
2806 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

Zero-Change Netlist Transformations: A New
Technique for Placement Benchmarking

Andrew B. Kahng, Member, IEEE, and Sherief Reda

Abstract—In this paper, the authors introduce the concept of
zero-change netlist transformations (ZCNTs) to: 1) quantify the
suboptimality of existing placers on artificially constructed in-
stances and 2) “partially” quantify the suboptimality of placers
on synthesized netlists from arbitrary netlists by giving lower
bounds to the suboptimality gap. Given a netlist and its placement
from a placer, a class of netlist transformations that synthesizes a
different netlist from the given netlist is formally defined, but yet
the new netlist has the same half-perimeter wire length (HPWL)
on the given placement. Furthermore, and more importantly, the
optimal HPWL value of the new netlist is no less than that of the
original netlist. By applying the transformations and reexecuting
the placer, any deviation in HPWL as a lower bound to the gap
from the optimal HPWL value of the new synthesized netlist can
be interpreted. The transformations allow us to: 1) increase the
cardinality of hyperedges; 2) reduce the number of hyperedges;
and 3) increase the number of two-pin edges, while maintaining
the placement HPWL constant. It is developed here methods that
apply ZCNTs to synthesize netlists having typical netlist statis-
tics. Furthermore, an approach to estimate the suboptimality of
other metrics, such as rectilinear minimum-spanning tree (RMST)
and minimum-Steiner tree, is extended. Using these transforma-
tions, the suboptimality of some of the existing academic placers
(FengShui, Capo, mPL, Dragon) is studied on synthesized netlists
from the IBM benchmarks with instances ranging from 10k to
210k placeable instances. The results show that current placers ex-
hibit suboptimal behavior to ZCNTs with varying degree accord-
ing to the placer. Systematic suboptimality deviations in HPWL
and RMST are displayed on the synthesized netlists from IBM
(version 1) benchmarks. The specific nature of the transformations
points out troublesome netlist structures and possible directions
for improvement in the existing placers.

Index Terms—Algorithms, benchmarking, performance, place-
ment, suboptimality, wirelength.

I. INTRODUCTION

IN THE physical design stage of every digital integrated
circuit, we are concerned with placing or assigning all

components of the circuit to specific locations on the layout area
such that no two components overlap. Given the limited routing
resources and stringent performance constraints of state-of-
the-art designs, it is necessary to assign the components to

Manuscript received April 10, 2005; revised August 12, 2005 and October
18, 2005. This paper was recommended by Associate Editor J. Lillis.

A. B. Kahng is with the Departments of Computer Science and Engineering
and Electrical and Computer Engineering, University of California at San
Diego, La Jolla, CA 92093-0114 USA, and also with Blaze DFM, Inc.,
Sunnyvale, CA 94089 USA (e-mail: abk@ucsd.edu; abk@blaze-dfm.com).

S. Reda is with the Department of Computer Science and Engineering,
University of California at San Diego, La Jolla, CA 92093-0114 USA (e-mail:
sreda@cs.ucsd.edu).

Digital Object Identifier 10.1109/TCAD.2006.882473

minimize the total net wire length. Minimizing the wire length
overall reduces the demand on routing resources as well as total
timing and power.

Wire length is measured by the sum of Steiner tree length of
the various nets. Routed wire length is typically slightly larger
than the Steiner-minimum-tree (SMT) length since contention
on routing resources by different nets might lead to detours,
eventually increasing the wire length. Given that the Steiner
tree problem is NP -hard [33], placers typically minimize and
report other metrics that are faster and easier to compute. Half-
perimeter wire length (HPWL) is the most widely used place-
ment objective and reported metric. The HPWL of a net is equal
to half of the perimeter of the smallest bounding box enclosing
all nodes of a net. The popularity of HPWL is no surprise given
that it is equivalent to the SMT cost for two-pin and three-pin
nets, and it is well correlated with the SMT cost for multipin
(≥ 4) nets [8]. Placers minimize the HPWL heuristically by us-
ing, for example, min-cut partitioners [4], [34], [35], quadratic
or analytical solvers [13], [21], or simulated annealing [32]. The
HPWL is also the typically reported metric when comparing
results of different placers on various benchmarks [2], [6], [9].

Given a benchmark circuit and a placer, placement bench-
marking, or placer suboptimality evaluation, is the problem
of finding how close the placer’s result is to the optimal
result for the given benchmark. We use the term exact sub-
optimality quantification to refer to calculating the exact dif-
ference between the placer’s result and the unknown optimal
result, and the term partial suboptimality quantification to refer
to calculating a lower bound on the difference between the
placer’s result and the unknown optimal result. The placement
problem or the HPWL minimization is notoriously hard since:
1) It is NP -hard [26]; 2) it has no polynomial constant ap-
proximation algorithms [25]; and 3) it has no approximation
schemes [26].1 Given these theoretical results, researchers must
rely on heuristic methods to solve the problem. Lack of place-
ment benchmarking can lead to frustration since there is no
direct way to assess whether existing heuristics are sufficiently
close to optimal for arbitrary instances.

In this paper, we propose a new technique for placement
benchmarking. We introduce the concept of zero-change netlist
transformations (ZCNTs) and devise a set of such transforma-
tions to: 1) exactly quantify the suboptimality of existing plac-
ers on artificially constructed instances and, more importantly,
2) partially quantify their suboptimality on synthesized netlists
from arbitrary given netlists. Given a netlist and its placement

1Assuming P �= NP .

0278-0070/$20.00 © 2006 IEEE

KAHNG AND REDA: ZCNTs: NEW TECHNIQUE FOR PLACEMENT BENCHMARKING 2807

from a placer, ZCNTs alter the given netlist while keeping
its HPWL constant, resulting in a zero change to its HPWL.
More importantly, the optimal placement HPWL of the new
netlist has a value no less than the original netlist’s optimal
HPWL. Thus, by executing the placer on the new netlist,
we can interpret any deviation of the new HPWL from the
original HPWL as a lower bound on the deviation from optimal
results for the new netlist. Since our transformations might
change basic netlist statistics, compromising the realism of the
produced netlist, we propose extensions to our approach to keep
the basic netlist statistics intact. Furthermore, we also propose
how to apply our technique with respect to other metrics such
as rectilinear minimum spanning tree (RMST) or rectilinear
SMT (RSMT) costs. We support our techniques with extensive
empirical results. Our results show that existing placers fail
to reproduce their original HPWL results and incur serious
deviations. The measured suboptimality gaps also increase as
our transformations increase in magnitude.

The organization of this paper is as follows. Section II clas-
sifies benchmarking approaches, summarizes previous work on
the placement benchmarking problem, and gives a number of
preliminaries and definitions essential to understand this paper.
Section III formally introduces the concept of ZCNTs and
their use in placement benchmarking. Section IV gives several
ZCNTs. Experimental results from the application of different
transformations to various netlists are given in Section V.
Finally, Section VI summarizes the implications of this paper
and gives directions for future work.

II. BACKGROUND AND PRELIMINARIES

Before describing our approach, we first outline the pos-
sible general benchmarking methods and previous work on
the placement problem in Section II-A. Second, we give the
necessary notations and definitions for understanding this paper
in Section II-B.

A. Benchmarking Approaches

Numerous heuristics have been proposed to solve the place-
ment since its introduction four decades ago [28]. It is a
fundamental question to ask how close a placement heuristic’s
(or placer’s) suboptimal result is to the optimal result for a given
benchmark instance. The relationship between a suboptimal
result w and the optimal result w∗ is schematically shown in
Fig. 1. The suboptimality gap w − w∗ is an indicator of the
performance of the placement heuristic with respect to an opti-
mal algorithm. Assuming that N �= NP , the optimal result w∗

is computationally infeasible to calculate except for extremely
small instances. Thus, to estimate the suboptimality gap, it is
necessary to rely on other approaches. We can taxonomize these
approaches as follows.

1) Algorithms with guaranteed performance: In this ap-
proach, an algorithm is proven to give results that do not
exceed a certain upper bound on suboptimality from the
optimal result. Unfortunately, for the placement problem,
it has been proven that unless P = NP , there does
not exist any polynomial constant ratio approximation

Fig. 1. Relationship between various wire-length quantities. w is a placer’s
suboptimal wire-length result. w∗ is the optimal result. wl is a lower bound.
wc is a precalculated wire length. w − w∗ is the suboptimality gap.

algorithms or even ε-approximation schemes [25], [26].
For example, Sahni and Gonzalez [26] show that if the
placement problem has a polynomial ε-approximation
algorithm, then it is possible to decide whether or not a
given graph has a Hamiltonian cycle–an NP -complete
problem–in polynomial time.

2) Placement lower bounds: In this approach, it would be
possible to calculate a lower bound wl ≤ w∗ on the opti-
mal placement of a given instance. The amount w − wl

is then an upper bound on the suboptimality gap, as
shown in Fig. 1. Naturally, the tighter wl is to w∗, the
better is our estimate of the suboptimality gap. Place-
ment lower bounds is one of the least tackled issues
in the placement literature. Donath [12] probabilistically
calculated the expected lower bounds for only random
graphs and showed that existing placement algorithms
at this time exhibit large suboptimality gaps. However,
attempts by the authors to replicate his calculations with
current placers and instances sizes yield extremely large
suboptimality gaps. This might suggest that such lower
bounds are perhaps quite loose for modern instances.

3) Instances with precalculated wire length: In this ap-
proach, a benchmark is constructed with either known op-
timal wire length or precalculated suboptimal wire length.
In the case of optimal constructions, a recent paper by
Chang et al. [6] uses an overlooked construction method
by Hagen et al. [15] to optimally construct a number of
benchmarks (PEKO) with known optimal HPWL. We,
however, note that this construction method was proposed
very early in the placement literature [16], more than
30 years ago. Despite the meticulous efforts in [6] to gen-
erate benchmarks with typical netlist statistics, the bench-
marks are considered unrealistic since only local signals
are considered. For example, a two-pin net can only be
connected to spatially adjacent objects. To overcome this
drawback, Cong and co-workers [5], [9] added global
hyperedges and established placement upper bounds. In
essence, such upper bounds are precalculated subopti-
mal wire lengths for the generated benchmarks. Another
method of generating instances with known precalculated
wire length is through scaling a given instance and com-
paring the results of the placement heuristic on the scaled
instance against a precalculated value from the unscaled
instance [15]. If the precalculated wire-length instance
is wc, then the amount w − wc is a lower bound on the
suboptimality gap as shown in Fig. 1.

In addition to these approaches, a number of papers in the
benchmarking literature deal with general placement method-
ologies or the effect of netlist structures on the suboptimality
gap. For example, results of different placers on various
benchmarks are given in [2], where HPWL, timing, and

2808 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

routability results of different placers are tabulated. The results
show that placers exhibit different efficiencies on different
benchmark families. Placer efficiency with respect to various
netlist structures is studied by Liu and Marek-Sadowska [23].
Using the PEKO benchmark generator and existing placers,
the effects of net degree distribution, net count, and Rent’s
exponent of the netlist are studied and tabulated. Practical con-
clusions are also given to justify the performance of different
placers. Furthermore, Kahng and Mantik [17] study the mis-
match between incremental optimizers, e.g., partitioners and
engineering-change order (ECO) placers, and instance pertur-
bations. In another effort, the stability of different runs of the
academic place Capo [4] on the same benchmark is studied [1],
where trying a number of randomly selected cells to their
regions is proposed to stabilize results from different Capo runs.
Another recent paper [24] studies the reason for the suboptimal
behavior of placers on the PEKO benchmarks, and concludes
that poor detailed placement is the likely culprit.

B. Preliminaries

A circuit netlist is a hypergraph H = (V,E), where V is a
set of vertices representing the circuit cells, and E is the set of
hyperedges representing the circuit wires. A hyperedge e ∈ E
is a set of vertices e ∈ 2V , where |e| gives the cardinality or
degree of hyperedge e. The placement area is composed of a
number of sites that cells can legally occupy. Each cell may
occupy a number of sites depending on its width. A placement
of a hypergraph is defined as follows.
Definition 1: Given an enumeration of possible placement

sites, a two-dimensional placement π of a given hypergraph
H(V,E) is a mapping π: V → Z+ assigning a placement site
to every netlist cell such that no two cells overlap, i.e., no two
cells share a common site. If a cell occupies more than one site,
then the mapping gives the first occupied site.
Definition 2: The HPWL of a hyperedge e in a given place-

ment π is the length of half the perimeter of the smallest
bounding box that includes all vertices of e.2 Such HPWL of
a hyperedge is denoted by l(e, π). The total HPWL (or wire
length) is L(H,π) =

∑
e∈E l(e, π).

A placement π∗ of a hypergraph H that has minimum total
HPWL is called an optimal placement. The HPWL of an
optimal placement is called optimal wire length or HPWL.3 A
suboptimal placement is a placement with a total HPWL larger
than the optimal HPWL.
Definition 3: A netlist or a hypergraph transformation ap-

plied to an input hypergraph H1 = (V,E) produces a new hy-
pergraph H2 = (V,E ′) with the same set of vertices as H1 but
with a different set of hyperedges, i.e., a netlist transformation
changes the connectivity.

With these basic definitions, we are ready to introduce the
concept of ZCNTs.

2We always assume that hyperedges/nets are connected to cells via pins at
the center of the cells. Another alternative is to measure half the perimeter of
the bounding box completely enclosing the cells of a net.

3There can be more than one optimal placement yielding the same opti-
mal HPWL.

III. SUBOPTIMALITY EVALUATION USING ZCNTS

In this section, we propose and define the concept of ZCNTs
and examine how it can be used in placement benchmarking.
Definition 4: Given a placement π1 of some hypergraph H1,

a netlist transformation that synthesizes H2 from H1 is a zero
change if the following two properties are satisfied.

1) Quiescency property: L(H1, π1) = L(H2, π1), i.e., the
transformation results in zero change to HPWL with
respect to the input placement π1.

2) Hardness property: For any other placement πk:
L(H1, πk) ≤ L(H2, πk).

The composition of ZCNTs is also a ZCNT. If Z(H1, π1)
denotes an arbitrary ZCNT that takes as inputs a hypergraph
H1 and a placement π1 and outputs a new transformed netlist,
then the composition of m ZCNTs can be expressed as

H2 = Z(H1, π1),H3 = Z(H2, π1), . . . , Hm = Z(Hm−1, π1)
(1)

such that for the given placement π1

L(H1, π1) = L(H2, π1) = · · · = L(Hm, π1) (2)

and for any other placement πk

L(H1, πk) ≤ L(H2, πk) ≤ · · · ≤ L(Hm, πk). (3)

From the hardness property, it is possible to establish a re-
lationship between the optimal placement π∗

1 of the original
hypergraph H1 and the optimal placement π∗

2 of hypergraph
H2 obtained from the application of one or more ZCNTs.
Theorem 1: Given an original hypergraph H1, a hypergraph

H2 generated from ZCNTs applied to H1 has an optimal HPWL
no less than that of the original hypergraph, i.e., L(H2, π

∗
2) ≥

L(H1, π
∗
1).

Proof: Toward a contradiction, assume that L(H2, π
∗
2) <

L(H1, π
∗
1). Using π∗

2 for H1 gives a placement with HPWL
L(H1, π

∗
2) ≤ L(H2, π

∗
2) from the hardness property. Conse-

quently, L(H1, π
∗
2) < L(H1, π

∗
1), contradicting the assumption

that π∗
1 is the optimal placement of H1. �

From the previous theorem, it is easy to prove the following.
Corollary 1: If the given placement π1 is optimal, i.e., π1 =

π∗
1, then the π∗

1 is also optimal for the new hypergraph. �
The zero-change properties as well as the results of

Theorem 1 and Corollary 1 can be visually represented by a
hypothetical plot as shown in Fig. 2.

A. Using ZCNT to Quantify the Exact Suboptimality Gap of
Placers on Special Instances

Corollary 1 leads us to a discussion of special cases where
ZCNTs can be used to quantify the entire suboptimality gap.
We consider a trivial instance netlist with a known optimal
placement wire length, namely a clique C, which has the same
wire length for any placement. We then execute ZCNTs on C
using any reference placement π∗ (note that we can choose
any random placement as the reference placement) to produce a
new netlist C′. C′ is not trivial; nevertheless, by Corollary 1, we
have that π∗ is still optimal for C′. On the other hand, C′ does

KAHNG AND REDA: ZCNTs: NEW TECHNIQUE FOR PLACEMENT BENCHMARKING 2809

Fig. 2. Hypothetical plot showing the relationship between the HPWL of H2

and H1 placements. The horizontal axis represents the various placements,
while the vertical axis gives the HPWL values. We can see that for any place-
ment πk: L(H2, πk) ≥ L(H1, πk) and for π1: L(H1, π1) = L(H2, π1).

not have the property that any arbitrary placement is optimal.
If we execute a placer P on instance C′, then the difference
between the wire length reported by P and the known optimal
wire length is exactly equal to the suboptimality gap of P on C′.
This method recollects methods used for testing network flow
algorithms [11] (Palubetskis algorithm), where flows are added
and subtracted along certain paths such that the total flow stays
the same. We will quantify the suboptimality of placers on
such netlists in the experiment section below. In reality, we are
interested in quantifying the suboptimality on instances that are
“real” or as close to “real” as possible. Thus, we next examine
how to use the ZCNT to calculate lower bounds–instead of
exact bounds as the case with the clique–on the suboptimality
gaps of netlists that have been synthesized from general netlists.

B. Using ZCNT to Partially Quantify the Suboptimality Gap of
Placers on Instances Synthesized From General Instances

The use of ZCNTs for general benchmarking is illustrated
in Fig. 3. Given a netlist H , placer P produces a placement
π1 with HPWL w1 = L(H1, π1). Given π1, applying ZCNTs
to H1 produces a new netlist H2. From the quiescency prop-
erty, L(H2, π1) = L(H1, π1). However, executing P on H2

produces a new placement π2 with some wire length w2 =
L(H2, π2). The main question is whether w1 = w2. If the
placer is optimal, then w1 = w2. If the placer is suboptimal,
then there are three possibilities.

1) w1 = w2 indicating that the placer is stable and not
sensitive to the netlist transformations.

2) w2 < w1 indicating that the original placement was not
optimal for the original netlist H1 and that the transfor-
mations lead the placer to a better suboptimal placement
π2 for H1 since L(H1, π2) ≤ w2 = L(H2, π2) < w1 =
L(H2, π1) = L(H1, π1).

3) w2 > w1 showing that the placer is suboptimal and sen-
sitive to the netlist transformations. Since w1 acts as an
upper bound to the optimal placement of H2, the amount
w2 − w1 = L(H2, π2) − L(H2, π1) is a lower bound on
the suboptimality gap of placer P on the new netlist
H2 which is equal to w2 − L(H2, π

∗
2) = L(H2, π2) −

L(H2, π
∗
2).

An important characteristic of ZCNTs is that the optimal
placement HPWL of the new netlist H2 is no less than that
of the original netlist H1 as established in Theorem 1. Thus,

executing the placer on the new netlist likely yields the third
possibility where w2 > w1. This will be empirically demon-
strated in Section V. The possibility of using ZCNTs to calcu-
late lower bounds on the suboptimality gaps of the synthesized
netlists raises a number of interesting questions.

1) How tight is the calculated lower bound? Answering this
question entails calculating the exact suboptimality gap
for the synthesized netlist which is as hard as calculating
the suboptimality gap for the original netlist. Thus, the
calculated lower bound can only serve as a certification
of placer suboptimality on the synthesized netlist by at
least its value.

2) Can the suboptimality gap on a synthesized netlist reveal
any information about the suboptimality gap on its origi-
nal netlist? This is unlikely. However, we can regard the
deviation in wire length as a form of placer sensitivity to
transformations on the original netlist.

One may wonder about w3 = L(H1, π2) produced from
using π2 for the original netlist H1. This raises the possibility
of using netlist transformations to improve the placeability of
netlists [14]. Notice that from the hardness property, we already
know that L(H1, π2) ≤ L(H2, π2).

From the taxonomy introduced in the previous section, it
is clear that our zero-change methodology fits in the category
of instance generation with precalculated wire length. One
key difference between our approach and other approaches is
the ability to extract partial suboptimality information from
synthesized netlists from any given arbitrary benchmark. We
now propose a number of ZCNTs to assess the performance of
different placers.

IV. ZCNT

In this section, we give a number of netlist transformations,
which change the netlist connectivity but not the vertex set
and have the key properties of ZCNTs. We propose three basic
transformations: hyperedge-cardinality increase, hyperedge de-
composition, and edge substitution. We extend the applicability
of these transformations in two ways. First, we compose them
in a hybrid fashion; and second, we embed them in a flow
that preserves basic netlist statistics. Finally, we discuss how
to evaluate placer suboptimality using other metrics such as
RMST and RSMT. We start by introducing the hyperedge-
cardinality-increase transformation.

A. Hyperedge-Cardinality Increase

The purpose of this transformation is to assess the sensitivity
of placers to hyperedge-cardinality increase by examining the
impact of increasing the cardinality of hyperedges. We only
increase the cardinality of hyperedges of degree ≥ 3. Our trans-
formation is simple: Given a netlist H and its placement π1, the
bounding box of each hyperedge (excluding two-pin edges) is
calculated, and an additional number of vertices are added to
each hyperedge from within its bounding box. The cardinality
increase procedure HYPERC is given in Fig. 4. In our experi-
ments, we limit the amount of hyperedge-cardinality increase.
In this case, if there are a number of vertices inside the bounding

2810 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

Fig. 3. Conceptual presentation of ZCNTs. The difference w2 − w1 represents a suboptimality measure of placer P .

Fig. 4. Procedure HYPERC for hyperedge-cardinality increase.

box to choose from, we always prioritize vertices of the least
degree to break the ties. Before we prove that HYPERC is
a ZCNT, we state the following lemma which is easy to prove.
Lemma 1: Given two sets of nodes S1 and S2: If S1 ⊆ S2,

then l(S1, πk) ≤ l(S2, πk) in any placement πk. �
Lemma 1 basically states that HPWL is monotonic [3].
Theorem 2: Procedure HYPERC in Fig. 4 is a ZCNT.
Proof: If the netlist produced by procedure HYPERC has

the quiescency and hardness properties of Definition 4, then
the theorem is proved. We will prove that each of these proper-
ties holds.

1) Quiescency: Given a hypergraph H1 and a placement π1,
applying procedure HYPERC produces a new hypergraph
H2. By construction, adding a number of vertices to a
hyperedge from within its bounding box does not change
its HPWL value. Therefore, L(H2, π1) = L(H1, π1).

2) Hardness: Given some πk �= π1, H1 would have an
HPWL value of L(H1, πk). Replacing each hyperedge
ei in H1 with e′i according to procedure HYPERC
yields an HPWL value of L(H1, πk) +

∑
i(l(e

′
i, πk) −

l(ei, πk)) ≥ L(H1, πk) since l(e′i, πk) ≥ l(ei, πk) by
Lemma 1. Thus, L(H2, πk) ≥ L(H1, πk). �

Finally, we note that the inverse or “anti” transformation to
HYPERC, where a hyperedge’s cardinality is decreased, does
not satisfy the zero-change requirements, since it might yield a
netlist with lower optimal HPWL than the original netlist.

B. Hyperedge Decomposition

Our second transformation simplifies a hyperedge by de-
composing or partitioning it into two intersecting hyperedges,

Fig. 5. Example of an optimally decomposable hyperedge.

with each of the new hyperedges having smaller cardinality
than the original hyperedge. We define an optimal hyperedge
decomposition as follows.
Definition 5: A hyperedge e is optimally decomposable in

some placement πk if it is possible to decompose e into
two intersecting hyperedges e1 and e2, such that l(e, πk) =
l(e1, πk) + l(e2, πk) and e = e1 ∪ e2.

Fig. 5 shows a hyperedge, whose bounding box is rep-
resented by a dashed line, optimally decomposed into two
hyperedges as shown by the dashed rectangles. The following
lemma is crucial for our transformation.
Lemma 2: For any two hyperedges ei and ej with |ei ∩

ej | �=∅, max(l(ei, πk), l(ej , πk))≤ l(ei∪ej , πk)≤ l(ei, πk) +
l(ej , πk) in any placement πk.

Proof: The proof is by enumerating all possible cases for
bounding boxes of ei and ej . Since |ei ∩ ej | �= ∅, there are
only three possible configurations for the bounding boxes of ei

and ej .

1) Contained: In this case, the bounding box of one hyper-
edge is completely contained within the other bounding
box as shown in Fig. 6(a). In this case, l(ei ∪ ej , πk) =
max(l(ei, πk), l(ej , πk)).

2) Overlapping: In this case, the two bounding boxes overlap
with l(ei ∪ ej , πk) < l(ei, πk) + l(ej , πk) as shown in
Fig. 6(b) and (c).

3) Touching: In this case, the two bounding boxes touch
each other at a common vertex with l(ei ∪ ej , πk) =
l(ei, πk) + l(ej , πk) as shown in Fig. 6(d). �

From the previous lemma, it is easy to see the following.
Lemma 3: e1 and e2 give an optimal decomposition of e

in some placement πk only if |e1 ∩ e2| = 1 and the bounding
boxes of e1 and e2 touch at their common vertex. �

Lemma 3 provides us with a simple characterization to op-
timally decompose any hyperedge. Using this characterization,

KAHNG AND REDA: ZCNTs: NEW TECHNIQUE FOR PLACEMENT BENCHMARKING 2811

Fig. 6. Enumeration of possible bounding-box configurations.

Fig. 7. Procedure HYPERD for hyperedge decomposition.

we devise a procedure for optimal hyperedge decomposition
(procedure HYPERD) as given in Fig. 7. The procedure exam-
ines every hyperedge with degree larger than two and checks
whether it is possible to optimally decompose it at each of
its vertices. If there exists more than one possible vertex to
optimally decompose at, we break the tie by choosing the
vertex that results in the most balanced decomposition or
partition. We next prove that the procedure HYPERD is a zero-
transformation procedure.
Theorem 3: Procedure HYPERD is a ZCNT.
Proof: If the netlist produced by procedure HYPERD has

the quiescency and hardness properties of Definition 4, then
the theorem is proved. We will prove that each of these proper-
ties holds.

1) Quiescency: Since procedure HYPERD decomposes
edges only optimally according to Lemma 3, it is clear
that L(H1, π1) = L(H2, π1).

2) Hardness: Given some πk �= π1, H1 would have an
HPWL value of L(H1, πk). Replacing each hyperedge
ei in H1 with e′i according to procedure HYPERD
yields an HPWL value of L(H1, πk) +

∑
i(l(e

1
i , πk) +

l(e2
i , πk) − l(ei, πk)) ≥ L(H1, πk) since l(e1

i , πk) +
l(e2

i , πk) ≥ l(ei, πk) by Lemma 2. Thus, L(H2, πk) ≥
L(H1, πk).

Before ending this section, we note that the inverse or “anti”
transformation to HYPERD, i.e., merging two touching hy-
peredges into one bigger hyperedge, does not satisfy the

Fig. 8. Procedure EDGESUB for two-pin edge substitution.

Fig. 9. Substituting an edge between i and j by a path according to procedure
EDGESUB does not change the wire length of a given placement.

zero-change requirements, since it might yield a netlist with a
lower optimal HPWL than the original netlist. �

C. Edge Substitution

Our third transformation deals with edges, i.e., hyperedges of
degree two. Our transformation does not change the cardinality
of edges but rather increases the total number of two-pin edges.
We start with the following fact that characterizes the triangle
inequality in Manhattan or rectilinear metric.
Fact 1: If dij gives the Manhattan distance between two

placement sites i and j, then dij ≤ diq + dqj for any site q, and
if q lies within the bounding box defined by sites i and j, then
dij = diq + dqj .

We leverage Fact 1 for netlist transformation as given in
procedure EDGESUB of Fig. 8, where we take every edge,
calculate its bounding box, and substitute it with two edges by
using a third vertex from within its bounding box. Since there
can be more than one vertex that is eligible to take the role of
the third vertex, we always break ties in favor of the vertex of
the least degree. Edge substitution can be carried out more than
once, effectively transforming an edge between sites i and j
into a path between sites i and j as depicted in Fig. 9.
Theorem 4: Procedure EDGESUB is a ZCNT.
Proof: If the netlist produced by procedure EDGESUB

has properties 1) and 2) of Definition 4, then the theorem is
proved. We prove that each of these properties holds.

1) Quiescency: Given a hypergraph H1 and a placement π1,
applying procedure EDGESUB produces a new hyper-
graph H2. By construction, substituting an edge by two

2812 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

TABLE I
IMPACT OF ZCNTS ON TWO BASIC NETLIST STATISTICS

edges, or more, using nodes from within its bounding
box, does not change the total HPWL.

2) Hardness: Given some πk �= π1, H1 has HPWL value
of L(H1, πk). Substituting every edge {u, ν} by two
edges {u, p} and {p, ν} gives a new netlist H2 such
that L(H2, πk) = L(H1, πk) +

∑
∀{u,ν}(dπk(u)πk(p) +

dπk(p)πk(ν) − dπk(u)πk(ν)) ≥ L(H1, πk) by Fact 1.

We note that if procedure HYPERC of Section IV-A (for
hyperedge-cardinality increase) is allowed to operate on two-
pin edges, then transformation EDGESUB can be considered
as a combination of hyperedge-cardinality increase (HYPERC)
on two-pin nets, immediately followed by the hyperedge de-
composition (HYPERD) of Section IV-B. �

As a final remark: The inverse or “anti” transformation to
EDGESUB, by substituting a path of edges with a single edge,
does not satisfy the zero-change requirements.

D. Hybrid Transformations

It is possible to apply the previous three transformations on
a given netlist and empirically examine the collective impact
of all transformations. As elaborated in Section III, the hybrid
or composite application of all ZCNTs is also zero change.
For example, we can compose hyperedge-cardinality increase,
hyperedge decomposition, and edge substitution in sequence to
yield a hybrid ZCNT.

E. Transformations Preserving Netlist Statistics

All of our ZCNTs increase a certain characteristic of the
netlist, such as hyperedge cardinality or total number of hy-
peredges. We tabulate the impact of our transformations on
basic netlist statistics in Table I. The table gives the increase in
number of hyperedges and total pin count, i.e., total hyperedge
cardinality, for each one of our transformations. Since most
VLSI instances have a ratio of about one between the number of
nets and number of cells, our previous transformations synthe-
size netlists with a larger ratio. It is certainly desirable that the
new hypergraph instance has the same statistics as the original
hypergraph. Thus, we investigate in this section how to produce
a new hypergraph with reasonable (e.g., preserving realism)
statistics.

Many papers have researched what constitutes a realistic
netlist [22], [29], [31]. For example, realistic netlists ex-
hibit typical values for: 1) the number of hyperedges in
comparison to the nodes; 2) the average node degree; 3) a
hyperedge-cardinality power-law distribution [30]; and 4) Rent
parameter [22].

To keep a degree of realism in our generated hypergraphs,
we use a simple strategy: Before the initial placement, we
preprocess the input hypergraph to reduce its hyperedge car-
dinality and number of hyperedges by exactly the amount that
will be increased due to ZCNTs. Using this strategy, a given
input hypergraph H1 is preprocessed to a new hypergraph H ′

1

which is then used to derive the ZCNT flow of Fig. 3. The final
hypergraph H2 produced from applying ZCNTs to H ′

1 will have
the same amount of hyperedges and total hyperedge cardinality
as the original hypergraph H1.

Certainly, such a framework of hypergraph preprocessing
followed by application of ZCNTs does not produce a realistic
netlist; nevertheless, it keeps the “basic” netlist statistics intact.
The following are the possible preprocessing steps.

1) Removal of random hyperedge which decreases the num-
ber of hyperedges in a netlist.

2) Converting multiple hyperedges into one hyperedge. For
example, given a number of hyperedges e1, e2, . . . , ek,
we can convert them into one bigger hyperedge by
deleting all of them and creating a new hyperedge e1 ∪
e2∪, . . . ,∪ek.

3) Reduction of hyperedge cardinality by removing an arbi-
trary node from any hyperedge with three or more nodes.

F. Benchmarking Other Metrics: RMST and RSMT

RSMTs or RMST share and differ with HPWL in a number
of ways.

1) The bounding box of a net in a given placement is
unique; however, there might be more than one minimum
RMST or RSMT. Furthermore, since RSMT is an NP -
hard problem [33], we can only approximate it using a
suboptimal RSMT. There are numerous heuristic RSMT
construction algorithms, and one possibility is to use the
RMST as a possible RSMT heuristic with a performance
ratio of at most 3/2 [33]. In practice, the average RMST/
RSMT ratio for random n points approaches 1.12 [20].

2) HPWL is monotonic. Given any placement πk: If S1 ⊆
S, then L(S1, πk) ≤ L(S, πk). The monotonic property
also holds for SMT since augmenting a set of points
by an additional point cannot reduce the length of the
SMT connecting these points. On the other hand, such
a property does not hold for the minimum spanning tree:
Adding an additional point to an existing point set might
actually reduce the length of the MST connecting these
points. This might happen if the added point is a Steiner
point [3], [27].

KAHNG AND REDA: ZCNTs: NEW TECHNIQUE FOR PLACEMENT BENCHMARKING 2813

TABLE II
EXACT SUBOPTIMALITY QUANTIFICATION FOR SPECIAL INSTANCES. A “–” INDICATES PLACER FAILED WHILE PLACING THE INSTANCE.

WE REPORT THE ACTUAL HPWL AND THE PERCENTAGE DEVIATION FROM THE OPTIMAL PLACEMENT BETWEEN PARENTHESES

In this paper, we use the RMST as a heuristic to con-
struct the RSMT as suggested by Property 1. Thus, we fo-
cus our discussions on the RMST. Given a set of nodes
S representing a hyperedge and a placement π1, our trans-
formations for RMST/RSMT suboptimality evaluation are as
follows.

1) Hyperedge-cardinality increase: According to our previ-
ous discussion, adding a node from within the bounding
box of a net S might either increase or decrease the
RMST length of S. Thus, we modify the hyperedge car-
dinality in a simple way to handle this. After increasing
the cardinality, we recalculate the RMST value of all nets
and use the total RMST as the precalculated RMST value
of the netlist. This value is used to benchmark the RMST
value produced when the placer is executed on the new
netlist.4

2) Hyperedge decomposition: If hyperedge S is optimally
decomposed into two hyperedges S1 and S2, then the
RMST of S1 plus the RMST of S2 is greater than or equal
the RMST of S. This can be proven by contradiction: If
the RMST of S1 plus RMST of S2 is less than the RMST
of S, then we can “concatenate” the RMSTs of S1 and S2

to obtain a new RMST for S that is of less value than the
original minimal RMST of S.

3) Edge substitution: In this case, the RMST is equivalent to
HPWL since this transformation only applies to two-pin
edges and produces two-pin edges where both RMST and
HPWL have the same value.

Our discussion of various netlist transformations is now com-
plete. We empirically explore the impact of ZCNTs in the next
section.

V. EXPERIMENTAL RESULTS

In this section, we empirically evaluate the suboptimality of
the existing placers with respect to our proposed transforma-
tions. This evaluation is carried out using the IBM benchmarks

4Since the RMST length might change after the transformation, the trans-
formation is no longer zero change. In the “lucky” case where the final RMST
value is higher than the precalculated, the lower bound on suboptimality, as
measured by the difference between the new and precalculated values, is likely
to be of less value than those corresponding to ZCNT.

(version 1)5 and four academic placers. The components of
the IBM (version 1) benchmarks are comprised of standard
cells with varying widths, where the pins of all components
are by default placed at the center of their respective cells.
We use the following placers in our empirical evaluation.

1) Capo [4] (version 9.0 with feedback [19]): Capo uses
a min-cut engine in a top–down bisection framework to
deliver fast results.

2) FengShui [35] (version 2.6): FengShui uses a min-cut en-
gine based on iterative deletion in a top–down framework.

3) Dragon [34] (version 3.01): Dragon uses a min-cut engine
in a top–down quadrisection framework. Dragon also
uses simulated annealing to improve its results.

4) mPL (version 4.0) [10]): mPL is an analytical placer that
uses a nonlinear programming formulation in a multilevel
optimization framework.

Since all pins are placed at the center of their respective
cells in all circuits of the IBM benchmarks, we measure the
HPWL center-to-center, and any additional pins necessitated
by our transformations are also placed at centers of the cells.
Before carrying out our experiments, we estimate the noise [1],
[18] of different placers by reporting the average difference in
HPWL for two different executions of a single placer on the
same netlist, but with different ordering of nets [17]. Our results
show that FengShui has a noise margin of around 0.92%, mPL
has a noise margin of around 0.89%, Capo has a noise margin of
around 2.9%, and Dragon has a noise margin of around 3.37%.

A. Using ZCNT to Quantify the Exact Suboptimality Gap of
Placers on Special Instances

In this special case, we first construct a clique and fix any
placement as its optimal reference placement (we use square
layouts). This is valid since all placements give the same
optimal wire length for a given clique. Using the reference
placement, we transform the clique using ZCNTs to a nontrivial
instance, by increasing the total hyperedge cardinality by 30%,
and the total number of two-pin edges by 30% using the edge

5Other benchmarks like the PEKO instances [6] are not suitable, since all of
their nets are local in the optimal placement. This leaves no room to exploit our
transformations. For example, there is no possibility to execute two-pin edge
substitution.

2814 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

substitution. We then execute the placers on the new netlist and
report the difference between the observed wire length and the
known optimal wire length. We give the results in Table II.
The suboptimality gap is small and around 1%–3%. Certainly,
such instances do not resemble typical VLSI instances, but they
nevertheless demonstrate how ZCNTs can be used to exactly
quantify the entire suboptimality gap.

B. Using ZCNT to Partially Quantify the Suboptimality Gap of
Placers on Instances Synthesized From General Instances

In this section, we use the ZCNT to partially quantify the
placers, i.e., by calculating lower bounds on the suboptimality
gap of the placers on instances synthesized from general in-
stances. Our experimental execution flow is based on the outline
of Fig. 3. We note that before applying our transformations,
we sort all nets by their HPWL in the given placement in a
decreasing order. In all experiments, we report the percent-
age deviations (w2 − w1)/w1, and in only one experiment,
HYPEREDGE DECOMPOSITION, we report (w3 − w1)/w1. The
first amount, (w2 − w1)/w1, is a lower bound on deviation
from the optimal HPWL of the new netlists. The second
amount, (w3 − w1)/w1, is reported to see if the transformations
can lead to an improvement in the placeability of the original
netlists. We have encountered a limited amount of unsuccessful
placement executions. The results of these runs are reported in
the tables by a dash (–).
1) Hyperedge-Cardinality Increase: In a first series of ex-

periments, we empirically determine the performance of placers
with respect to the zero-change hyperedge-cardinality-increase
transformation as given by procedure HYPERC. Table III gives
the results of HYPERC with a total cardinality, i.e., total
pin count, increase of 20% for each benchmark. We report
the deviation of each placer HPWL with respect to its own
placement. From the results, it is clear that none of the four
placers managed to maintain their original HPWL. All placers
exhibit a substantial unnecessary increase in HPWL.

To further study the impact of zero-change hyperedge-
cardinality increase, we focus on the IBM01 benchmark and
measure the HPWL in response to a total cardinality increase
from 0% to 25% in increments of 5%. We plot the results in
Fig. 10. Notice that in contrast to Table III, we directly report
the HPWL values and not the percentage deviations. From the
figure, current placers exhibit a suboptimal behavior, and there
is a general trend of increasing the HPWL in response to hyper-
edge cardinality. We also notice that the relative performance
ranking of various placers differs depending on the amount
of hyperedge-cardinality increase. For example, FengShui’s
performance is deteriorating more gracefully than Dragon.
2) Hyperedge Decomposition: In a second series of exper-

iments, we empirically determine the performance of plac-
ers to zero-change hyperedge decomposition as given by the
HYPERD procedure. All hyperedges are decomposed until no
further decomposition is possible. The empirical results are
given in Table IV, where the percentage changes (w2 − w1)/w1

and (w3 − w1)/w1 are reported. It is clear from the empirical
results that w3 is always less than w2 in agreement with the
hardness property. We also notice that placers are sometimes

TABLE III
DEVIATIONS IN HPWL IN RESPONSE TO 20% ZERO-CHANGE TOTAL

HYPEREDGE-CARDINALITY INCREASE. DEVIATIONS ARE CALCULATED

WITH RESPECT TO EACH PLACER’S ORIGINAL PLACEMENT RUN

Fig. 10. Effect of zero-change total hyperedge cardinality, total pin count,
increase on the performance of various placers on the IBM01 benchmark. Total
hyperedge-cardinality increase is varied from 0% to 25% in increments of 5%.

able to exploit such transformation to slightly improve their
results.

We also carry out a more detailed study on the IBM01
benchmark as given in Fig. 11. In the plot, the x-axis gives
the amount of zero-change hyperedge decomposition in incre-
ments of 5%, and the y-axis gives the HPWL produced
from the various placers. In general, the response of placers

KAHNG AND REDA: ZCNTs: NEW TECHNIQUE FOR PLACEMENT BENCHMARKING 2815

TABLE IV
HPWL DEVIATIONS IN RESPONSE TO ZERO-CHANGE HYPEREDGE DECOMPOSITION. DEVIATIONS ARE

CALCULATED WITH RESPECT TO EACH PLACER’S ORIGINAL PLACEMENT RUN

Fig. 11. Effect of zero-change hyperedge decomposition on the performance
of various placers on the IBM01 benchmark. The amount of hyperedge decom-
position is varied from 0% to 25% in increments of 5%.

to hyperedge decomposition is relatively “milder” than
hyperedge-cardinality increase in Fig. 10. The magnitude of
changes in HPWL is relatively small, and the performance is
overall stable.

From the results, it is not significantly clear that the hyper-
edge decomposition can improve the performance of existing

placers. Zero-change hyperedge decomposition simplifies a
netlist by taking large hyperedges and optimally decomposing
them into two or more smaller hyperedges. This simultane-
ously decreases the cardinality of hyperedges and increases
the number of hyperedges. Our results show no improve-
ment in performance due to the hyperedge decomposition.
We can envision that perhaps by selective hyperedge decom-
position and careful tuning, this transformation can be used
within a placement run to simplify netlists and lead to better
placements.
3) Edge Substitution: In a third series of experiments, we

determine the performance of existing placers with respect to
zero-change edge substitutions using procedure EDGESUB.
We present our results in Table V, where we keep on substi-
tuting edges until the amount of nets increase by 10%. From
the results, placers exhibit a systematic unnecessary increase in
HPWL. To further study the impact of procedure EDGESUB,
we apply it to the IBM01 benchmark in varying amounts, in-
creasing the total number of nets from 0% to 25% in increments
of 5%. The HPWL results are plotted in Fig. 12. From the
plot, we notice that placers exhibit a consistent increase in
HPWL; the larger the amount of substitution, the greater the
amount of HPWL. Overall, we conclude that zero-change edge
substitutions lead placers to display a suboptimal behavior.
4) Hybrid Transformations: In a fourth series of experi-

ments, we test the performance of placers with respect to hybrid

2816 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

TABLE V
HPWL DEVIATIONS IN RESPONSE TO ZERO-CHANGE EDGE

SUBSTITUTION. NUMBER OF NETS INCREASES BY 10% FOR ALL

BENCHMARKS. DEVIATIONS ARE CALCULATED WITH RESPECT

TO EACH PLACER’S ORIGINAL PLACEMENT RUN

Fig. 12. Effect of zero-change edge substitution on the performance of various
placers on the IBM01 benchmark. The amount of hyperedge substitution is
varied from 0% to 25% in increments of 5%.

transformations. We give our results in Table VI. Given the ini-
tial placements of the various placers on different benchmarks,
we apply: 1) hyperedge cardinality increase leading to a total
cardinality increase of 5%; 2) edge substitution increasing the
total number of nets by 5%; and 3) hyperedge decomposition

TABLE VI
HPWL DEVIATIONS IN RESPONSE TO HYBRID ZCNTS. DEVIATIONS

ARE CALCULATED WITH RESPECT TO EACH PLACER’S

ORIGINAL PLACEMENT RUN

further increasing the total number of nets by an additional 5%.
The results show that placers again exhibit a suboptimal behav-
ior with respect to hybrid ZCNTs.
5) Transformations Preserving Netlist Statistics: In this ex-

periment, we apply the techniques of Section IV-E to partially
evaluate the placer suboptimality while keeping a degree of re-
alism into the transformed netlists. We start by preprocessing all
netlists to reduce the amount of hyperedges and total cardinality
by k and 2k amounts, respectively, where k ≥ 1. This can be
achieved by applying the following k times.

1) Join any two hyperedges that share a common node into
one larger hyperedge. This reduces both the number of
hyperedges and the total hyperedge cardinality (or total
pin count) by one.

2) Reduce the hyperedge cardinality by removing a vertex
from any arbitrary hyperedge with a degree greater than
or equal to three.

The preprocessed netlists are placed, and zero-change edge
substitution are then applied k times to yield a transformed
netlist with the same amount of total nets and total cardinality
as the original netlist. The new netlist thus has the same
basic netlist statistics as the original, but the netlists differ
structurally. HPWL suboptimality deviations of the transformed
netlists are reported in Table VII, where k is set to be 10% of
the number of nets of each netlist. The results demonstrate that
placers exhibit consistent unnecessary suboptimality deviations

KAHNG AND REDA: ZCNTs: NEW TECHNIQUE FOR PLACEMENT BENCHMARKING 2817

TABLE VII
HPWL DEVIATIONS IN RESPONSE TO NETLIST-STATISTICS PRESERVING

ZCNTS. TRANSFORMED NETLISTS HAVE THE SAME NUMBER OF TOTAL

NETS AND TOTAL CARDINALITY AS THE ORIGINAL NETLISTS

as previous experiments. This also indicates that HPWL de-
viations are not an artifact of increasing netlist statistics—as
measured by the ratio of the number of nets to number of
cells, or total pin cardinality—beyond typical values,6 but rather
inherent in the suboptimal performance of the placers.
6) Suboptimality Evaluation of RMST and RSMT Metrics:

We also evaluate the performance of placers with respect
to the RMST which serves as a heuristic construction to
RSMT. Our experimental testbed is set up as elaborated in
Section IV-F. The hyperedge-cardinality-increase procedure is
applied to increase the total cardinality by 20%, and then the
RMST value is calculated with respect to the original given
placement. Our results are reported in Table VIII. From the
results, it is clear that the placers are also suboptimal when
it comes to the RMST metric, in addition to the HPWL as
shown earlier.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a new concept, ZCNTs,
to: 1) calculate the exact suboptimality of the existing placers
on artificial constructed instances and 2) calculate the partial

6The reader should notice that the synthesized netlist has larger values of
statistics than the netlist used to derive it, yet its statistics are identical, i.e.,
typical, with respect to the original unprocessed netlist.

TABLE VIII
RMST DEVIATIONS IN RESPONSE TO HYPEREDGE-CARDINALITY

TRANSFORMATIONS. DEVIATIONS ARE CALCULATED WITH RESPECT TO

PRECALCULATED RMST VALUES FROM THE PLACER’S ORIGINAL

PLACEMENT RUN

suboptimality of placers on synthesized netlists from arbitrary
nelists. While one may envision many transformations that do
not change the HPWL of a given netlist, our transformations
share an important property: The optimal HPWL of new netlist
is not less than the original HPWL optimal value, and conse-
quently, the placement of the new benchmarks is not “easier”
than the original benchmarks. By applying our transformations
and reexecuting a placer, we can interpret any deviation in
HPWL results as a lower bound on the deviation from the
optimal HPWL value. Our set of netlist transformations can be
summarized as follows.

1) Zero-change HYPEREDGE-CARDINALITY INCREASE in-
creases, if possible, the cardinality of hyperedges with
degree ≥ 3 while leaving two-pin edges intact.

2) Zero-change HYPEREDGE DECOMPOSITION simplifies
large hyperedges (when possible) of degree ≥ 3 by de-
composing a larger hyperedge into two or more smaller
hyperedges.

3) Zero-change EDGE SUBSTITUTION increases the number
of two-pin edges if possible.

Our empirical results show that even when testing few netlist
variants, we can easily find consistent deviations in placement
in HPWL. From our empirical results, we make the following
general remarks.

2818 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

Remark 1: Increasing the cardinality of hyperedges leads to
consistent suboptimal behavior from the placers.
Remark 2: Empirical results indicate that placers exhibit

large amount of sensitivity with respect to the edge substitution.
Remark 3: The hyperedge-decomposition transformation si-

multaneously increases the number of hyperedges while reduc-
ing their cardinality. Thus, it has the potential to reduce the
HPWL (from Remark 1), and to increase the HPWL (from
Remark 2). Our experimental results show negligible change in
wire length; thus, we can surmise that possible improvement in
the performance of the placer due to the hyperedge-cardinality
reduction is counteracted by the increase in number of
hyperedges.
Remark 4: The suboptimal behavior of placers in response

to zero-change transformations is not an artifact of the increase
in netlist statistics of ZCNTs. Embedding ZCNTs in a flow that
preserves netlist statistics clearly shows that placers exhibit the
same suboptimal behavior even though basic netlist statistics
are kept intact.
Remark 5: Suboptimality trends that are demonstrated for

HPWL are also demonstrated for RMST.
Experimental researchers in physical design would no doubt

agree that there is a tendency to tune algorithms and codes to
specific benchmarks [2]. A good placer should be good not just
for a single real instance but also for “similar” instances. Using
our transformations allows the creation of a range of instances
around any given arbitrary benchmark. Thus, for the first time,
the field is afforded a means of creating “similar”’ instances in a
systematic way, such that the consistency of placement quality
can be immediately evaluated.

Our future work will: 1) examine in further detail the source
of suboptimality in current placers and how our transformations
can inspire improvements in current placers; 2) investigate the
use of simplifying netlist transformations such as hyperedge
decomposition to produce better placements; and 3) study the
possibility of calculating lower bounds on the HPWL.

REFERENCES

[1] S. Adya, I. Markov, and P. Villarrubia, “On whitespace and stability in
mixed-size placement,” in Proc. IEEE Int. Conf. Comput. Aided Des.,
2003, pp. 311–318.

[2] S. N. Adya, M. C. Yildiz, I. L. Markov, P. G. Villarrubia, P. N. Parakh, and
P. H. Madden, “Benchmarking for large-scale placement and beyond,” in
Proc. ACM/IEEE Int. Symp. Phys. Des., 2003, pp. 95–103.

[3] J. Beardwood, J. Halton, and J. Hammersley, “The shortest path
through many points,” in Proc. Cambridge Philos. Soc., 1959, vol. 55,
pp. 299–327.

[4] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can recursive bisection
alone produce routable placements?” in Proc. ACM/IEEE Des. Autom.
Conf., 2000, pp 477–482.

[5] C. Chang, J. Cong, M. Romesis, and M. Xie, “Optimality and scala-
bility study of existing placement algorithms,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 23, no. 4, pp. 537–549,
Apr. 2004.

[6] C. Chang, J. Cong, and M. Xie, “Optimality and scalability study of
existing placement algorithms,” in Proc. IEEE Asia and South Pacific Des.
Autom. Conf., 2003, pp. 621–627.

[7] C.-C. Chang, J. Cong, D. Pan, and X. Yuan, “Multilevel global place-
ment with congestion control,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 22, no. 4, pp. 395–409, Apr. 2003.

[8] C. E. Cheng, “RISA: Accurate and efficient placement routabi-
lity modeling,” in Proc. IEEE Int. Conf. Comput. Aided Des., 1994,
pp. 690–695.

[9] J. Cong, M. Romesis, and M. Xie, “Optimality and scalability study of
partitioning and placement algorithms,” in Proc. ACM/IEEE Int. Symp.
Phys. Des., 2003, pp. 88–94.

[10] J. Cong, J. R. Shinnerl, M. Xie, T. Kong, and X. Yuan, “Large-scale circuit
placement,” ACM Trans. Des. Automat. Electron. Syst., vol. 10, no. 2,
pp. 389–430, 2005.

[11] D. Cyganski, R. Vaz, and V. Virball, “Quadratic assignment problems
generated with the palubetskis algorithm are degenerate,” IEEE Trans.
Circuits Syst. I, Fundam. Theory Appl., vol. 41, no. 7, pp. 481–484,
Jul. 1994.

[12] W. E. Donath, “Statistical properties of the placement of a graph,” SIAM
J. Appl. Math, vol. 16, no. 2, pp. 439–457, Mar. 1968.

[13] H. Eisenmann and F. M. Johannes, “Generic global placement
and floorplanning,” in Proc. ACM/IEEE Des. Autom. Conf., 1998,
pp. 269–274.

[14] W. Gosti, A. Narayan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Wireplanning in logic synthesis,” in Proc. IEEE Int. Conf. Comput. Aided
Des., 1998, pp. 26–33.

[15] L. W. Hagen, D. J. H. Huang, and A. B. Kahng, “Quantified suboptimal-
ity of VLSI layout heuristics,” in Proc. ACM/IEEE Des. Autom. Conf.,
1995, pp. 216–221.

[16] M. Hanan and J. M. Kurtzberg, “Placement techniques,” in In Design
Automation of Digital Systems, M. A. Breuer, Ed. Englewood Cliffs, NJ:
Prentice-Hall, 1972, pp. 213–282.

[17] A. B. Kahng and S. Mantik, “On mistmatches between incremental op-
timizers and instance perturbations in physical design tools,” in Proc.
ICCAD, 2000, pp. 17–22.

[18] ——, “Measurement of inherent noise in EDA tools,” in Proc. Int. Symp.
Quality Electron. Des., 2002, pp. 206–211.

[19] A. B. Kahng and S. Reda, “Placement feedback: A concept and method
for better min-cut placement,” in Proc. ACM/IEEE Des. Autom. Conf.,
2004, pp. 357–362.

[20] A. B. Kahng and G. Robins, “A new class of iterative steiner tree heuris-
tics with good performance,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 11, no. 7, pp. 893–902, Jul. 1992.

[21] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “GORDIAN:
VLSI placement by quadratic programming and slicing optimization,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 10, no. 3,
pp. 356–365, Mar. 1991.

[22] B. Landman and R. Russo, “On a pin versus block relationship for
partitions of logical graphs,” IEEE Trans. Comput., vol. C-20, no. 12,
pp. 793–813, 1971.

[23] Q. Liu and M. Marek-Sadowska, “A study of netlist structure and place-
ment efficiency,” in Proc. ISPD, 2004, pp. 198–203.

[24] S. Ono and P. Madden, “On structure and suboptimality in place-
ment,” in Proc. IEEE Asia and South Pacific Des. Autom. Conf., 2005,
pp. 331–336.

[25] M. Queyranne, “Performance ratio of polynomial heuristics for triangle
inequality quadratic assignment problem,” Oper. Res. Lett., vol. 4, no. 5,
pp. 231–234, Feb. 1986.

[26] S. Sahni and T. Gonzalez, “P-complete approximation problems,”
J. ACM, vol. 23, no. 3, pp. 555–565, Jul. 1976.

[27] J. Steele, “Subadditive Euclidean functionals and non-linear growth
in geometric probability,” Ann. Probab., vol. 9, no. 3, pp. 365–376,
1981.

[28] L. Steinberg, “The backboard wiring problem: A placement algo-
rithm,” SIAM Rev., vol. 3, no. 1, pp. 37–50, 1961.

[29] D. Stroobandt, J. Depreitere, and J. V. Compenhout, “Generating new
benchmark designs using a multi-terminal net model,” Integr. VLSI J.,
vol. 27, no. 2, pp. 113–129, Jul. 1999.

[30] D. Stroobandt and F. J. Kurdahi, “In the characterization of multi-point
nets in electronic designs,” in Proc. IEEE Great Lakes Symp. VLSI, 1998,
pp. 344–350.

[31] D. Stroobandt, P. Verplaetse, and J. V. Campenhout, “Generating synthetic
benchmark circuits for evaluating CAD tools,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 19, no. 9, pp. 1011–1022,
Sep. 2000.

[32] W.-J. Sun and C. Sechen, “Efficient and effective placement for very
large circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 14, no. 5, pp. 349–359, 1995.

[33] V. V. Vazirani, Approximation Algorithms, 1st ed. New York: Springer-
Verlag, 2001.

[34] M. Wang, X. Yang, and M. Sarrafzadeh, “DRAGON2000: Standard-
cell placement tool for large industry circuits,” in Proc. IEEE Int. Conf.
Comput. Aided Des., 2001, pp. 260–263.

[35] M. Yildiz and P. Madden, “Global objectives for standard-cell placement,”
in Proc. IEEE Great Lakes Symp. VLSI, 2001, pp. 68–72.

KAHNG AND REDA: ZCNTs: NEW TECHNIQUE FOR PLACEMENT BENCHMARKING 2819

Andrew B. Kahng (A’89–M’03) received the A.B.
degree in applied mathematics from Harvard Col-
lege, Cambridge, MA, and the M.S. and Ph.D. de-
grees in computer science from the University of
California at San Diego, La Jolla.

He is a Professor in the Departments of Computer
Science and Engineering and Electrical and Com-
puter Engineering, University of California at San
Diego. From 1989 to 2000, he was a member of the
Computer Science Faculty, University of California,
Los Angeles. Since 1997, he has defined the physical

design roadmap for the International Technology Roadmap for Semiconductors
(ITRS) and, from 2000 to 2003, chaired the U.S. and international working
groups for Design Technology for the ITRS. He has been active in the MARCO
Gigascale Silicon Research Center since its inception. He was also the founding
General Chair of the ACM/IEEE International Symposium on Physical Design
and Co-Founded the ACM Workshop on System-Level Interconnect Planning.
He has published more than 200 papers in the VLSI CAD literature. His
research is mainly in physical design and performance analysis of VLSI, as well
as the VLSI design–manufacturing interface. Other research interests include
combinatorial and graph algorithms, as well as large-scale heuristic global
optimization.

Dr. Kahng was the recipient of three Best Paper Awards and an NSF Young
Investigator Award.

Sherief Reda received the B.Sc. and M.Sc. de-
grees in electrical and computer engineering from
Ain Shams University, Cairo, Egypt, in 1998 and
2000, respectively. He is currently working toward
the Ph.D. degree at University of California at San
Diego, La Jolla, CA.

He has over 30 refereed publications in the
areas of physical design, VLSI test and diagnosis,
combinatorial optimization, and CAD for new
technologies.

Mr. Reda received a Best Paper Award at DATE
2002 and the First Place Award at the ISPD 2005 Placement contest.

