
DAGMap: 
Graph-Based FPGA Technology Mapping 

THE FIELD-PROGRAMMABLE gate 
array is a relatively new technology 
that allows circuit designers to p r e  
duce ASIC chips without going 
through the fabrication process. An 
FPGA chip usually consists of three 
components: programmable logic 
blocks, programmable intercon- 
nections, and programmable 1/0 
blocks. Current technology imple- 
ments programmable logic blocks 
with either K-input RAM/ROM look- 
up tables (K-LUTs)' or programma- 
ble multiplexers.2 Programmable 
interconnections consist of one- 
dimensional, segmented channels 
or twodimensional routing grids 
with switch matrices. Programma- 
ble I/O blocks provide a userconfig- 
urable interface between intemal 
logic blocks and I/O pads. 

The design process for FPGAs is 
similar to that for conventional gate 
arrays and standard cells. Starting 
from a high-level design specifica- 
tion, the process includes logic 
synthesis, technology mapping, 
placement, and routing. However, 
the end result is not a set of masks 
for fabrication, but rather a configu- 
ration matrix that sets the values of 
all the programmable elements in 
an FPGA chip. 

Fast tumaround and low manu- 
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facturing cost have made FPCA technol- (such as those developed by Xilinx') al- 
ogy popular for system prototyping and low dynamic reconfiguration of chip 
low- or medium-volume production. functions, leading to many interesting a p  
Moreover, lookuptablebased FPGAs plications. But field-programmable com- 

ponents usually introduce longer 
delays than conventional devices, 
so performance is a major consider- 
ation in many applications. 

In this article, we study the tech- 
nology-mapping problem for delay 
optimization of lookuptablebased 
FPGAs. The technology-mapping 
problem is to implement a synthe- 
sized Boolean network with logic 
cells from a prescribed cell family. 
Researchers have done much work 
on the technology-mapping p rob  
lem for conventional gate array or 
standard cell  design^.^.^ In particu- 
lar, Keutzer showed that a Boolean 
network can be decomposed into a 
set of fanaut-free trees and that opti- 
mal technology mapping can be 
performed for each tree indepen- 
dently with a dynamic programming 
a p p r ~ a c h . ~  However, the conven- 
tional methods do  not apply directly 
to the technology-mapping problem 
for FF'GAs; a K-LUT can implement 
any one of Pk K-input logic gates, 
and consequently the equivalent 
cell family is too large to be manipu- 
lated efficiently. 

Recently, researchers have 
proposed a number of technology- 
mapping algorithms for area optimi- 
zation in lookuptablebased FPGA 
designs, with the objective of mini- 

mizing the number of programmable log 
ic blocks in the mapping solution. The 
MISpga program, developed by Murgai 
et al.? first decomposes a Boolean net- 
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On arvemge, 

DAGMap reduces 

delay optimization includes Chortle-d, 
developed by Francis et al.,'' and an ex- 
tension of MISpga, developed by Mur- 
gai et a1.I2 Chortled's basic approach is 
similar to that of Chortle-crf. It decom- 
poses the network into fan-out-free trees network ddv 

and number of 
lookup tables. 

work into a feasible network, using Roth- 
Karp decomposition and kemel extrac- 
tion to bound the number of inputs at 
each node. Then the program enumer- 
ates all the possible realizations of each 
network node and solves the binate cov- 
ering problem to get a mapping solution 
using the fewest lookup tables. An im- 
proved MlSpga program6 incorporates 
more decomposition techniques, includ- 
ing bin packing, cofactoring, and AND- 
OR decomposition. It solves the covering 
problem more efficiently via certain pre- 
processing operations. 

The Chortle program and its succes- 
sor Chortle-crf, developed by Francis et 
al.,7s8 decompose a Boolean network 
into a set of fan-ut-free trees and then 
carry out technology mapping on each 
tree, using dynamic programming. Chor- 
tle-crf uses bin-packing heuristics for 
gatelevel decomposition, achieving sig- 
nificant improvement over its predeces- 
sor in solution quality and running time. 

The Xmap program, developed by 
K a r p l u ~ , ~  transforms a Boolean network 
into an if-thenelse DAG (directed acy- 
clic graph) representation and then 
goes through a simple marking process 
to determine the final mapping. 

Another algorithm, proposed by 
Woo,'O introduces the notion of invisible 
edges to denote edges that d o  not ap- 
pear in the resulting network after map- 
ping. The algorithm first partitions a 
network into subgraphs of reasonable 
size and then exhaustively determines 
the invisible edges in each subgraph. 

Previous work on  FPGA mapping for 

and then uses dynamic programming 
and bin-packing heuristics to map each 
tree independently, at each step mini- 
mizing the depth of the node being pro- 
cessed. The method indeed reduces the 
depths of mapping solutions consider- 
ably, but i t  has two drawbacks. First, it 
decomposes the network into a set of 
fan-ut-free trees. Although it guarantees 
the optimal depth for each tree (when 
the input limit of each lookup table is no 
more than six), this prior decomposition 
usually results in suboptimal depth for 
the overall network. Second, Chortle-d 
uses many more lookup tables than area 
optimization algorithms (MISpga and 
Chortlecrf) use. 

The MISpga extension contains two 
phases: mapping, and placement and 
routing. The mapping phase computes a 
delay-optimized two-input network and 
then traverses the network from the pri- 
mary inputs, collapsing nodes in the 
longest paths into their fan-outs to 
reduce network depth. During this pro- 
cedure, various decomposition tech- 
niques dynamically resynthesize the 
network, so the program uses a reduced 
number of lookup tables. The advan- 
tage of this approach is that it takes lay- 
out information into consideration at 
the technology-mapping stage. Howev- 
er, on average it yields a greater network 
depth than Chortled, especially for large 
networks, and requires much more 
computation time. 

In this article, we present DAGMap, a 
graph-based technology-mapping algo- 
rithm for delay optimization in lookup 
tablebased FPGA designs. Our algorithm 
carries out technology mapping and de- 
lay optimization on  the entire Boolean 
network, instead of decomposing it into 
fan-out-free trees as Chortled does. DAG- 
Map is optimal for trees for any K-LUTs, 

while Chortled is optimal for trees only 
when Kis no more than six." As a prepro 
cessing phase of DAGMap, we introduce 
a general algorithm called DMIG, which 
transforms an arbitrary n-node network 
into a two-input network with only an 
O( 1 j factor increase in network depth. In 
contrast, previous transformation proce- 
dures may result in an Q(log n) factor in- 
crease in network depth. Finally, we 
present a matching-based technique that 
minimizes area without increasing net- 
work delay, which we use in the postpro- 
cessing phase of DAG-Map. 

We have compared DAG-Map with 
previous FPGA mapping algorithms on a 
set of MCNC (Microelectronics Center of 
North Carolina) logic synthesis bench- 
marks. Our experimental results show 
that on average, DAG-Map reduces both 
network delay and the number of look- 
up  tables, compared with either Chortle 
d or the mapping phase of the MISpga 
extension for delay optimization. 

Problem formulation 
We can represent a Boolean network 

as a directed acyclic graph in which each 
node represents a logic gate, and in 
which a directed edge (I, j ]  exists if the 
output of gate i is an input of gatej. A pri- 
mary input (PI) node has no incoming 
edge, and a primary output (PO) node 
has no outgoing edge. We use input(u) to 
denote the set of nodes that supply inputs 
to gate U .  Given a subgraph Hof the Bool- 
ean network, input(H) denotes the set of 
distinct nodes that supply inputs to the 
gates in H. For a node U in the network, a 
K-feasible cone at U ,  denoted C,, is a s u b  
graph consisting of U and predecessors of 
U such that any path connecting a node 
in CO and U lies entirely in C,, and 
I input(CJ1 5 K. (Node U is a predecessor 
of node U if there is a directed path from 
U to U , )  The /eue/ of a node U is the length 
of the longest path from any PI node to U .  
The level of a PI node is zero. The depth 
of a network is the largest node level in 
the network. 

We assume that each programmable 
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Figure 1. Transforming a multi-input network into a two-input network (numbers indicate node levelsl. 

logic block in an FPGA is a K-LUT that 
can implement any K-input Boolean 
function (this is true of Xilinx and AT&T 
FPGA chips' I" 13). Thus, each K-LUT can 
implement any K-feasible cone of a 
Boolean network. The technology- 
mapping problem is to cover a given 
Boolean network with K-feasible cones. 
(Note that we d o  not require the 
covering to be disjoint, since we allow 
network nodes to be replicated if neces- 
sary, as long as the resulting network is 
logically equivalent to the original one.) 
A technology-mapping solution S is a 
DAG in which each node is a K-feasible 
cone (equivalently, a K-LUT) and the 
edge (Cu, C,) exists if U is in input(C,). 

Our goal is to compute a mappings0 
lution that results in a small circuit delay 
and, secondarily, uses a small chip area. 
Two factors determine the delay of an 
FPGA circuit: delay in K-LUTs and delay 
in the interconnection paths. Because 
layout information is not available at this 
stage, we simply approximate the circuit 
delay by the depth of S, since the access 
time of each K-LUT is independent of 
the function implemented. Therefore, 
the main objective of our algorithm is to 
determine a mapping solution S with 
minimum depth. Our secondary objec- 
tive is area optimization; that is, we min- 
imize the number of lookup tables after 

we have obtained a mapping solution 
with minimum delay. 

The DAG-Map package 
The DAG-Map package consists of 

three major parts. First, a preprocessing 
procedure transforms an arbitrary Bool- 
ean network into a two-input network. 
Second, the DAG-Map algorithm maps 
the two-input network into a K-LUT 
FPGA network with minimum delay. 
Third, postprocessing performs area o p  
timization of the FPGA network without 
increasing network delay. 

Network transformation. As in the 
Chortle programs,8,'' we assume that 
each node in the Boolean network is a 
simple gate (AND, OR, NAND, or NOR). 
(If the network has complex gates, we 
can represent each complex gate in the 
sumdproducts  form and then replace it 
with two levels of simple gates. In partic- 
ular, we use the MIS technology decom- 
position command tech-decomp Q 1000 
u 1000, which realizes such a transforma- 
tion.'l) Our first step is to transform the 
Boolean network of simple gates into a 
two-input network (a network in which 
each gate has at most two inputs). We 
cany out this transformation for two rea- 
sons. First, we want to limit each gate's in- 
puts to no more than K, so that we do  not 

have to decompose gates during technol- 
ogy mapping. Second, if we think of 
P G A  technology mapping as a process 
of packing network gates into K-LUTs, in- 
tuitively we know that smaller gates fit 
more easily, with less wasted space in 
each K-LUT. 

Astraightfonvard way to transform an 
n-node arbitrary network into a two-in- 
put network is to replace each m-input 
gate (m 2 3) by a balanced binary tree of 
the same gate type. (Such a transforma- 
tion maintains logical equivalence as 
long as the gate function is associative.) 
Figure la shows a four-input gate U.  Fig- 
ure 1 b shows the result of replacing it 
with a balanced binary tree. We see that 
the level of U increases from 7 to 8. In 
general, this straightfonvard transforma- 
tion may increase the network depth by 
as much as an Q(log n) factor. However, 
if we replace v with the binary tree 
shown in Figure IC, the level of U re- 
mains 7. Our goal is to replace each 
multi-input node with a binary tree so 
that the overall depth of the resulting 
network is as small as possible. 

Given an arbitrary Boolean network 
G, our DMlG (decompose multi-input 
gate) algorithm, shown in Figure 2, trans- 
forms G into a two-input network G'as 
follows. We process the nodes in G in 
topological order, starting from the PI 
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Figure 2. The DMfG algorithm 

nodes. For each multi-input node U ,  we 
construct a binary tree T(u] rooted at U ,  

using an algorithm similar to Huffman’s 
algorithm for constructing a prefix code 
of minimum average length.15 We write 
inpd(u) = {u1 ,  u2, ..., U,,,}. Note that 
nodes u l ,  u2, . . ., U, have already been 
processed by the time we process U ;  
their levels leoel’(u,) (1 I i I m) in the 
new network G’have been determined. 
Intuitively, we want to combine nodes 
with smaller levels first when we con- 
struct the binary tree T(uj. 

If we apply the DMlG algorithm to the 
example in Figure la ,  we indeed obtain 
the binary tree shown in Figure IC. 
WangI6 proposed an  algorithm similar 
to DMlG for timingdriven decomposi- 
tion in the synthesis of multilevel Bool- 
ean networks. As detailed in the 
following theorem, we have shown that 
the DMlG algorithm increases the net- 
work depth after the two-input decom- 
position by at most a small constant 
factor. We present the proof in the box. 
(Hoover et all7 carried out a similar 
analysis in bounding the maximum d e  
gree of f a n a t  in a Boolean network.) 

Proof of Theorem 1 

First, we show the following lemma: 

Lemma. Let V= { u l ,  u2, ..., U,} be the set of inputs of a multi-input node v in the 
initial network G. Then, after applying the DMlG algorithm, we have 

m 
2/eveP(v)  < - C 2/eveP(u, ) + I  

r=l  

where /eve/’(x) is  the level of node x in the two-input network G’ 

Proof. It is easy to see that the DMlG algorithm will introduce m - 2 new nodes in 
processing v. (For any binary tree, the number of leaves equals the number of inter- 
nal nodes, including the root, plus one.) Let X; = {x;,l, x,2, ..., x;,J be the set of 
nodes left in Vafter the DMlG algorithm introduces the ith new node. Clearly, & = 
{ u l ,  u2, ..., U,,,}. For convenience, we define X,, = {v} .  Without loss of generality, 
assume that leve/’(x;,I) 5 leve/’(x,s) I ... I leve/’(x;,,;). Then, the (i+l)th new node 
has xi,)  and xi,2 as its inputs, and its level is given by level’(xi,2) + I .  Therefore, we 
have 

Taking the sum of both sides of the last equation from i = 0 to m - 2, we have 

m-2 

Subtracting C 2’eveP(x’ from both sides, we get 
, = I  x t x  

Note that 

Moreover, 21eve/’(xc2) - 2’ever(xl+1 1 1  5 0 for any 0 I i 5 m - 2 (since x,+1 , I  is either the 
(i+l)th new node or a node in XI - { x , , ~ ,  xl,2}. In either case we have leve/’(x,,l,l) 2 
/eve/’(x, 2 ) )  and 2 ’ w 4 x m 2 2 )  = (1  / 2 )  . 2’eVe’’[4. It follows that I 
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2levep(v)  5 2 .  [ c 2\evep(x)  - 21evep(xo , )  

x t X o  r = l  

Based on this lemma, we present the proof of Theorem 1 as follows: 

Proof. Let H denote deph(G). Let I; denote the set of nodes {x  I x E G, level (x) = 
i}. (Note that leveyx) is the level of node x in the initial network G.) Let A; denote the 
set of nodes x in G such that level ( x )  5 i and x has at least a fan-out ywith level (y) 
> i. We will prove by induction that 

Since 4 is the set of PI nodes in G, the inequality (*I holds for i = 0. Suppose 
that the inequality holds for i -  1 ; we want to show that it also holds for i. From the 
definition of A;, it is not difficult to see that A; (A; n A;,) U I;. Moreover, each 
node v in A; n ALl has at most d- 1 fan-outs in I ;. According to the lemma, we 
have 

VEA, , n A ,  v t A ,  , n A ,  

By h e  induction hypothesis, we have 

“EA,  

We can conclude that the inequality (*) ..olds for any 5 i I H. Let w the 
node in G that achieves the maximum level in G. Then all the inputs of ware in 
A,+, . According to the lemma and the inequality (*), we have 

Therefore, 

depth( G’) = level’( w) 5 log[ ( 2 ~ l ) ~  . I] 5 log 2d . H + log I 

fieorem 1. For an arbitrary Boolean 1 network G of simple gates, let G’be the ’ network obtained by applying the DMlG ’ algorithm to each multi-input gate in to- 
~ pological order, starting from the PI 

nodes. Then depfh(G’) I log 2d . , depth(G) + log I ,  where d is the maxi- 
mum degree of fan-out in G and I is the 
number of PI nodes in G. 

Note that any complex gate in the net- 
work can be decomposed into a two- 

I level ANDOR subnetwork, so that the 
1 increase of network depth is bounded 

by a factor of two. 
1 In practice, d is bounded by a con- 

stant (the fan-out limit of any output). 
1 Therefore, the depth of the two-input 

network G’is increased by only a con- 
stant factor log 2d away from deprh(G), 

1 in contrast to the R(log n) increase that 
may occur with the balanced binary 
tree transformation. (Here we assume 

1 that depfh(G) = Q(log 0, which is true 
for most networks in practice. This ex- 
cludes the unrealistic case in which log I 
is the dominating term in the right-hand 
side of the inequality in Theorem 1 .) 

Figure 3 on the next page shows a 
pathological example of the balanced 
binary tree transformation. Figure 3a 
shows the initial network of size n, a fan- 
out-free circuit of depth (assum- 

1 ing that the primary inputs are at level 0). 
Figure 3b shows the two-input network 

l after the balanced binary tree transfor- 
1 mation. The network in Figure 3b has 

depth d ~ s r  = (1/2>log(~-l) . G, , even though d= 1 in this case. Figure 3c 
shows the DMlG transformation result, 

, which has depth = Jn-1 + 
I (1/2)log(n-l) -1. ClearlydDMI~ is much 

The experimental results presented 
1 later in this article show that the two- 

input networks obtained with our trans- 
formation procedure lead to smaller 
network depths and better mapping s e  

l lutions than those obtained with the MIS 
transformation procedure. l 4  

smaller than dBBTwhen n is large. 

1 Technology mapping. After we o b  
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tain a two-input Boolean network, we 
carry out technology mapping directly 
on the entire network. We use a method 
similar to that of Lawler et al.: module 
clustering to minimize delay in digital 
networks.lX The DAG-Map mapping al- 
gorithm consists of two phases: labeling 
the network to determine each node’s 
level in the final mapping solution and 
generating the logically equivalent net- 
work of K-LUTs. The algorithm is sum- 
marized in Figure 4. 

The first phase assigns a label h(u) to 
each node u of the two-input network, 
with h(u) equal to the level of the K-LUT 
containing u in the final mapping solu- 
tion. Clearly, we want h(u) to be assmall 
as possible to achieve delay minimiza- 
tion. We label the nodes in a topological 
order, starting from the PI nodes. The la- 
bel of each PI node is zero. If node u is 
not a PI node, let p be the maximum la- 
bel of the nodes in inpuf(u). We use 
Np(u) to denote the set of predecessors 
of U with label p. Then, if inpuf(Np(u) U 

{ U } )  5 K, we assign h(u) =p. Otherwise, 
we assign h(u) =p + 1. With this labeling, 
i t  is evident that Nh(l,)(u) forms a K- 
feasible cone at U for each node U in the 
network. (Note that u E Nh(u)(u) be- 
cause u is a predecessor of itself.) 

The second phase generates K-LUTs in 
the mapping solution. Let L represent the 
set of outputs to be implemented with K- 
LUTs. Initially, L contains all the PO 
nodes. We process the nodes in L one by 
one. For each node u in L, we remove u 
from L and generate a K-LUT u’to imple 
ment the function of gate u such that 
input(u’) =inp~t(ni;,(~ ) ( U ) ) .  Then, we u p  
datethesetL to beLuinput(u’). Thesec- 
ond phase ends when L consists of only 
PI nodes in the original network. Clearly, 
we obtain a network of K-LUTs that is log- 
ically equivalent to the original network. 

The DAGMap mapping algorithm has 
several advantages: 

w It works on the entire network with- 
out decomposing it into fanaut-free 
trees, usually leading to better map 
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ping solutions. For example, de- 
composing the two-input network 
shown in Figure 5a into fan*ut-free 
trees, as shown in Figure 5b, yields 
a twdevel mapping solution with 
three lookup tables. However, the 
DAG-Map algorithm gives a onelev- 
el mapping solution with two look- 
up tables, as shown in Figure 5c. 
DAG-Map will replicate nodes, if 
necessaty, to minimize network d e  
lay in the mapping solution. For the 
solution shown in Figure 5c, node 
u2 is replicated to get a one-level 
mapping solution. Note that i f  node 
uq is not replicated, the depth of the 
mapping solution is at least two. 

w The algorithm is optimal when the 
initial network is a tree, as stated in 
the following theorem. 

Theorem 2. For any integer K, if the 
Boolean network is a tree with fan-in no 
more than Kat each node, the DAGMap 
algorithm produces a minimumdepth 
mapping solution for K-LUT-based 
FPGAs. 

froof: It is easy to see that given a tree 
T if the fan-in limit of each node isK, the 
algorithm can successfully label all the 
nodes. Moreover, for any node U in T, 
the label h(u) is the level of LI/T, in the 
mapping solution produced by DAG- 
Map, where LLTL is the K-LUT contain- 

ing U .  We will show that for any mapping 
solution M, the level of any node U 
satisfies leoel,,,,(LUT,) 2 h(u), where 
leueldLUT,) is the level of the K-LUT 
LUT, in M. 

Assume toward a contradiction that M 
is a mapping solution such that 
leueldLUT,) < h(u) for some node U .  

Furthermore, let U be the node with the 
lowest level in Tsuch that leuelM(LLIT,) 
< h(u). Then, for any predecessor w of U ,  
we have leueldLLITl,) 2 h(w). Let U be 
the predecessor of U with the maximum 
label h(u) = p .  LeuelM(LUT,) 2 
kuel,,,(LWJ 2 h(u) = p ,  and h(u) 2 p + 
1 according to the DAG-Map labeling 
procedure. Therefore, we conclude that 
leueldLUT) = p and h(u) = p + 1. Note 
that leueIM(LUTL) = p implies that C, a 
/$,(U) U { U } ,  and h(u) = p +  1 implies that 
Jinput(N,(u) U {u})l >Kaccording to the 
labeling procedure, where C, is the K- 
feasible cone at U contained in L W L  in 
M. However, since Tis a tree, we have 

which contradicts the statement that C, 
is K-feasible. 

Francis et al. showed a result along 
similar lines for Chortled,” but it holds 
only for K I 6, since the Chortled bin- 
packing heuristics are no longer optimal 
for K > 6. (Chortled does not limit the 

more than K, because it carries out node 
decomposition during the bin-packing 
process.) 

Although the DAGMap algorithm is op 
timal for trees, it may not be optimal for 

algorithm DAGh4ap 
/* phase 1 : labeling the network */ 
for each PI node U do 

h(u) = 0; 
T= list of non21 nodes in 

topological order; 
whiIe Tis not empty do 

remove the first node U from T 
let p = max(h(u) I U E input(u)}; 
if I inpuf(Np(v) U {v}) I I K 
then h(u) = p  
elseh(u)=p+ 1 

end-while; 
/* phase 2 : generate KLuTs */ 
L = list of PO nodes; 
while L contains non-PI nodes do 

remove a non-PI node U from L, 
i.e., L = L -  {U}; 

introduce a K-WT o’to 
implement the function of U 
such that input(u’) 

= @ - 4 ~ h ( ” ) ( o > ) ;  
L = L v input(u’) 

end-while; 
endalgorithm. 

fan-in of each node in the tree to no 1 Figure4. DAG-Mapmappinga/gorifftm. 

a b C d d 

“2 
l 

a b C d 

fa) Original network (b) Decomposition into fan-out-free trees (c) DAG-Map mpping solution 

Figure 5. A mapping example (assume K = 31. 
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Figure 7. The constraint on the number of 
lookup-table inputs is not monotonic (as- 
sume K = 3). 

u,andu,asaninput tou~)  
(b) DAG-Map mapping (three levels) ' Such a decomposition produces a 

Figure 6. A pathological example of DAG-Map mapping (assume K = 3. Numbers rep- 
resent node levels in mapping solution). 

general networks. Figure 6 shows an ex- 
ample in which DAGMap produces a 
suboptimal mapping solution. However, 
DAGMap would be optimal if the m a p  
ping constraint for each programmable 
logic block were monotonic. As defined 
by Lawler et a1.,I8 a constraint Xis mono  
tonic if a network H satisfying X implies 
thatanysubgraphofHalsosatisfiesX. For 
example, limiting the number of gates a 
programmable logic block can cover is a 
monotonic constraint. 

Unfortunately, limiting the number of 
distinct inputs of each programmable 
logic block is not a monotonic con- 
straint. In Figure 7 the whole network 
has three distinct inputs, but the subnet- 
work consisting of t, U ,  and w has four 
distinct inputs. However, our experi- 
mental results show that DAG-Map p r o  
duces satisfactory mapping solutions 
with respect to delay optimization for all 
benchmark circuits. 

Area optimization. Since the main 
objective of the DAGMap mapping algo- 
rithm is to optimize the depth of the 

14 

mapping solution, minimizing the num- 
ber of K-LUTs is not a consideration. 
Therefore, we have developed two area 
optimization operations, which are used 
in postprocessing after we obtain a 
smalldepth mapping solution. These 
operations reduce the number of K- 
LUTs in the mapping solution without in- 
creasing network depth. Note that in our 
discussion in thissubsection, each node 
in the network is a K-LUT instead of a 
simple gate as in the preceding subsec- 
tions. 

The first operation, gate decomposi- 
tion, was inspired by the gate decompo 
sition concept in Chortlecrf. The basic 
idea is as follows: Let us assume that node 
U is a simple gate of multiple inputs in the 
mapping solution. For any two of its in- 
puts ui and U,, if ui and U, are single fan-out 
nodes, we can decompose U into two 
nodes uii and u'such that u'is of the same 
type as U ,  and uo is of the same type as U 

in non-negated form. Further, input(o,) = 
{ui, uj) and input(u') = input(u) U {U,.} - 
{U,, U,}. (In other words, we feed U, and U, 
into uii first, and then we use uii to replace 

logically equivalent network because of 
the associativity of the simple functions. 
In this case, if I input(u,) U input(u,)lS K, 
we can implement U,, U,, and U,, using 
one K-LUT. The result is that the number 
of K-LUTs is reduced by one, and the 
decomposed node U has one less input 
(a condition beneficial to subsequent 
gate decomposition and predecessor 
packing). Figure 8 illustrates the gate 
decomposition operation, which reduc- 
es the number of nodes, as well as the 
number of fan-ins of node U (dafter the 
operation), by one. 

We can generalize this method to the 
case where the decomposed node U im- 
plements a complex function. We apply 
Roth-Kap decompositionI9 to determine 
if the node can be feasibly decomposed 
to U,, and U' as just described. Given a 
Boolean function F(X, Y), whereXand Y 
are Boolean vectors, the Roth-Karp de- 
composition determines if there is a pair 
of Boolean functions C and Hsuch that 
F(X, Y) = C(H(X), Y) and generates such 
functions if they exist. (This is a special 
case of Roth-Karp decomposition.) In this 
case, Fis the function implemented byu, 
X= (U(, U,), and Y consists of the remain- 
ing inputs of U .  If the Roth-Kap decompo 

' sition succeeds on a pair of inputs U, and 
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a b c d  e f g  C a b  e f g d c a b e f g  

Figure 8. Gate  decomposition for area  optimization (assume K = 5). 

U, of node U ,  and I input(u,) U rnput(u,) I I 
K, the gate decomposition operation is 
applicable. In this case, we say U ,  and U, 

are mergeable and we call U the base of 
the merge. Although Roth-Karp decom- 
position generally runs in exponential 
time, it takes only constant time in our al- 
gorithm, because the number of fan-ins 
of a K-LUT is bounded by a small con- 
stant K. 

Another postprocessing operation for 
area optimization is predecessor pack- 
ing. The concept behind this method is 
simple. For each node U ,  we examine all 
its input nodes. If I input(u) U input(u,)l I 
Kforsome input node U,, and U ,  has only 
a single fan+ut, U and U ,  are merged into 
a single K-LUT. In this case, we also say 
that nodes U ,  and U are mergeable, and 
call U the base of the merge. This opera- 
tion reduces the number of K-LUTs by 
one. Unlike the gate decomposition 
method, which reduces the number of 
inputs to the current node U by one, this 
method actually increases the number 
of inputs by linput(u,) - input(u)l. 
Although it is less conducive to subse- 
quent gate decomposition or predeces- 
sor packing, the number of instances to 
which this operation applies is large. Fig- 
ure 9 shows an example of the predeces- 
sor packing operation. In this example, 
predecessor packing leads to a solution 
with the same depth as the original net- 
work but with one less K-LUT. 

There are usually many pairs of mer- 

geable nodes in a network, but not all ing problem can be solved in O(n3) 
the merge operations can be performed our area optimization procedure 
at the same time. Thus, to avoid merging can be implemented efficiently. (We 
nodes in arbitrary order, we use a graph- used astandard procedure for maximum 
matching approach, which achieves a , cardinality matching in undirected 
globally good result. We construct an ~ graphs, written by Ed Rothberg, which 
undirected graph G = (V, Q, where the , implements Gabow’salgorithm.) 
vertex set V represents the nodes of the Note that in our discussion of these 
K-LUT network, and an edge (U,,  U,) is in two operations, we assume that each 
the edge set E if and only if U, and uj are node in a mergeable pair has only a sin- 
mergeable. Clearly, a maximum cardi- gle fan+ut, unless it is also the base of the 
nality matching in G corresponds to a merge for predecessor packing. That is 
maximum set of merge operations that because the resulting K-LUT must have 
can be applied simultaneously. There- only one output. I f  a node U in a merge- 
fore, we find a maximum matching in G ’ able pair is not the base of the merge and 
and apply the merge operations cor- has multiple f a n a t s ,  the application of 
responding to the matched edges. We the merge operation requires U to be r e p  
then reconstruct the graph G for the re- licated so that the copy involved in the 
duced network and repeat the proce- merge operation is f a n a t  free. However, 
dure until we are unable to construct a unlessevery f a n a t  node of U isa base of 
nonempty E. some merge operation that involves U ,  

Experimental results show that this we cannot reduce the number of nodes 
matching-based merge algorithm usually in the network, since there will always be 
converges after only one or two itera- a remaining copy of U that is not merged 
tions. Since the maximum graph-match- to any of its fanQut nodes. 

~ 

a b c d e f  a b c d e f a b c d  e f 

U ,  *? 1,y y p  
4 + 

5-LUT 5-LUT 5-LUT 

..... w 

Figure 9. Predecessor packing for area optimization (assume K = 5) 
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5-LUT 5-LUT 

(a1 Original network 

(cl Multiple-predecessor packing 

Figure 10. Merge operations on multi-fan-out node U (assume K =  5) 

We say a node U is removable if and 
only if for each of its fan-out nodes U , ,  ei- 
ther U and U ,  are mergeable via prede- 
cessor packing, or there is another fan-in 
node of U,,  say U , ,  such that U and U ,  are 
mergeable via gate decomposition. Fig- 
ure lOshows three different cases where 
node U is a removable node. For a re- 
movable node U ,  each of its fan-out 
nodes is a base of a merge operation in- 
volving U ,  and U is removed if all these 
merge operations are applied simulta- 
neously. Therefore, for a removable 
node U ,  we define a mergeable set of U ,  
denoted as R,,, to be a set of nodes in- 
volved in removing U .  

More precisely, R,, contains U itself 
and exactly one node U, for each fan-out 
node U ,  of U ,  which is selected in one of 
two ways: 1) If U, is the base of a prede- 
cessor packing operation involving U, 
we can select U ,  as U , ;  or 2) if U,  is the 
base of a gate decomposition operation 
involving U ,  we can select U, to be the 
node other than U involved in this gate 

;* "er' 
(bl Multiple-gate decomposition 

5-LUT 

U P  

(dl Mixed-type merging 

decomposition. Note that a removable call the edges in 
node may have more than one  merge- 
able set. For example, in Figure 10 node 
U has mergeablesets { U ,  U ] ,  U Z ) ,  {U, u l ,  U Z ) ,  
[ U ,  U], uZ}, and [U, u l ,  U?] (the last one is 
not shown in the figure). I f  U is fan-out 
free, a mergeable set of U is a mergeable 
pair as defined previously. Therefore, a 
mergeable pair is a special case of a 
mergeable set. 

To reduce the number of K-LUTs as 
much as possible, we want to determine 
a maximum collection of mergeable 
sets for which merge operations can be 
performed independently. This be- 
comes the matching problem in a hyper- 
graph. We construct a hypergraph H = 
(V, E) for the K-LUT network, where the 
vertices in V represent the network 
nodes, and the hyperedges in E repre- 
sent the mergeable sets. Note that Hcon- 
tains the simple graph G = (V, EL), 
representing mergeable pairs for f a n a t -  
free nodes, as a subgraph. We call the 
edges in E. the simple edges, and we 

' - EZ, each of whic 1 
contains more than two vertices, the 
nonsimple edges. A matching in His  a 
set of disjoint edges in E. Clearly, a max- 
imum matching in H yields the maxi- 
mum number of network K-LUTs that 
can be removed. 

However, the maximum matching 
problem in a hypergraph is NPcomplete. 
Instead of solving this problem optimally, 
we compute an approximate solution as 
follows. First, we construct the hyper- 
graph H= (V, E) for the K-LUT network as 
described. Then, we identify the sub- 
graph G= (V, E2) of H, consisting of all the 
simple edges in H. Next, we find a maxi- 
mum cardinality matching M2 c E2 in G, 
using Gabow's algorithm. This matching 
will be included in the approximate solu- 
tion for hypergraph matching. Let E, be 
the set of nonsimple edges in H that are 
disjoint from the edges in M2. We use an 
exhaustive search procedure to find a 
maximum matching M, c E, and retum 
M2 U M, as the approximate maximum 
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matching solution in H. 
In practice, E,I is quite small. For ex- 

ample, for all the benchmark circuits we 
used in our experiments, E,I never ex- 
ceeds 10. Therefore, M, can be comput- 
ed efficiently. 

It is obvious that this algorithm finds a 
maximal hypergraph matching. AI- 
though it may not be maximum, we 
have the following bound: 

Theorem 3. Given a hypergraph H,  let 
M* be a maximum matching of H,  and 
let M = M2 U M, be the matching com- 
puted with the preceding algorithm. 
Then W*I I 2m. 

Proof Let M+ = M2 - M*, which is the 
set of simple edges that are in M but not 
in M*, and 125 = M* - M2. If M+ is not 
empty, M* U h4+ is not a matching since 
M* is maximum. But because M2 is also 
a matching, and M+ c M2, we can always 
find a set S G 125 such that M’= (M* U 

M+) -S is a maximal matching. It is easy 
to see that M2 G M’, and WI -IM’I= !5l 
- Wl. Since adding a simple edge to any 
matching results in the removal of at 
most two edges for maintaining the 
matching property, we have 2 2W1. 
Therefore, WI - W’I 2 Wl. 

Since M2 is a maximum matching 
among all the simple edges in H, M’can- 
not contain any simple edges other than 
those in M2. So M’ - M2 is a maximal 
matching among the nonsimple edges 
in H that are disjoint with the edges in 
M2. According to the construction of M,, 
we have W-M212 W,l, which leads to 

Therefore, we have WI - In / l l<  w1. 
Since W( 5 m, we conclude that In/l”l2 

For general hypergraphs, this bound 
is tight. However, for hypergraphs that 
contain only a few nonsimple edges, we 
can obtain a better bound, 

WIS m. 

2m. 

Corollary I .  If the number of nonsim- 
ple edges in a hypergraph H is h(H), 
thenIM*l-IMI<h(H)-IM,I. 

Proof Since M’n S = 0, and M’is a 
maximal matching, we have M, n S =  0 
(otherwise M’can be augmented by the 
edges in M, n S). Therefore, S contains 
no more than h(H) - IM,I nonsimple 
edges. On the other hand, S contains no 
more than (M+l simple edges (otherwise 
M* would contain more simple edges 
than M2, which contradicts the fact that 
M2 is a maximum matching of the sim- 
ple edges in H). This implies that S con- 
tains at least IS1 - lM+l nonsimple edges. 

Moreover, from the proof of Theorem 
3,  we know that IM*l -[MI I IM*l- IM’I 
= 18 - 1M+1. Therefore, we have IM*I 

For all the benchmark circuits we used 
in our experiments, we applied Corollary 
1 and found that the error bound h(H) 
- I M,I is never greater than four. 

-IM( 5 1.51 - lM+J I h(H) - IM,I. 

Experimental results 
We implemented the DAGMap algo 

rithm, using the C language on Sun Sparc 
workstations. We integrated our program 
as an extension of the MIS system so that 
we could exploit I/O routines and other 
functions provided by MIS. We tested 
DAGMap on a large number of MCNC 
benchmark examples and compared 
our results with those produced by Chor- 
tled” and by the mapping phase of the 
MlSpga delay optimization algorithm.I2 

As in the Chortled and MISpga tests, 
we chose the size of the K-LUT to be K =  
5, reflecting, for example, the Xilinx XC 
3000 P G A  family.’ For each input net- 
work, we first applied the DMlG algorithm 
to transform it into a tweinput network. 
We then used DAGMap to map it into a 5 
LUT network. Finally, we performed the 
matching-based postprocessing step. Ta- 
ble 1 on the next page compares the re- 
sults of our algorithm with those of the 
other two algorithms. 

We obtained the input networks to 
Chortled and DAGMap from the original 
benchmarks, using the m e  standard MIS 
technology-independent optimization 
script used by Fmncis et al.,” except that 
Chortled goes through another speedup 

step for delay optimization. A direct com- 
parison with MlSpga is difficult because it 
combines logic optimization and technol- 
ogy mapping. Nevertheless, we include 
the mapping results produced by the M I S  
pga delay optimization algorithm (quoted 
from Murgai et al.’? for reference. lhe run- 
ning time of our algorithm, which includes 
transformation, mapping, and postpro 
cessing, was recorded on a Sun Sparc IPC 
(15.8 MIPS). The running times of the oth- 
er two algorithms are quoted from Murgai 
et all2; the authols used a DEC5500 ma- 
chine (28 MIPS). Overall, the Chortled sc, 
lutions used 60% more lookup tables and 
had 2% larger network depth than the 
DAGMap solutions; the MlSpga delay op  
timization solutions used 4% more lookup 
tables and had 6% larger network depth. In 
all cases, the running time of our algorithm 
is no more than 100 seconds. 

To judge the effectiveness of our DMIG 
algorithm for transforming the initial net- 
work into a twoinput network, we com- 
pared it with the MIS transformation 
procedure. We applied both the DMIG al- 
gorithm and the MIS decomposition com- 
mand tech-decomp a 2 a 2 to the same 
initial networks. (Again, we optimized the 
initial networks with the MIS minimization 
script as in the preceding experiment; in 
addition, we used tech-decomp U 1 O O O e  
1000 to transform them into simple gate 
networks.) We also ran the DAGMap alge 
rithm on each set of the resulting twoinput 
networks. 

In Table 2, the first four columns com- 
pare the number of gates and the depth 
of the tweinput networks produced by 
the two algorithms; the last four columns 
compare the number of SLUTS and the 
depth of the SLUT networks after we a p  
plied DAGMap to the tweinput net- 
works. In all cases, the DMIG procedure 
resulted in smaller or the same depths in 
the tweinput networks after decomposi- 
tion and the SLUT networks after m a p  
ping, and on average it used fewer 
lookup tables. (Since both algorithms d e  
compose a network into a binary tree, the 
number of gates in the resulting tweinput 
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Table I .  Comparison of three algorithms for 5-IUT FPGA technology mapping. 

' Benchmark Chortle-d MIS-wa (d) DAG-Mao i 
i example LUTs Depth Time (5) LUTs Depth Time(s) LUTS Depth Time(s) i 

~ ~~ ~~~ ~~ ~~ ~ ~ ~~~ ~- ~ ~~ ~ ~~ 

5xp 1 26 3 0 1  21 

' 9symmI 59 5 0 1  7 
~ 9sym 63 5 0.2 7 

c499 382 6 1.8 199 
C880 329 8 0 9  259 
alu2 227 9 0 7  122 
ah4 500 10 0 3  155 
apex6 308 4 0.8 274 

1 count 91 4 0.1 81 

I duke2 24 1 4 0 4  1 64 
i misexl 19 2 0 1  17 

rd84 61 4 0.2 13 
rot 326 6 1 0  322 

1 vg2 55 4 0.1 39 
z4ml 25 3 0 1  10 

I Total 4,906 87 16.3 3,182 
Comparison +60% +2% +4% 

L _ _ ~ ~ ~  ~~ ~ - 

Table 2. Comparison of two-input network transformation algorithms 

I apex7 108 4 0 2  95 

des 2,086 6 9 2  1,397 

~ - ~~ 

~~ ~ ~ ~ ~~ ~- ~~~~ ~ ~ 

2 
3 
3 
8 
9 
6 

1 1  
5 
4 
4 

1 1  
6 
2 
3 
7 
4 
2 

90 
+6% 

3.5 
15.2 
9.9 

58.8 
39.0 
42.6 
15.4 
60.0 

8.4 
5.1 

937.8 
16.4 
1.7 
9.8 

50.0 
1.7 
2.1 

1,277.4 

22 
60 
55 
68 

128 
156 
272 
246 
81 
31 

1,423 
1 77 
16 
46 

246 
29 
5 

3,062 
1 

~~ ~~ 

3 
5 
5 
4 
8 
9 

10 
5 
4 
5 
5 
4 
2 
4 
7 
3 
2 

85 
1 

~ 

1.1 
2.3 
2.5 

12.2 
6.3 
7.8 

16.5 
10.9 
3.0 
1.4 

91.2 
4.9 
0.7 
2.5 

11.1 
0.9 
0.3 

175.6 

~~ 

~~ ~ 

l networks is always the same.) 
Finally, we tested the effectiveness of 

DMIG DAGMap's postprocessing procedure for ~ Benchmark MIS techdecomp XMIG MIS tech-decomp 

l example Gates Depth Gates OeP* lUTS Depth OeP* I area optimization, the results are shown 

Before mappin After 5-LUT mappinq 

I 5xpl 88 
I 9sym 20 1 

9symml 199 
I c499 392 
1 C880 347 I alu2 371 

alu4 664 
apex6 65 1 

I count 112 
I des 3,049 

duke2 325 
misexl 49 1 rd84 153 

vg2 72 
I z4ml 27 
1 Total 7,440 
1 Comparison +OX 

~ apex7 20 1 

1 rot 539 

L ~~~~~~ 

18 

9 
16 
17 
25 
37 
36 
40 
16 
14 
20 
19 
16 
6 

14 
27 
15 
10 

337 
+15% 

88 9 
201 13 
199 13 
392 25 
347 35 
371 31 
664 34 
651 15 
201 13 
112 19 

3,049 16 
325 1 1  
49 6 

153 11 
539 21 

72 10 
27 10 

7,440 292 
1 1  

22 3 
65 5 
61 5 
66 4 

131 8 
159 10 
263 1 1  
250 6 
80 4 
31 5 

1,461 6 
177 5 
19 2 
44 4 

256 7 
29 4 
5 2  

3,119 91 
+2% +7% 

~~ ~ 

22 3 
60 5 
55 5 
68 4 

128 8 
156 9 
272 10 
246 5 
82 4 
31 5 

1,423 5 
177 4 
16 2 
46 4 

246 7 
29 3 
5 2 1  

3,062 85 
1 1  

in Table 3. The first two columns show 
statistics for the mapping solutions p r o  
duced by DAGMap without any postpro 
cessing for area optimization. The last 
two columns describe the same solutions 
after postprocessing. Postprocessing re- 
duced the total number of lookup tables 
by 16%. 

OUR RESULTS wnn DAG-Mapshow 
that the graph-based technology-mapping 
approach is more effective than the exist- 
ing tree-based technology-mapping a p  
proaches in lookuptablebased FPGA 
designs. In subsequent work?' we have 
shown that the lookuptablebased FPGA 
technology-mapping problem for delay 
optimization can be solved optimally in 
polynomial time. 
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Table 3. Effectiveness ofpostprocessing for area optimization of depth-minimized 5-IUT 
mappings. 

ble Gate Arrays,“ Roc 28th Design Aut@ 
mution Conf , 1991, pp. 24@243 

~~ ~ ~ - B e m h m a r l r  ~~ ~ ~ 10 N -S Woo, “A Heuristic Method for FPGA 
Oriqinal After postprocessing Technology Mapping Based on the Edge 

Visibility,” Proc 28th Design Automation 
C o d ,  IEEE CS Press, 1991, pp. 248251 

example LUTS LUTS oeph ’ 

5xp 1 
9sym 
9symml 
c499 
C880 
alu2 
alu4 
apex6 
apex7 
count 
des 
duke2 
misexl 
rd84 
rot 

v!32 
z4ml 
Total 
Comparison 

25 
76 
68 
80 

137 
169 
30 1 
31 3 
101 
43 

1,674 
196 
20 
51 

275 
32 
5 

3,566 
+16% 

3 
5 
5 
4 
8 
9 

10 
5 
4 
5 
5 
4 
2 
4 
7 
3 
2 

85 
+0% 

22 
60 
55 
68 

128 
156 
272 
246 
82 
31 

1,423 
1 77 

16 
46 

246 
29 
5 

3,062 
1 
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