etch contours where overlap is more litho-friendly.
Source [24].

Fig. 21. Coloring solution with one feature having multiple exposures.
(a) Conflict graph with conflict edges. (b) Each node without a conflict edge
can have two colors.

Nangate 45 nm open cell library. However, metal layers have
the smallest t values, which proves the difficulty of layout
decomposition on metal layers.

2) Scalability and Runtime: Fig. 18 compares runtime of
the CCD ILP with versus without layout partitioning.12 Un-
surprisingly, ILP runtime without layout partitioning increases
very rapidly. On the other hand, the layout partitioning delivers
much faster runtimes—for example, over 100× speedup for
the AES90 testcase compared to naive use of ILP.

3) Verification of DPL: We have verified DPL layouts
generated by our layout decomposition system with both ILP
approaches using Mentor Calibre DRCv2.6.9-11 [3]. Specif-
ically, we set up three key design rule checks (DRCs) as
follows: 1) the minimum spacing check rule in the DPL mask
layouts is increased up to t; 2) the minimum line width checks
for DPL are the same as those in single-exposure lithography;
and 3) overlap length checks are performed by use of the
AND boolean shape operation, i.e., intersections of features in

12Here, layout partitioning refers to both layout partitioning and graph par-
titioning methods to reduce the ILP problem size as discussed in Section III-F.

Fig. 22. Coloring solution for a real layout with one feature having multiple
exposures: blue and green features appear on each mask and red features
appear on both masks.

the two mask layouts correspond to overlaps at node splitting
points, and must be larger than the prescribed overlap margin
(i.e., 8 nm). The DRC is performed on layouts having extended
features at the dividing points. Per the three design rule checks,
no design rule violation exists in any of our testcases.

V. Conclusion and Ongoing Work

We have proposed different layout decomposition ap-
proaches to address design needs for DE patterning at 45 nm
and below. Our approaches practically and effectively improve
overlap length and hence lithography yield. Experimental
results with real and artificial testcases show that the overlap
lengths in the final layout are not less than the pre-specified
overlap margin (e.g., 8 nm margin in 45 nm node) with all
coloring conflicts reported, confirming the effectiveness of our
approaches.

Our ongoing research is in the following directions.
1) The two mask exposures in DPL can result in distinct

CD populations with different statistical distributions,
which may increase guardbanding compared to the
guardband of a single-exposure process. We are investi-
gating optimal timing/power model guardbanding under
the bimodal CD distribution in DPL.

2) We seek variability-awareness in the DPL layout decom-
position cost function. Examples are 1) minimizing the
difference between the pitch distributions of two masks,
and 2) minimizing the number of distinct DPL layout
solutions across all instances of a given master cell (to
reduce variability between the instances).

3) We are also working on the DPL layout decomposition
problem with balanced mask layout density and forbid-
den pitch interval constraints.

Appendix A

Minimal Conflict Cycle Detection

Given a connected conflict graph as in Fig. 13, conflict
cycles are detected from a randomly chosen starting node
(e.g., n0) using Algorithm A with flag for cycle reporting set
to be false. From Lines 9–15 in Algorithm A, the algorithms
are called in the following order: 1) Algorithm A (flag =
false), 2) Algorithm A (flag = true), and 3) Algorithm 3.
Time complexity of the CCD algorithm is O(V + E), where
V and E are, respectively, the number of nodes and edges in
the conflict graph G.

Theorem 1: The CCD algorithm given in Algorithms A and
3 can detect the minimal conflict cycle of starting node n0.
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Algorithm 2 CCD Algorithm
Input: Conflict graph G, starting node n0 and flag for cycle reporting.
Output: Report one conflict cycle if there exist any conflict cycles.
1: Set distance di ←−∞ for each node ni ∈ G;
2: Make a queue Q and enqueue node n0 ∈ G into Q;
3: Set distance d0 ← 0 for n0;
4: while Q is not empty do
5: Dequeue the first node nj in Q;
6: for all nodes nk adjacent to nj do
7: if dk ≥ 0 then
8: if dk = dj then
9: if flag = true then

10: Call Algorithm 3 to report a conflict cycle;
11: return;
12: else
13: Call Algorithm A on the BFS-induced graph of n0 with starting

node nj and flag = true;
14: return;
15: else
16: Set dk ← dj + 1;
17: Enqueue nk into Q;

Proof: Given a conflict graph G and a starting node
n0, assume without loss of generality that cycle C =
(n1, n2, . . . , nj, nk, . . . , nl) of length l is a minimal conflict
cycle of n0, i.e., by BFS search from n0, all nodes on C

can be first visited before those of any other minimal conflict
cycle. We first show that two adjacent nodes on C have largest
distance (call this distance D) to n0.

1) Assume there is exactly one node nnear on C of short-
est distance d1 to n0. Since C is a minimal cycle
of odd length l, there are two adjacent nodes on C

with maximum distance (l − 1)/2 from nnear, i.e., there
are two nodes of maximum distance (l − 1)/2 + d1

from n0.
2) Assume there are m (m > 1) nodes on C having shortest

distance d1 to n0, which partition C into m paths. Fig. 19
shows an example where three nodes ni1, ni2, and ni3

partition C into three paths. Among all the m paths, there
must be only one path of odd length and its length must
be greater than all the other even-length paths, because
otherwise the BFS-induced graph of n0 cannot cover
all the paths in C (i.e., C is not the minimal conflict
cycle of n0). Assume the length of this odd-length path
is d2, there must be two adjacent nodes on the path of
maximum distance D = (d2 − 1)/2 + d1 from n0 (e.g.,
nodes nj and nk in Fig. 19).

Next, let the two adjacent nodes be nj and nk. By BFS
search from n0, one conflict cycle can be found when reaching
nj and nk, where the length of the conflict cycle is 2D + 1.
And all nodes in the minimal conflict cycle are visited during
this BFS search.

Without loss of generality, we assume the second round of
the BFS search in the BFS-induced graph of n0 starts from
node nj . Assume the farthest nodes on C from node nj are
n1 and n2, respectively. Then there are two paths of length
(l− 1)/2 from nj to n1 and n2. Since C is a minimal conflict
cycle of n0, there is no path of length less than (l−1)/2 from
nj to n1 and n2. Thus, after (l + 1)/2 steps of BFS search,
all nodes in the minimal conflict cycle have been visited. The
conflict cycle reporting (Algorithm 3), following links back,
collects all nodes the minimal conflict cycle.

Algorithm 3 Conflict Cycle Reporting Algorithm
Input: Conflict graph G with marked distances and nodes nj and nk in the detected

conflict cycle in Algorithm A.
Output: Report the nodes in the detected conflict cycle in a doubly-linked list, where

edges of the cycle are between adjacent nodes in the list.
1: Make a map F to store the parent node for each node;
2: Set F (nj)← NULL, F (nk)← NULL;
3: Make a queue Q′ and enqueue nodes nj and nk into Q′;
4: while Q′ is not empty do
5: Dequeue the first node nr in Q′;
6: for all nodes ns adjacent to nr do
7: if ds + 1 = dr then
8: if ns is visited then
9: Make a doubly-linked list L;

10: Push ns into L;
11: Push nr to the back of L;
12: Set nf ← F (nr);
13: while nf �= NULL do
14: Push nf to the back of L;
15: Set nf ← F (nf );
16: Set nf ← F (ns);
17: while nf �= NULL do
18: Push nf to the front of L;
19: Set nf ← F (nf );
20: return L;
21: Set F (ns)← nr ;
22: Mark ns as visited;
23: Enqueue ns into Q′;
24: break;

Similarly, it can be proved that when n0 is on a minimal
conflict cycle, one round of BFS search is sufficient to find
this minimal conflict cycle.

Appendix B

Multiple Mask Exposures for One Feature

Our CCD and PILP approaches are easily extended to find
coloring solutions for features to be exposed on multiple
masks, i.e., one feature can have two colors. It may be
desirable for some cases that overlap between the two mask
exposures be enabled to improve the litho performance [24].
Fig. 20 shows an example layout where overlap between the
two mask exposures are more litho-friendly. Our DPL color
assignment approaches can be modified to allow one node to
have two colors (proof omitted due to space limit).

Theorem 2: A node n in the conflict graph G can be
assigned two colors without violating the minimum coloring
spacing t iff n is not connected with conflict edges.

According to Theorem 2, any node not connected to con-
flict edges can be assigned two colors. To enable maximum
flexibility for the overlaps, we need to fracture the layout
polygons into rectangles in both horizontal and vertical di-
rections. Then the conflict graph will be constructed over
the rectangles according to the minimum coloring spacing t.
We will compute the coloring solution using either the CCD
or PILP approach. When the coloring solution is obtained,
we perform a postprocessing step to assign two colors to all
those nodes without conflict edges. Since the objective is to
maximize the overlap between features on the two exposures,
only those polygons with differently colored features will be
processed for the both-mask color assignment, i.e., assign two
colors to one feature, and the polygons with all their features
assigned the same color will not be considered. For a polygon
with different colors, we start from two touching features with
different colors and perform BFS search according to touching
edges. Wherever there are two touching features with different
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colors,13 each feature will be assigned two colors if it is not
connected with a conflict edge. The BFS search in a polygon
continues until all the features in the polygon are visited.

Fig. 21 gives an example of the coloring solutions for the
layout in Fig. 20. In the conflict graph shown in Fig. 21(a),
there are eight nodes without conflict edges, i.e., n8, n11, n12,
n14, n15, n16, n17, and n18, which are assigned two colors and
will appear on both masks. The final coloring solution is given
in Fig. 21(b). Fig. 22 shows the coloring solution for part of
a real layout where blue and green features appear on each
mask and red features appear on both masks.
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