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Abstract—With the rapid scaling of integrated-circuit tech-
nology, buffer insertion has become an increasingly critical
optimization technique in high-performance design. The problem
of finding a buffered Steiner tree with optimal delay characteris-
tics has been an active area of research and excellent solutions exist
for most instances. However, there exists a class of real “difficult”
instances, which are characterized by a large number of sinks
(e.g., 20–100), large variations in sink criticalities, nonuniform
sink distribution, and varying polarity requirements. Existing
techniques are either inefficient, wasteful of buffering resources,
or unable to find a high-quality solution. We propose C-tree,
a two-level construction that first clusters sinks with common
characteristics together, constructs low-level Steiner trees for each
cluster, then performs a timing-driven Steiner construction on the
top-level clustering. We show that this hierarchical approach can
achieve higher quality solutions with fewer resources compared to
traditional timing-driven Steiner trees.

Index Terms—Buffer insertion, global routing, interconnect syn-
thesis, Steiner tree.

I. INTRODUCTION

I T IS NOW widely accepted that interconnect is becoming in-
creasingly dominant over transistor and logic performance in

the deep-submicromter regime. Buffer insertion is now a funda-
mental technology used in modern very large scale integration
design methodologies (see [10] for a survey). Cong [9] illus-
trates that as gate delays decrease with increasing chip dimen-
sions, the number of buffers required quickly rises. He expects
that close to 800 000 buffers will be required for 50-nm tech-
nologies. It is critical to automate the entire interconnect opti-
mization process to efficiently achieve timing closure.

Several works have studied the problem of inserting buffers
to reduce the delay on signal nets. Closed-form solutions for
two-pin nets have been proposed in [1], [6], [8], and [13]. van
Ginneken’s dynamic-programming algorithm [22] has become
a classic in the field. Given a fixed Steiner-tree topology, his
algorithm finds the optimal buffer placement on the topology
under the Elmore delay model for a single buffer type and simple
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gate delay model. Several extensions to this work have been
proposed (e.g., [2], [3], [18], [20], and [21]). Together, these
enhancements make the van Ginneken buffer-insertion frame-
work very powerful as it can incorporate slew, noise, and capaci-
tance constraints, a range of buffer and inverter types, and higher
order gate and interconnect delay models, while retaining opti-
mality under many of these variations. Most recently, research
on buffer insertion has focused on accommodating various types
of blockage constraints [12], [16], [17].

Clearly, the primary shortcoming with the van Gin-
neken-style of buffer insertion is that it is limited by the given
Steiner topology. Thus, both Okamoto and Cong [21] and Lillis
et al. [20] have combined buffer insertion with a Steiner-tree
constructions, the former with A-tree [11] and the latter with
P-tree [18]. Later, in [12], the work of [21] was extended to
handle fixed buffer locations and wiring blockages.

Observe that the simultaneous approach is not necessarily
any better than the two-step approach of first constructing a
Steiner tree, then running van Ginneken-style buffer insertion.
An optimal solution can always be realized using the two-step
approach if one uses the “right” Steiner tree (i.e., the tree re-
sulting from ripping buffers out of the optimal solution) since
the buffer-insertion step is optimal. Of course, finding the right
tree is difficult since the buffer-insertion objective cannot be
directly optimized. We believe that if one tries to construct a
“buffer-aware” Steiner tree, i.e., a tree with topology that an-
ticipates good potential buffer locations, the two-step approach
can be as effective (and potentially more efficient) than the si-
multaneous approach.1

For the majority of the nets in a design, finding the right
Steiner tree is easy (assuming no blockages or buffer resource
constraints). For two-pin nets, a direct connection is optimal and
there are a small number of possible topologies for five sinks or
less. The purpose of our paper is to focus on the most difficult
nets for which finding the appropriate Steiner topology is not at
all obvious. These nets will typically have more than 15 sinks,
varying degrees of sink criticalities, and differing sink polarity
constraints. Optimizing these nets effectively is often critical,
as large high-fan-out nets are more likely to be in a critical path
because they are inherently slow.

Of course, a good heuristic for finding the right Steiner
tree must take into account potential buffering. Consider the

1None of the existing simultaneous tree and buffering approaches can handle
the types of constraints that a van Ginneken-style framework can (such as slew
constraints and higher order delay modeling). One could use the simultaneous
approach (with its simpler assumptions and modeling) first to uncover the
routing tree topology and then pass this result, with the buffers deleted, to
the more sophisticated buffer-insertion algorithm that uses a fixed routing
topology.
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Fig. 1. Example where (a) the tree with less wire length yields (b) an inferior
buffered tree than (c) the tree with more wire length. Tree in (b) requires three
buffers to decouple the load, while the tree in (c) requires just one. If instead,
two sinks are critical, then (d) the best buffered topology would group these
critical sinks into the same subtree.

four-sink example in Fig. 1(a), where only one of the sinks is crit-
ical. The unbuffered tree in Fig. 1(a) has minimum wire length,
yet inserting buffers in Fig. 1(b) would require three buffers to
decouple the three noncritical sinks, while the buffered tree in
Fig. 1(c) requires but one decoupling buffer. Thus, the tree in
Fig. 1(c) uses fewer resources and further may actually result in a
lower delay to the critical sink since the driver in Fig. 1(c) drives
a smaller capacitive load than in Fig. 1(b). One can identify this
topology by first clustering the noncritical sinks together and
forcing the topology to route everything within a cluster as a
separate subtree. If there are multiple critical sinks, as shown
in Fig. 1(d), then a totally different topology which groups the
critical sinks together in the same subtree likely yields the best
solution. This tree would be identifiable if the critical sinks and
noncritical sinks were clustered into two separate clusters and
subtrees were constructed for each cluster. The Steiner algorithm
must be aware of opportunities to manipulate the topology to
allow potential offloading of noncritical sinks.

However, the crux of the problem with current buffer-tree
technology is that it cannot adequately handle polarity con-
straints. During early synthesis, fan-out trees are built to
repower and distribute a signal and/or its complement to a set
of sinks without knowledge of the layout of the net. Once the
net is placed, the tree is often grossly suboptimal. At this stage,
one can rip out the fan-out tree and rebuild it using physical
design information. However, ripping out the complete fan-out
tree of buffers and inverters may leave sinks with opposing
polarity requirements.

Fig. 2 shows a net with five sinks with normal polarity (in-
dicated by a plus) and five with negative polarity (indicated
by a minus). The tree in Fig. 2(a) requires a minimum of five
inverters simply to ensure that polarity constraints are satisfied,
while the tree in Fig. 2(b) requires just one. This solution can be

(a)

(b)

Fig. 2. Example of how polarity constraints affect topology. Tree in (a) re-
quires at least five inverters to satisfy polarity constraints while (b) requires just
one.

identified by clustering the positive and negative sinks into two
disjoint clusters and creating separate subtrees for the sinks in
each cluster. Notice that it is fairly easy to reduce the wire length
in Fig. 2(b) while preserving the topology, which actually yields
a self-overlapping tree. Existing timing-driven Steiner-tree con-
structions (e.g., [5], [10], and [18]) cannot find this topology.
In general, forming one tree connecting negative sinks and one
connecting positive sinks will minimize the number of buffers,
but waste wire length. Ideally, one would like to find a tree con-
struction that balances both wiring and buffering resources.

The purpose of this paper is to study Steiner-tree construc-
tions for particularly difficult instances to optimize the buffered
tree resulting from van Ginneken-style buffer insertion. We pro-
pose the clustered-tree (C-tree) heuristic that first clusters sinks
based on spatial, temporal, and polarity locality. A subtree is
then formed within each cluster and, finally, the trees are con-
nected using a timing-driven Steiner at the top level. We show
that this two-level approach is not only more efficient than the
existing state of the art, but also generates higher quality solu-
tions while using fewer buffers.

The remainder of the paper is as follows. Section II presents
notation and our problem formulation. Section III presents our
proposed algorithm and Section IV presents experimental com-
parisons. We conclude in Section V.

II. PRELIMINARIES

We are given a net consisting of
pins, where is the uniquesourceand are the sinks.
Let and denote the two-dimensional (2-D) coordi-
nates of pin and let denote the required arrival time
for a sink . Each sink has a capacitance and a po-
larity constraint , where for a normal sink
and for an inverted sink. The constraint
requires the inversion of the signal fromto and
prohibits the inversion of the signal. A rectilinear Steiner tree

has a set of nodes , where is the set
of intermediate 2-D Steiner points and a set of edgessuch
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that each edge in is either horizontal or vertical. We also as-
sume that wire resistance and capacitance parasitics are given to
permit interconnect delay calculation for a particular geometric
topology.

Given a Steiner tree , we say that abuffered Steiner
tree is constructed from if: 1) there exists a
set of nodes (corresponding to buffers) such that

; 2) each edge in is either in or is contained2

within some edge in ; and 3) is a rectilinear Steiner tree.
Consequently, one can obtain the original treeby contracting

with respect to all nodes in . In other words, a buffered
Steiner tree , which can be constructed from, must have the
same wiring topology; buffers can only be inserted on the edges
in . Running a van Ginneken-style buffer-insertion algorithm
on is guaranteed to yield such a tree . Let be
the cost of the wiring and buffering resources used by. For
example, could be a linear combination of the total
buffer area used in and the wire length of .

Each Steiner tree (with or without buffers) has a unique path
from to a sink . For each node , let denote the
particular buffer type (size, inverting, etc.) chosen from a buffer
library that is located at . Let be the delay
from to within . The delay can be computed using a va-
riety of techniques. For the purposes of this discussion, we adopt
the Elmore delay model [14] for wires and a switch-level linear
model for gates. This formulation is by no means restricted to
these models (see e.g., [3]). The for a tree is given by

.
The obvious objective function for buffer insertion is to max-

imize for a buffered tree . This can clearly waste
resources as several additional buffers may be used to garner
only a few extra picoseconds of performance. Another alter-
native is to find the fewest buffers such that .
The problem with this formulation is often a zero slack solu-
tion is not achievable, yet it is still in the designer’s interest to
reduce the slack of critical nets, even if zero slack is not achiev-
able. Instead of addressing either objective, one can generate a
set of solutions that trade off maximizing the worst slack with
the number of inserted buffers (or total buffer area). This can
be done with a van Ginneken-style algorithm (such as [19])
or within a simultaneous optimization [20]. Thus, our problem
statement is as follows.

Buffered Steiner-Tree Problem:Given a net , a buffer li-
brary and unit interconnect parasitics for the technology, find
a single Steiner tree over so that the family of buffered
Steiner trees constructed fromby applying a van Ginneken-
style algorithm using satisfies polarity constraints and isdom-
inant. We say a family is dominant if for every buffered
tree , there exists a tree in such that

and .
The problem is formulated in such a way that it might be

possible that no optimal treeexists because a dominant family
may require multiple topologies. The purpose of this type of
formulation is not to restrict the algorithm to a particular buffer
resource or timing constraint, but rather to allow the designer

2An edge connecting points (x ; y ) and (x ; y ) is containedwithin an
edge connecting points (x ; y ) and (x ; y ), if min(x ; x ) � x , x �

max(x ; x ) andmin(y ; y ) � y , y � max(y ; y ).

Fig. 3. High-level description of the C-tree framework.

(or a postprocessor) to find a solution within the family that is
the most appropriate for the particular design.

III. C-TREE ALGORITHM

A. Overview

We call our Steiner construction C-tree, which emphasizes
the clustering step, as opposed to the underlying timing-driven
Steiner-tree heuristic. The fundamental idea behind C-tree is
to construct the tree in two levels (though multilevel clustering
may be used as well). C-tree first clusters sinks with similar
characteristics (criticality, polarity, and distance). The purpose
of this step is to potentially isolate positive sinks from negative
ones and noncritical sinks from critical ones. The algorithm then
constructs low-level Steiner trees over each of these clusters.
Finally, a top-level timing-driven Steiner tree is computed where
each cluster is treated as a sink. The top-level tree is then merged
with the low-level trees to yield a solution for the entire net.

Fig. 3 presents a more detailed description of the C-tree
framework. We assume the existence of two generic subrou-
tines, clustering and timing-driven Steiner, which are described
later. However, one could plug in a variety of implementations
to achieve the clustering and routing functionalities within the
C-tree framework.

Step 1 invokes clustering, which takes the sinks of a net as
input and outputs a set of clusters . The net
corresponding to the top-level tree is also initialized to con-
tain the source. Step 2 looks through the clusters and in Step
3, a tapping point is computed for cluster . The tapping
point represents the source for the treeto be computed over

and also the point where the top-level treewill connect to
. Although there are several possible ways to compute the tap-

ping point, we choose to be a point on the bounding box of
closest to . If lies within the bounding box, the tapping

point is instead itself. Once the tapping point is chosen it is
added to in Step 4 as the source node and then timing-driven
steiner is called on to yield a tree in Step 5. Step 6 then
propagates the required arrival time up the subtree computed for

to the tapping point. The capacitance for the subtree is also
updated at the tapping point. After these operations have been
done for all the tapping points, consists of plus the tap-
ping points which serve as sinks. Step 7 computes the top-level
Steiner tree for this instance and Step 8 merges all the Steiner
trees into a single solution.
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(a) (b)

(c) (d)

Fig. 4. Example execution of the two-level Steiner algorithm. (a) First, the sinks are clustered. (b) Then, a Steiner tree is built for each cluster. (c) A top-level
Steiner tree connects the source to each cluster’s tapping point. (d) The tree is then flattened.

Fig. 4 illustrates an example execution of the algorithm. In
Fig. 4(a), a clustering of the sinks is performed. Note that in the
example the clustering is geometric, but due to varying timing
and polarity constraints, clusters certainly could overlap each
other. In Fig. 4(b), the tapping point is shown for each cluster as
a black circle and the Steiner trees are then computed for each
cluster. In Fig. 4(c), the top-level Steiner tree which connects
the source to the tapping points is computed and in Fig. 4(d),
the tapping points are removed and the existing Steiner edges
merged to yield a single tree for the entire net. The clear
advantage of this approach is that van Ginneken-style buffer
insertion can insert buffers to either drive, decouple, or reverse
polarity of any particular cluster. Of course, the algorithm is
sensitive to the actual clustering algorithm used, which we now
describe.

B. Clustering-Distance Metric

The key to clustering any set of data is to devise a dissimilarity
or distance metric between pairs of points. The sinks that we are
clustering are characterized by three types of information:spa-
tial (coordinates in the plane),temporal(required arrival times),
andspatial polarity. We seek to define a distance metric that in-
corporates all of these elements. To do this, we first define spa-
tial, temporal, and polarity metrics, then combine them using
appropriate scaling into a single distance metric.

Appropriate spatial and polarity metrics are fairly straight-
forward. For two sinks and , let

denote the spatial (Manhattan) distance
between two sinks and let
denote the polarity distance. The polarity distance has value zero
when sinks have the same polarity and one otherwise.

Finding a temporal metric is trickier. First, is not the
only indicator of sink criticality. If two sinks and have
the same yet is much further from the source than

, then is more critical, since it will be much harder to
achieve the over the longer distance. An estimate of
the achievable delay to must be incorporated to reflect the
distance from the source. If one assumes an optimally buffered
direct connection from to , with subtrees decoupled by
buffers with negligible input capacitance, then the achievable
delay is equivalent to the formula for optimal buffer insertion
on a two-pin net. We use the formula from [1] to denote

, the potentially achievable delay from to .
Let be the potentially
achievable slack for . Now, gives a better indicator of
the criticality of than .

Yet a form such as still does not capture the
desired behavior. For example, assume that the achievable slack
values for three sinks are given by ns,

ns, and ns. Sink is most critical while and
are both noncritical. Thus, intuitively, is more similar to
than to , despite the 8-ns difference betweenand . A

temporal metric needs to capture that. Let denote the
criticality of , where if is the most critical
sink and as . In other words, the
criticality of a sink is one if it is most critical and zero if it is
totally uncritical; otherwise it lies somewhere in between zero
and one. We propose the following measure of criticality:

where

and

(1)
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Fig. 5. K-center clustering algorithm over a set of sinksS.

Here, and are the minimum and average values
over all sinks and is a user parameter. One can see
that, indeed, is one when and zero
when goes to infinity. For a sink with average
achievable slack ( ), then is
about 0.135 when is set to two.3 This average sink will
have a criticality much closer to that of a sink with infinite

as opposed to minimum . We can now define temporal
distance as the difference in criticalities, i.e.,

.
If two sinks and are both extremely noncritical, but

have different achievable slacks, their temporal distance will
be practically zero. For example, assume that ns,

ns, , and the two sinks have achievable slacks
of 7 and 9 ns. The respective criticalities are and , so

.
Both temporal and polarity distances are on a zero to one

scale, so we wish to scale spatial distance to make combining the
terms easier for the complete distance metric. Let

be the spatial diameter of the
set of sinks. The scaled distance between two sinks can be ex-
pressed as . Our complete distance
metric is a linear combination of the spatial, temporal, and po-
larity distances

(2)

The parameter lies between zero and one and trades off be-
tween spatial and temporal distance. In our experiments, we use

based on empirical studies. Observe that the distance
between two sinks with the same polarity will always be less
than or equal to the distance between two sinks with opposite
polarity. This occurs because two sinks with the same polarity
have their distance bounded above by one, while two sinks with
opposite polarity have their distance bounded below by one.
This property ensures that polarity takes precedence over spa-
tial and temporal distance in determining dissimilarity, which is
important to avoiding the behavior shown in Fig. 2(a).

3In our experiments, we found using� = 2 generates good results, which
is used in Section IV.

C. Clustering

For clustering sinks,4 we adopt the K-center heuristic [15],
which seeks to minimize the maximum radius (distance to the
cluster center) over all clusters. K-center is just one of sev-
eral potential clustering methods (e.g., bottom-up matching and
complete linkage) that could be used to achieve the purpose
of grouping sinks with common characteristics. K-center iter-
atively identifies points that are furthest away, which are called
cluster seeds. The remaining points are clustered to their closest
seed. Let be the diameter
of any set of points . For geometric instances, K-center guar-
antees that the maximum diameter of any cluster is within a
factor of two of the optimal solution [15].

The complete description of the K-center algorithm is shown
in Fig. 5. Step 1 picks a random sink, then identifies the sink

furthest away from , which will lie on the periphery of the
data set. This step identifiesas the first cluster seed, which are
all contained in the set . Steps 2–5 iteratively find -way
clusterings for until the ratio of the diameter of the largest
current cluster to the diameter of falls below the threshold

. Step 3 identifies the next seed which is furthest away from
already identified seeds. Steps 4–5 then form a clustering by
assigning each sink to the cluster corresponding to its closest
seed. After the diameter threshold is reached in Step 2, Step
6 returns the final clustering. The procedure has time
complexity.

Fig. 6 illustrates an example of the K-center algorithm ap-
plied to a 2-D data set with 16 points, where . In Fig. 6(a)
a random point is chosen and then the pointthat is furthest
from is identified. In Fig. 6(b), this is relabeled as, a cluster
seed. The order that the four seeds were identified are indicated
by the subscripts: is furthest from , is furthest from
both and , and is the furthest point from , , and

. In Fig. 6(c), each point is mapped to its closest seed, re-
vealing four clusters.

D. Timing-Driven Steiner-Tree Construction

For the timing-driven Steiner-tree construction, we adopt
the Prim–Dijkstra tradeoff method from [5]. The algorithm

4One could modify the sink clustering algorithm to forbid the bounding box of
a cluster to intersect the source node. We did not notice any appreciable change
in results with this variation, but it may be worth more detailed investigation.
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(a) (b) (c)

Fig. 6. 16-point example illustrating the K-center algorithm. (a) A random seeds is chosen ands^ furthest froms is identified. (b) This point is relabeled asw1
and the next three furthest pointsw2, w3, andw4 are found. (c) Each point is then clustered to its closest seed.

trades off between Prim’s minimum spanning tree algorithm
and Dijkstra’s shortest path tree algorithm via a parameter,
which lies between zero and one. The justification behind this
approach is that Prim’s algorithm yields minimum wire length
(for a spanning tree), while Dijkstra’s results in minimum tree
radius. A tradeoff captures the desirable properties behind both
approaches.

Our implementation is as follows. We run the Prim–Dijkstra
algorithm for for the clusters and
the top-level tree. After each spanning tree construction, we run
a postprocessing algorithm to remove overlapping edges and
generate a Steiner tree. Of the five constructions, the treethat
maximizes 5 is selected. A second postprocessing step
is then invoked to reduce delay further. In this step, each sink is
in turn visited, the connection from the sink to the existing tree is
ripped up, and alternative connections to the tree are attempted.
Any connection which either decreases wire length or improves
slack is preserved.

Certainly, alternative timing-driven Steiner-tree algorithms
could be used instead. In fact, we tried using the P-tree with
area optimization (P-treeA) algorithm [20], which generates the
tree with the best timing properties such that it has minimum
wire length and obeys a given sink permutation. We found
that P-treeA would sometimes yield trees with large radius
and, hence, poor timing characteristics. P-tree with area and
timing optimization (P-treeAT) overcomes this problem, but
uses significantly more runtime. We chose the Prim–Dijkstra
algorithm because it is simple to implement, it is efficient and
scalable, and it outperformed the critical sink constructions of
[7] in separate experiments.

IV. EXPERIMENTAL RESULTS

For our experiments, we identified 12 difficult nets on var-
ious industrial designs. The polarity characteristics and timing
constraints for the nets are summarized in Table I.6

We compare C-tree to both the P-tree [20] and Prim–Dijk-
stra [5] timing-driven Steiner constructions. P-tree was shown
to yield better timing results than either the SERT [7] or A-tree
[11] constructions. P-tree actually consists of two algorithms:
P-treeA seeks to minimize area (or wire length when there is
no wire sizing), while P-treeAT generates a family of solutions

5Note that for the clusters, no driver exists. We choose a mid-level buffer from
the technology to use as a phantom driver for the slack calculation.

6The polarity constraints were actually randomly assigned for these test cases,
yet they represent the difficulties we have seen for real instances.

TABLE I
POLARITY AND TEMPORAL CHARACTERISTICS OF THE12 NETS USED

FOR EXPERIMENTATION

that trade off between area and timing. The Prim–Dijkstra al-
gorithm is equivalent to “flat” C-tree when the number of clus-
ters equals the number of sinks. For each tree generated, we run
van Ginneken-style buffer insertion using a library of five non-
inverting and two inverting buffers to generate a family of so-
lutions. We also compare to a buffered P-tree (BP-tree), which
simultaneously inserts buffers and performs the Steiner routing.
Like P-tree, BP-tree also has two modes, which we suffix with
either normal (N) or fast (F).

A. Algorithm Comparisons

The results are summarized in Tables II and III. The results
are split into two tables, since the data could not fit into a single
table. Comparisons for each net are shown in several rows. The
first two rows contain results for P-treeAT and P-treeA, except
for the three largest nets for which P-treeAT ran out of memory
(on a 2-GB machine). The next row contains results for BP-tree
in normal mode except for the largest net (also because it ran
out of memory). The first C-tree row uses the number of clusters
equal to the number of sinks, giving the results for “flat” C-tree.
Results are also presented for C-tree for a decreasing number
of clusters to show the tradeoff for using a different number of
clusters. For each algorithm, we present the following in the two
tables.

1) The slack to the most critical sink (in picoseconds) and
wire length of the tree before the buffer-insertion opti-
mization step.
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TABLE II
ALGORITHM COMPARISONS FOR THEFIRST SIX NETS

2) Three of the family of solutions generated by the buffer-in-
sertionalgorithm.Themin-optsolution is thesolutionwith
the minimum number of buffers required to fix polarity
constraints. The full-opt solution is the one that yields the
maximum slack, regardless of the buffers used and mid-
opt reflects a solution in between the min and full solu-
tions. Although the problem formulation seeks to evaluate
the entire family, the three solutions give a reasonable pic-
ture of the tradeoff curve generated by the family.

3) The slack to the most critical sink and wire length after a
postprocessing step on the full-opt buffered solution. Po-
tentially a tree with significantly extra wire length was
used to guide the buffer insertion. Once buffers are in-
serted, some of this additional wire length may be elimi-
nated via small changes in the route. Our algorithm sought
to reduce wire length as long as it did not increase slack

while maintaining the locations and topology from the
full-opt buffered tree.

4) The total central processing unit (CPU) time for the entire
process (tree construction, buffer insertion, and postpro-
cessing). Runtimes are reported for a Sun SparcUltra-60
with 2 GB of memory.

We make several observations.
1) For thesolution in the familywithhighestslack,C-treewas

able to findsolutionswithslacksat leastashighasP-treeA,
P-treeAT, or flat C-tree for at least one clustering (except
for n873 for which C-tree’s slack was inferior by 1 ps).
SometimestheC-treeslacksweresignificantlybetter (e.g.,
n869, n870, and big1), but most of the time the highest
slacks were fairly indistinguishable among the algorithms.

2) For the solution in the family with highest slack, C-tree
found a better solution than BP-tree for seven of the 12
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TABLE III
ALGORITHM COMPARISONS FOR THESECOND SET OF NETS

nets. Overall, the differences in delay were fairly small,
with C-tree’s best solution averaging a 29-ps improve-
ment over BP-tree’s best solution.

3) The more clusters used by C-tree, the fewer the number
of buffers are needed to fix polarity constraints. With two
clusters, one inverting buffer is always sufficient to fix po-
larity, which shows C-tree handles the case in Fig. 2. How-
ever, fewer clusters results in additional wire length. In-
deed, the extreme case of two clusters almost doubles the
wire length since two low-level trees are being routed over
the same geometric space—one to the positive and one to
the negative polarity sinks. When the number of clusters
is small, the wire length does increase significantly. De-

pending on the requirements of the user, the number of
clusters can be used within C-tree to trade off wire length
with buffer area. Fig. 7 illustrates this tradeoff for six of
the nets. Wire length generally decreases as the number of
buffers increases, especially when only a few buffers are
used. For any number of clusters greater than, C-tree
was able to obtain slack comparable to that of the best ap-
proach. Thus, any number of clusters between, say, 2 and

are reasonable choices for optimizing the timing.
4) The postprocessing step did not affect slack much at all,

but occasionally reduced wire length (e.g., for big3).
5) BP-tree and P-tree AT are clearly the most inefficient

algorithms, as runtimes were over 100 times that of
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Fig. 7. Tradeoff between the number of buffers inserted and wire length for different degrees of clustering within C tree.

C-tree for n870 and they could not complete all of the
test cases. P-treeA is slightly more inefficient than the
Prim– Dijkstra approach, but C-tree is actually the fastest
of the three constructions. For example, for big1 (the
largest net), C-tree alone took under 0.2 s to run for
each of the clusterings reported in Table III, while flat
C-tree took 0.6 s. For C-tree, the dynamic-programming
buffer-insertion algorithm dominates the runtime of the
entire flow.

6) For the larger nets, P-treeA, BP-tree, and flat C-tree re-
quired many more buffers to find a feasible solution than
C-tree. For example, P-tree required 32, 27, and 27 buffers
to satisfy polarity constraints for big1, big2, and big3, re-
spectively, while BP-tree required 99, 20, and 19 buffers
(BP-tree in fast mode is much more wasteful in buffering
resources). Via clustering, C-tree could generally find a
solution with slack at least as high as P-tree with 4, 6,
and 9 buffers, respectively. For n870, C-tree with four
clusters found a solution with seven buffers and slack
250 ps, which is 128 ps more than the best result found by
P-treeAT (which needs at least 17 buffers to satisfy con-
straints). For big1, a five-cluster C-tree solution with five
buffers has slack 1653 ps, which is over 400 ps better than
best slacks obtained by P-tree or flat C-tree.

B. Variations

It may seem a bit surprising that there is little slack differen-
tiation among the algorithms. The reason for this might be that
a single critical sink dominates the slack value. For example, in
net n313, the minimum is 1233 ps, which is also an upper
bound on the slack. From Table II, observe that a majority of
the full-opt solutions obtain slack value of over 1200 ps, which
is close to optimum. Thus, for this net, the critical sink must lie
close to the source, which makes it an easy to obtain a good slack
result (though still hard to potentially minimize resources).

To reduce the impact of this effect, we ran the same ex-
periments on the four largest nets with an value of zero

for every sink. This serves to isolate the effects of polarity
on the difficulty of the instances. The results are summarized
in Table IV. Here, the advantages of C-tree are magnified,
especially for net n870. C-tree obtains slacks as low as511
compared to 1408 for P-tree and 1808 for flat C-tree. From
looking at the topology of the solutions, we observed that P-tree
and flat C-tree contain chains of inverters that alternately drive
positive and negative sinks over a short distance. These chains
cause the huge difference in delays. C-tree avoids these chains
by clustering according to polarity. The other three nets also
show large improvements for C-tree.

Finally, we ran the same experiments using the original
values, but setting all sinks to positive polarity. In this case, we
observed very little difference among the algorithms. Thus, at
least for this suite of test cases, the case of Fig. 1 is not nearly
as critical as the case in Fig. 2. It is the polarity differences that
make these instances difficult.

C. Choosing the Right Number of Clusters

There clearly are tradeoffs between the number of clusters
and resource utilization. Typically as the number of clusters de-
creases, the number of buffers also decreases, wire length in-
creases and the slack generally improves. However, it is diffi-
cult to knowa priori what the right number of clusters will be
in advance. Intuitively, the amount clustering performed should
increase with the number of sinks of a net. The larger a net, the
more susceptible it is to wasting buffering resources as in Fig. 2.

Even two instances with the same number of sinks could
require different clustering solutions. For example, one instance
could have sinks spread far apart, while another could have
natural clusters of sinks. In this example, we would want the
latter instance to have fewer clusters. Thus, for the following
experiments, we modified the stopping criteria of Fig. 3 to
instead stop when the diameter of the largest cluster falls
below a certain threshold (where the diameter of clusteris

). Since the distance metric is
scaled for every instance, we can use constant values of the
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TABLE IV
EXPERIMENTAL RESULTSWITH ALL SINK RAT VALUES SET TO ZERO

TABLE V
COMPARISONS OFSLACK IMPROVEMENT (VERSUSESS), BUFFERING, AND WIRING RESOURCES FORVARIOUS GROUPS OFNETS AND EIGHT DIFFERENT

C-TREE DIAMETER THRESHOLDS

Number of nets in each class is shown in parentheses in the first column.

diameter threshold over a variety of instances. For example, if
, every cluster will have zero diameter which means every

sink is in its own cluster (corresponding to flat C-tree). If ,
this will create two clusters if there are sinks with opposite
polarities and one cluster otherwise. We examine various
diameter thresholds between zero and one to try to grasp the
appropriate diameter value for a given number of sinks.

In the following experiments, we ran C-tree on 387 large nets
in an industrial test case with 274 000 cells. We grouped the nets

into six categories according to their number of sinks: 10–19,
20–29, 30–49, 50–74, and 75–100. For the nets in each category,
we ran C-tree with various diameter thresholds and compared
the results to a Steiner-tree construction called electrical sub-
system (ESS) (an internal IBM tool) that seeks a minimum wire
length routing topology. We measure the total improvement in
slack over all the nets in nanoseconds amd the number of buffers
inserted and the total wire length in design millimeters. The re-
sults are shown in Table V.
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Not surprisingly, ESS always yields the minimum wire-
length result over all the constructions while C-tree seeks a
timing based objective. The flat Prim–Dijkstra construction
(corresponding to a diameter threshold of zero) has slightly
more wire length than ESS since it tries to trade off wire length
with the radius of the tree. As the diameter threshold increases,
the wire length increases as well, though sometimes there is a
slight dropoff in wire length as the threshold reaches 0.5.

Observe that the number of buffers decreases as the diam-
eter threshold increases. Further, the trend is more pronounced
for the larger nets. It is harder to observe a trend in terms of
slack improvement. For example, for the 75–100 class of nets,
the most improvement is observed for a diameter threshold of
0.3, while for the 20–29 class of nets, 0.3 yields the lowest re-
sult for all thresholds larger than 0.1. In general, larger diame-
ters thresholds tend to yield better slack values while using few
buffers, though at a potentially significant price for wire length.
Since many modern designs are wire congested, we believe it is
better to keep the diameter threshold relatively low (e.g., below
0.1) for most classes of instances so that the wire does not in-
crease by more than 5%–10% over the ESS (e.g., minimum wire
length). However, if a net is the bottleneck for the design, lying
in the most critical path, we would recommend running C-tree
followed by buffer insertion for three or four different diam-
eter threshold values and picking the one which yields the best
timing. Designs that are more area constrained would clearly
benefit from using higher diameter threshold values.

V. CONCLUSION

We have identified a class of buffered Steiner-tree instances
for which existing algorithms are inadequate. These instances
have a large number of sinks and varying temporal and polarity
constraints. We proposed a two-level clustering based heuristic
called C-tree for these instance types. Our clustering heuristic
utilizes a new distance metric that combines spatial, temporal,
and polarity characteristics. Experiments on industrial nets
show that C-tree is able to obtain results with slack equal to
or better than previous approaches while using fewer buffers.
Compared to simultaneous buffer-insertion and Steiner-tree
construction, C-tree obtains better slack on average while
using significantly less CPU time (and buffering resources). By
adjusting the number of clusters, C-tree can trade off between
buffering and wiring resources, though we are still hoping to
be able to identify clustering stopping criteria to automatically
identify the “sweet spot” in the resource/performance tradeoff.
We hope that this paper stimulates more research on these types
of problems.

While experimenting with industrial designs, we have found
that, while performing placement-driven synthesis on applica-
tion-specific integrated-circuit designs, there exist nets with sev-
eral hundred sinks that require optimization. Further, excellent
solution quality is critical as these nets often lie on a negative
slack path because the net itself has such poor delay character-
istics. We believe issues such as alternative tree constructions
within clusters, different mechanisms for locating the tapping
point, multilevel instead of two-level clustering, and alternative

distance functions could improve our approach. We also need to
identify more difficult instances for which different approaches
can distinguish themselves.
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