IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 1, JANUARY 2002 3

Buffered Steiner Trees for Difficult Instances

Charles J. AlpertMember, IEEEGopal Gandham, Milos Hrkic, Jiang Hu, Andrew B. Kahng, John Lillis, Bao Liu,
Stephen T. Quay, Sachin S. Sapatnekar, and A. J. Sullivan

Abstract—With the rapid scaling of integrated-circuit tech- gate delay model. Several extensions to this work have been
nology, buffer insertion has become an increasingly critical proposed (e.g., [2], [3], [18], [20], and [21]). Together, these

optimization technique in high-performance design. The problem o, ancements make the van Ginneken buffer-insertion frame-
of finding a buffered Steiner tree with optimal delay characteris-

tics has been an active area of research and excellent solutions existVOrk very powerful as it can incorporate slew, noise, and capaci-
for most instances. However, there exists a class of real “difficult” tance constraints, a range of buffer and inverter types, and higher
instances, which are characterized by a large number of sinks order gate and interconnect delay models, while retaining opti-
(e.g., 20-100), large variations in sink criticalities, nonuniform mality under many of these variations. Most recently, research

sink distribution, and varying polarity requirements. Existing buffer i tion has f d dati . i
techniques are either inefficient, wasteful of buffering resources, O PUTIErINSErtion has focused onaccommodating various types

or unable to find a high-quality solution. We propose C-tree, Of blockage constraints [12], [16], [17].
a two-level construction that first clusters sinks with common Clearly, the primary shortcoming with the van Gin-
characteristics together, constructs low-level Steiner trees for each neken-style of buffer insertion is that it is limited by the given

cluster, then performs a timing-driven Steiner construction on the . -
top-level clustering. We show that this hierarchical approach can Steiner topology. Thus, both Okamoto and Cong [21] and Lillis

achieve higher quality solutions with fewer resources compared to €t al. [20] have combined buffer insertion with a Steiner-tree

traditional timing-driven Steiner trees. constructions, the former with A-tree [11] and the latter with
Index Terms—Buffer insertion, global routing, interconnect syn- ~ P-tree [18]. Later, in [12], the work of [21] was extended to
thesis, Steiner tree. handle fixed buffer locations and wiring blockages.

Observe that the simultaneous approach is not necessarily
any better than the two-step approach of first constructing a
Steiner tree, then running van Ginneken-style buffer insertion.

T 1S NOW widely accepted that interconnect is becoming inxn optimal solution can always be realized using the two-step

creasingly dominant over transistor and logic performanceépproach if one uses the “right” Steiner tree (i.e., the tree re-
the deep-submicromter regime. Buffer insertion is now afundgumng from ripping buffers out of the optimal solution) since
mental technology used in modern very large scale integratigf puffer-insertion step is optimal. Of course, finding the right
design methodologies (see [10] for a survey). Cong [9] illugree is difficult since the buffer-insertion objective cannot be
trates that as gate delays decrease with increasing chip dimgifectly optimized. We believe that if one tries to construct a
sions, the number of buffers required quickly rises. He expeetsffer-aware” Steiner tree, i.e., a tree with topology that an-
that close to 800000 buffers will be required for 50-nm techicipates good potential buffer locations, the two-step approach
nologies. It is critical to automate the entire interconnect optan be as effective (and potentially more efficient) than the si-
mization process to efficiently achieve timing closure. multaneous approach.

Several works have studied the problem of inserting buffersggr the majority of the nets in a design, finding the right
to reduce the delay on signal nets. Closed-form solutions fgfeiner tree is easy (assuming no blockages or buffer resource
two-pin nets have been proposed in [1], [6], [8], and [13]. vagonstraints). For two-pin nets, a direct connection is optimal and
Ginneken's dynamic-programming algorithm [22] has becomgere are a small number of possible topologies for five sinks or
a classic in the field. Given a fixed Steiner-tree topology, higss. The purpose of our paper is to focus on the most difficult
algorithm finds the optimal buffer placement on the topologyets for which finding the appropriate Steiner topology is not at
under the Elmore delay model for a single buffer type and simpd@ obvious. These nets will typically have more than 15 sinks,

varying degrees of sink criticalities, and differing sink polarity

Manuscript received April 12, 2001; revised July 13, 2001. This work wagonstraints. Optimizing these nets effectively is often critical,
e .t S Tty CARECS o a2 arge g far-out nets aremore ey (0 be i acriial path
mended by Guest Editor M. D. F. Wong. ecause they are inherently slow.

C.J. Alpert, J. Hu, and S. T. Quay are with the IBM Corporation, Austin, TX Of course, a good heuristic for finding the right Steiner

78758 USA. ; ; ; ;
G. Gandhamand A. J. Sullivan are with the IBM Corporaltion,HopeweIIJuny:ee must take into account potentlal bUﬁermg' Consider the
tion, NY 12533 USA.
M. Hrkic and J. Lillis are with the Electrical Engineering and Computer Sci- INone of the existing simultaneous tree and buffering approaches can handle
ence Department, University of lllinois, Chicago, IL 60607 USA. the types of constraints that a van Ginneken-style framework can (such as slew
A. B. Kahng and B. Liu are with the Department of Computer Science ammbnstraints and higher order delay modeling). One could use the simultaneous
Engineering, University of California at San Diego, La Jolla, CA 92093 USAapproach (with its simpler assumptions and modeling) first to uncover the
S. S. Sapatnekar is with the Department of Electrical and Computer Engiuting tree topology and then pass this result, with the buffers deleted, to
neering, University of Minnesota, Minneapolis, MN 55455 USA. the more sophisticated buffer-insertion algorithm that uses a fixed routing
Publisher Item Identifier S 0278-0070(02)00092-1. topology.

I. INTRODUCTION

0278-0070/02$17.00 © 2002 IEEE

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 1, JANUARY 2002

L L

@

(b)

D critical

—
(©
% m critical (b)
Fig. 2. Example of how polarity constraints affect topology. Tree in (a) re-
. critical quires at least five inverters to satisfy polarity constraints while (b) requires just

one.
(d)
Fig. 1. Example where (a) the tree with less wire length yields (b) an inferior o) o . . .
buffered tree than (c) the tree with more wire length. Tree in (b) requires thriséentified by clustering the positive and negative sinks into two
buffers to decouple the load, while the tree in (c) requires just one. If inSteQﬁsjoint clusters and Creating Separate subtrees for the sinks in
two sinks are critical, then (d) the best buffered topology would group these - L . .
critical sinks into the same subtree. each cluster. Notice that it is fairly easy to reduce the wire length
in Fig. 2(b) while preserving the topology, which actually yields
four-sink example in Fig. 1(a), where only one of the sinksis Cri?_tselft-.overIappmgStreibEmstg]gltlsmlng—drlvtefn ?jt(terl]r_]ert-tre? con-
ical. The unbuffered tree in Fig. 1(a) has minimum wire Iengtﬁ ructions (e.g.,_[], [10], and [18]) cannot find this topology.
. . o . [h general, forming one tree connecting negative sinks and one
yet inserting buffers in Fig. 1(b) would require three buffers to : . . T
- . . connecting positive sinks will minimize the number of buffers,
decouple the three noncritical sinks, while the buffered tree in . .)
) . . but waste wire length. Ideally, one would like to find a tree con-
Fig. 1(c) requires but one decoupling buffer. Thus, the tree in

. struction that balances both wiring and buffering resources.
Fig. 1(c) uses fewer resources and further may actually resultin : . .
he purpose of this paper is to study Steiner-tree construc-

lower delay to the critical sink since the driver in Fig. 1(c) drlvefcions for particularly difficult instances to optimize the buffered

a smaller cap_aC|t|ve Ioaq than in Fig. 1.(.b)' Or_1e can identify thfrsee resulting from van Ginneken-style buffer insertion. We pro-
topology by first clustering the noncritical sinks together and

forcing the topology to route everything within a cluster as pose the clustered-tree (C-tree) heuristic that first clusters sinks

. ..) Based on s atial, temporal, and polarity locality. A subtree is
separate subtree. If there are multiple critical sinks, as shown P P P Y Y

o . . en formed within each cluster and, finally, the trees are con-
in Fig. 1(d), then a totally different topology which groups th%e{cted using a timing-driven Steiner at the top level. We show

critical sinks together in the same subtree likely yields the bei Lt this two-level approach is not only more efficient than the

SO'“"‘.’;‘- 'I|'h|§ 'Lree woquII bet |de(;1t.|f|tab:e ifthe cr|t|;:al lsmlt(s an g]Lsting state of the art, but also generates higher quality solu-
noncritical sinks were clustered into two separate clusters ﬁ'{ijmr,s while using fewer buffers.

subtrees were constructed for each cluster. The Steiner algor he remainder of the paper is as follows. Section Il presents

must be aware of opportunities to manipulate the topology ﬁ%tation and our problem formulation. Section Il presents our

allaw potentlﬁ: offloadmfgﬂc:f noncgrlmcal ;erllks. ¢ buffer-t roposed algorithm and Section IV presents experimental com-
owever, the crux of the problem with current buffer- reﬁarisons. We conclude in Section V.

technology is that it cannot adequately handle polarity con-
straints. During early synthesis, fan-out trees are built to
repower and distribute a signal and/or its complement to a set
of sinks without knowledge of the layout of the net. Once the We are given a ne¥ = {so, s1,..., s, } consisting ofr + 1
net is placed, the tree is often grossly suboptimal. At this stagsins, wheres, is the uniquesourceands, . . ., s,, are the sinks.
one can rip out the fan-out tree and rebuild it using physicaét x(s) and »(s) denote the two-dimensional (2-D) coordi-
design information. However, ripping out the complete fan-ouates of pins and letRAT(s) denote the required arrival time
tree of buffers and inverters may leave sinks with opposirigr a sinks. Each sinks has a capacitanaeap(s) and a po-
polarity requirements. larity constraintpol(s), wherepol(s) = 0 for a normal sink
Fig. 2 shows a net with five sinks with normal polarity (in-andpol(s) = 1 for an inverted sink. The constraipbl(s) = 1
dicated by a plus) and five with negative polarity (indicategequires the inversion of the signal fromto s andpol(s) = 0
by a minus). The tree in Fig. 2(a) requires a minimum of fiverohibits the inversion of the signal. A rectilinear Steiner tree
inverters simply to ensure that polarity constraints are satisfied(V, F) has a set of node¥ = N U I, where! is the set
while the tree in Fig. 2(b) requires just one. This solution can lod intermediate 2-D Steiner points and a set of edfesuch

Il. PRELIMINARIES

ALPERT et al. BUFFERED STEINER TREES FOR DIFFICULT INSTANCES 5

that each edge i is either horizontal or vertical. We also as-{ C-Tree Steiner Algorithm (N, k)
sume that wire resistance and capacitance parasitics are give[Input: N = {50, 5, ..., 5,} =Net to be routed
permit interconnect delay calculation for a particular geometr, k = Number of clusters
topoI ogy. Output: T = Routing tree over N .

Given a Steiner tre@(V, E) , we say that &uffered Steiner ;- f{olrvl'iVZI ‘t'o"kN;o} = Clustering(N - s,). Set N = {50}
tree Tp(Vp,Ep) is Construc_ted fron¥” if: 1) there exists a 3. Find a tapping point 1p, for cluster N,.
set of nodes’’ (corresponding to buffers) such theg = |, A4 1p, 10 N, and label 1p, as the source.
V U V’; 2) each edge irFp is either inE or is containedl |5 T, = TimingDrivenSteiner(N,).
within some edge i/; and 3)T is a rectilinear Steiner tree. |6, set RAT(1p,) = slack(T,), cap(tp;) = cap(T,),and add 1p; to Ny .
Consequently, one can obtain the original tféky contracting |7. Compute Ty = TimingDrivenSteiner(Ny).
Ts with respectto all nodes i’ /V'. In other words, a buffered |8. Combine all edges and nodes of Ty, T, ..., T into tree T'.
Steiner tred g, which can be constructed frolfy must have the
same wiring topology; buffers can only be inserted on the eddes- 3. High-level description of the C-tree framework.
in 7. Running a van Ginneken-style buffer-insertion algorithm

on T is guaranteed to yield such a trég. Let cost(T) be (or a postprocessor) to find a solution within the family that is
the cost of the wiring and buffering resources usedBy For the most appropriate for the particular design.
examplecost(Ts) could be a linear combination of the total

buffer area used iff’s and the wire length of 5.
Each Steiner tree (with or without buffers) has a unique path _
from s, to a sinks,. For each node € V7, leth(r) denote the A. Overview

particular buffer type (size, inverting, etc.) chosen from a buffer we call our Steiner construction C-tree, which emphasizes
library B that is located at. Let Delay(so, s, 1") be the delay the clustering step, as opposed to the underlying timing-driven
from so to s; within 7". The delay can be computed using a vasteiner-tree heuristic. The fundamental idea behind C-tree is
riety of techniques. For the purposes of this discussion, we ad@ptonstruct the tree in two levels (though multilevel clustering
the EImore delay model [14] for wires and a switch-level lineghay be used as well). C-tree first clusters sinks with similar
model for gates. This formulation is by no means restricted éparacteristics (criticality, polarity, and distance). The purpose
these models (see e.g., [3]). THeck for a treeT" is given by of this step is to potentially isolate positive sinks from negative
slack(7) = min{RAT(s;) — Delay(so,s;,T) || L <4 <n}. onesand noncritical sinks from critical ones. The algorithm then

The obvious objective function for buffer insertion is to maxconstructs low-level Steiner trees over each of these clusters.
imize slack(7's) for a buffered tres. This can clearly waste Finally, a top-level timing-driven Steiner tree is computed where
resources as several additional buffers may be used to gaggth cluster is treated as a sink. The top-level tree is then merged
only a few extra picoseconds of performance. Another alteith the low-level trees to yield a solution for the entire net.
native is to find the fewest buffers such théick(7p) > 0. Fig. 3 presents a more detailed description of the C-tree
The problem with this formulation is often a zero slack SO|L{TameWO|'k_ We assume the existence of two generic subrou-
tion is not achievable, yet it is still in the designer’s interest tﬁ)nes, C|ustering and timing-driven Steiner, which are described
reduce the slack of critical nets, even if zero slack is not achiggter. However, one could plug in a variety of implementations
able. Instead of addressing either objective, one can generatg achieve the clustering and routing functionalities within the
set of solutions that trade off maximizing the worst slack witly-tree framework.
the number of inserted buffers (or total buffer area). This CanStep 1 invokes C|ustering, which takes the sinks of a net as
be done with a van Ginneken-style algorithm (such as [19Hput and outputs a set of clustefd;, Ns, ..., Ni}. The net
or within a simultaneous optimization [20]. Thus, our problemorresponding to the top-level trég, is also initialized to con-
statement is as follows. tain the source. Step 2 looks through the clusters and in Step

Buffered Steiner-Tree ProblenGiven a netV, a buffer li- 3 atapping pointtp; is computed for clustelNV;. The tapping
brary B and unit interconnect parasitics for the technology, fingoint represents the source for the t#eo be computed over
a single Steiner tre€ over IV so that the family?” of buffered v, and also the point where the top-level tf&gwill connect to
Steiner trees constructed frdfnby applying a van Ginneken- ;. Although there are several possible ways to compute the tap-
style algorithm using3 satisfies polarity constraints anddiem- ping point, we choosep; to be a point on the bounding box of
inant We say a familyZ" is dominant if for every buffered n, closest tos. If s, lies within the bounding box, the tapping
tree T, there exists a tre@s in I such thatslack(T5) > point is insteads, itself. Once the tapping point is chosen it is
slack(T) andcost(1) < cost(1p). added taV; in Step 4 as the source node and then timing-driven

The problem is formulated in such a way that it might beteiner is called orV; to yield a tre€Z} in Step 5. Step 6 then
possible that no optimal tré€exists because a dominant familypropagates the required arrival time up the subtree computed for
may require multiple topologies. The purpose of this type af, to the tapping point. The capacitance for the subtree is also
formulation is not to restrict the algorithm to a particular buffefipdated at the tapping point. After these operations have been
resource or timing constraint, but rather to allow the designgéne for all the tapping pointsy, consists ofs, plus thek tap-

ping points which serve as sinks. Step 7 computes the top-level

edge connecting points:{, ys) and (s, vs), if min(zs, 2s) < 21,0, < Steiner tree for this instance and Step 8 merges all the Steiner
max(xsz, x4) andmin(ys, ya) < y1, yo < max(ys, ya). trees into a single solution.

I1l. C-TREE ALGORITHM

2An edge connecting points:(, y:) and @2, ¥) is containedwithin an

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 1, JANUARY 2002

(© (d)

Fig. 4. Example execution of the two-level Steiner algorithm. (a) First, the sinks are clustered. (b) Then, a Steiner tree is built for eacl) élusfete(el
Steiner tree connects the source to each cluster’s tapping point. (d) The tree is then flattened.

Fig. 4 illustrates an example execution of the algorithm. In Finding a temporal metric is trickier. FirsRAT is not the
Fig. 4(a), a clustering of the sinks is performed. Note that in thomly indicator of sink criticality. If two sinkss; and s; have
example the clustering is geometric, but due to varying timirthe sameRAT yet s, is much further from the source than
and polarity constraints, clusters certainly could overlap eagh thens; is more critical, since it will be much harder to
other. In Fig. 4(b), the tapping point is shown for each cluster aghieve theRAT over the longer distance. An estimate of
a black circle and the Steiner trees are then computed for e#le achievable delay te; must be incorporated to reflect the
cluster. In Fig. 4(c), the top-level Steiner tree which connectistance from the source. If one assumes an optimally buffered
the source to the tapping points is computed and in Fig. 4(@jrect connection froms, to s;, with subtrees decoupled by
the tapping points are removed and the existing Steiner edgedfers with negligible input capacitance, then the achievable
merged to yield a single tree for the entire net. The clegelay is equivalent to the formula for optimal buffer insertion
advantage of this approach is that van Ginneken-style buffé? @ two-pin net. We use the formula from [1] to denote
insertion can insert buffers to either drive, decouple, or reveragiDelay(s;), the potentially achievable delay frosg to s;.
polarity of any particular cluster. Of course, the algorithm ik€t AS(s;) = RAT(s;) — achDelay(s;) be the potentially

sensitive to the actual clustering algorithm used, which we ndghievable slack fos;. Now, AS(s;) gives a better indicator of
describe. the criticality of s; thanRAT(s;).

Yetaform such afAS(s;)—AS(s,)| still does not capture the
desired behavior. For example, assume that the achievable slack
values for three sinks are given By3(s;) = —1 ns,AS(sz) =

The key to clustering any set of data is to devise a dissimilaripyng, andAS(s3) = 10 ns. Sinks; is most critical whiles, and
or distance metric between pairs of points. The sinks that we ateare both noncritical. Thus, intuitively, is more similar to
clustering are characterized by three types of informa8pa: s, than tos;, despite the 8-ns difference betweenands;. A
tial (coordinates in the planegmporal(required arrival times), temporal metric needs to capture that. ksit(s;) denote the
andspatial polarity. We seek to define a distance metric that ingriticality of s;, wherecrit(s;) = 1 if s; is the most critical
corporates all of these elements. To do this, we first define sgank andcrit(s;) — 0 asAS(s;) — oc. In other words, the
tial, temporal, and polarity metrics, then combine them usingiticality of a sink is one if it is most critical and zero if it is
appropriate scaling into a single distance metric. totally uncritical; otherwise it lies somewhere in between zero

Appropriate spatial and polarity metrics are fairly straightand one. We propose the following measure of criticality:
forward. For two sinks;; ands;, let sDist(s;, s;) = |x(s;) —
x(s;)|+|y(s:) —y(s;)| denote the spatial (Manhattan) distance

B. Clustering-Distance Metric

crit (s;) =e((MASTAS(0))/(aAS=mAS) \where

between two sinks and leDist(s;, s;) = |pol(s;) — pol(s;)] mAS =min{AS(s;) |1 <¢<n} and
denote the polarity distance. The polarity distance has value zero Y oicicn AS(si)
when sinks have the same polarity and one otherwise. aAS =——==——. 1)

n

ALPERT et al. BUFFERED STEINER TREES FOR DIFFICULT INSTANCES 7

K-Center Algorithm (S, k)
Imput: § = {s,...,5,} =Setof sinks
k = Number of clusters
Output: {N,, N, ..., N;} =k-way clustering of §

1. Choose arandom s € S. Find § € S such that dist(s,3) is maximum. W = {3} . Let

d = max{dist(s,3)|s€ S}.Set N, = §.
2. while |W| <k do
3. Find 8 € §/W suchthatd = min{dist(s,3)|se€ W} is maximized.

W =Wwu{s}.

4. Relabel seedsin W as {wy, wy, ..., Wy} Let {N1, No, ..., Ny} be a |W| -way clustering

where N; = {w;} for 1 Si<|W].
5. foreachse S/W

Find the cluster seed w; € W such that dist(s, w;) is minimized. Add s to cluster N, .

6.return {N, N,, ..., N;}.

Fig. 5. K-center clustering algorithm over a set of sittks

Here,mAS andaAS are the minimum and averages values C. Clustering

over f”‘” sinks .andoz > 0 Is a user parameter. One can see pq, clustering sink$, we adopt the K-center heuristic [15],

that, indeedcrit(s;) is one whenAS(s;) = mAS and zero \pich seeks to minimize the maximum radius (distance to the
whgn AS(s;) goes to infinity. For a S'n'f‘gi with av_eara_ge cluster center) over all clusters. K-center is just one of sev-
achievable slackAS(s;) = aAS), thencrit(si) = ¢™* IS oo/ hotential clustering methods (e.g., bottom-up matching and

about 0'1.3.5 V_/hem is set to twe? This average Tc"nk. W'l.l complete linkage) that could be used to achieve the purpose
have a criticality much closer to that of a sink with infinite

AS d to minimums. Wi define t Iof grouping sinks with common characteristics. K-center iter-
»> aS OppoSed 10 MINimuMm.s. YVe can now g Ine tempora atively identifies points that are furthest away, which are called
distance as the difference in criticalities, i.&ist(s;,s;) =

lerit(s;) — cxit(s;)| cluster seeds. The remaining points are clustered to their closest
If tV\Z/o sinks 3; and s; are both extremely noncritical butseEd' Letliam(N;) = max;, 4, {dist(p, ¢)} be the diameter

; . . . n f pointsv;. For metric instan K-center r-
have different achievable slacks, their temporal distance Wlia y setofpo tSN’. orgeo etric instances, ce_te gua
. antees that the maximum diameter of any cluster is within a
be practically zero. For example, assume thatS = —1 ns, . ;
factor of two of the optimal solution [15].

aAS = 1 ns,a = 2, and the two sinks have achievable slacks h lete d - fth lorithm is sh
of 7 and 9 ns. The respective criticalities are® ande™*2, so . The complete description of the K-center algorithm is shown
' ' in Fig. 5. Step 1 picks a random sirkthen identifies the sink

tDist(s;, s;) ~ 0.0004. . ! . ;
Both temporal and polarity distances are on a zero to Oafurthest away froms, which will lie on the periphery of the
al

. - . —data set. This step identifiésas the first cluster seed, which are
scale, so we wish to scale spatial distance to make combining the : . . . :
. : .) contained in the s&t/. Steps 2-5 iteratively fingl¥|-way
terms easier for the complete distance metric.dl¥tm(N) = : . . :
. . L clusterings forN until the ratio of the diameter of the largest
max{sDist(s;, s,)||1 < 4,j < n} be the spatial diameter of the .
; . . current cluster to the diameter offalls below the threshold
set of sinks. The scaled distance between two sinks can be éx- . o -
. i . . Step 3 identifies the next seed which is furthest away from
pressed asDist(s;, s;)/(sDiam(NV)). Our complete distance . e .
o . AT . already identified seeds. Steps 4-5 then form a clustering by
metric is a linear combination of the spatial, temporal, and po- _.” : . ;
larity distances assigning each sink to the cluster corresponding to its closest
y seed. After the diameter threshold is reached in Step 2, Step
sDist(s;, 5;) _ 6 returns the final clustering. The procedure i&s:k) time
———=% 4+ (1 —) - tDist(sy, s5) complexity.
sDiam(N) . . .
Dist(s:. 5 5 Fig. 6 illustrates an example of the K-center algorithm ap-
+pDist(si,55). (2) plied to a 2-D data set with 16 points, whére- 4. In Fig. 6(a)
a random point is chosen and then the poifithat is furthest

The parametef lies between zero and one and trades off b?’r’om sisidentified. In Fig. 6(b), this is relabeled as, a cluster

tween spatial and temp(.)r.al dlstan_ce. In our experlments,_we 43%d. The order that the four seeds were identified are indicated
3 = 0.65 based on empirical studies. Observe that the dlstarlg the subscriptsws, is furthest fromuwy, ws is furthest from
between two sinks with the same polarity will always be |esoothw andws. anduw. is the furthest p7oin?{ fromu: 10 and
than or equal to the distance between two sinks with opposfte " - lFig 6((2:5 each4 point is mapped 1o ts clols,es?seed o
polarity. This occurs because two sinks with the same polarity’ ' ' '

. . . véaling four clusters.
have their distance bounded above by one, while two sinks wng 9

opposite polarity have their distance bounded below by ong. Timing-Driven Steiner-Tree Construction

This property ensures that polarity takes precedence over spa- _ . . .
tial and temporal distance in determining dissimilarity, which it;FoFr) .the [';[T(lr;g-dtnv?in ffteln(?[[]—trde(? cons;ruc_’lt_lﬁn, vlve iﬂom
important to avoiding the behavior shown in Fig. 2(a). e Prim-Dijkstra tradeoff method from [5]. The algorithm

diSt(Si, Sj) = [3 .

40ne could modify the sink clustering algorithm to forbid the bounding box of
3In our experiments, we found using= 2 generates good results, which a cluster to intersect the source node. We did not notice any appreciable change
is used in Section IV. in results with this variation, but it may be worth more detailed investigation.

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 1, JANUARY 2002

A W W,

*s o0 v, PP ow, 4
) ®)
® ®
o © Py
S
o © L ° oo
PY PY .W2 Wa
° w3 ° w3

@

(b)

(©

Fig. 6. 16-point example illustrating the K-center algorithm. (a) A random ségdhosen and” furthest froms is identified. (b) This point is relabeled asl
and the next three furthest point, w3, andw4 are found. (c) Each point is then clustered to its closest seed.

TABLE |
POLARITY AND TEMPORAL CHARACTERISTICS OF THE12 NETS USED
FOR EXPERIMENTATION

trades off between Prim’s minimum spanning tree algorithm
and Dijkstra’s shortest path tree algorithm via a parameter

which lies between zero and one. The justification behind this

approach is that Prim’s algorithm yields minimum wire length Net Sinks RAT
(for a spanning tree), while Dijkstra’s results in minimum tree Name] + - | Total | min | max
radius. A tradeoff captures the desirable properties behind both meu | 8 | 10 | 18 J6195 | 659
approaches. n07| 7 10 | 17 | 1902] 2560
Our implementation is as follows. We run the Prim—Dijkstra n33) 9 | 10 | 19 J1233 | 6704
algorithm fore = 0.0,0.25,0.5,0.75, 1.0 for the clusters and 869y Ll | 10 | 21]1054] 639
the top-level tree. After each spanning tree construction, we run “8733 ig ig ;g 75320 23(5)3
a postprocessing algorithm to remove overlapping edges and ff:gg 7 7 T 39 60 T ces0
generate a Steiner tree. Of the five constructions, theZtrinat 6| 13 2 = 5 o0
maximizesslack(T')5 is selected. A second postprocessing step 8ol 22 T 19 [43 [739 | 6589
is then invoked to reduce delay further. In this step, each sink is bigl | 40 | 48 | 88 | 1974 | 159565
in turn visited, the connection from the sink to the existing tree is big2 | 38 a1 79 | 104 | 65838
ripped up, and alternative connections to the tree are attempted. bigd3 | 34 | 29 [63 | 1097 | 40675

Any connection which either decreases wire length or improves
slack is preserved.

Certainly, alternative timing-driven Steiner-tree algorithmghat trade off between area and timing. The Prim-Dijkstra al-
could be used instead. In fact, we tried using the P-tree wiierithm is equivalent to “flat” C-tree when the number of clus-
area optimization (P-treeA) algorithm [20], which generates tfiers equals the number of sinks. For each tree generated, we run
tree with the best timing properties such that it has minimuk@n Ginneken-style buffer insertion using a library of five non-
wire length and obeys a given sink permutation. We fourigiverting and two inverting buffers to generate a family of so-
that P-treeA would sometimes vyield trees with large radidgtions. We also compare to a buffered P-tree (BP-tree), which
and, hence, poor timing characteristics. P-tree with area agithultaneously inserts buffers and performs the Steiner routing.
timing optimization (P-treeAT) overcomes this problem, butike P-tree, BP-tree also has two modes, which we suffix with
uses significantly more runtime. We chose the Prim—Dijkstither normal (N) or fast (F).
algorithm because it is simple to implement, it is efficient and
scalable, and it outperformed the critical sink constructions 8¢ Algorithm Comparisons

[7] in separate experiments. The results are summarized in Tables Il and IIl. The results
are split into two tables, since the data could not fit into a single
IV. EXPERIMENTAL RESULTS table. Comparisons for each net are shown in several rows. The
For our experimentsi we identified 12 difficult nets on Varﬁrst two rows contain results for P-treeAT and P-treeA, except
ious industrial designs. The polarity characteristics and timid@F the three largest nets for which P-treeAT ran out of memory
constraints for the nets are summarized in Talle |. (on a 2-GB machine). The next row contains results for BP-tree
We compare C-tree to both the P-tree [20] and Prim—DijIlkD normal mode except for the largest net (also because it ran
stra [5] timing-driven Steiner constructions. P-tree was shovpit Of memory). The first C-tree row uses the number of clusters
to yield better timing results than either the SERT [7] or A-tre@gual to the number of sinks, giving the results for “flat” C-tree.
[11] constructions. P-tree actually consists of two algorithm&esults are also presented for C-tree for a decreasing number
P-treeA seeks to minimize area (or wire length when there G& clusters to show the tradeoff for using a different number of

no wire sizing), while P-treeAT generates a family of solution%“éfters- For each algorithm, we present the following in the two
tables.
SNote that for the clusters, no driver exists. We choose a mid-level buffer from
the technology to use as a phantom driver for the slack calculation.
6The polarity constraints were actually randomly assigned for these test cases,
yet they represent the difficulties we have seen for real instances.

1) The slack to the most critical sink (in picoseconds) and
wire length of the tree before the buffer-insertion opti-
mization step.

ALPERT et al. BUFFERED STEINER TREES FOR DIFFICULT INSTANCES 9

2)

3)

TABLE I
ALGORITHM COMPARISONS FOR THEFIRST SIX NETS

Net . # Before Opt | MinOpt | Mid Opt | Full Opt | Post Process

Name | A8OTIM { g4 slack | wire Jbufs [slack Jbufs [slack [bufs [slack [slack | wire CPU
P-TreeAl | 1 | 3948 | 3758 | 4 |3877] 8 |5994] 11 |3999]5999] 3758 | 1.1
P-TreeA | 1 | 5910|3298 [5 [5697] 8 |5778| 11 [5782]5810] 4453 | 04
BP-TreeN| 1 — | — [5 [5%61] 7 [5976] 9 [5988] — | — [e615

mcu [C-Tree | 18 [5943[3743| 6 |5995] 9 [6013] 11 [6014f6014]| 3743 | 0.2
C-Tree 10 |5940|3635] 4 |5887§ 7 |6015) 10 | 601860181 3576 § 0.2
C-Tree 5 [5884 | 5174 2 [5863] 6 |6028] 10 |6032]6032[5084 | 0.3
C-Tree 2 [5881 (5380 1 [S865] 5 [6028] 8 |6033]6034] 52771 0.3
P-TreeAT 1 1678 | 1091 f 5 [1825] 8 |1835] 11 |1837]11837(1091] 1.9
PTreeA | 1 |1678| 1086 | 5 |1825] 8 |1833] 11 |1835]1835] 1098 | 0.2
BP-TreeN| 1 — | — 15 [1831] 7 [1848] 9 [1864] — |

nl07 | C-Tree 17 1678 | 1086] 5 |[1825] 7 |1831] 8 |1832]1832(1091 | 0.1
C-Tree | 11 [1665] 1265 5 |1824] 10 [1871] 1t |1872]1872] 1141] 0.2
C-Tree 4 J1604 2065 2 [1808] 4 [1863] 5 |1865]1866| 1900 | 0.2
C-Tree 2 J1625 1781 1 [1759] 3 [1863] 4 [1865]1866] 1755 | 0.1
P-TreeAT | 1 | 646 [5290 8 [1161] 9 |1207] 10 | 12121212 5285 | 1.2
P-TreeA | 1] 647 | 5285) 8 [1161] 9 [1207] 10 [1212]1212] 5285} 0.5
BP-TreeN| 1 --- --- 5 [1062] 6 |[1223] 6 |1223) --- -

n313f C-Tree | 19 | 646 | 5280 | 8 [1059] 9 [1151] 10 [1202]1202] 5280 [0.2
C-Tree | 14 | 608 | 5748 | 8 [1170] 9 [1212] 10 [1218]1218] 5742 02
C-Tree € | 222 [10475] 4 [962 6 |[1197] 7 [1203]1203| 9028 | 04
C-Tree 2 301 [9541 F 1 [75901 3 |1200f 4 |1206§1206] 9541] 0.3
P-TreeAL | 1 | 127 |4241] 8 | I85] 13 | 310) 17 | 315 | 315 | 4236] 4.0
P-TreeA | 1 | 131 |4213) 7 | 284 | 11 [380 | 15 [387 [387 | 4213 0.9
BP-TreeN| 1 - - S [319] 8 | 520 11 | 552 -~ ---

n869 | CTree | 21 | 130 |4213]| 7 [280 [10 | 376 | 12 | 378 [473 | 4451 | 0.5
C-Tree 6 113 [4337 3 [468} 6 [558] 9 | 578578 [4337] 0.7
C-Tree 4 91 | 4533 2 [451| 6 [573 10 | 582 | 582 | 4533 1.0
C-Tree 2 [-114[8083] 1 [156] 4 {595 7 [610 610 [8083] 1.7
P-TreeAT | 1 | -/88 | 4358] 7 | 213] O | 494 | 11 | 547 | 547 | 4203 | 2.6
P-TreeA | 1 | -780 | 4321§ 7 | 204 9 [494 | 11 | 547|547 | 272 | 04
BP-TreeN| 1 — | —J 7159541103566 — | — [621

n873| CTree | 20 | -769 |4272| 7 [201f 9 [488 | 12| 536 | 536 | 4272 | 0.2
CTree | 11 | 8224512 6 | 194] 8 [491 | 11 | 537 | 537 | 4301 | 0.3
C-Tree 5.4-993 15328 2 {92 5 (520 9 | 52853951807 0.3
C-Tree 2 J-1036[570311 [174 [525] 7 | 546 | 546 | 5703] 0.4
P-TreeAT | 1 |-727 | 600 10 | 418§ 12 | 38 [13 | 40 | 40 | 6008 [2.0
P-TreeA 1 =727 160081 10 |-4181 12 | 36 J 13| 38 | 38 [6008 | 1.1
BP-TreeN| 1 — | - 7 [441]9{3fio]40] | - [7481

poi3 | C-Tree 20 §-713|5852) 8 [36] 9|43] 9| 43] 43 [6030] 0.7
C-Tree 11 §-77516550) 5 | 36] 6 | 43] 6 | 43] 43 [6248] 08
C-Tree 4 8607501 2 | 18| 3 |25 4 | 31 | 31 |[6087 1.2
C-Tree 2 J-1155[10823] 1 |-544] 3 [16 | 5 | 26 | 26 |10823] 1.0

Three of the family of solutions generated by the buffer-in- while maintaining the locations and topology from the

sertion algorithm. The min-opt solutionisthe solution with full-opt buffered tree.

the minimum number of buffers required to fix polarity 4) The total central processing unit (CPU) time for the entire
constraints. The full-opt solution is the one that yields the process (tree construction, buffer insertion, and postpro-
maximum slack, regardless of the buffers used and mid- ~ cessing). Runtimes are reported for a Sun SparcUItra-60
opt reflects a solution in between the min and full solu- with 2 GB of memory.

tions. Although the problem formulation seeks to evaluate We make several observations.

the entire family, the three solutions give a reasonable pic- 1) Forthe solution inthe family with highest slack, C-tree was
ture of the tradeoff curve generated by the family. able tofind solutions with slacks atleast as high as P-treeA,
The slack to the most critical sink and wire length aftera P-treeAT, or flat C-tree for at least one clustering (except
postprocessing step on the full-opt buffered solution. Po- for n873 for which C-tree’s slack was inferior by 1 ps).

tentially a tree with significantly extra wire length was Sometimesthe C-tree slacks were significantly better (e.qg.,
used to guide the buffer insertion. Once buffers are in- n869, n870, and bigl), but most of the time the highest
serted, some of this additional wire length may be elimi- slacks were fairly indistinguishable among the algorithms.

nated via small changes in the route. Our algorithm sought 2) For the solution in the family with highest slack, C-tree
to reduce wire length as long as it did not increase slack found a better solution than BP-tree for seven of the 12

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 1, JANUARY 2002

TABLE Il
ALGORITHM COMPARISONS FOR THESECOND SET OF NETS

Net . # Before Opt Min Opt Mid Opt Fult Opt | Post Process
Name Algorithm Clusts [slack wiI;e bufs sllz:ck bufs (S)IZCk bufs ?lik slack | wire CcPU
P-Tree AT i -123514963 1 10 [217 [12 [514] 14 | 560 | 560 | 4953 f 33.8
P-TreeA 1 -12291 4935 | 11 112 | 15 | 486 | 25 | 493 | 494 | 5033 | 2.3
BP-TreeN 1 - - 8 -98 10 | 419 | 12 | 472 - --- 5114
189 C-Tree 29 |-1230] 4937 9 200 | 12 | 491 15 | 510 | 510 | 4937} 0.5
C-Tree 16 |-1271| 5134 8 166 | 10 | 468 | 12 | 533 | 533 | 5112] 0.5
C-Tree 10 |-1519(6314 5 2771 8 538] 10 | 548 | 548 | 5576 | 0.6
C-Tree 4 -1858 | 7937 1 |-1037] 4 503 7 545 | 549 | 7744 | 0.8 -
C-Tree 2 -1824 | 7772 1 -880 | 3 531 6 574 | 578 | 7582] 0.6
P-TreeAT 1 816 [4958 | 9 [-49 [11 | 56 | 13 | 82 83 | 4896 [118.4
P-TreeA 1 807 [4859 | 11 [-494] 13 | 58 | 15| 82 82 | 4859 | 3.2
BP-TreeN 1 - -— 9 | 4221 11 79 13 84 - --- 1784.1
786 C-Tree 32 -807 | 4859 1 13 | -501 | 16 50 19 67 67 | 4859] 0.9
n C-Tree 15 -847 | 5308 6 |-505] 8 51 10 82 82 | 4971] 08
C-Tree 7 -884 | 5718 3 1-55]1 5 67 7 82 82 | 5294 | 0.7
C-Tree 4 885 | 5736 | 2 | -640] 4 54 6 83 83 5702 | 1.1
C-Tree 2 -1199 | 9252 1 6191 4 61 6 70 70 192551 1.3
P-TreeAT 1 2587 4136] 18 8 19 84 19 84 122 1 4119 |193.3
P-TreeA 1 -2567 | 4089 | 17 49 18 98 19 99 99 | 4089 | 4.1
BP-TreeN 1 - - 13 97 17 | 288] 21 | 295 - --- 1860.5
1870 C-Tree 43 |-2677] 4061 | 18 | -186 | 22 | -104] 26 | -101 | -101 | 4061 | 1.4
C-Tree 17 |-2677] 4347 7 133 § 11 | 245] 15 | 254 | 254 [4297] 1.3
C-Tree 9 -2727 | 4464 6 132 8 241 11 | 258 | 258 | 4386 § 0.9
C-Tree 4 |-2751| 4546 1 3 33 7 | 250] 10 | 267 | 267 | 4546 | 1.4
C-Tree 2 -3749 | 7688 1 [-1965] 5 348 9 355 1 355 | 7688 | 1.5
P-TreeA 1 -932 | 14734 32] 830 | 40 [1083 | 48 [1106 | 1228 | 16368 | 14.9
BP-TreeF 1 - e 99 | 1381] 98 11479 97 | 1555y --- - 308.5

C-Tree 88 | -162 | 15798 33 | 1267 | 35 | 1412] 37 | 1416] 1416 | 15798} 5.3
bigl C-Tree 30 | -844 | 238661 19 | 1090} 21 |1570F 23 | 1595] 1595 | 22230 7.0
C-Tree 12 }-1358 {30021 6 | 236 12 | 1682 | 1682 [255504 3.7
C-Tree 5 1-1319]27224] 1 {-330] 5 |1653] 8 [1685] 168527134 7.5
C-Tree 2 -982 (259851 1 10 4 |1660] 7 |1690] 1692 | 25811} 8.7
P-TreeA 1 -12631 8399 | 27 ;461 32 | 71 | 38 | 44 | 44 | 8899] 40
BP-TreeN 1 --- --- 20 |-2001 25} 2929 | -12) - -]494.6
C-Tree 79 |-1258| 9018 | 26 | -303 | 29 [-257] 31 | -255]-142 | 9226] 3.7
big2 | C-Tree 28 |-1682113995] 15 |-704 | 22 | -74 | 29 | -68 | -68]12340| 3.2
C-Tree 12]-1781(15117] 6 | -890] 12 | -64 | 18 | -34 | -34 | 14691] 2.6

O
b
(=)
n
©

C-Tree 6 |-18627116179] 1 |-1188}) 6 | -41 § 13 [-33 | -32 | 16119] 3.2
C-Tree 2 [-1614]13199) 1 {-1118] 7 | 62] 12 [-51 § -51 [13199]} 3.1
P-TreeA 1 23 16907 27 | 867 | 31 |1012] 34 1021 1022] 6907 | 1.9
BP-TreeN 1 - -— 19 | 570 § 22 | 1048 25 | 1055) -- -]199.6

C-Tree 63 0 6966 | 23 | 631 | 26 | 1024 28 | 1027] 1027 | 6966 | 1.8

big3 | C-Tree 21 | -282 }10300] 11 | 652 | 14 {1013 17 | 10211022 9422 | 1.5
C-Tree 10 | -375 [11225] 6 | 433 | 10 [1019} 14 | 1038] 1038 | 10819] 1.2
C-Tree 4 317 (10616 1 | 224 F 5 [981 | 11 |1020] 1028 | 10522} 1.8
C-Tree 2 264 19965 1 | 278 F 5 | 992] 9 [1028] 1028] 9962 1 0.9

nets. Overall, the differences in delay were fairly small, pending on the requirements of the user, the number of
with C-tree’s best solution averaging a 29-ps improve- clusters can be used within C-tree to trade off wire length
ment over BP-tree’s best solution. with buffer area. Fig. 7 illustrates this tradeoff for six of

The more clusters used by C-tree, the fewer the number the nets. Wire length generally decreases as the number of
of buffers are needed to fix polarity constraints. With two buffers increases, especially when only a few buffers are

clusters, one inverting buffer is always sufficient to fix po- used. For any number of clusters greater tha®, C-tree
larity, which shows C-tree handlesthe case inFig. 2. How- was able to obtain slack comparable to that of the best ap-
ever, fewer clusters results in additional wire length. In- proach. Thus, any number of clusters between, say, 2 and

deed, the extreme case of two clusters almost doubles the /2 are reasonable choices for optimizing the timing.
wire length since two low-level trees are being routed over 4) The postprocessing step did not affect slack much at all,
the same geometric space—one to the positive and one to but occasionally reduced wire length (e.qg., for big3).

the negative polarity sinks. When the number of clusters 5) BP-tree and P-tree AT are clearly the most inefficient
is small, the wire length does increase significantly. De- algorithms, as runtimes were over 100 times that of

ALPERT et al. BUFFERED STEINER TREES FOR DIFFICULT INSTANCES 11

18000 T T T T T
big3 —+—
big2 --¥--
n870 ---%--
poi3 i
nlgy ---m-—
n786 ---0---

16000 |- *

14000

12000

10000

8000

Wire length

6000

4000

2000 -

Number of Buffers

Fig. 7. Tradeoff between the number of buffers inserted and wire length for different degrees of clustering within C tree.

C-tree for n870 and they could not complete all of théor every sink. This serves to isolate the effects of polarity
test cases. P-treeA is slightly more inefficient than then the difficulty of the instances. The results are summarized
Prim— Dijkstra approach, but C-tree is actually the fastest Table IV. Here, the advantages of C-tree are magnified,
of the three constructions. For example, for bigl (thespecially for net n870. C-tree obtains slacks as low-8%1
largest net), C-tree alone took under 0.2 s to run faompared to-1408 for P-tree and-1808 for flat C-tree. From
each of the clusterings reported in Table Ill, while flatooking at the topology of the solutions, we observed that P-tree
C-tree took 0.6 s. For C-tree, the dynamic-programmirand flat C-tree contain chains of inverters that alternately drive
buffer-insertion algorithm dominates the runtime of thpositive and negative sinks over a short distance. These chains
entire flow. cause the huge difference in delays. C-tree avoids these chains
6) For the larger nets, P-treeA, BP-tree, and flat C-tree ry clustering according to polarity. The other three nets also
quired many more buffers to find a feasible solution thashow large improvements for C-tree.
C-tree. Forexample, P-tree required 32, 27, and 27 buffergrinally, we ran the same experiments using the origihall’
to satisfy polarity constraints for bigl, big2, and big3, revalues, but setting all sinks to positive polarity. In this case, we
spectively, while BP-tree required 99, 20, and 19 buffesbserved very little difference among the algorithms. Thus, at
(BP-tree in fast mode is much more wasteful in bufferintpast for this suite of test cases, the case of Fig. 1 is not nearly
resources). Via clustering, C-tree could generally find a@s critical as the case in Fig. 2. It is the polarity differences that
solution with slack at least as high as P-tree with 4, &yake these instances difficult.
and 9 buffers, respectively. For n870, C-tree with four
clusters found a solution with seven buffers and sladk- Choosing the Right Number of Clusters

250 ps, which is 128 ps more than the best result found byThere clearly are tradeoffs between the number of clusters
P-treeAT (which needs at least 17 buffers to satisfy coand resource utilization. Typically as the number of clusters de-
straints). For bigl, a five-cluster C-tree solution with fivereases, the number of buffers also decreases, wire length in-
buffers has slack 1653 ps, which is over 400 ps better thafeases and the slack generally improves. However, it is diffi-
best slacks obtained by P-tree or flat C-tree. cult to knowa priori what the right number of clusters will be
in advance. Intuitively, the amount clustering performed should
increase with the number of sinks of a net. The larger a net, the

It may seem a bit surprising that there is little slack differemnore susceptible it is to wasting buffering resources as in Fig. 2.
tiation among the algorithms. The reason for this might be thatEven two instances with the same number of sinks could
a single critical sink dominates the slack value. For example,riaquire different clustering solutions. For example, one instance
net n313, the minimurR AT is 1233 ps, which is also an uppercould have sinks spread far apart, while another could have
bound on the slack. From Table I, observe that a majority afatural clusters of sinks. In this example, we would want the
the full-opt solutions obtain slack value of over 1200 ps, whidatter instance to have fewer clusters. Thus, for the following
is close to optimum. Thus, for this net, the critical sink must liexperiments, we modified the stopping criteria of Fig. 3 to
close to the source, which makes it an easy to obtain a good slatitead stop when the diameter of the largest cluster falls
result (though still hard to potentially minimize resources). below a certain threshold (where the diameter of clusfes

To reduce the impact of this effect, we ran the same emrax{dist(s;,s;)||s:,s; € N}). Since the distance metric is
periments on the four largest nets with RAT value of zero scaled for every instance, we can use constant values of the

B. Variations

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 1, JANUARY 2002

TABLE IV
EXPERIMENTAL RESULTSWITH ALL SINK RAT VALUES SET TO ZERO

Net Algorithm # Before Opt | Min Opt Mid Opt Full Opt | Post Process
Name Clusts | 'slack | wire |bufs] slack [bufs | slack [bufs [slack [slack | wire
P-TreeA 1 -3319] 4089 | 17 [-1409] 23 [-1349] 29 |[-1345]-1345] 4089
C-Tree 43 1-3307| 4062 | 18 |-1896] 22 |-1812] 27 [-1808]-1808 | 4062

870 C-Tree 17 1-3431] 4356 10 [-1064] 18 | -731 | 26 | -721 | -721 | 4356
C-Tree 8 -35151 4560 S | -805§ 7 | -664 | 10 | -608 | -608 | 4555

C-Tree 4 [-3500(4546 3 | -798 % 4 | -683] 6 | -597 | -597 | 4546

C-Tree 2 -45221 7689 1 |-2710) 3 [-562) 5 | -516] -511 | 5964
P-TreeA 1 -306514734] 32 [-1461] 43 [-1222] 53 [-1206]-1186]16104
C-Tree 88 [-2650|16068] 31 [-1021f 41 | -916 | 51 | -904 | -904 {16068

bigl C-Tree 37 |-3385]240437 22 1-1233] 34 | -619 | 46 | -609 | -608 |22996
C-Tree 14 1-3640)26833}F 8 |-1124] 14 | -576 | 21 | -508 | -498 | 26650

C-Tree 5 [-3570126737] 2 |-1957] 9 | -540] 16 [-508 | -500 |26394

C-Tree 2 -3426 (27629 1 [-1975) 9 | -5361 24 [-502 | -501 |27545
P-TreeA 1 1577 8800 | 28 |-1144] 36 | -617 | 48 | -607 | -606 | 9002
C-Tree 79 |-1471] 8960 | 28 | -626 | 36 | -562 | 45 | -556 | -556 | 8960

big?2 C-Tree 31 1-1864[13292) 18 [-937] 30 | -453 | 42 | -448 | -447 | 12619
C-Tree 12 |-2074(16134) 7 |-1041] 10 | -401 | 16 | -351 | -351 | 15977

C-Tree 7 -2167|17089] 3 |-1270] 8 [-372 | 14 | -351 | -349 {17219

C-Tree 2 F-1811(13267F 1 |-1163] 4 | -364]| 8 | -348 | -348 | 13267
P-TreeA 1 S1204] 6907 | 26 | -830 [35 | -354 1 43 | -545 [-545 | 6907

C-Tree 63 [-1175] 6794 26 | -807 | 30 | -660 | 40 | -658 § -658 | 6794

big3 C-Tree 22 [-1440] 98791 10 | -625] 16 | -373 | 22 | -357 | -353 | 9160
C-Tree 11 §-1609|11911] 6 | -834 § 10 | -341 § 15 | -326 | -326 | 11645

C-Tree 7 -1548|11254] 4 | -852} 8 | -354 § 12 | -327 | -327 | 11249

C-Tree 2 -1436(10098) 1 | -981] 2 |[-322§ 2 | -322] -322 | 9967

TABLE V

COMPARISONS OFSLACK IMPROVEMENT (VERSUSESS), BJIFFERING AND WIRING RESOURCES FORVARIOUS GROUPS OFNETS AND EIGHT DIFFERENT
C-TREE DIAMETER THRESHOLDS

Net Diameter Threshold
Category | Measurement | ESS |-G 5e 1010 T 0.5 T 020 | 030 | 050 [075
Slack improvement] 0 280 | 375 | 378 | 359 | 378 | 329 | 322 | 372
5-9 (66) Buffers 133 | 138 | 136 | 132 | 130 | 136 | 134 | 131 | 130

Wire length 1591161 | 162} 164 | 165 | 167 | 17.0 [174 | 19.1
Slack improvement] 0 [3908 | 3584 | 3684 | 4301 | 4509 { 4603 | 4687 | 4676
10-19 (70) Buffers 354 | 336 | 351 | 334 | 325 | 307 | 291 | 286 | 256

Wire length 583] 648 | 62.7 | 640 | 682 | 70.0 | 70.5 [70.8 | 69.8
Slack improvement] 0 [1062 | 1215 | 1464 | 1857 | 1941 | 1806 | 2490 | 2517
20-29 (139) Buffers 495 | 495 | 496 | 455 | 449 | 414 | 365 | 318 | 255

Wire length 423 1 429 | 46.1 | 494 [515 [53.0 | 55.0 | 54.2 | 52.0
Slack improvement] 0 437 [473 1 729 | 650 | 693 | 817 | 855 | 895
30-49 (45) Buffers 191 1 193 | 185 | 176 | 160 | 166 | 153 | 134 | 121

Wire length 142 1144 [157 168 } 173 f 17.7 [181 [179 | 17.7
Slack improvement| 0 1826 | 2430 | 2589 | 2662 | 2754 | 2868 | 2370 | 2189
50-74 (37) Buffers 579 | 552 | 472 | 405 } 37t | 375 | 349 | 318 | 323

Wire length 102.91107.8 [123.9]133.11134.3} 137.0 | 154.8| 160.7 | 162.6
Slack improvement] 0 | 3173 | 3416 | 3697 | 3836 | 3977 | 4140 | 3854 | 3758
75-100 (30) Buffers 354 | 306 [255 | 255 | 243 | 241 | 207 | 202 | 189
Wire length 669 | 722 | 81.1 | 862 | 88.1 | 90.1 | 98.5 | 953 | 93.8

Number of nets in each class is shown in parentheses in the first column.

diameter threshol® over a variety of instances. For example, ifnto six categories according to their number of sinks: 10-19,
D = 0, every cluster will have zero diameter which means eve0—29, 30—49, 50-74, and 75-100. For the nets in each category,
sinkisinits own cluster (corresponding to flat C-treeDI= 1, we ran C-tree with various diameter thresholds and compared
this will create two clusters if there are sinks with oppositthe results to a Steiner-tree construction called electrical sub-
polarities and one cluster otherwise. We examine varioggstem (ESS) (an internal IBM tool) that seeks a minimum wire
diameter thresholds between zero and one to try to grasp taegth routing topology. We measure the total improvement in
appropriate diameter value for a given number of sinks. slack over all the nets in nanoseconds amd the number of buffers

In the following experiments, we ran C-tree on 387 large neitsserted and the total wire length in design millimeters. The re-
in an industrial test case with 274 000 cells. We grouped the nstgts are shown in Table V.

ALPERT et al. BUFFERED STEINER TREES FOR DIFFICULT INSTANCES

13

Not surprisingly, ESS always yields the minimum wiredistance functions could improve our approach. We also need to
length result over all the constructions while C-tree seeksidentify more difficult instances for which different approaches
timing based objective. The flat Prim—Dijkstra constructionan distinguish themselves.

(corresponding to a diameter threshold of zero) has slightly
more wire length than ESS since it tries to trade off wire length
with the radius of the tree. As the diameter threshold increasesm
the wire length increases as well, though sometimes there is a
slight dropoff in wire length as the threshold reaches 0.5.

Observe that the number of buffers decreases as the dian?!
eter threshold increases. Further, the trend is more pronounced
for the larger nets. It is harder to observe a trend in terms of[3]
slack improvement. For example, for the 75-100 class of nets,
the most improvement is observed for a diameter threshold ofy
0.3, while for the 20-29 class of nets, 0.3 yields the lowest re-
sult for all thresholds larger than 0.1. In general, larger diame-
ters thresholds tend to yield better slack values while using fevvls]
buffers, though at a potentially significant price for wire length.
Since many modern designs are wire congested, we believe it i
better to keep the diameter threshold relatively low (e.g., below[7
0.1) for most classes of instances so that the wire does not in-
crease by more than 5%—10% over the ESS (e.g., minimum wire
length). However, if a net is the bottleneck for the design, lying (8l
in the most critical path, we would recommend running C-tree
followed by buffer insertion for three or four different diam-
eter threshold values and picking the one which yields the be
timing. Designs that are more area constrained would clearl
benefit from using higher diameter threshold values.

(9]

foy

(11]

V. CONCLUSION
[12]
We have identified a class of buffered Steiner-tree instances

for which existing algorithms are inadequate. These instances
have a large number of sinks and varying temporal and polarit£/13]
constraints. We proposed a two-level clustering based heuristic
called C-tree for these instance types. Our clustering heuristi4]
utilizes a new distance metric that combines spatial, temporal,
and polarity characteristics. Experiments on industrial netgs;
show that C-tree is able to obtain results with slack equal to
or better than previous approaches while using fewer bufferd1®l
Compared to simultaneous buffer-insertion and Steiner-tree
construction, C-tree obtains better slack on average whilgl7]
using significantly less CPU time (and buffering resources). By
adjusting the number of clusters, C-tree can trade off betwee[er]
buffering and wiring resources, though we are still hoping to
be able to identify clustering stopping criteria to automatically
identify the “sweet spot” in the resource/performance tradeof'f[19
We hope that this paper stimulates more research on these types
of problems.

While experimenting with industrial designs, we have found®°l
that, while performing placement-driven synthesis on applica-
tion-specific integrated-circuit designs, there exist nets with sevi21]
eral hundred sinks that require optimization. Further, excellent
solution quality is critical as these nets often lie on a negativey
slack path because the net itself has such poor delay character-
istics. We believe issues such as alternative tree constructions
within clusters, different mechanisms for locating the tappingm]
point, multilevel instead of two-level clustering, and alternative

REFERENCES

C. J. Alpert and A. Devgan, “Wire segmenting for improved buffer in-
sertion,” inProc. 34th IEEE/ACM Design Automation Cqidfune 1998,

pp. 588-593.

C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer insertion for noise and
delay optimization,” irProc. 35th IEEE/ACM Design Automation Cagnf.
June 1998, pp. 362-367.

——, “Buffer insertion with accurate gate and interconnect delay
computation,” inProc. 36th IEEE/ACM Design Automation Cqrifune
1999, pp. 479-484.

C. J. Alpert, G. Gandham, J. Hu, J. L. Neves, S. T. Quay, and S. S.
Sapatnekar, “Steiner tree optimization for buffers, blockages and bays,”
IEEE Trans. Computer-Aided Desigvol. 20, pp. 556-562, Apr. 2001.

C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger, “Prim-
Dijkstra tradeoffs for improved performance-driven routing tree design,”
IEEE Trans. Computer-Aided Desigvol. 14, pp. 890-896, July 1995.

H. B. Bakoglu, Circuits, Interconnections and Packaging for
VLSL Reading, MA: Addison-Wesley, 1990.

] K.D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins, “Near-optimal

critical sink routing tree constructionsEEE Transactions Computer-
Aided Designvol. 14, pp. 1417-1436, Dec. 1995.

C. C. N. Chu and D. F. Wong, “Closed form solution to simultaneous
buffer insertion/sizing and wire sizing,” iAroc. Int. Symp. Physical De-
sign, Apr. 1997, pp. 192-197.

J. Cong, “Challenges and opportunities for design innovations in
nanometer technologiesSRC Working Paper®ec. 1997.

J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance optimiza-
tion of VLSI interconnect layout,Integr. VLSI J, vol. 21, no. 1, pp.
1-94, 1996.

J. Cong, K. S. Leung, and D. Zhou, “Performance-driven interconnect
design based on distribut&LCdelay mode,” ifProc. IEEE/ACM Design
Automation Conf.June 1993, pp. 606—611.

J. Cong and X. Yuan, “Routing tree construction under fixed buffer lo-
cations,” inProc. IEEE/ACM Design Automation ConJune 2000, pp.
379-384.

S. Dhar and M. A. Franklin, “Optimum buffer circuits for driving long
uniform lines,” IEEE J. Solid-State Circuitsvol. 26, pp. 32—40, Jan.
1991.

W. C. Elmore, “The transient response of damped linear network with
particular regard to wideband amplifiers]’ Appl. Phys.vol. 19, pp.
55-63, Jan. 1948.

T. F. Gonzalez, “Clustering to minimize the maximum intercluster dis-
tance,"Theor. Comput. Sgivol. 38, pp. 293-306, 1985.

A. Jagannathan, S.-W. Hur, and J. Lillis, “A fast algorithm for context-
aware buffer insertion,” ifProc. IEEE/ACM Design Automation Conf.
June 2000, pp. 368-373.

M. Lai and D. F. Wong, “Maze routing with buffer insertion and wire-
sizing,” in Proc. IEEE/ACM Design Automation Condune 2000, pp.
374-378.

J. Lillis, C.-K. Cheng, T.-T. Y. Lin, and C.-Y. Ho, “New performance
driven routing techniques with explicit area/delay tradeoff and simulta-
neous wire sizing,” irProc. 33rd IEEE/ACM Design Automation Canf.
June 1996, pp. 395-400.

] J. Lillis, C.-K. Cheng, and T.-T. Y. Lin, “Optimal wire sizing and buffer

insertion for low power and a generalized delay modélFE J. Solid-
State Circuitsvol. 31, pp. 437-447, Mar. 1996.

——, “Simultaneous routing and buffer insertion for high performance
interconnect,” inProc. 6th Great Lakes Symp. VL. 3llar. 1996, pp.
148-153.

T. Okamoto and J. Cong, “Buffered Steiner tree construction with wire
sizing for interconnect layout optimization,” iRroc. IEEE/ACM Int.
Conf. Computer-Aided Desigduly 1996, pp. 44—49.

L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree net-
works for minimal Elmore delay,” ifProc. Int. Symp. Circuits and Sys-
tems May 1990, pp. 865—-868.

H. Zhou, D. F. Wong, |.-M. Liu, and A. Aziz, “Simultaneous routing
and buffer insertion with restrictions on buffer locations,” fmoc.
ACM/IEEE Design Automation Conflune 1999, pp. 96—99.

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 1, JANUARY 2002

Charles J. Alpert (S'92-M'96) received the B.S. degree in math and compuJohn Lillis received the M.S. and Ph.D. degrees in computer science from the
tational sciences and the B.A. degree in history from Stanford University, Stadnriversity of California at San Diego, La Jolla, in 1993 and 1996, respectively.
ford, CA, in 1991 and the Ph.D. degree in computer science from the UniversityFrom 1996 to 1997, he was a Post-Doctoral Researcher with the University
of California, Los Angeles, in 1996. of California, Berkeley, supported in part by the National Science Foundation
He is currently a Research Staff Member with the IBM Austin Research LalB{SE program. He joined the Electrical Engineering and Computer Science De-
oratory, Austin, TX. His current research interests include placement, intercqgrartment, University of Illinois, Chicago, in 1997, where he is currently an As-
nect synthesis, clock distribution, and global routing. sistant Professor of Computer Science. His current research interests include
Dr. Alpert received the Best Paper Award at the ACM/IEEE Design Automalesign automation for VLSI, particulary physical design and timing optimiza-
tion Conference in 1994, 1995, and 2001 and the SRC Mahboob Khan Otith and combinatorial optimization.
standing Mentor Award in 2001. Dr. Lillis received the National Science Foundation CAREER award in 1999.

Gopal Gandhamreceived the B. Tech. degree in electronics and communicg-

tion engineering from Andhra University, Waltair, India, in 1994 and the M 20 Liu was borq in Guilip, Ch_ina, in 1973. He rec_eive(_j the B.S. anq the_M.S_.
degree in automation and computer vision from the Indian Institute of Tec] egrees in electrical engineering from Fudan University, Shanghai, China, in

nology, Kharagpur, India, in 1996 993 and 1996, respectively. He is currently working toward the Ph.D. degree in
He is currently an Advisory Engineer with the IBM Corporation, Eas omputer science and engineering at the University of California at San Diego,

e h . . : . Jolla.
F'S.hk'."’ NY‘ His _current r_esearch interests include phyiscal design a His Master’s thesis studied FPGA implementation of VLSI DRC algorithm.
optimization on deep-submicrometer design flow.

He was with the China IC Design Center, Beijing, China, and has also interned
at Cadence Design Systems in 1999 and Conexant Systems in 2000. His current
research interests include VLSI interconnect construction and estimation.

Milos Hrkic received the B.S. degree in computer science from the University
of lllinois, Chicago, in 2000. He is currently working toward the Ph.D. degree
in computer science at the same university.
He was an Intern with the IBM Austin Research Laboratory, Austin, TX, istephen T. Quayreceived the B.S. degree in electrical engineering and the
2001. His current research interests include VLSI interconnect synthesis. B.S. degree in computer science from Washington University, St. Louis, MO,
in 1983.
Since 1983, has worked in many areas of chip layout and analysis with IBM
in Endicott, NY, and Austin, TX. He is currenlty a Senior Engineer for IBM Mi-

Jiang Hureceived the ., degree noptical engineering rom Zhefiang Urivef! S1eCHOMcs, Austin, T, where he develops design automation applications

sity, Hangzhou, China, in 1990, the M.S. degree in physics from the Univer5|8/
of Minnesota, Duluth, in 1997, and the Ph.D. degree in electrical engineering
from the University of Minnesota, Minneapolis, in 2001.

He is currently with the IBM Microelectronics Division, Austin, TX, working

on VLSI CAD tools development. His current research interests include VIT%'achin S. Sapatnekareceived the B.Tech. degree from the Indian Institute of

physical design, especially on interconnect routing, optimization, and planmq%Chnology Bombay, India, in 1987, the M.S. degree from Syracuse University;

in B{)'Oqu received the Best Paper Award at the Design Automation Confere@)?racuse, NY, in 1989, and the Ph.D. degree from the University of lllinois at

Urbana-Champaign in 1992.

From 1992 to 1997, he was an Assistant Professor with the Department of
Electrical and Computer Engineering, lowa State University. He is currently
an Associate Professor with the Department of Electrical and Computer
Andrew B. Kahng was born in San Diego, CA, in October 1963. He receive@Engineering, University of Minnesota, Minneapolis. He has coauthored two
the A.B. degree in applied mathematics/physics from Harvard College, Cabmoks,Timing Analysis and Optimization of Sequential Circgerwell, MA:
bridge, MA, and the M.S. and Ph.D. degrees in computer science from the Uluwer, 1999) andDesign Automation for Timing-Driven Layout Synthesis
versity of California at San Diego, La Jolla. (Norwell, MA: Kluwer, 1992), and coeditelayout Optimizations in VLSI

He was with the Computer Science Department, University of California, Ld3esigns(Norwell, MA: Kluwer, 2001).

Angeles, from 1989 to 2000, most recently as Professor and Vice-Chair. His Sapatnekar received the National Science Foundation Career Award and the
currently a Professor of Computer Science and Engineering and Electrical &ebst Paper Awards at the Design Automation Conference in 1997 and 2001
Computer Engineering with the University of California at San Diego. He hasd the International Conference on Computer Design in 1998. He is an Asso-
authored or coauthored over 160 papers in the VLSI CAD literature, centericigte Editor of the IEEE RANSACTIONS ONVERY LARGE SCALE INTEGRATION

on physical layout and performance analysis. His current research interestq¥i-Sl) SysTEms and the IEEE RANSACTIONS ONCIRCUITS AND SYSTEMS II:

clude VLSI physical layout design and performance analysis, combinatorial a8ANALOG AND DIGITAL SIGNAL PROCESSING He has served on the Technical
graph algorithms, and stochastic global optimization. Program Committee for various conferences, including Technical Program and

Prof. Kahng received the National Science Foundation Young Investigat®eneral Chair for Tau and the International Symposium on Physical Design,
Award and a Design Automation Conference Best Paper Award. He was tv&d is currently a Distinguished Visitor for the IEEE Computer Society and a
founding General Chair of the ACM/IEEE International Symposium on Phy®istinguished Lecturer for the IEEE Circuits and Systems Society.
ical Design (ISPD), a cofounder of the ACM Symposium on System-Level In-
terconnect Prediction (SLIP), Technical Program Chair of the 2001 Electronic
Design Processes Symposium of the IEEE Design Automation and Test Com-
mittee, and is also on the steering committees of ISPD-2001 and SLIP-2001 .

Since 1997, he has defined the physical design roadmap for the Internatiohal. Sullivan received the B.S. degree in electrical engineering at Washington
Technology Roadmap for Semiconductors (ITRS) and is currently Chair of thimiversity, St. Louis, MO, in 1990.

U.S. and International Technical Working Groups for Design in the 2001 ITRS Since 1990, he has worked in many areas of design automation and layout
renewal. with the IBM Corporation, East Fishkill, NY.

