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Provably Good Global Buffering by Generalized
Multiterminal Multicommodity Flow Approximation

Feodor F. Dragan, Andrew B. Kahng, Ion I. Măndoiu, Sudhakar Muddu, and Alexander Zelikovsky

Abstract—To implement high-performance global interconnect
without impacting the placement and performance of existing
blocks, the use of buffer blocks is becoming increasingly popular
in structured-custom and block-based application specified inte-
grated circuit methodologies. Recent works by Conget al. (1999)
and Tang and Wong (2000) give algorithms to solve thebuffer
block planningproblem. In this paper, we address the problem of
how to perform the buffering of global multiterminal nets given
an existing buffer block plan. We give provably good and heuristic
algorithms for this problem based on a recent approach of Garg
and Könemann (1998) and Fleischer (1999) [see also Albrecht
(2000)]. Our method routes connections using available buffer
blocks, such that required upper and lower bounds on buffer
intervals are satisfied. In addition, our algorithms allow more than
one buffer to be inserted into any given connection and observe
upper bounds and parity constraints on the number of buffers
per connection. Most importantly, and unlike previous works on
the problem [Cong et al. (1999); Tang and Wong (2000)], we take
into account: 1) multiterminal nets; 2) multiple routing layers;
3) simultaneous buffered routing and compaction; and 4) buffer
libraries. Our method outperforms existing algorithms for the
problem [see Conget al. (1999)], based on two-pin decompositions
of the nets, and has been validated on top-level layouts extracted
from a recent high-end microprocessor design.

Index Terms—Approximation algorithms, buffer insertion,
buffer planning, global routing, multicommodity flow.

I. INTRODUCTION

V ERY LARGE scale integration (VLSI) process scaling
leads to an increasingly dominant effect of interconnect

on high-end chip performance. Each top-level global net must
undergo repeater insertion (among other optimizations; see
[4], [14], and [17]) to maintain signal integrity and reasonable
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signal delay.1 Estimates of the need for repeater insertion range
up to 10 repeaters for top-level on-chip interconnect when we
reach the 50-nm technology node. These repeaters are large
(anywhere from 40 to 200 minimum inverter size), affect
global routing congestion, can entail nonstandard cell height
and special power routing requirements, and can act as noise
sources. In block- or reuse-based methodology, designers seek
to isolate repeaters for global interconnect from individual
block implementations.

For these reasons, abuffer blockmethodology has become in-
creasingly popular in structured-custom and block-based appli-
cation specified integrated circuit (ASIC) methodologies. Two
recent works by Conget al. [5] and Tang and Wong [22] give
algorithms to solve thebuffer block planningproblem. Their
buffer block planning formulation is roughly stated as follows:
Given a placement of circuit blocks and a set of two-pin connec-
tions withfeasible regionsfor buffer insertion,2 plan the location
of buffer blockswithin the available free space so as to route a
maximum number of connections.

In this paper, we address the problem of how to perform
buffering of global netsgiven an existing buffer block plan.
(Hence, our work is compatible with and complements the
methods in [5] and [22].) We give a provably good algorithm
based on a recent approach of Garg and Könemann [10] and
Fleischer [9]. Our method routes the nets using the available
buffer blocks, such that required upper and lower bounds on
repeater intervals—as well as length upper bounds per connec-
tion—are satisfied.3 Our algorithm allows more than one buffer
to be inserted into any given connection and observes upper
bounds on the number of buffers per connection. In addition,
our algorithm observesrepeater parity constraints, i.e., it will
choose the number of inverters in any routing path according to
the source and destination signal parity. The authors of [5] and
[22] assumed that global nets have been already decomposed
into two-pin connections; unlike these works our model takes
into accountmultiterminal nets.

Our basic problem is informally defined as follows.
Given:

• a planar region with rectangular obstacles;

1Following the literature, we will use the termsbufferandrepeaterfairly in-
terchangeably. When we need to be more precise: a repeater can be implemented
as either an inverter or as a buffer (= two colocated inverters).

2In [22] only a single buffer per connection is allowed.
3For example, global repeater rules for a high-end microprocessor design in

0.25�m CMOS [13] require repeater intervals of at most 4500�m. The number
of buffers needed for a given connection depends strongly on the length of the
connection; as noted in [13], the repeater interval is not only required for delay
reduction, but also for crosstalk noise immunity and edge slewtime control.
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• a set of nets in the region, each net having:
— a single source and multiple sinks;
— a nonnegative importance (criticality) coefficient;

• each sink having:
— a parity requirement, which specifies the required

parity of the number of buffers (inverters) on the path
connecting it to the source;

— a timing-driven requirement, which specifies the max-
imum number of buffers on the path to the source;

• a set of buffer blocks, each with given capacity;
• an interval [ ] specifying lower and upper bounds on

the distance between buffers.

Global Routing via Buffer Blocks (GRBB) Problem:Route a
subset of the given nets, with maximum total importance, such
that:

• the distance between the source of a route and its first
repeater, between any two consecutive repeaters, respec-
tively, between the last repeater on a route, and the route’s
sink, are all between and ;

• the number of trees passing through any given buffer block
does not exceed the block’s capacity;

• the number of buffers on each source-to-sink path does not
exceed the given upper bound and has the required parity;
to meet the parity constraint two buffers of the same block
can be used.

If possible, the optimum solution to the GRBB problem si-
multaneously routes all the nets. Otherwise, it maximizes the
sum of the importance coefficients over routed nets. The im-
portance coefficients can be used to model various practical ob-
jectives. For example, importance coefficients of 1 for each net
correspond to maximizing the number of routed nets and impor-
tance coefficients equal to the number of sinks of the net corre-
spond to maximizing the number of connected sinks.

We also consider the following extensions of the basic GRBB
problem.

• Multilayer GRBB:The basic GRBB formulation imposes
the same bounds on the length of all buffer-to-buffer,
source-to-buffer, and buffer-to-sink wire segments. The
multilayer GRBB problemaccounts for the different
electrical characteristics (unit-wire resistance and ca-
pacitance) of different routing layers and takes into
consideration nonuniform source driving strengths and
sink input capacitances.

• GRBB With Set Capacity Constraints:The basic GRBB
problem assumes predetermined capacities for all buffer
blocks. In practice, there is some freedom for transferring
capacity from a buffer block to neighboring buffer blocks
by translating circuit blocks. TheGRBB problem with set
capacity constraintscaptures this freedom by allowing
constraints on the total capacity ofsetsof buffer blocks,
instead of only constraining individual buffer blocks.

• GRBB With Buffer Library:To achieve better use of
area and power resources, multiple buffer types can be
used. TheGRBB problem with buffer libraryoptimally
distributes the available buffer block capacity between
given buffer types and simultaneously finds optimum
buffered routings.

We give integer linear program (ILP) formulations for the
basic GRBB problem and its extensions; these formulations
generalize the vertex-capacitated integermultiterminal multi-
commodity flow(MTMCF) problem. The main contribution of
the paper is a provably good algorithm for these generalizations
of the MTMCF problem. Prior to our work, heuristics based
on solving fractional relaxations of integer multicommodity
flow formulations have been applied to VLSI global routing
[1], [2], [12], [16], [21]. As noted in [15], the applicability of
this approach is limited to problem instances of relatively small
size by the prohibitive cost of solving exactly the fractional
relaxation. As in the recent work of Albrecht [1], we avoid this
limitation by using an approximation algorithm for solving the
fractional relaxations. The approximation algorithm can find
solutions within any desired accuracy; an important feature of
the algorithm is that it allows for a smooth tradeoff between
runtime and solution accuracy. Our experiments indicate that
even low accuracy fractional solutions give good final solutions
for the GRBB problem after rounding.

The most interesting feature of our algorithm is its ability to
work withmultiterminalnets. Note that our problem formulation
addresses only the partitioning of long lines, although in the case
of multipin nets buffers can also be used for decoupling off-path
capacitance. Thus, the constraints on the number of buffers on
source-to-sink paths are less correlated to the real timing require-
ments of multipin nets. However, we believe that this limitation
of our model could be corrected by post-process fine tuning. Ex-
periments on top-level layouts extracted from a recent high-end
microprocessor design validate our algorithms and indicate that
it significantly outperforms existing algorithms for the problem
[5], [22] which are based on two-pin decompositions.

The rest of the paper is organized as follows. In Section II
we give ILP formulations for the GRBB problem and its exten-
sions and introduce a common generalization of these ILPs, re-
ferred to as thegeneralized multiterminal multicommodity flow
(GMTMCF) ILP. The fractional relaxation of the GMTMCF
ILP is a special type ofpacking LPand can thus be approximated
within any desired accuracy using the algorithm of Garg and
Könemann [10]. In Section III we give a significantly faster ap-
proximation algorithm, obtained by extending a speed-up idea
due to Fleischer [9] to this special type of packing LPs. We give
the details of a key subroutine of the algorithm—finding min-
imum-weight feasible Steiner trees—in Section IV and present
algorithms for rounding near-optimal fractional GMTMCF so-
lutions to near-optimal integral solutions in Section V. In Sec-
tion VI, we describe implementations of several GRBB heuris-
tics, some based on rounding approximate fractional GMTMCF
solutions and some based on less sophisticated greedy ideas;
Section VII gives the results of experiments comparing these
heuristics on test cases extracted from the top-level layout of
a recent high-end microprocessor. Finally, we conclude in Sec-
tion VIII with a list of future research directions.

II. I NTEGERLINEAR PROGRAM FORMULATIONS

Throughout this paper we let ,
denote the nets to be routed; is thesource

and are thesinksof net . We denote by
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the importance (criticality) coefficient of net and by
even, odd and the prescribed parity, respec-

tively upper bound, on the number of buffers on the path
between source and sink . Let also and

denote the set of sources,
respectively, of sinks and denote the given
set ofbuffer blocks. For each buffer block , we let denote
its capacity, i.e., the maximum number of buffers that can be
inserted in .

A routing graphfor nets , , is an undirected
graph such that . The set of vertices of
other than sources and sinks, , is denoted by . Spe-
cific routing graphs are defined in the following sections for the
GRBB problem and each of its extensions. All vertices in these
routing graphs have associated locations on the chip, including
those in which are associated with buffer block locations.
The edges are defined according to the specific bounds
imposed by each problem. Thus, every Steiner tree inauto-
matically satisfies the given bounds assuming that a buffer
is inserted at each Steiner point. To ensure that upper bound and
parity constraints on the number of buffers on source-to-sink
paths are met as well, we need to restrict the set of allowable
Steiner trees as follows.

A path , connecting source to
sink in routing graph , is afeasible( )-path if

• for each ;
• the parity of is ;
• .

A feasible Steiner treefor net is a Steiner tree in
connecting terminals such that, for every

, the path of connecting to is a feasible
( )-path as defined above.

We will denote the set of all feasible Steiner trees for net
by and let . Given importance coefficients

for each net , we define for each
tree , .

A. ILP Formulation of GRBB

We begin by defining the routing graph for the
GRBB problem. To allow feasible Steiner trees that meet parity
constraints by using two buffers in the same buffer block, we in-
troduce two distinct vertices, and , corresponding to each
buffer block and define . If

denotes the length of the shortest rectilinear path con-
necting points and and avoiding all given rectangular obsta-
cles, the edge set of is defined by , where

The GRBB problem is then equivalent to the following in-
teger linear program:

(ILP1)

where is the number of occurrences ofin , i.e.,

if
if

In (ILP1), the variable is set to one if the feasible Steiner
tree is routed and to zero otherwise. Constraints of the first
type (corresponding to ) ensure that at most one fea-
sible Steiner tree is routed for each net; constraints of the second
type (corresponding to ) enforce buffer block capacities.

B. ILP Formulation for Multilayer GRBB

The basic version of the GRBB problem imposes iden-
tical bounds on the length of all buffer-to-buffer,
source-to-buffer, and buffer-to-sink wire segments. This is not
appropriate when routing is done in multiple layers, since dif-
ferent layers have different electrical characteristics (unit-wire
resistance and capacitance). In addition, signal sources typi-
cally have nonuniform driving strengths and signal sinks have
nonuniform input capacitances. Thus, an accurate formulation
of the GRBB problem for routing layers must handle:

• layer-dependent lower and upper bounds, ,
, on the length of buffer-to-buffer wire

segments;
• source- and layer-dependentlower and upper bounds,

, , , on the length of
source-to-buffer wire segments;

• sink- and layer-dependentlower and upper bounds,
, , , on the length of

buffer-to-sink wire segments.
These additional parameters are taken into account by appro-

priately modifying the routing graph graph . The
vertex set of remains the same, ,
but we now define , where

s.t.

s.t.

s.t.

Here, denotes the length of the shortest rectilinear path
connecting points and and avoiding all rectangular obstacles
in layer .

The multilayer GRBB problem is then equivalent to (ILP1)
for the modified routing graph .

C. ILP Formulation for GRBB With Set Capacity Constraints

Our basic formulation of the GRBB problem assumes pre-
determined capacities for all buffer blocks. In practice, buffer
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Fig. 1. Two buffer blocks BB1 and BB2 that share capacity; if the circuit
block M moves right, then the capacity of buffer block BB1 is increasing while
the capacity of buffer block BB2 is decreasing. In this example it is the sum
of capacities of BB1 and BB2, rather than their individual capacities, that is
bounded.

blocks are placed in the free space available after compaction,
when some of the circuit blocks can still be moved within certain
limits, thus transferring capacity from a buffer block to neigh-
boring buffer blocks (see Fig. 1). This freedom is captured by
upper bounds on the total capacity of entire sets of buffer blocks,
rather than individual buffer blocks.

Assume that, as the result of compaction, we have identified
subsets of (some of which may consist of a single
buffer block) such that there is a positive upper bound on
the total capacity of each . Assuming further that circuit block
movements are so small compared to the given bounds
that we can ignore changes in buffer block positions, it follows
that the GRBB problem with set-capacity constraints given by

is equivalent to (ILP1) in which the buffer
block capacity constraints are replaced by

D. ILP Formulation for GRBB With Buffer Library

The basic GRBB problem formulation implicitly assumes the
use of a single buffer type. In practice, better use of area and
power resources may be achieved by using more than one type
of buffer. In this section we give an integer program formulation
for the GRBB problem with buffers chosen from a given buffer
library. This version of the problem allows buffered routings of
the nets using any mix of buffers from the given library and also
allows buffers of different types (and hence, of different sizes)
be placed in the same buffer block, up to the capacity of the
block.

Let be the set of buffer types in the library. We assume
to be given the size, , for each buffer type , as
well as lower and upper bounds , ,
respectively , on the length of each wire segment
connecting source to a buffer of type , a buffer of type

to a buffer of type , respectively, a buffer of type to sink
. To ensure that the available buffer block capacity is

optimally distributed between the given buffer types and also

allow feasible Steiner trees that use more than one buffer in the
same buffer block, we introduce vertices corresponding to
each buffer block . Formally, the routing graph
has vertex set and edge
set , where

The GRBB problem with buffer library is then equivalent
to (ILP1) in which the buffer block capacity constraints are re-
placed by

E. The Generalized MTMCF ILP

Note that (ILP1) and its extensions are already strict general-
izations of previous integer edge-capacitated multiterminal mul-
ticommodity flow formulations used for VLSI global routing
[1], [20], since they impose capacities on vertices and/or spe-
cific sets of vertices. In this section we formulate ageneralized
multiterminal multicommodity flow(GMTMCF) ILP which al-
lows: 1) capacities on arbitrary sets of vertices and 2) arbitrary
vertex weights saying how much capacity is used by a tree vis-
iting the vertex, thus capturing all given GRBB formulations.

Given:

• nets , , with importance coefficients ;
• a routing graph for the nets;
• arbitrary sets, , of Steiner trees for each net ;
• a family, , of subsets of , such that for every

;
• a “size” function such that for

every ;
• a “set capacity” function such that

for every ;
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the generalized multiterminal multicommodity flow ILP is as
follows:

(GMTMCF ILP)

where , for every and

for every and .
It is not difficult to see that (ILP1) and its extensions are spe-

cial cases of the GMTMCF ILP. Thus, (ILP1) is obtained with
by including in , besides singleton sets corresponding

to sources and sinks, all sets , and set-
ting . Similarly, the ILP for GRBB with set ca-
pacity constraints is obtained with by including in sin-
gleton sets corresponding to sources and sinks, as well as the
sets , , with .
Finally, the ILP for GRBB with buffer library is obtained for a
family containing singleton sets corresponding to sources and
sinks together with the sets , , for
which . In this case, if is a source or a
sink and if .

III. A PPROXIMATING THEGMTMCF LP RELAXATION

Our two-step approach to the GRBB problem and its ex-
tensions is to: 1) solve the fractional relaxations obtained by
replacing integrality constraints with
and then 2) use randomized rounding to get integer solutions.
In this section we give an algorithm for approximating within
any desired accuracy the fractional relaxation of the GMTMCF
ILP. The algorithm relies on a subroutine for finding minimum
weight feasible Steiner trees; the details of this subroutine are
given in Section IV.

The fractional relaxation of the GMTMCF ILP, which will
be referred to here as thegeneralized multiterminal multicom-
modity flow linear program(GMTMCF LP),4 can be solved
exactly in polynomial time using, e.g., the ellipsoid algorithm.
However, exact algorithms are highly impractical. On the other
hand, the GMTMCF LP is apacking LPand can thus be effi-
ciently approximated within any desired accuracy using the re-
cent combinatorial algorithm of Garg and Könemann [10]. In
this section we give a significantly faster approximation algo-
rithm based on a speedup idea originally proposed by Fleis-
cher [9] for approximating the maximum edge-capacitated mul-
ticommodity flow (MCF).

A. The Algorithm

Our algorithm simultaneously finds feasible solutions
to the GMTMCF LP and itsdual linear program. The
dual LP asks for an assignment of nonnegative weights

to every such that the weight of every tree

4The relaxation of the GMTMCF ILP is referred to asseparable packing LP
in [8].

is at least 1, where the weight of is defined by

(GMTMCF Dual)

In the following we assume that
(this can be easily achieved by scaling) and denote

by .
The algorithm (Fig. 2) starts with weights for

every , where is an appropriately chosen constant and
with a GMTMCF LP solution . While there is a feasible
tree whose weight is less than 1, the algorithm selects such a
tree and increments by 1. This increase will likely violate
the capacity constraints for some of the sets in; feasibility is
achieved at the end of the algorithm by uniformly scaling down
all s. Whenever is incremented, the algorithm also updates
each weight by multiplying it with ( ),
for a fixed .

According to the Garg and Könemann’s approximation algo-
rithm [10], each iteration must increment the variablecorre-
sponding to a tree with minimum weight among all trees in.
Finding this tree essentially requires minimum-weight fea-
sible Steiner tree computations, one for each net. We reduce
the total number of minimum-weight feasible Steiner tree com-
putations during the algorithm by extending a speedup idea due
to Fleischer [9]. Instead of always finding the minimum-weight
tree in , the idea is to settle for trees with weight within a factor
of ( ) of the minimum-weight. This speeds up the computa-
tion since multiple variables can now be incremented, pos-
sibly more than once each, in a single iteration. As shown in
next section, the faster algorithm still leads to an approximation
guarantee similar to that of Garg and Könemann.

B. Runtime and Performance Analysis

In each iteration the algorithm cycles through all nets. For
each net, the algorithm repeatedly computes minimum-weight
feasible Steiner tree until the weight becomes larger than
( ) times a lower-bound on the overall minimum weight,

. The lower-bound is initially set
to and then multiplied by a factor of ( ) from one
iteration to another (note that no tree inhas weight smaller
than at the end of an iteration, so is a valid
lower bound for the next iteration).

The scheme used for updatingfully determines the number
of iterations in the outer loop of the algorithm. Note that the
lower-bound is at most ( ) in the last iteration (since it
increases by a factor of ( ) each time and in the iteration be-
fore the last there is at least one tree of weight less than 1). Thus,
since in the first iteration, the number of increases of

is no larger than and the final value of is
.

The two main loops of the algorithm (onand on ) are both
repeated a fixed number of times, and ,
respectively. However, this does not immediately determine the
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Fig. 2. The algorithm for finding approximate solutions to the GMTMCF LP.

runtime of the algorithm because of the variable number of it-
erations in the inner while loop. The following lemma gives an
upper bound on the runtime.

Lemma 1: Overall, the algorithm in Fig. 2 requires
minimum-weight feasible Steiner

tree computations.
Proof: First, note that the number of minimum-weight

feasible Steiner tree computations that do not contribute to
the final fractional solution is . Indeed,
in each iteration and for each net , there is exactly one
minimum-weight feasible Steiner tree computation revealing
that , all other computations
trigger the incrementation of some .

We claim that the number of minimum-weight Steiner
trees that lead to variable incrementations is at most

. To see this, note that the weight of
the set is updated whenever a variable, is
incremented. Moreover, is last updated when incre-
menting for a tree of weight less than one. Thus,
before the last update, . Since

, the weight of is multiplied by
a factor of in each update, including the last one. This
implies that the final value of is at most .
Recalling that is initially set to , this gives that the
number of updates to is at most .
The lemma follows by summing this upper bound over all nets.

Lemma 2: The algorithm in Fig. 2 computes a feasible solu-
tion to the GMTMCF LP.

Proof: We need to show that the values returned by the
algorithm satisfy the inequality

for every . Consider an arbitrary set . Every time
the variable is incremented by one unit, the weight of
is also increased by a factor of ( ), where

. Using that for , we get
that every sequence of updates with increases the
weight of by a factor of at least

Let . Since the initial weight of is ,
from the previous inequality we get that the final weight of
is at least .

Now, the last update of is done when incrementing
for a tree of weight less than one. Thus, the weight of
is at most before last update and at most

after. Combining this upper bound on the final weight
of with the lower bound above gives that

, i.e.,

Finally, we show that, for an appropriate value of the param-
eter , the feasible solution found by the algorithm is close to
optimum.

Theorem 1: For every , the algorithm in Fig. 2 com-
putes a feasible solution to the GMTMCF LP within a factor
of of optimum by choosing

; the runtime of the algorithm for this value of
is . Here, is the maximum
number of vertices in a feasible tree and is the time re-
quired to compute the minimum weight feasible Steiner tree for
a net.

Proof: Our proof is an adaptation of the proofs of Garg
and Könemann [10] and Fleischer [9]. We show that the solution
computed by the algorithm is within a factor of of the
optimum objective value,, of the dual LP. The claimed approx-
imation guarantee follows, since, by LP duality theory,is an
upper bound on the optimum objective value of the GMTMCF
LP.

Let be the weight of a minimum weight tree from
with respect to weight function and let

. A standard scaling argument shows that the
dual LP is equivalent to finding a weight functionsuch that

is minimum and that .
For every , let be the weight of set at the end

of the th iteration and be the initial weight of set
. For brevity, we will denote and by and

, respectively. Furthermore, let be the value of at the
end of th iteration and be the objective
value of the GMTMCF LP at the end of this iteration.

When the algorithm increments by one unit, each weight
is increased by ( ). Thus, the incre-

mentation of increases by
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If this update takes place in theth iteration, then
. Adding this over all s incremented inth

iteration gives

which implies that

Consider the weight function and notice that
. Since the minimum weight tree w.r.t.

weight function has a weight of at most
w.r.t. , . Hence, if ,
then

Thus, in any case (when this follows trivially)
we have

Note that, for each fixed, the right-hand side of last inequality
is maximized by setting to its maximum possible value,
say , for every . Then, the maximum value of

is

where the last inequality uses that for every .
Using that , this gives

Let be the last iteration of the algorithm. Since

and thus

Let be the ratio between the
optimum dual objective value and the objective value of

the GMTMCF LP solution produced by the algorithm. By
substituting the previous bound on we obtain

For

and thus

Here we use the fact that (by Taylor
series expansion of around the origin). The proof of the
approximation guarantee is completed by observing that

for every . The runtime follows
by substituting in the bound given by Lemma 1.

IV. COMPUTING MINIMUM -WEIGHT FEASIBLE STEINER TREES

The key subroutine of the approximation algorithm given
in the previous section is to compute, for a fixedand
given weights , , a feasible tree min-
imizing . Define
a weight function on the vertices of the routing graph

by setting and
let be the total vertex weight w.r.t.

of . Then and the problem reduces to
finding a tree with minimum total vertex weight w.r.t.

.
Recall that for the GRBB problem and its extensions,con-

tains all Steiner trees connecting the sourcewith the sinks
such that the number of intermediate vertices on

each tree path between and has the parity specified by
and does not exceed. In this case we can further reduce

the problem of finding the tree minimizing to
theminimum-cost directed rooted Steiner tree(DRST) problem
in a directed acyclic graph , defined as follows. Let

and . Then

and , where

mod

Fig. 3 shows the routing graph and the diagraph corre-
sponding to a net with source and a single sink ,
for which and . In this example there are only
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Fig. 3. (a) Routing graph with three buffer blocks and (b) the correponding
diagraphD .

two feasible buffered routings (i.e., directed- paths in
): one is using two buffers in block, the other one uses one

buffer in block and one buffer in block.
For a given directed graph with costs on arcs,

a specified root , and a set of terminals , the
directed rooted Steiner tree problem asks to find the minimum
cost arborescence rooted atand spanning all the vertices in
(in other words should have a directed path to every vertex in

). It is easy to see that finding a feasible Steiner tree
with minimum reduces to finding a minimum cost DRST
in after assigning to each arc entering vertex, ,

, a cost of and to each arc entering sink,
, a cost of .

Unfortunately, the minimum-cost DRST problem is NP-hard
and the fact that is acyclic does not help since there is a
simple reduction for this problem from arbitrary directed graphs
to acyclic graphs. As far as we know, the best result for the
DRST problem, due to Charikaret al. [3], gives -ap-
proximate solutions in quasipolynomial time . Note,
on the other hand, that the minimum-cost DRST can be found in
polynomial time for small nets (e.g., in time for nets
with at most sinks, for , 3, 4). Theorem 1 immediately
gives the following.

Corollary 1: If the maximum net size is , the algo-
rithm in Fig. 2 finds, for every , a feasible solution to
the GMTMCF LP within a factor of of optimum in
time .

Since most of the nets in real designs have small size, Corol-
lary 1 justifies the following practical strategy for finding ap-
proximate solutions to the GMTMCF LP: decompose nets with
more than four pins into nets with two to four pins, then apply
the approximation algorithm in Fig. 2. Another heuristic ap-
proach to speedup the computation, used by Albrecht [1] for
edge-capacitated MTMCF approximation, is to compute (ex-
actly or approximately) a DRST once, then use in each of the
following iterations minimum directed spanning trees (with re-

Fig. 4. Randomized GMTMCF rounding algorithm.

Fig. 5. Random walk-based GMTMCF rounding algorithm.

spect to the updated edge lengths) in the directed acyclic graph
induced by in the metric closure
of , where are the Steiner points of the original
DRST. To find a minimum spanning directed tree in directed
acyclic graphs, one can use a very simple procedure: for each
vertex choose a shortest incoming arc, then, after running this
procedure, recursively delete all leaves that are not sinks of the
net .

We have implemented both heuristics that use approximate
DRSTs instead of optimum DRSTs and heuristics based on
two-, three-, respectively four-pin decompositions; results
of experiments comparing these approaches are reported in
Section VII.

V. ROUNDING THE FRACTIONAL GMTMCF

In the previous two sections we presented an algorithm for
computing near-optimal solutions to the GMTMCF LP. In
this section we give two algorithms based on the randomized
rounding technique of Raghavan and Thomson [19] (see
also [15]) for converting near-optimal fractional GMTMCF
solutions to near-optimal integer GMTMCF solutions, i.e., to
near optimal buffered routings.

The first algorithm is given in Fig. 4. Since the algorithm
routes net with probability , it follows that,
on the average, the total importance of the nets routed by the al-
gorithm is . By Theorem 1, this is
within a factor of of the optimum GMTMCF LP solu-
tion, which in turn is an upper bound on the optimum GMTMCF
ILP solution.

A potential drawback of the first rounding algorithm is that
it requires the explicit representation of trees with

. Although the approximate GMTMCF algorithm
produces a polynomial number of trees with nonzero,
storing all such trees is infeasible for large problem instances.
Our second rounding algorithm (Fig. 5) takes as input the
net and edgecumulatedGMTMCF values, ,
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respectively , thus using
space. Note that the GMTMCF algorithm in Fig. 2 can be
easily modified to compute these cumulated GMTMCF values
instead of s.

Our second rounding algorithm routes net
with the same probability as the first rounding

algorithm and thus, as argued above, the total importance of the
routed nets is within a factor of of optimum. The
difference is in how each chosen net is routed: to route net,
the algorithm performsbackward random walksfrom each sink
of until reaching either the source or a vertex already
connected to the source. The random walks are performed in
the directed acyclic graphs , with probabilities given by the
normalized values.

Ensuring that no set capacity is exceeded can be accom-
plished in two ways. One approach is to solve the GMTMCF
LP with set capacities scaled down by a small factor; this
guarantees that the rounded solution meets theoriginal capac-
ities with very high probability (see [15] for an application of
this approach to VLSI global routing). A simpler approach,
extending the so-calledgreedy-deletion algorithm[6] to multi-
terminal nets, is to repeatedly drop routed nets passing through
overused sets until feasibility is achieved. We implement a
modified version of the greedy-deletion algorithm in which,
instead of dropping an entire tree, we drop only the sinks using
paths through over-used sets.

VI. I MPLEMENTED ALGORITHMS

In this section we describe the implemented algorithms for
the GRBB problem.

Greedy Routing Algorithms:We have implemented four
greedy algorithms for the GRBB problem, all of them based on
the generic greedy routing algorithm given in Fig. 6. All four
greedy algorithms route nets sequentially. For a given net, the
algorithms start with a tree containing only the net’s source,
then iteratively add shortest paths from each sink to the already
constructed tree. The only difference is in whether or not net
decomposition is used and in the size of the decomposed nets.
The first three algorithms—referred to as 2TG, 3TG, and 4TG,
respectively—start by decomposing larger multiterminal nets
into two-, three-, respectively, four-pin nets and then apply the
algorithm in Fig. 6 to this decomposition.5 The fourth algo-
rithm—which we refer to as MTG—is simply the algorithm in
Fig. 6 applied to the original (undecomposed) nets.

GMTMCF Rounding Algorithms:We have implemented
four GMTMCF rounding algorithms, all of them based on
the generic schema given in Fig. 7. The first three algo-
rithms—referred to as G2TMCF, G3TMCF, and G4TMCF,
respectively—start by decomposing larger multiterminal nets
into two-, three-, respectively, four-pin nets and then apply the
generic GMTMCF routing algorithm to this decomposition.
Since the optimum DRST can be efficiently computed for nets
of these sizes, the three algorithms do not need to resort to the

5We remark that 2TG is essentially the algorithm suggested in [5], except that
in [5] shortest paths are computed in the forward direction, from sources toward
sinks and not from sinks toward sources as in Fig. 6. It has been experimentally
observed [7] that backward shortest paths give slightly better results than for-
ward shortest paths.

Fig. 6. The generic greedy routing algorithm.

Fig. 7. The generic GMTMCF-based routing algorithm.

TABLE I
INSTANCE PARAMETERS

DRST approximations suggested at the end of Section IV. The
fourth algorithm—henceforth referred to as GMTMCF—ap-
plies the flow rounding schema in Fig. 7 to the undecomposed
nets, using shortest path trees as approximate DRSTs in the
GMTMCF approximation step.

VII. I MPLEMENTATION EXPERIENCE

All experiments were conducted on an SGI Origin 2000 with
16 195 MHz MIPS R10000 processors (only one of which is
actually used by the sequential implementations included in our
comparison) and 4 G-Bytes of internal memory, running under
IRIX 6.4 IP27. Timing was performed using low-level Unix in-
terval timers, under similar load conditions for all experiments.
All algorithms were coded in C and compiled using version
egcs-2.91.66 with 4 optimization.

The six test cases used in our experiments were extracted
from the next-generation (as of January 2000) microprocessor
chip at SGI. We used an optimized floorplan of the circuit blocks
and also optimized the location of the source/sink pin locations
based on coarse timing budgets. We used m and
varied between 500 and 2000m. The upper bounds on the
number of buffers on paths from sourcesto sinks were
computed with the formula . In all test
cases considered, the number of nets was large (up to 5000) and
the number of buffer blocks small (50), with relatively large ca-
pacity (200–400 buffers per block); such values are typical for
this application. Table I summarizes the parameters for the six
test cases.
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TABLE II
PERCENT OFSINKS CONNECTED (BOLDFACE) AND CPU TIME FOR

ALGORITHMS BASED ON TWO-PIN DECOMPOSITION

TABLE III
PERCENT OFSINKS CONNECTED (BOLDFACE) AND CPU TIME FOR

ALGORITHMS BASED ON THREE-PIN DECOMPOSITION

Tables II–V give the number of routed sinks and the runtime
on the six test cases for each implemented algorithm. The re-
sults clearly demonstrate the high quality of solutions obtained
by flow rounding methods. When applied to identical decompo-
sitions, flow-based methods yield improvements of 5%–9% in
the number of connected sinks over the corresponding greedy
algorithm. In fact, significant improvement over the best of the
greedy methods is possible even with a very small increase in
runtime, proof that even very coarse MCF/MTMCF approxima-
tions give helpful hints to the randomized rounding procedure.

Furthermore, the experimental results show that even a lim-
ited use of multiterminal nets (decomposition into nets of size 3
or 4) gives improvements over the already very high-quality so-
lutions found by the flow-rounding algorithm based on two-pin
decompositions. More importantly, these improvements are ob-
served even when the same time budget is given to the com-
pared algorithms. To facilitate such a comparison, Fig. 8 plots
the solution quality versus the CPU time (in seconds, excluding
I/O and memory allocation) of each algorithm when run on test
case i1. The GMTMCF algorithm proves to be the best among
all flow algorithms when the time budget is limited, providing
significant improvements over greedy algorithms without undue
runtime penalty. However, the best convergence to the optimum
is achieved by G4TMCF, which dominates all other algorithms
when high time budgets are allowed.

Table VI gives the amount of routing resources (buffers and
wire area) used by each algorithm on test case i1. As expected,
the amount of routing resources is higher for the algorithms with
higher completion rates. In fact, even when normalizing by the

TABLE IV
PERCENT OFSINKS CONNECTED (BOLDFACE) AND CPU TIME FOR

ALGORITHMS BASED ON FOUR-PIN DECOMPOSITION

TABLE V
PERCENT OFSINKS CONNECTED (BOLDFACE) AND CPU TIME FOR

ALGORITHMS OPERATING ONUNDECOMPOSEDNETS

number of connected sinks, the resource usage is slightly higher
for these algorithms. This is at least partly explained by the fact
that higher completion rates can only be achieved by routing a
larger percentage of “difficult” nets, which may otherwise be ig-
nored. Note for example the increase in wirelength and average
number of buffers per routed sink for the MTG algorithm when
the completion rate is boosted by increasing buffer block capac-
ities (columns MTG and MTG in Table VI).

VIII. C ONCLUSION AND FUTURE DIRECTIONS

In this paper, we addressed the problem of how to perform
buffering of globalmultiterminalnets given an existing buffer
block plan. We gave a provably good algorithm based on a novel
approach to GMTMCF approximation inspired by recent re-
sults due to Garg and Könemann [10] and Fleischer [9]. Our
GMTMCF algorithm outperforms existing algorithms for the
problem [5] and has been validated on top-level layouts ex-
tracted from a recent high-end microprocessor design.

Ongoing work is aimed at increasing the space of method-
ologies to which our new techniques apply. As presented here,
our work is clearly targeted to very early global wireplanning
activity. In other words, the application domain is presynthesis
chip planning: prescribed repeater intervals are driven only by
coarse estimates of Miller coupling factors, repeater sizing, and
source impedance or sink capacitance. The presented formula-
tion also does not address timing criticalities or budgets except
via net weighting; this is fortunately fairly common for initial
wireplanning that breaks the “chicken-egg” problem of bud-
geting between-block and within-block paths in presynthesis



DRAGAN et al.: GLOBAL BUFFERING BY MULTITERMINAL MULTICOMMODITY FLOW APPROXIMATION 273

Fig. 8. Percent of sinks connected versus CPU time on test case i1.

TABLE VI
USAGE OFROUTING RESOURCES ONTEST CASE I1 (6038 SINKS TOTAL). THE MTG COLUMN GIVES RESOURCEUSAGE FOR THEMTG

ALGORITHM WHEN RUN WITH INFINITY CAPACITY FOR EACH BUFFERBLOCK

RTL planning with aggressive global wire optimization.6 We
are presently extending our approach to achieve better handling
of timing criticality and budgets by improved use of net ordering
and weighting during rounding and post-processing of the solu-
tion to eliminate unneeded repeaters.

Further, we seek practical algorithms for handling routing
congestion, i.e., simultaneously enforcing buffer blockand
channel capacities. By inserting “virtual” nodes corresponding
to channels, the problem becomes a generalized type of integer
GMTMCF in a vertex capacitated graph. However, computing
minimum-weight feasible Steiner trees in this graph now en-
tails finding minimum-weightlength-restrictedpaths between
buffer blocks. Although the latter problem is NP-hard, it can be
approximated arbitrary close [11], [18] and it is still possible to
apply our GMTMCF schema.

Finally, we note that actual applications would likely iterate
the GRBB solution with incremental modification of buffer
block locations, pin placements, and both channel and buffer
block capacities. Adapting the GMTMCF approach and its
runtime/quality profile for use in an iterative environment is

6In other words, maximal repeater insertion allows maximum timing bud-
gets for within-block timing paths and this permits blocks to go through syn-
thesis, place and route with more aggressive area targets. A strategy of uniform
buffering of as many global nets as possible also helps control signal integrity
and delay uncertainty problems.

challenging and is the subject of ongoing collaboration with
industry.
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