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Provably Good Global Buffering by Generalized
Multiterminal Multicommodity Flow Approximation

Feodor F. Dragan, Andrew B. Kahng, lon |.addoiu, Sudhakar Muddu, and Alexander Zelikovsky

_Abstract—To implement high-performance global interconnect  signal delay. Estimates of the need for repeater insertion range
without impacting the placement and performance of existing up to 1¢ repeaters for top-level on-chip interconnect when we
blocks, the use of buffer blocks is becoming increasingly popular reach the 50-nm technology node. These repeaters are large

in structured-custom and block-based application specified inte- . . .
grated circuit methodologies. Recent works by Conget al. (1999) (anywhere from 4G« to 200x minimum inverter size), affect

and Tang and Wong (2000) give algorithms to solve théuffer ~global routing congestion, can entail nonstandard cell height
block planning problem. In this paper, we address the problem of and special power routing requirements, and can act as noise
how to perform the buffering of global multiterminal nets given  sources. In block- or reuse-based methodology, designers seek

an existing buffer block plan We give provably good and heuristic 1, jsgjate repeaters for global interconnect from individual
algorithms for this problem based on a recent approach of Garg

and Kénemann (1998) and Fleischer (1999) [see also AIbrechtblOCk implementations. .
(2000)]. Our method routes connections using available buffer ~ For these reasonspaffer blockmethodology has become in-

blocks, such that required upper and lower bounds on buffer creasingly popular in structured-custom and block-based appli-
intervals are satisfied. In addition, our algorithms allow more than  cation specified integrated circuit (ASIC) methodologies. Two
one buffer to be inserted into any given connection and observe recent works by Conet al. [5] and Tang and Wong [22] give

upper bounds and parity constraints on the number of buffers . ) .
per connection. Most importantly, and unlike previous works on algorithms to solve théuffer block planningoroblem. Their

the problem [Cong et al. (1999); Tang and Wong (2000)], we take buffer block planning formulation is roughly stated as follows:
into account: 1) multiterminal nets; 2) multiple routing layers; ~ Given a placement of circuit blocks and a set of two-pin connec-
3) simultaneous buffered routing and compaction; and 4) buffer tions withfeasible regionsor buffer insertior?, plan the location

libraries. Our method outperforms existing algorithms for the ¢ 1y jter plockswithin the available free space so as to route a
problem [see Conget al. (1999)], based on two-pin decompositions . .
maximum number of connections.

of the nets, and has been validated on top-level layouts extracted ;
from a recent high-end microprocessor design. In this paper, we address the problem of how to perform

buffering of global netgjiven an existing buffer block plan
(Hence, our work is compatible with and complements the
methods in [5] and [22].) We give a provably good algorithm
based on a recent approach of Garg and Kénemann [10] and
. INTRODUCTION Fleischer [9]. Our method routes the nets using the available
ERY LARGE scale integration (VLSI) process scalinduffer blocks, such that required upper and lower bounds on
leads to an increasingly dominant effect of interconneotpeater intervals—as well as length upper bounds per connec-
on high-end chip performance. Each top-level global net mugin—are satisfied.Our algorithm allows more than one buffer
undergo repeater insertion (among other optimizations; seebe inserted into any given connection and observes upper
[4], [14], and [17]) to maintain signal integrity and reasonablbounds on the number of buffers per connection. In addition,
our algorithm observeepeater parity constraintd.e., it will
choose the number of inverters in any routing path according to
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« a set of nets in the region, each net having: We give integer linear program (ILP) formulations for the
— a single source and multiple sinks; basic GRBB problem and its extensions; these formulations
— anonnegative importance (criticality) coefficient;  generalize the vertex-capacitated integaultiterminal multi-

« each sink having: commodity flon(MTMCF) problem. The main contribution of

— a parity requirement, which specifies the requirethe paper is a provably good algorithm for these generalizations
parity of the number of buffers (inverters) on the patbf the MTMCF problem. Prior to our work, heuristics based
connecting it to the source; on solving fractional relaxations of integer multicommodity

— atiming-driven requirement, which specifies the maxfflow formulations have been applied to VLSI global routing
imum number of buffers on the path to the source; [1], [2], [12], [16], [21]. As noted in [15], the applicability of

« a set of buffer blocks, each with given capacity; this approach is limited to problem instances of relatively small
« an interval [, /] specifying lower and upper bounds orsize by the prohibitive cost of solving exactly the fractional
the distance between buffers. relaxation. As in the recent work of Albrecht [1], we avoid this

Global Routing via Buffer Blocks (GRBB) ProblerRoute a limitation by using an approximation algorithm for solving the

subset of the given nets, with maximum total importance, sulfgctional relaxations. The approximation algorithm can find
that: solutions within any desired accuracy; an important feature of

) . _the algorithm is that it allows for a smooth tradeoff between
* the distance between the source of a route and its fifghtime and solution accuracy. Our experiments indicate that

repeater, between any two consecutive repeaters, resp&gs, jow accuracy fractional solutions give good final solutions
tively, between the last repeater on a route, and the routgss the GRBB problem after rounding.

sink, are all betweed andU; _ The most interesting feature of our algorithm is its ability to
* the number of trees passing through any given buffer blogl, i \ith multiterminalnets. Note that our problem formulation
does not exceed the block’s capacity; addresses only the partitioning of long lines, although in the case
* the number of buffers on each source-to-sink path does Rt itinin nets buffers can also be used for decoupling off-path
exceed the given upper bound and has the required parjty,,citance. Thus, the constraints on the number of buffers on
to meet the parity constraint two buffers of the same block, 06 t_sink paths are less correlated to the real timing require-
can be used. _ ments of multipin nets. However, we believe that this limitation
If possible, the optimum solution to the GRBB problem sipt oy model could be corrected by post-process fine tuning. Ex-
multaneously routes all the nets. Otherwise, it maximizes thgriments on top-level layouts extracted from a recent high-end
sum of the importance coefficients over routed nets. The ificroprocessor design validate our algorithms and indicate that
portance coefficients can be used to model various practical (Ptbsignificantly outperforms existing algorithms for the problem
jectives. For example, importance coefficients of 1 for each rlgt] [22] which are based on two-pin decompositions.
correspond to maximizing the number of routed nets and impor-The rest of the paper is organized as follows. In Section I

tance coefficients equal to the number of sinks of the net corige give ILP formulations for the GRBB problem and its exten-

spond to maximizing the numper of con.nected sinks. . sions and introduce a common generalization of these ILPs, re-
We also consider the following extensions of the basic GRBRrred to as thgeneralized multiterminal multicommodity flow
problem. (GMTMCF) ILP. The fractional relaxation of the GMTMCF

« Multilayer GRBB:The basic GRBB formulation imposeslLP is a special type gfacking LPand can thus be approximated
the same./U bounds on the length of all buffer-to-buffer,within any desired accuracy using the algorithm of Garg and
source-to-buffer, and buffer-to-sink wire segments. TH&Gnemann [10]. In Section Il we give a significantly faster ap-
multilayer GRBB problemaccounts for the different proximation algorithm, obtained by extending a speed-up idea
electrical characteristics (unit-wire resistance and céue to Fleischer [9] to this special type of packing LPs. We give
pacitance) of different routing layers and takes intthe details of a key subroutine of the algorithm—finding min-
consideration nonuniform source driving strengths arithum-weight feasible Steiner trees—in Section IV and present
sink input capacitances. algorithms for rounding near-optimal fractional GMTMCF so-

« GRBB With Set Capacity Constrainfhe basic GRBB lutions to near-optimal integral solutions in Section V. In Sec-
problem assumes predetermined capacities for all buffé@n VI, we describe implementations of several GRBB heuris-
blocks. In practice, there is some freedom for transferririifs, some based on rounding approximate fractional GMTMCF
capacity from a buffer block to neighboring buffer block$olutions and some based on less sophisticated greedy ideas;
by translating circuit blocks. ThR@RBB problem with set Section VIl gives the results of experiments comparing these
capacity constraintsaptures this freedom by allowingheuristics on test cases extracted from the top-level layout of
constraints on the total capacity sétsof buffer blocks, @ recent high-end microprocessor. Finally, we conclude in Sec-
instead of only constraining individual buffer blocks.  tion VIl with a list of future research directions.

« GRBB With Buffer Library:To achieve better use of
area and power resources, multiple buffer types can be
used. TheGRBB problem with buffer librarpptimally
distributes the available buffer block capacity between Throughout this paper we leV, = (sg;ti,...,t0),
given buffer types and simultaneously finds optimurk = 1,...,K denote the nets to be routesj; is the source
buffered routings. andt;, ..., t%* are thesinksof net N,. We denote by, > 1

Il. INTEGERLINEAR PROGRAM FORMULATIONS
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the importance (criticality) coefficient of nefVi, and by wherenrr(v)isthe number of occurrencesoin T, i.e.,
ai, € {even,odd andli > 0 the prescribed parity, respec-

tively upper bound on the number of buffers on the path 7r(v) = {0’ !f veET

between source;, and sink:. LetalsoS = {si,...,sx} and 1, ifvel

S" = {tf,...,tI', ... th.....t1} denote the set of sources, |n (ILP1), the variablefy is set to one if the feasible Steiner
respectively, of sinks an&t = {r;,...,r,} denote the given treeT is routed and to zero otherwise. Constraints of the first

set ofbuffer blocksFor each buffer block;, we letc(r;) denote  type (corresponding to € S U S’) ensure that at most one fea-
its capacity, i.e., the maximum number of buffers that can k¢ple Steiner tree is routed for each net; constraints of the second
inserted inv;. type (corresponding te € R) enforce buffer block capacities.
A routing graphfor netsiNy, k= 1,..., K, is an undirected
graphG = (V, E) suchthalSus’ C V. The setof verticesaff  B. ILP Formulation for Multilayer GRBB

other than sources and sinks) (SUS’), is denoted by’. Spe-  The pasic version of the GRBB problem imposes iden-
cific routing graphs are defined in the following sections for thgcal 1./i7 bounds on the length of all buffer-to-buffer,
GRBB problem and each of its extensions. All vertices in theggrce-to-buffer, and buffer-to-sink wire segments. This is not
routing graphs have associated locations on the chip, i”d“dié‘;gpropriate when routing is done in multiple layers, since dif-
those inV” which are associated with buffer block locationsgerent layers have different electrical characteristics (unit-wire
The edges are defined according to the spedifi¢/ bounds resjstance and capacitance). In addition, signal sources typi-
imposed by each problem. Thus, every Steiner tre@ &uto- ca|ly have nonuniform driving strengths and signal sinks have
matically satisfies the giveh/U bounds assuming that a bufferonuniform input capacitances. Thus, an accurate formulation
is inserted at each Steiner point. To ensure that upper bound gpghe GRBB problem for > 1 routing layers must handle:

parity constraints on the number of buf_fers on source-to-sink layer-dependent lower and upper bounds,L; /U,
paths are met as well, we need to restrict the set of allowable .

. 1,...,2, on the length of buffer-to-buffer wire
Steiner trees as follows. segments;
Apathp = (sg,v1,02,..., 0, £,), cONnecting sourcey, to « source- and layer-dependetawer and upper bounds,
sink ¢}, in routing graph(, is afeasible(sy, ¢} )-pathif LU s € S, i = 1 2, on the length of
*v; €V’ foreachi =1,....0; source-to-buffer wire segments;
« the parity ofl is a;; « sink- and layer-dependeniower and upper bounds,
NY® LU, t € S, i = 1,...,2 on the length of
A feasible Steiner tredor net N, is a Steiner treel}, in buffer-to-sink wire segments.
G connecting terminals;k,t,ﬁ,...,th" such that, for every  These additional parameters are taken into account by appro-
¢ = 1,...,q, the path off}, connectings;, to ¢}, is a feasible priately modifying the routing graph graghl = (V, E). The
(sx,t3,)-path as defined above. vertex set of? remains the sam&, = SUS'U{+',+" : r € R},
We will denote the set of all feasible Steiner trees forNgt but we now defines = E, U F; U E» U E3, where
by 7;, and let7 = i‘lek. Given importance coefficients

a = g(Ny) for each netV,, we defineg(T") = ¢ for each Eo={(",7") |r € R}
treeT € T,k =1,..., K. E, :{(877),)7(877),,) |seSreR,
A. ILP Formulation of GRBB

We begin by defining the routing gragh = (V, E) for the
GRBB problem. To allow feasible Steiner trees that meet parity . ., Y Y
constraints by using two buffers in the same buffer block, we in£2 ={(7’1 o9), (1 ry) (rfsre) (1, r3) | rre € R,
troduce two distinct vertices; andr”, corresponding to each
buffer block» and defineV" = S U S U {+',»" | r € R}. If ri#re, e {l,...,z} st.L; <di(ri,re) < w}
d(x,y) denotes the length of the shortest rectilinear path con-
necting pointsc andy gnd ayoiding all given rectangular obsta- Es=¢("t),(r"t) |[re Rite &,
cles, the edge set @f is defined byF = Ey U E1, where

Eo ={(+',7") |7 € R} e {l,...,z} st.LE <di(rt) < U;}.
Ey ={(z,y) | v,y € V,L < d(x,y) < U}.

The GRBB problem is then equivalent to the following in_Here,di(_x,y) d_enotes the Iength qf the shortest rectilinear path
teger linear program: connecting points andy and avoiding all rectangular obstacles

Jie{l,...,z}st.L] <d(s,r) < Uf}

in layeri.
maximize Xrcrg(T)fr (ILP1) Trile multilayer GRBB problem is then equivalent to (ILP1)
subject to for the modified routing graph.
Erermr(v)fr <1, Yve SuS’ C. ILP Formulation for GRBB With Set Capacity Constraints
Yrer (np(r) + (")) fr < elr),  ¥r € R Qur basic formulation of the GRBB problem assumes pre-

fr €40,1}, vileT determined capacities for all buffer blocks. In practice, buffer
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allow feasible Steiner trees that use more than one buffer in the
same buffer block, we introdu@B| vertices corresponding to
each buffer block:. Formally, the routing grapli = (V, E)

has vertexset’ = S U S U {r;,r/ | » € R, b € B} and edge
setF = FyU E1 U Ey U E3 U Ey, where

Eo :{m,r:ﬁ) E eR,beB}

El :{ (Tl/)l ? 7)3/)2) ? (7)3/)1 ? 7)3/)/2) ? (7)1/)/1 ? Tll)z) ?

Fig. 1. Two buffer blocks BB1 and BB2 that share capacity; if the circuit (7’2’1,7‘2/2) |7 € R, by,bs € B by # bg}
block M moves right, then the capacity of buffer block BB1 is increasing while

the capacity of buffer block BB2 is decreasing. In this example it is the sum

of capacities of BB1 and BB2, rather than their individual capacities, that is E, z{(s, ) .(s,77) | s€S,r € RbE B,
bounded.

LED < d(s,r) < U(s,w}
blocks are placed in the free space available after compaction,
when some of the circuit blocks can still be moved withincertain -~ g, _ { s S g
.. . . . 3 — Tp»4d s (T s (T )
limits, thus transferring capacity from a buffer block to neigh- (b ) (b ) (7, 5.)

boring buffer blocks (see Fig. 1). This freedom is captured by (75 ap,) |7.q € Rr # q,b1,by € B,

upper bounds on the total capacity of entire sets of buffer blocks,

rather than individual buffer blocks. L) < d(r,q) < U(bl’bZ)}
Assume that, as the result of compaction, we have identified

subsetdy, . .., R, of R (some of which may consist of a single E, :{(rg,t) (g, t) |[re Ribe Bite S,

buffer block) such that there is a positive upper bouf¥; ) on

the total capacity of each;. Assuming further that circuit block LY < dr,t) < U(b,t)}_

movements are so small compared to the giZg® bounds

that we can ignore changes in buffer block positions, it follows ] ) ) )
that the GRBB problem with set-capacity constraints given By'¢ GRBB problem with buffer libran/3 is then equivalent
¢(Ry),....c(R,) is equivalent to (ILP1) in which the buffer to (ILP1) in which the buffer block capacity constraints are re-

block capacity constraints are replaced by placed by
N o iz < .
5 (5 o) s, 3 (X tr i+ matety ety < 0,
Te7T \reR;
’ Vr € R.
Vie{l... ph e

E. The Generalized MTMCF ILP

D. ILP Formulation for GRBB With Buffer Library Note that (ILP1) and its extensions are already strict general-
The basic GRBB problem formulation implicitly assumes thiZations of previous integer edge-capacitated multiterminal mul-

use of a single buffer type. In practice, better use of area afgpmmodity flow formulations used for VLSI global routing

power resources may be achieved by using more than one t{fke [20], since they impose capacities on vertices and/or spe-

of buffer. In this section we give an integer program formulatio@ific sets of vertices. In this section we formulatgeneralized

for the GRBB problem with buffers chosen from a given buffeinultiterminal multicommodity floylGMTMCF) ILP which al-

library. This version of the problem allows buffered routings dPws: 1) capacities on arbitrary sets of vertices and 2) arbitrary

the nets using any mix of buffers from the given library and als¢ertex weights saying how much capacity is used by a tree vis-

allows buffers of different types (and hence, of different size#jng the vertex, thus capturing all given GRBB formulations.

be placed in the same buffer block, up to the capacity of theGiven:

block. * netsV., k£ = 1,..., K, with importance coefficients;;
Let B be the set of buffer types in the library. We assume -+ a routing graph= = (V, E) for the nets;

to be given the sizesize(b), for each buffer typé € B, as * arbitrary sets7;, of Steiner trees for each naf,;

well as lower and upper bounds > /U= L&) /7)) « afamily, V, of subsets o¥/, such that{v} € V for every

respectivelyL(*:*) /U on the length of each wire segment v € SUS’;

connecting source € S to a buffer of typeb, a buffer of type * a “size” functions : V' — R, such thats(v) = 1 for
b to a buffer of typel/, respectively, a buffer of typ&to sink everyv € SU S

t € S’. To ensure that the available buffer block capacity is < a “set capacity” functior : V — Z, such that({v}) =
optimally distributed between the given buffer types and also 1 for everyv € S U S5’;
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the generalized multiterminal multicommodity flow ILP is asl” € 7 is at least 1, where the weight df is defined by

follows: weight(T) = 1/9(T) 3" x ey mr(X)w(X)
maximize Xrerg(T)fr (GMTMCEF ILP) minimize Xyxcpw(X)e(X) (GMTMCF Dual)
subject to subject to
Ererrr(X)fr < (X)), VX eV L Z ap(X)w(X) > 1, VIeT
frefo1}, VIeT a1 £,

. w(X) >0, VX eV
where7 = UK _ Ty, g(T) = g, for everyT € 7;, and -

In the following we assume thatin{gy : k. =1,..., K} =1

mr(X) = Z nr(v)s(v) (this can be easily achieved by scaling) and demete{g;
o k=1,...,K}byT.
for everyT € 7 andX € V. The algorithm (Fig. 2) starts with weights(X) = § for

Itis not difficult to see that (ILP1) and its extensions are sp&eyX € V, where? is an appropriately chosen constant and
cial cases of the GMTMCF ILP. Thus, (ILP1) is obtained witf{Vith @ GMTMCF LP solutionf = 0. While there is a feasible
s = 1 by including inV, besides singleton sets correspondin€€ Whose weight is less than 1, the algorithm selects such a
to sources and sinks, all set§. = {r',7”'}, r € R and set- treel” and incrementgr by 1. This increase will likely violate
ting ¢(X,.) = ¢(r). Similarly, the ILP for GRBB with set ca- the capacity constraints for some of the set¥jrieasibility is
pacity constraints is obtained with= 1 by including inV’ sin- achieved at the end of the algorithm by uniformly scaling down
gleton sets corresponding to sources and sinks, as well as 8dz'S- Wheneveyy is incremented, the algorithm also updates
setsX; = {r', 7" |r € Ri},i=1,...,p, with ¢(X;) = c(R;). each welghtu(X) by multiplying it with (1 4+ enz(X)/c( X)),
Finally, the ILP for GRBB with buffer library is obtained for afor a fixede. } , o
family 1’ containing singleton sets corresponding to sources and*ccording to the Garg and K6nemann's approximation algo-
sinks together with the sef§, = {r},/ | b € B}, r € R, for rithm [10], each iteration must increment the variafjecorre-
which ¢(X,) = ¢(r). In this cases(v) = 1 if v is a source or a sponding to a tree with minimum weight among all tree§'in

sink ands(v) = size(b) if v € {r}, 7} | r € R}. Finding this tree essentially requirgs minimum-weight fea-
’ sible Steiner tree computations, one for eachiyetWe reduce
. A PPROXIMATING THE GMTMCF LP RELAXATION the total number of minimum-weight feasible Steiner tree com-

. putations during the algorithm by extending a speedup idea due
Our two-step approach to the GRBB problem and its exs Flejscher [9]. Instead of always finding the minimum-weight
tensions is to: 1) solve the fractional relaxations obtained Bye in7 the idea is to settle for trees with weight within a factor
replacing integrality constraintgy € {0,1} with fr > 0  4f (1 4 ¢) of the minimum-weight. This speeds up the computa-
and then 2) use randomized rounding to get integer solutioggy since multiple variableg; can now be incremented, pos-
In this section we give an algorithm for approximating withiipy more than once each, in a single iteration. As shown in
any desired accuracy the fractional relaxation of the GMTMGlaxt section, the faster algorithm still leads to an approximation

ILP. The algorithm relies on a subroutine for finding minimumy,arantee similar to that of Garg and Kénemann.
weight feasible Steiner trees; the details of this subroutine are

given in Section IV. B. Runtime and Performance Analysis
The fractional relaxation of the GMTMCF ILP, which will -, o401 jteration the algorithm cycles through all nets. For

be rt_aferred to here as tiyeneralized multiterminal multicom- o5 ., net, the algorithm repeatedly computes minimum-weight
modity flow linear programGMTMCF LP)# can be solved fo5qihie Steiner tree until the weight becomes larger than

exactly in ponnomiaI_time using3 e.g., the eIIi_psoid algorithm(.1 + ¢) times a lower-bound: on the overall minimum weight,
However, exact algorlthms are h_|ghly impractical. On the O_th?ﬁin{weight(T) . T € 7). The lower-bound is initially set
hand, the GMTMCF LP is @acking LPand can thus be effi- 1 5/ ang then multiplied by a factor ofl (+ <) from one
ciently approximated within any desired accuracy using the figs a1ion to another (note that no treeThhas weight smaller

cent combinatorial algorithm of Garg and Kénemann [10]. |ﬂ1an(1 + ¢)a at the end of an iteration, €a + ¢)a is a valid
this section we give a significantly faster approximation alg%Wer bound for the next iteration).

rithm based on a speedup idea originally proposed by FleiS~—rye scheme used for updatingully determines the number
cher [9] for approximating the maximum edge-capacitated Myl jierations in the outer loop of the algorithm. Note that the
ticommodity flow (MCF). lower-bounda is at most { + ¢) in the last iteration (since it
A. The Algorithm increases by a fagtor of (+¢) each time anq in the iteration be-
_ _ _ _ _ forethe lastthere is at least one tree of weight less than 1). Thus,

Our algorithm simultaneously finds feasible solutionginces = /1" in the first iteration, the number of increases of
to the GMTMCF LP and itsdual linear program The s no larger tharog, .. (14 £)I'/§ and the final value of is
dual LP asks for an assignment of nonnegative we|ghE§)gl+F (14€)/6).
w(X) to every X & V such that the weight of every tree" The two main loops of the algorithm (arand onk) are both

4The relaxation of the GMTMCEF ILP is referred to saparable packing LP repeate.d a fixed number .Of time{ioglﬂ_é (1 +_5)F/6J andK’
in [8]. respectively. However, this does not immediately determine the
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E,:/:put: Nets Ny, ...,Ng, coefficients g.ll./..,g,(, routing graph G = (V, E), family WT(X). Using thatl + ye > (1 + E)y foro < y <1, we get

of subsets of V, weights ¢(X), X € ¥, and s(v),ve V M Iy

Output: GMTMCF LP solution f;, T € T thqt every sequence of updates withe; = ¢(X) increases the
weight of X by a factor of at least

ForeveryT €T, fr + 0

Forevery X € ¥V, w(X) + 8

@+ §/T /1 &is at all times a lower-bound on min{weight(T) : T € T} H 1+ €Li& >H(1+E)xi/c(X)
Fori=1tot=llogl+935§EJ do (X))~ ;

Fork=1to K do

Find a minimum weight feasible Steiner tree T in % :(1 + 5)27% /eX) = 1+e.
While weight(T) < min{1,{1+¢)&} do
Jrefr+l . - . .
For all X € ¥, w(X) ¢ w(X)(1 +£m2(X)/c(X)) Let M = 3" cr 7r(X) fr. Since the initial weight of{ is 6,
Find a minimum weight feasible Steiner tree T in % from the previous inequality we get that the final weight'of
End while is at Ieast?(l + E)M/c(X)_

End for on k . . .

5 (1+e)a Now, the last update af(X) is done when incrementingy
End for on i , for atreel’ € 7;, of weight less than one. Thus, the weight'of
Forevery T e T, fr = - is at mosty(T') - weight(T) < T before last update and at most
Output fr. T€T (14 )T after. Combining this upper bound on the final weight

of X with the lower bound above gives thitl + ¢)M/(X) <
Fig. 2. The algorithm for finding approximate solutions to the GMTMCF LP(1 + E)F, ie.,

runt?me c_)f the algorithrr_l because of the ve_lriable numb_er of it- M < ¢(X)logy,. (149l
erations in the inner while loop. The following lemma gives an B
upper bound on the runtime.

Lemma 1:Overall, the algorithm in Fig. 2 requires
O(Klog, .. (1+¢)I'/6) minimum-weight feasible Steiner
tree computations. !

Proof: First, note that the number of minimum-weighPtimum. I
feasible Steiner tree computations that do not contribute to! h€orem 1: Foreverye < 0.15, the algorithm in Fig. 2 com-
the final fractional solution i |log, .. (1+ €)I'/5]. Indeed, putes a feasible solytlon to the GM.TMCF LP within a factor
in each iteration and for each néf,, there is exactly one ©f 1/(1 4 4¢) of optimum by choosing = (1 + €)I'((1 +
minimum-weight feasible Steiner tree computation revealirf@LF)_l/c; the runtime of the algorithm for this value &f

5 ) ) . .
thatmingez, weight(T) > (1 + )@, all other computations 1S O(1/eK(log L + logI')Tiree). Here, L is the maximum
trigger the incrementation of sonfe.. number of vertices in a feasible tree ahgl.. is the time re-

We claim that the number of minimum-weight Steinefluired to compute the minimum weight feasible Steiner tree for

trees that lead to variable incrementations is at mod3t"et

Klog,,. (1+¢)I'/8. To see this, note that the weight of Proof: Our proof is an adaptation of the proofs of Garg
the set{;k} € V is updated whenever a variabfle, T € 7;, is and Kénemann [10] and Fleischer [9]. We show that the solution

incremented. Moreovery({s:}) is last updated when incre-€0mputed by the algorithm is within a factorf(1 +4e) of the
menting fr for a treeT” € 7; of weight less than one. Thus,OPtimum objective valugy, oft.he dual LP. The gla|med approx-
before the last updatey({s}) < T - weight(T’) < T'. Since imation guarantee foIIovys, since, by_ LP duality thegtys an
mr({sx}) = e({sx}) = 1, the weight of{ s} is multiplied by UPPer bound on the optimum objective value of the GMTMCF
a factor of1 + ¢ in each update, including the last one. Thi&P- ) . _

implies that the final value ofu({s;}) is at most(1 + )L. Let a(w) be the_welght o_f a minimum weight tree frof
Recalling thatw({s;.}) is initially set to#, this gives that the With respect to weight function : V' — R, and letD(w) =
number of updates tex({s;}) is at mostlog, . (1 +&)I'/s. 2 xey w(X)e(X). Astandard scaling argument shows that the
The lemma follows by summing this upper bound over all netdua@l LP is equivalent to finding a weight functian such that

O
Finally, we show that, for an appropriate value of the param-
eterd, the feasible solution found by the algorithm is close to

0 D(w)/a(w) is minimum and thaf = min,,{D(w)/a(w)}.
Lemma 2: The algorithm in Fig. 2 computes a feasible solu- FOreveryX €V, letw;(X) be the weight of seX’ at the end
tion to the GMTMCE LP. of the ith iteration andwy(.X) = 6 be the initial weight of set

Proof: We need to show that the valugs returned by the <X - For brevity, we will denotex(w;) and D(w;) by «(¢) and
algorithm satisfy the inequality D(i), respectively. Furthermore, I¢}. be the value of' at the
end ofith iteration andh; = > .., g(T) f; be the objective
(14T value of the GMTMCEF LP at the end of this iteration.
Z 7r(X) fr < eo(X) -log . —5 When the algorithm incremenjs- by one unit, each weight
TCT w(X) is increased byefrr (X)w(X)/c(X)). Thus, the incre-
mentation offr increased(w) by
for every X € V. Consider an arbitrary séf € V. Every time

the variablefr is incremented by one unit, the weight &f c Z (X )w(X) = e weight(T)g(T).
is also increased by a factor of § z;¢/c(X)), wherez; = o=t
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If this update takes place in thith iteration, thenweight(7) < the GMTMCF LP solution produced by the algorithm. By
(14 e)a(é — 1). Adding this over allfrs incremented irth  substituting the previous bound @i, we obtain

iteration gives _
e(l1+¢)log, . % e(l4+¢e)ln (H")F

D@ —DiE—1D) <e(l+e)aés—1)(hy —hi—1) 1= In(L6)—1L ~ In(1+¢) ln(Lﬁ)
Foré = (14 &)I'((1 4+ )LI)~/¢

which implies that

; In Ly (14 €)LD)*
D(i) = D(0) < e(14¢) > alj—1) (hy —hy 1) In(L&)™r  In((1+e)LT) HHYe
7=l _ Iln(@+4e)LD)
Consider the weight functiom; — wo and notice thaf)(w; — = In((1+4¢)LT)
wp) = D(i) — D(0). Since the minimum weight tree w.r.t. _ 1
weight functiorw; —wo has a weight of at most(w; —wg)+Lé 1—¢
W.rt w;, ooi) < afw; —wo) + L6. Hence, ifa(i) — L6 > 0, 404 thus
then
. Y < e(l+¢) < e(l+¢) < (1+¢)
P < Dlwi —wo)  D(i) — D(0) T (l-oh(lte) T (1-e)(e—2) - -
a(w; — wo) alt) — L
> _ 22
e(1+¢) EJ Ll — 1) (hy — hy_ 1) Here we use _the fact tha(l 4+ ¢) > €e—¢ /2 (by Taylor
< O series expansion @fi(1+¢) around the origin). The proof of the
i) —

approximation guarantee is completed by observing ¢hag
€)/(1—¢)? < (1+4e) for everye < 0.15. The runtime follows

Thus, in any case (whem(i) — Lé < 0 this follows trivially) by substitutings in the bound given by Lemma 1 -

we have

IV. COMPUTING MINIMUM -WEIGHT FEASIBLE STEINER TREES

o) < 2+ ED S 0 - 10y = ).

The key subroutine of the approximation algorithm given
in the previous section is to compute, for a fixédand

Note that, for each fixed, the right-hand side of last inequalitydiven weightsw(X), X € V, a feasible tred’ € 7; min-

j=1

is maximized by settingy(j) to its maximum possible value, imizing weight(T) = 1/9(T)>_ y¢y mr(X)w(X). Define
Saya( ) for every0 < j < i. Then, the maximum value ofa Welght functionw’ on the vertices of the rOUtlng graph
ald) is G = (V,B) by settingu/(v) = 1/g(T) 3, cx ¢ w(X) and
let w'(T") = >, cy(ryw'(v) be the total vertex weight w.r.t.
. e(1+e) = w’ of T. Thenweight(7") = w'(T") and the problem reduces to
o (1) =L6 + 3 o/ (j = 1) (hy = hj—1) finding a treeT” € 7; with minimum total vertex weight w.r.t.
i=1 w'.
e(1+e) (6 — 1) (hs — hi1) Recall that for the GRBB problem and its extensidhsgon-
I3 Pt tains all Steiner trees connecting the sousgewith the sinks
. e(1+¢) t,lt, ...,t¥ such that the number of intermediate vertices on
=a/(i=1) {1+ 3 (i — hil)) each tree path between and¢, has the parity specified by
<a'(i— 1)(3(5(1*5)/"3)(’”—’”*1) ai and does not excedf. In this case we can further reduce

the problem of finding the tre& € 7, minimizing w'(T") to

theminimum-cost directed rooted Steiner t{&RST) problem
in a directed acyclic grap®;,, defined as follows. LeL; =

max{l},....[¥%}andV’' = V(G) \ (SUS’). Then

where the last inequality uses that- = < ¢” for everyz > 0.
Using thata/(0) = Lé, this gives

: e(1+¢)/8)h;
a(i) < Lol +e)/Mh: V(Dy) = {si}U{v v eV, 1< < Liyu{th,. .. t2}
Let ¢ be the last iteration of the algorithm. Sineét) > 1 andFE(Dy) = Ey U E> U E3, where
1< LoeE+e)/ Ak E; ={(sk,v1) |ve V', (s1,v) € BE(G)}
E> :{(uj7vj+1) | u,v € Vlv]- <i< Lk?(uvv) € E(G)}
and thus By ={(u,t}) |ue V' ,1<h<aq,
B (1+s) 1<j <l j=al(mod2),(v,t}) € B(G)}.
b = Tn(L6)- !

Fig. 3 shows the routing graph and the diagraph corre-
Let v = fB/hilog,..(1+¢)I'/é be the ratio between the sponding to a net with souree= s and a single sink = ¢},
optimum dual objective value and the objective value dbr whichi}, = 2 anda, = 2. In this example there are only
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a Input: Fractional GMTMCF solution fr, T € T
Output: Routed trees, T € %

For each k= 1,...,K, select net N with probability f; = Xreq, fr
b ¢ Route each selected net N, by picking a tree 7; from %, where tree T € % is
picked with probability fr/ fi

Fig. 4. Randomized GMTMCEF rounding algorithm.

@) Input: Net- and edge-cumulated GMTMCF values, f = Zreq, fr and
fk(e) = ZTG‘I;(: €CE(T) frik=1,....,K,e€ E(Dk)
Output: Routed trees T, € %

For each k= 1,...,K, select net N, with probability f;
Route each selected net N, as follows:
Ti e {54}
bl b2 For each sink ¢ in N; do
s —. »@ ! P00, veil
While v ¢ T; do
Pick arc (u,v) with probability vaff%
P« PU{(u,v)}; veu
End while
(b) T+ T.UP
End for

Fig. 3. (a) Routing graph with three buffer blocks and (b) the correpondi
diagraphD,,.

nl%g. 5. Random walk-based GMTMCF rounding algorithm.

spect to the updated edge lengths) in the directed acyclic graph
induced by{sy,t},...,t5*, p1,....ps} in the metric closure

of Dy, wherepy,...,p, are the Steiner points of the original

two feasible buffered routings (i.e., directeq-t; paths in
Dy): one is using two buffers in block, the other one uses one

buffer in b_locka.and one buffer in block. . DRST. To find a minimum spanning directed tree in directed
For a given directed grapH = (X, U) with costs on arcs, . . )
acyclic graphs, one can use a very simple procedure: for each

a specified rootr € X, and a set of terminal¥ C X, the ; . ) )
. . ' .. vertex choose a shortest incoming arc, then, after running this

directed rooted Steiner tree problem asks to find the minimum . )

cost arborescence rootedraand spanning all the vertices ¥ procedure, recursively delete all leaves that are not sinks of the

(in other words- should have a directed path to every vertex in W]\erkﬁave implemented both heuristics that use approximate
Y). Itis easy to see that finding a feasible Steiner ffee 7; b pp

with minimumw’(T) reduces to finding a minimum costDRSTDRSTS instead of optimum DRSTs and heuristics based on

. N . ,  two-, three-, respectively four-pin decompositions; results
in D, after assigning to each arc entering vertexv € V7, . . .

} , . . of experiments comparing these approaches are reported in
1 < 5 < Ly, a cost ofw/(v) and to each arc entering smjﬁ;, Section VI
1 < h < g, a cost ofw’ (t4). ect :

Unfortunately, the minimum-cost DRST problem is NP-hard
and the fact thatD,, is acyclic does not help since there is a
simple reduction for this problem from arbitrary directed graphs In the previous two sections we presented an algorithm for
to acyclic graphs. As far as we know, the best result for tttemputing near-optimal solutions to the GMTMCF LP. In
DRST problem, due to Charikat al.[3], givesO(log? ¢ )-ap- this section we give two algorithms based on the randomized
proximate solutions in quasipolynomial timign31°¢ %), Note, rounding technique of Raghavan and Thomson [19] (see
on the other hand, that the minimum-cost DRST can be foundafso [15]) for converting near-optimal fractional GMTMCF
polynomial time for small nets (e.g., in ting@(n*?~1) for nets  solutions to near-optimal integer GMTMCF solutions, i.e., to
with at mostM sinks, ford = 2, 3, 4). Theorem 1 immediately near optimal buffered routings.
gives the following. The first algorithm is given in Fig. 4. Since the algorithm

Corollary 1: If the maximum net size ig/ < 4, the algo- routes netV,, with probability fx = >+ fr, it follows that,
rithm in Fig. 2 finds, for every < 0.15, a feasible solution to on the average, the total importance of the nets routed by the al-
the GMTMCF LP within a factor of /(1 + 4e) of optimum in  gorithmis>_,_; gxfi = > 7c7 9(T) fr. By Theorem 1, this is
time O (1/e2Kn™~!(logn + logI)). within a factor ofl /(1+4¢) of the optimum GMTMCF LP solu-

Since most of the nets in real designs have small size, Cortobn, which in turn is an upper bound on the optimum GMTMCF
lary 1 justifies the following practical strategy for finding ap4LP solution.
proximate solutions to the GMTMCF LP: decompose nets with A potential drawback of the first rounding algorithm is that
more than four pins into nets with two to four pins, then applig requires the explicit representation of tre€s € 7 with
the approximation algorithm in Fig. 2. Another heuristic apf(7’) # 0. Although the approximate GMTMCF algorithm
proach to speedup the computation, used by Albrecht [1] fproduces a polynomial number of trees with nonzgtq
edge-capacitated MTMCF approximation, is to compute (egtoring all such trees is infeasible for large problem instances.
actly or approximately) a DRST once, then use in each of tltur second rounding algorithm (Fig. 5) takes as input the
following iterations minimum directed spanning trees (with renet and edgeumulatedGMTMCF values, fy = > ;1 fr,

V. ROUNDING THE FRACTIONAL GMTMCF
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respectivelyfk(e) — ZTETk:eEE(T) ny thus usingO(K|E|) Input: Graph G with K nets Nl,...,N,f, vene)f capacities ¢(v)
space. Note that the GMTMCE algorithm in Fig. 2 can be Output: Fully or partially routed feasible Steiner trees T € %
easily modified to compute these cumulated GMTMCF valueFor each k=1,...,X, do

instead offrs. g«—{skg T
. . _ or each sink 1 in Ny do
Oulr Sec?}?d _roundlng algorlthm_ . routes névk e With a backward BFS search, find a shortest path P from £ to Ty in G
(sk3ty, -~ -, ) with the same probability as the first rounding using only vertices v with c(v) > 0; if N such path exists let P =0
algorithm and thus, as argued above, the total importance of t T + TiUP ’

routed nets is within a factor af/(1 + 4¢) of optimum. The g or cach vertex v in P, o) - ¢() =1

difference is in how each chosen net is routed: to routé\agt  gnd for

the algorithm performbackward random walkisom each sink ‘ _ _

of N, until reaching either the sourcg, or a vertex already Fi9-6- The generic greedy routing algorithm.

connected to the source. The random walks are performed in

the directed acyclic graphB;., with probabilities given by the Input: Graph G with K nets My,..., N, vertex capacities c(v)
. Output: Fully or partially routed feasible Steiner trees § € %

normalizedf;(e) values.

Ensuring that no set capacity is exceeded can be acco Find an approximate GMTMCF using the algorithm in Fig. 2
plished in two ways. One approach is to solve the GMTMC|Round the approximate GMTMCF using the algorithm in Fig. 5
LP with set capacities scaled down by a small factor: thiUse greedy deletion to find a feasible integer solution

P . y . ! Use the MTG algorithm in Fig. 6 on the unrouted nets to find a maximal routing
guarantees that the rounded solution meetothgnal capac-
ities with very high probability (see [15] for an application ofFig. 7. The generic GMTMCF-based routing algorithm.
this approach to VLSI global routing). A simpler approach,

extending the so-callegreedy-deletion algorithrf6] to multi- TABLE |

terminal nets, is to repeatedly drop routed nets passing through INSTANCE PARAMETERS

over_u_sed set; until feasibility is ach_ieved. We impleme_nt a B[ fes Bk P L U BECH
modified version of the greedy-deletion algorithm in which, BT 12396 2958 223 2000 4000 200
instead of dropping an entire tree, we drop only the sinks using h2 || 2438 3077 226 1000 4000 200
paths through over-used sets. h3 ]| 2448 3099 227 500 4000 200

il || 4764 6038 2.27 2000 4000 400
i2 || 4925 6296 2.28 1000 4000 400

VI. IMPLEMENTED ALGORITHMS i3 [] 4938 6321 2.28 500 4000 400

In this section we describe the implemented algorithms for
the GRBB problem. DRST approximations suggested at the end of Section IV. The
Greedy Routing AlgorithmsWe have implemented four fourth algorithm—henceforth referred to as GMTMCF—ap-
greedy algorithms for the GRBB problem, all of them based qulies the flow rounding schema in Fig. 7 to the undecomposed
the generic greedy routing algorithm given in Fig. 6. All founets, using shortest path trees as approximate DRSTs in the
greedy algorithms route nets sequentially. For a given net, i@ TMCF approximation step.
algorithms start with a tree containing only the net's source,
then iteratively add shortest paths from each sink to the already VII. | MPLEMENTATION EXPERIENCE

constructed tree. The only difference is in whether or not net

decomposition is used and in the size of the decomposed ng§ilgixﬁﬂmawsswgfo%%%dUCted onan SGll Origin fZOOhQ Whit.h
The first three algorithms—referred to as 2TG, 3TG, and 4TG, z processors (only one of which is

respectively—start by decomposing larger multiterminal ne@é:tually used by the sequential implementations included in our

into two-, three-, respectively, four-pin nets and then apply ttf $p§2ﬁgg)7aljrq 4 G-Bytes o?mterr:jal rr_1em|ory,|run||1|Sg_ ”T‘der
algorithm in Fig. 6 to this decompositiénThe fourth algo- ' - 1Iming was periormed using fow-ievet Unix in-

rithm—which we refer to as MTG—is simply the algorithm interval timers, under similar load conditions for all experiments.

Fig. 6 applied to the original (undecomposed) nets. Al alg;gTrgg W%f c;ode?_ in_ C?nd compiled using: version
GMTMCF Rounding AlgorithmsWe have implemented gcs-2.91.66 with-04 optimization.

four GMTMCF rounding algorithms, all of them based o% Th(tahsm tetst casest_used n ?gr expen;r;ggs were extracted
the generic schema given in Fig. 7. The first three alg fom the next-generation (as of January ) microprocessor

rithms—referred to as G2TMCF, G3TMCF, and G4TMCF‘?“E’ aItSG"We. usjdhanlomimize‘iﬂﬁorp'a” O‘;thekc".culit blocks
respectively—start by decomposing larger multiterminal nefdld &1sO optimized the location of the source/sink pin locations

into two-, three-, respectively, four-pin nets and then apply tlpélsed on coarse timing budgets. We uske= 4000 um and

generic GMTMCF routing algorithm to this decompositionY21€dL between 500 and 20Q@m. The upper bounds on the
mber of buffers on paths from sourcesto sinkst; were

Since the optimum DRST can be efficiently computed for nef¥! . : ;
! pumy Henty pu puted with the formuld;, = d(sx,?})/1000. In all test

of these sizes, the three algorithms do not need to resort to {8 .
g cases considered, the number of nets was large (up to 5000) and

5We remark that 2TG is essentially the algorithm suggested in [5], except tile number of buffer blocks small (50), with relatively large ca-
in [5] shortest paths are computed in the forward direction, from sources tow. ﬂcity (200_400 buffers per block); such values are typical for
sinks and not from sinks toward sources as in Fig. 6. It has been experimentgl‘rw licati ble | . h f he si
observed [7] that backward shortest paths give slightly better results than fi Is application. Table | summarizes the parameters for the six
ward shortest paths. test cases.
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TABLE 1 TABLE IV
PERCENT OFSINKS CONNECTED (BOLDFACE) AND CPU TIME FOR PERCENT OFSINKS CONNECTED (BOLDFACE) AND CPU TIME FOR
ALGORITHMS BASED ON TWO-PIN DECOMPOSITION ALGORITHMS BASED ON FOUR-PIN DECOMPOSITION
D || 2TG | G2TMCF IDH 416 | GATMCF
[£=064 =032 e=016 ¢=008 e=004 [€=064 =032 =016 £=0.08 £=0.04
|| 383 93.7 95.4 95.4 95.7 95.5 Ll %08 97.9 98.3 98.9 98.9 99.2
0.33 1.63 538 2029 8771  357.09 031 | 5616 30570  1187.99 488140  19083.50
w || 887 93.9 95.8 96.8 96.6 9.5 w2 || %95 93.2 99.0 9.6 938 9.8
0.37 235 599 2278 8844  349.63 034 | 7598 36402 1629.60 652044  24779.28
wa || 884 93.5 95.4 96.5 9.4 95.5 N 9.7 93.8 9.5 99.6 99.3
0.37 1.80 6.13 2487 9175 39202 033 | 7526 39230 161930 637852 2513672
X 94.8 95.8 96.5 9.6 96.8 || 926 97.1 98.1 98.6 98.8 98.8
0.65 326 1071 3961 16485  622.87 0.60 | 15346 78265 335475 1391005  56530.93
o || 916 9.2 97.1 97.4 9.5 97.6 2 || %30 983 98.7 9.4 9.6 9.4
| o0 354 1234 4500 17136 67L72 Y oom | 19114 103884 455027  17888.36  71636.67
all 98 96.2 9%.9 97.3 9.3 9.5 5 || 928 98.2 98.6 99.3 99.3 99.3
0.73 357 1184 4717 17201 77051 069 | 19540 106271  4507.83  18438.52 7371245
TABLE Il TABLE V
PERCENT OFSINKS CONNECTED (BOLDFACE) AND CPU TiME FOR PERCENT OFSINKS CONNECTED (BOLDFACE) AND CPU TiIME FOR
ALGORITHMS BASED ON THREE-PIN DECOMPOSITION ALGORITHMS OPERATING ONUNDECOMPOSEDNETS
D[] 316 | G3TMCF 1D l MTG | GMTMCF
” [€=064 £=032 ¢=0.16 e=008 c=004 [e=064 e=032 €=016 e=008 =00
w|| 202 %2 o1 73 7 8 b (9)23'3 363; 1?72.‘; 437{7 22:752 94?7:
0.31 9.16 3533 127.17 49834  2090.61 - - : : - d
034 | 1110 4156 15476 62647  2355.66 - - - : : -
w || 33 %64 7.7 %83 8.1 %0 hs 325; ?é: 1386;: 5387.2 21382.3 87286.;
045 | 1256 3965 15693  639.53 236451 - - : - - .
wff A2 BT 968 3 s 6 il ?)352 36; 2273.; m?s.: 42(;’71;1 186:7;
063 | 1599 5494 20806 81421  3362.20 - : L : - -
gl 27| o0 %80 e s »e 2 336:: :’73; 2283.; 11?83.; 45‘?2; 182389;
066 | 2074 6933 24832  964.22  3834.26 - : : - - :
i || 9% 6.8 7.8 9.3 .84 4 i3 33;3 !5)74;; 2:85.}1 1251‘8; 45381;: 183283
072 | 1907 6623 25117 99241  4164.50 - : : : : :

Tables II-V give the number of routed sinks and the runtirr[éumber of connected sinks, the resource usage is slightly higher

on the six test cases for each implemented algorithm. The [thgse algorithms_. This is at least partly explained by the_ fact
sults clearly demonstrate the high quality of solutions obtain t higher completlc:n.rgtes”can only.be achieved b)./ routnjg a
by flow rounding methods. When applied to identical decomp grger percentage of "difficult” nets, which may otherwise be ig-
o ) o or_qos. [10red. Note for example the increase in wirelength and average
sitions, flow-based methods yield improvements of 5%—9% N ber of buffers per routed sink for the MTG algorithm when

the number of connected sinks over the corresponding gre completion rate is boosted by increasing buffer block capac
algorithm. In fact, significant improvement over the best of th X i
gon 'gnit IMprov v gs (columns MTG and MTG, in Table VI).

greedy methods is possible even with a very small increase'tf
runtime, proof that even very coarse MCF/MTMCF approxima-
tions give helpful hints to the randomized rounding procedure.
Furthermore, the experimental results show that even a lim-In this paper, we addressed the problem of how to perform
ited use of multiterminal nets (decomposition into nets of sizeliffering of globalmultiterminalnets given an existing buffer
or 4) gives improvements over the already very high-quality sblock plan. We gave a provably good algorithm based on a novel
lutions found by the flow-rounding algorithm based on two-piapproach to GMTMCF approximation inspired by recent re-
decompositions. More importantly, these improvements are agdults due to Garg and Kénemann [10] and Fleischer [9]. Our
served even when the same time budget is given to the coBMTMCF algorithm outperforms existing algorithms for the
pared algorithms. To facilitate such a comparison, Fig. 8 plgisoblem [5] and has been validated on top-level layouts ex-
the solution quality versus the CPU time (in seconds, excluditrgcted from a recent high-end microprocessor design.
I/O and memory allocation) of each algorithm when run on test Ongoing work is aimed at increasing the space of method-
case il. The GMTMCEF algorithm proves to be the best amowgpgies to which our new techniques apply. As presented here,
all flow algorithms when the time budget is limited, providingour work is clearly targeted to very early global wireplanning
significant improvements over greedy algorithms without undwetivity. In other words, the application domain is presynthesis
runtime penalty. However, the best convergence to the optimumip planning: prescribed repeater intervals are driven only by
is achieved by G4ATMCF, which dominates all other algorithnarse estimates of Miller coupling factors, repeater sizing, and
when high time budgets are allowed. source impedance or sink capacitance. The presented formula-
Table VI gives the amount of routing resources (buffers arithn also does not address timing criticalities or budgets except
wire area) used by each algorithm on test case il. As expecteid, net weighting; this is fortunately fairly common for initial
the amount of routing resources is higher for the algorithms withireplanning that breaks the “chicken-egg” problem of bud-
higher completion rates. In fact, even when normalizing by tlgeting between-block and within-block paths in presynthesis

VIII. CONCLUSION AND FUTURE DIRECTIONS
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Fig. 8. Percent of sinks connected versus CPU time on test case il.

TABLE VI

USAGE OFROUTING RESOURCES ONTEST CASE 11 (6038 $\NKS TOTAL). THE MTG.. COLUMN GIVES RESOURCEUSAGE FOR THEMTG
ALGORITHM WHEN RUN WITH INFINITY CAPACITY FOR EACH BUFFERBLOCK

Greed [ GatMCF | G3TMCF |  G4TMCF |  GMTMCF

[ 2TG 3TG  4TG MTG MIGx |£=0.64 £=0.04 |£=0.64 £=0.04 [e=064 =004 [e=064 =004
#Conn. Sinks || 5469 5547 5592 5645 6038 | 5725  ss42| 5779 5896 | 5864 5965 [ 5813 5897
%Conn. Sinks || 906 91.9 926 935 100 94.8 96.8 95.7 97.6 97.1 98.8 96.3 97.7
WL (meters) || 4226 4199 4221 4222 4789 4518 4780 4448 4766 4448  4790| 4533 4751
WL/Sink (um) || 7727 7570 7548 7479 7931 | 7891 8182 | 7697 8083 | 7585 8031 | 7798 8057
#Buffers 9240 9053 9076 9037 10330 9860 10676 [ 9591 10610 | 9546 10730 | 9860 10647
#Buffers/Sink || 169 163 162 160 171 172 1.83 L66 1.80 1.63 1.80 1.70 1.81

RTL planning with aggressive global wire optimizatibiMe challenging and is the subject of ongoing collaboration with

are presently extending our approach to achieve better handlindu
of timing criticality and budgets by improved use of net ordering
and weighting during rounding and post-processing of the solu-
tion to eliminate unneeded repeaters.

Further, we seek practical algorithms for handling routing
congestion, i.e., simultaneously enforcing buffer blcakd
channel capacities. By inserting “virtual” nodes corresponding
to channels, the problem becomes a generalized type of integd8]
GMTMCEF in a vertex capacitated graph. However, computing
minimum-weight feasible Steiner trees in this graph now en- 4
tails finding minimum-weightength-restrictecpaths between
buffer blocks. Although the latter problem is NP-hard, it can be [°]
approximated arbitrary close [11], [18] and it is still possible to (g
apply our GMTMCF schema.

Finally, we note that actual applications would likely iterate 71
the GRBB solution with incremental modification of buffer
block locations, pin placements, and both channel and buffers8]
block capacities. Adapting the GMTMCF approach and its
runtime/quality profile for use in an iterative environment is

(1]
(2]

(9]
8In other words, maximal repeater insertion allows maximum timing bud-
gets for within-block timing paths and this permits blocks to go through syn-
thesis, place and route with more aggressive area targets. A strategy of uniforfh0]
buffering of as many global nets as possible also helps control signal integrity
and delay uncertainty problems.

stry.
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