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As manufacturing technology moves toward fundamental limits
of silicon CMOS processing, the ability to reap the full potential
of available transistors and interconnect is increasingly important.
Design technology (DT) is concerned with the automated or semi-
automated conception, synthesis, verification, and eventual testing
of microelectronic systems. While manufacturing technology faces
fundamental limits inherent in physical laws or material proper-
ties, design technology faces fundamental limitations inherent in
the computational intractability of design optimizations and in the
broad and unknown range of potential applications within various
design processes. In this paper, we explore limitations to how design
technology can enable the implementation of single-chip microelec-
tronic systems that take full advantage of manufacturing technology
with respect to such criteria as layout density, performance, and
power dissipation. One limitation is that the integrated circuit (IC)
design process—like any other design process—involves practical
tradeoffs among multiple objectives. For example, there is a need to
design correct and testable chips in a very short time frame and for
these chips to meet a competitive requirement. A second limitation is
that the effectiveness of the design process is determined by its con-
text—the design methodologies and flows we employ, and the de-
signs that we essay—perhaps more than by its component tools and
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algorithms. If the methodology constrains the design in a partic-
ular way (e.g., row-based layout, or clocked-synchronous timing),
then even if individual tools all perform “optimally,” it may be im-
possible to achieve an optimal result. On the other hand, without
methodological constraints there are too many degrees of freedom
for developers of design technology to adequately support the de-
signer. A third limitation is that while the design process as a whole
seeks to optimize, the underlying optimizations are computationally
intractable. Hence, heuristic approaches with few if any guarantees
of solution quality must be ever-present within design technology.
This is perhaps the sole “fundamental limit” in design technology.

Design technology by itself does not impose any fundamental
limits on what can be implemented in silicon. And while “optimal
use of silicon technology” is an ill-posed objective (going far be-
yond the scope of algorithms, tools, methodologies, and infrastruc-
ture), design technology is the key to approaching and realizing the
limits imposed by other aspects of the design process. In this paper,
we summarize the mainstream methodologies used by CMOS sil-
icon designers today and—against the backdrop of International
Technology Roadmap for Semiconductors (ITRS) forecasts—point
out basic limitations in their ability to achieve “optimal” design
quality using reasonable resources. In each area of today’s main-
stream design flow, we either identify and quantify the factors lim-
iting progress or point out the work that must be done to obtain
such an understanding. In particular, we emphasize the role of met-
rics in the design process and how we might establish them. Fi-
nally, we present a number of potential solutions to these problems
in the form of methodological approaches and major outstanding
research questions that are being considered actively within the de-
sign technology research community.

Keywords—CMOS digital integrated circuits, Design automa-
tion, design for testability, design methodology, very large-scale in-
tegration.

I. INTRODUCTION

Design technology (DT) comprisesalgorithms, software
and hardwaretools, anddesign methodologies(manifest as
design flows) that are used for the efficientconception, im-
plementation, verification, and testingof microelectronics-
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based systems. Aspects of design technology have been re-
ferred to as electronic computer-aided design (ECAD), elec-
tronic design automation (EDA), and high-level design au-
tomation (HLDA). We use the termdesign technologycom-
prehensively, encompassing all of these activities as well as
newer ones that are evolving rapidly today. Without design
technology, it would be impossible to implement, verify, and
test the complex, single-chip electronic systems that are the
foundation of today’s information technology revolution. It
is through design technology that the ideas and objectives of
the electronic systems designer are transformed into reality;
the quality of the design tools and associated methodologies
determine the design time, performance, cost, and correct-
ness of the final system product.

In today’s highly competitive environment, even small dif-
ferences in the quality of one design flow versus another can
be the difference between success and failure, and a major
improvement can lead to an entirely new generation of com-
mercial tools and services. Thus, it would be very useful to
know how close a given piece of design technology is to
its “fundamental limits” of performance, e.g., as a synthesis,
verification, or test system. Unfortunately, the question of de-
termining such limits lies somewhere between ill-posed and
intractable: we can only identify “fundamental limitations”
of design technology. First, a metric for design technology
is difficult to define. As with other types of technology, it
may be that as one approaches any single fundamental limit
in design technology, one achieves a monotonically better
outcome in some dimension (say, smaller die area or lower
power dissipation). However, actual design problems involve
tradeoffs and a multivariate objective, e.g., minimizing de-
sign time may be a key objective in today’s economy, but a
rapidly implemented design that costs ten times more than it
might otherwise, or that is delivered with subtle errors due to
incomplete verification, may not be “better.” Finding the best
tradeoff among such parameters as design time, cost, power
dissipation, and performance is a complex, situation-depen-
dent process, and indeed the notion oftradeoff(power versus
area versus speed; solution quality versus runtime; etc.) is at
the core of design technology. Second, design technology is
always applied within an external context that has an impact
on its effectiveness. An individual tool or algorithm may be
applied in the context of an ill-chosen methodology or flow
within which even an “optimal” output from the individual
tool cannot lead to an “optimal” overall result. Or, a design
specification created by a human may be ill-considered (say,
with respect to architecture or circuit design) or even unre-
alizable: since design technology is merely an amplifier of
human endeavor and creativity, it can hardly guarantee “op-
timal use of silicon” under such circumstances. Finally, a
third limitation is that while manufacturing technology seeks
to makeor instantiate, design technology seeks tooptimize.
Even ignoring issues of process, human factors, etc., we find
that the underlying optimizations such as graph partitioning,
multicommodity flow, scheduling, or quadratic assignment
are almost always intractable, i.e., NP-hard [84]. Indeed, for
certain classes of difficult optimizations, including many that
arise in today’s IC design process, no constant-factor approx-

imation algorithm can exist unless the complexity classes P
and NP are equal. Since NP-hardness may be interpreted to
mean that no efficient optimal algorithms will likely ever be
found, heuristic approaches are ever present within design
technology. This is perhaps the main “fundamental limit” in
design technology.

In the remainder of this section, we discuss two concepts
that are at the heart of our vision for design technology
and its future. First, we discuss the mechanisms by which
tools and methodologiescoevolve in step with process
technology characteristics and design challenges. Many
design challenges arise from “problems of the large”—the
system complexities that result from smaller geometries
and more transistors per die. Other challenges arise from
“problems of the small”—the complexities of timing, signal
integrity, power, manufacturing variability, and yield, etc.,
that result from process scaling into the deep-submicrometer
(DSM) regime. The design challenges that arise in DSM
processes, and how they impact today’s design tools and
methodologies, comprise our first area of focus. Second,
we discuss the concept oflevels of abstractionof design
specification and description and in particular on the natural
demarcation betweenarchitecture and microarchitecture.
Today’s design technology has mostly addressed implemen-
tation of microarchitecture; our second area of focus is the
expanded scope of design technology that is necessitated
by “problems of the large” and the need to maintain design
(and silicon) productivity.

A. Tools Versus Methodology

As we make progress in design technology, there is an on-
going debate within the design technology community about
what is more important:new algorithms and tools, or new
methodologies and associated tool flows. What should come
first: a breakthrough via a new algorithmic approach, usually
manifest in a tool—or a basic change in the way the design
problem is formulated, motivated by changes in technology
or complexity, or by changes in overall design objectives?
Where will the maximum benefit be gained and how close
can it come to the best possible situation? The simple fact
is that in the history of design for microelectronic systems,
the answer has always been “both,” and, in fact, these two
aspects of the field of design technology are tightly coupled
and highly correlated in terms of impact. At the same time,
as silicon technology marches forward, chips of exponen-
tially higher complexity are developed (following Moore’s
Law) but are based on a technological foundation whose
characteristics are evolving rapidly as well (more intercon-
nect levels, faster but weaker gates, increased power dissi-
pation and noise concerns, greater manufacturing variability,
etc.). According to the 1999 ITRS, the combination of expo-
nential design complexity in sheer numbers of transistors and
wires, along with the explosion in the number of design con-
cerns, leads to “superexponential” growth in the complexity
of the design task. To meet these new silicon technology con-
texts, the design methodology must change dramatically and
its tools must be developedin anticipation ofthese changes.
This situation is illustrated schematically in Fig. 1.
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Fig. 1. Coevolution of tools and methodology with silicon
technology and design challenges.

The “problems of the large” (increasing design com-
plexity and the scale of the application), as well as the
“problems of the small” (the ever-changing impact of
physical laws, material properties and circuit innovations
on what design can achieve, and with what level of effort)
create a rapidly evolving context for design technologists
and designers alike. A given design flow, tool, or even
algorithm cannot continue indefinitely to be sufficient for
design in the face of such changes. Every once in a while,
we reach a point in technology where we cannot continue
to “patch” the old tool or the old approach to design and
must start again, almost from scratch. It is our conjecture
that we are at such a point today, for reasons developed
below. Moreover, as noted above, the limitations of what
can be achieved by design are very much a function of both
tools and methodology, as well as the designer’s priorities in
terms of complex tradeoffs among many objectives. There-
fore, a key responsibility of design technologists today is to
provide an objective quantification of the quality of tools
and associated methodologies, delineating not only how
well they perform relative to alternative approaches but how
close they come to any type of fundamental limit inherent
to the silicon technology. It is also essential to present to
designers as accurate a picture as possible of available
tradeoffs in the various dimensions of a given design. To this
end, we note that useful metrics are very difficult to develop
and calibrate. Since the commercial world of design and
design technology is very competitive, issues of proprietary
intellectual property (IP) present a large barrier. In addition,
the complexity of the various tradeoffs mentioned earlier
make simple metrics almost useless.

B. Levels of Design Abstraction

In the design of a single-chip electronic system, there
are a number of levels of abstraction at which the design is
likely to exist in the course of its evolution from an idea or
a specification to a physical artifact. We use the taxonomy
presented in Fig. 2 to describe these different levels. For the
complex, system-on-chip (SOC) designs of today, designers
typically begin with abehavioralspecification of what they
want to build. This description, or specification, expresses
the functionality the design must implement, along with a
set of constraints it must meet to be practical (cost, perfor-
mance, power or energy dissipation, size, etc.), but (in an

ideal world) does not say anything about how the design
should be implemented. For example, if one were designing
a wireless transceiver, this specification might contain a
Matlab description of the various algorithms used in the
processing of the digital wireless input signal, along with
maximum bit-error-rate requirements, power dissipation
requirements, and a cost target. Whether the best way to
implement the design is as software on a digital signal
processor (DSP) or as a hardware-only, application-specific
IC is not at issue at this stage of the design. In most design
approaches, the next stage of the design process involves
the evaluation of tradeoffs across what we refer to as the
architecture/microarchitecture boundary. While the word
architecture is used in many meanings and contexts, we
adhere to the definitions put forward in [24]: thearchitecture
defines an interface specification that describes the function-
ality of an implementation, while being independent of the
actual implementation. Themicroarchitecture, on the other
hand, defines how this functionality is actually realized as a
composition of modules and components, along with their
associated software. The instruction-set architecture (ISA)
of a microprocessor is a good example of an architecture:
it defines what functions are supported by the processor
without defining how these functions are actually realized.
The microarchitecture of the processor is defined by the
“organization” and the “hardware” of the processor [25].
These terms can easily be extended to cover a much wider
range of implementation options. At this point, the design
decisions are made concerning what will eventually be
implemented as software or as hardware.

Today, most VLSI hardware design flows begin with a
register-transfer level (RTL) description in either the VHSIC
hardware description language (VHDL) or Verilog. The
description is transformed by logic synthesis to a logic-level
structural representation (a gate-level netlist, consisting of
logic gates, flip-flops, latches, etc., and their interconnec-
tions) and then via layout synthesis tools (floorplanning,
placement, and routing) to a final physical layout that is
ready for transfer to manufacturing. This latter part of the
flow is presented in more detail in Section III.

C. Scope and Outline of the Paper

Many different tool collections and design flows are used
in the design of today’s complex processors and SOCs. How-
ever, the majority of the circuits designed today, and cer-
tainly the majority of the transistors implemented, are de-
signed using a variation of the flow introduced in detail in
Section II. While an SOC today presents significant chal-
lenges due to its heterogeneity (possibly containing analog,
radio-frequency (RF), mixed-signal, photonic, and even mi-
croelectro-mechanical components), space limitations pre-
vent us from doing justice to the limitations and challenges
associated with these aspects of the design problem. We place
our emphasis on the design of the complex, digital portions
of such systems. In particular, we believe that the extension
of design methodology to higher levels of abstraction as well
as improving the predictability of the design of increasingly
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Fig. 2. Levels of design representation and sample associated formats.

complex digital systems present a major challenge and are
representative of the kinds of issues we will have to accom-
modate.

We have organized this paper into three major sections. In
Section II, we review today’s mainstream, synthesis-based
approach to the design and implementation of mostly
clocked-synchronous complex digital integrated circuits. In
Section III, we point out a number of fundamental factors
that prevent designers from achieving “optimal” design
quality or silicon utilization in a reasonable time. We base
our discussion on our understanding of limitations intoday’s
approach to design as well as the predicted directions for
silicon manufacturing technology as expressed in the Inter-
national Technology Roadmap for Semiconductors (ITRS)
[11]. In each area of the design flow, we either identify and
quantify the factors limiting progress or point out the work
that must be done to obtain such an understanding. In partic-
ular, we emphasize the role of metrics in the design process
and how we might establish them. Section IV proposes a
number of approaches—requiring new methodologies as
well as new algorithms and tools—for the reliable and effi-
cient design of such systems. These innovations are under
active consideration within the design technology research
community (e.g., [12]). For each methodology, we describe
major outstanding research problems that must be addressed
by the design technology community. Only through such
new approaches to design can we hope to approach the fun-
damental limits of silicon technology. Finally, we note that
the distinction between “today’s challenges” (Section III)
and “tomorrow’s approaches” (Section IV) is never a clean
one; some overlap and arbitrariness in the partitioning is
inevitable.

II. TODAY’S MAINSTREAM (SYNTHESIS-BASED) DESIGN

METHODOLOGY

While there are many different approaches to the use of
design technology for IC design, most of the transistors we
use today are designed with a mainstream design flow, as

illustrated in Fig. 3. This flow has certainly evolved over the
years as new tools have been added to the design method-
ology, but the major elements of the flow have remained
unchanged since the late 1980s. The flow implements a
clocked, synchronousdesign style, where the entire design
is temporally partitioned into a collection of combinational
subnetworks using a clock signal. As shown, it represents
a slightly more detailed expansion of the bottom three
abstraction levels given in Fig. 2. While this is but one of
many possible design methodologies, it is by far the most
commonly used today.

In this flow, the designer begins with a description of the
digital functionality desired in the implementation. This
description is expressed in a register-transfer level hardware
design language (HDL), such as VHDL or Verilog. Via a
sequential synthesisstep, this HDL description is optimized
and mapped to a more explicit register-level description,
where the syntax more closely represents the final design
structure (hence the term RTL netlist).Logic optimization
and technology mappingtransform this description to a
logic-gate-level representation (logic netlist) using the logic
gates and storage elements (flip-flops, latches) from a given
library of such elements (e.g., the standard-cell library of a
foundry). Finally, these gate-level logic elements are placed
in a pattern and then interconnects (wires) are added to the
layout, in a step often referred to asphysical synthesisor
layout synthesis.After this step, the design is ready to be
passed to mask and manufacturing processes.

III. SILICON TECHNOLOGY TRENDS AND THEIR

IMPLICATIONS FORDESIGN TECHNOLOGY

In a world where major characteristics are changing at an
exponential rate, one cannot go for very long without some-
thing reaching its breaking point. The overall VLSI design
methodologydescribedinSectionIIhaschangedlittleover the
past decade, and we believe that major revolutions in method-
ologies and associated tools are essential in order to meet the
productivityandreliability requirementsof theICdesigncom-
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Fig. 3. Basic RTL-to-mask flow for VLSI design.

munity. Impetus for this change comes from: 1) the economic
trends expressed in the ITRS with respect to manufacturing
and validation costs and 2) the physics of DSM devices and
interconnects.Wemakethefollowingobservations.

First, the cost of a state-of-the-art microelectronics
fabrication facility continues to rise, with a new 0.18-m
high-volume manufacturing plant now costing approx-
imately $2–$3 billion. This cost is driving a continued
consolidation of the back-end manufacturing process, with
many vertically integrated device manufacturing companies
either partnering with pure-play silicon manufacturing
partners (e.g., TSMC, UMC today) or moving to an entirely
outsourced manufacturing model. Increasing cost of man-
ufacturing capability also prejudices manufacturers toward
parts that have guaranteed high-volume production from
a single mask set, or that are likely to have high-volume
production if successful. Such a requirement translates to
better foundry response time and higher prioritization when
global manufacturing resources are in short supply.

Second, the nonrecurring engineering (NRE) cost associ-
ated with the design and tooling of complex chips is growing
rapidly. The ITRS and its “red brick walls” reveal that while
CMOS technology will remain feasible well into sub-50-nm
minimum feature sizes, the production of practical masks
and exposure systems will likely be a major bottleneck for
the development of such chips. For example, even with a
shift from 4 to 5 reduction systems (relaxing the man-
ufacturing and inspection tolerances of the mask-making in-
dustry), the cost of masks will grow extremely rapidly for
these fine geometries, increasing the NRE for a new design.
Today, a single mask set and probe card costs $1 million, ten
times the cost of a decade ago. We estimate that NRE cost for
design and manufacture of samples for a complex CMOS IC
in a state-of the-art process is between $7–$10 million today.
When manufacturing and NRE cost trends are viewed holisti-
cally in the ITRS context, a fundamental “cost contradiction”

[96] is seen to be inherent in Moore’s Law and the ITRS.
This contradiction and its likely implications for the struc-
ture of the design–manufacturing interface are discussed in
Sections III-D and IV-F below.

Third, design validation is now well understood to be the
limiting factor in both time-to-market and (perhaps more im-
portant) thepredictability of time-to-market. This is due to
the increasingly significant effects of physics in modern fab-
rication processes (e.g., affecting on-chip communication,
reliable power distribution—“Did I actually get what I de-
signed?”) as well as the impact of increasing design com-
plexity (“Did I actually design what I wanted?”). As chips
become more complex and take on more system function-
ality, one of the most difficult challenges lies not in modeling
the behavior of the chip itself, but rather in modeling the be-
havior of the environment in which the chip is to be used.
This increase in thecontext complexityof modern chip design
problems significantly increases the value of being able to
prototype the design in its actual final application, operating
at real system speeds, before widespread deployment. The
specification of the actual design requirement is often incom-
plete or is evolving over time; hence, incremental redesign
and revalidation take on increased significance. Last, the cost
of developing and implementing comprehensive tests will
continue to represent an increasing fraction of total design
cost unless new approaches are found.

Fourth, it is not only design complexity and chip cost
that challenge future design technology. We also face
“problems of the small”: dimensions are becoming smaller,
statistical process variations are becoming increasingly
significant, and device and interconnect scaling trends make
performance of the physical implementation unpredictable
during “front-end” system-level design. Thus, another
major challenge is achieving reliable and predictable system
implementation from the microarchitecture level down to
layout.
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The remainder of this section reviews existing technolo-
gies and associated technical challenges for five key steps of
the design methodology, following the sequence of Fig. 3. In
order, these are: system-level design, functional design and
implementation verification, timing closure (i.e., across log-
ical and physical design), physical design and physical veri-
fication, and manufacturing test and analysis.

A. System-Level Design

Preferred approaches to the implementation of complex
embedded systems will likely be affected by the following
factors.

• Design costs and timeare likely to dominate the deci-
sion-making process for system designers. Therefore,
design reuse in all its shapes and forms will be of
paramount importance. Flexibility is essential to be
able to map an ever-growing functionality onto an
ever-evolving hardware.

• Designs must be captured at the highest level of ab-
stractionto be able to exploit available implementation
degrees of freedom. Such a level of abstraction should
not make any distinction between hardware and soft-
ware, since such a distinction is the consequence of a
design decision.

• Next-generation systems will use a few highly com-
plex part types (at the limits of Moore’s Law or the
ITRS), with many moreenergy-power cost-efficient,
medium-complexity chips[O(10–100 M) gates in
50-nm technology], working concurrently to im-
plement solutions to complex sensing, computing,
and signaling/actuating problems. That is, for most
applications chip design will be driven by cost consid-
erations far more than by limits of complexity.

In this context, chips will most likely be developed as in-
stances of particularplatforms. Rather than being assem-
bled from a collection of independently developed blocks
of silicon functionality, each will be derived from a specific
“family” of microarchitectures, possibly oriented toward a
particular class of problems, that can be modified (extended
or reduced) by the system developer. These platforms will be
extended mostly through the use of large blocks of function-
ality (for example, in the form of coprocessors), but they will
also likely support extensibility in the memory/communica-
tion architecture.

A major limitation of today’s mainstream design method-
ology is the level at which one must enter the design. While
RTL-level design entry has been sufficient for the past
decade, design complexity and the types of functionality
that must be implemented in today’s SOC designs have
reached the point where designers are routinely starting from
a higher level source for design description. Such sources
include Matlab, SDL, C, or C (extended to support
concurrency), and Java [22]. With the continued evolution
of today’s embedded systems market, the emphasis of such
design entry systems must also comprehend the importance
of data streaming (dataflow) representations, as well as

the conventional control-oriented approaches that are most
easily described using a collection of concurrent finite-state
machines. At most embedded system design companies and
IC design companies, designers work at levels of abstraction
that are too close to implementation: most IC designers
have an RTL language description as their highest level
of abstraction, and most embedded system designers use
assembly or at best C language to capture and implement the
design. These levels are too low for complex system design,
e.g., sharing design components and verifying designs
before prototypes are built is nearly impossible. In general,
designers are thwarted by the low productivity afforded by
the expressive power of RTL languages by missing support
for software implementations, and by the lack of appropriate
modeling of concurrency in all its incarnations.

A design methodology that effectively addresses complex
systems must start at high levels of abstraction. However, the
ad hocadoption of higher level abstractions that is happening
today only goes partway in solving the problem. Higher level
descriptions must be based on a well-defined model of com-
putation; only then can the benefits in terms of complexity
management, concurrency exposure, optimization, and veri-
fiability be fully exploited.

1) Managing Concurrency as a Fundamental Limit:Per-
haps the most significant technical challenge facing systems
designers in the years ahead, and the issue that is most
likely to fundamentally limit design productivity, is that
of concurrency. When real-time data movement is a
critical element of an application, when latency (due to
interconnect delay, for example) dominates bandwidth, and
when chips are sufficiently complex that they must handle
multiple tasks at the same time to be cost effective, how one
reliably and efficiently implements concurrency becomes of
the utmost importance. In essence, whether the silicon is
implemented as a single, large chip or as a collection of
smaller chips interacting across a distance, theproblems
associated with concurrent processing and concurrent
communication must be dealt with in a uniform and
scalable manner. In any large-scale embedded systems
program, concurrency must be considered as a first class
citizen at all levels of abstraction and in both hardware and
software. This is a problem whose solution has eluded the
software community for 50 years but must be solved—both
in hardware as well as in software—if we are to even
approach the fundamental limits provided by silicon
technology in the years ahead. This problem cannot be
solved by a better tool or a faster algorithm alone. It requires
a change in methodology—a change in the way we design
concurrent systems to an approach rooted in one or more
formal mathematical models that give us the foundation we
need to guarantee certain properties of the design.

2) System-Level Design Reuse:As the complexity of the
products under design increases, the development effort re-
quired increases exponentially. When addressingproblems
of the large, one of the few remaining productivity levers to
exploit is the idea of design reuse. Clearly, this is not a new
idea, e.g., at the printed circuit board level each packaged
component on the board is an example of design reuse. In
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many ways, application-specific IC (ASIC) design method-
ology regularly exploits reuse at the gate and medium-scale
integration levels, where the ASIC library defines a collec-
tion of reusable, precharacterized components. And of course
in the software world, design reuse has been a goal for many
years, most recently promoted in the form of object-oriented
design with reuse of classes, as well as the component-based
design approach used most often to assemble user interfaces
or in products like Microsoft Visual Basic.

Both reuse and early error detection imply that the de-
sign activity must be defined rigorously, so that all phases
are clearly identified and appropriate checks are enforced.
Design reuse is most effective in reducing cost and develop-
ment time when the components to be shared are close to the
final implementation. On the other hand, it is not always pos-
sible or desirable to share designs at this level, since minimal
variations in specification can result in different, albeit sim-
ilar, implementations. Higher level abstraction can eliminate
the differences among designs, enabling sharing with only a
minimal amount of work needed to achieve final implemen-
tation.

The ultimate goal is to create a library of functions and of
hardware and software implementations that can be used for
all new designs. It is important to have a multilevel library,
since it is often the case that the lower levels that are closer to
the physical implementation change because of the advances
in technology, while the higher levels tend to be stable across
product versions. Both system and software reuse imply a
design methodology that leverages available existing imple-
mentations at all levels of abstraction. This would allow pre-
existing components to be assembled with little or no effort.

B. Functional Design and Implementation Verification

The most significant bottleneck and ultimately the lim-
iting factor on time-to-market for a reliable SOC design is
design verification. With increasingly complex designs, this
problem is looming increasingly large and radical new ap-
proaches are essential. In this section, we summarize the
state-of-the-art approaches to functional verification of com-
plex digital systems and point out the key directions needed
in research if we are to expand the limitations of the verifi-
cation task.

1) Simulation-Based Approaches:Logic simulation is
the dominant technology used by industry for functional
verification. With this approach, multiple models are
constructed describing the system at different levels of
abstraction. Typically, a very high-level description might
be written in a standard programming language, while more
detailed ones are written in a hardware description language
such as Verilog or VHDL. Simulation patterns are generated
to exercise the system over a wide variety of operating
conditions. These patterns are then simulated and the results
are analyzed to determine whether the simulated model
behaves as desired. This analysis generally involves making
sure that the different models produced consistent results
and that specific undesirable behaviors did not occur. In
addition, one might check that specific desirable behaviors

did occur to make sure that the patterns provided adequate
coverage of the system’s possible behaviors.

In the design of a state-of-the art system, enormous re-
sources are expended on simulation-based verification. Com-
panies set up entire “farms” consisting of several hundred
computers that run simulations continuously. Large numbers
of verification engineers—typically more than there are de-
signers—create test patterns and analyze the results of simu-
lation. As designs become larger and more complex, this ex-
penditure of resources does not seem to scale favorably: sim-
ulation consumes an ever-larger portion of the computer and
human resources in the design process and is often a major
limiting factor in bringing a design to market.

Simulation-based verification has been remarkably effec-
tive at ensuring high-quality electronic designs. One need
only look at the electronic systems available commercially
to see that our industry meets much higher quality standards
than do others, particularly the software industry. This high
degree of success has led to high expectations, however. In
1994 when it was discovered that the Intel Pentium processor
generated slightly incorrect results for floating point division
in less than one out of every billion possible cases, Intel was
obligated to mount a massive recall campaign costing $475
million. In today’s marketplace where there are far more mi-
croprocessors deployed, many in embedded systems, the cost
of such a recall is almost incalculable. Thus, there is very
high pressure to make sure that electronic systems are free
of functional defects.

Unfortunately, as systems become larger and more com-
plex, simulation becomes less effective at finding possible
design errors. This is particularly true for systems that have
high degrees of concurrency, such when there are multiple
agents performing their tasks independently, interacting and
communicating over some medium such as a bus. For ex-
ample, an automotive electronic system might have separate
agents performing monitoring and controlling the engine,
the automatic transmission, the antilock braking system, the
driver’s console, and the airbags. Some agents must interact
continuously, such as the engine and transmission controls,
while others interact only in special cases, such as when the
brakes and transmission coordinate for traction control. In
such systems, errors often occur under only unusual combi-
nations of events, e.g., when the driver depresses the accel-
erator, the automobile senses and deploys traction control,
and then the driver depresses the brake pedal within a short
amount of time. Such event combinations are difficult for the
designer to enumerate, making it hard to generate a compre-
hensive set of simulation tests. The number of possible event
combinations can become far too large to simulate. Even de-
termining whether the simulated behavior is correct can be-
come difficult in highly concurrent systems, since we do not
demand that it have a particular fixed functionality.

The EDA industry has developed a number of tools and
techniques to support simulation-based verification. These
can be classified as either making simulation faster or making
it more effective for a given amount of simulation. To make
simulation faster, most companies have recently shifted from
event-based simulation in which each low-level component
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is evaluated whenever one of its input values changes, to
cycle-level simulation in which each component is evaluated
once per clock cycle according to a fixed evaluation order.
Cycle-level simulation can outperform event-based simula-
tion by a factor of ten or more. In addition, more tools are
available for managing simulations running on multiple ma-
chines, either to partition the simulation of a single simula-
tion model across multiple machines or to run multiple copies
of a simulation model over different simulation patterns. A
final technique to improve simulation performance has been
to map the simulation models onto special-purpose hard-
ware, providing either a highly optimized simulation engine
or to emulate system operation using programmable logic.
These approaches tend to be less cost effective than running
software simulators on conventional machines. Their use is
mainly for creating models with sufficient performance and
capacity to serve as a platform for software development or
application evaluation. These efforts at improving simulator
performance have been fairly successful, but we do not an-
ticipate there will be comparable improvements in the future.
Modern simulators running on conventional machines are
highly optimized and efficient. Hardware acceleration and
emulation will still satisfy the needs of only particular niches.

A more recent industry focus has been on making simula-
tors more effective. Improvements include tools to generate
simulation patterns that more fully cover the set of possible
system behaviors, techniques to analyze the simulation re-
sults both for correctness and for coverage, and improved en-
vironments to support the activities of verification engineers.

The dominant technique for generating tests is to use some
form of random pattern generation. For example, a micro-
processor might be simulated using a sequence of random
instructions. Random patterns have the advantage that they
create many different event combinations, including ones
that were often not anticipated by the designers. However,
purely random patterns will often fail to generate the unusual
event combinations that cause failures. With most random
pattern generators, the user can bias them toward areas
where difficulties often occur, e.g., to generate instructions
causing a large number of exceptions or data hazards. A
more recent technique has been to use techniques developed
by the test industry for automatic test pattern generation
to generate simulation tests that will cause some particular
behavior. For example, a test generator might be called
to create some known hazard condition that did not occur
during any of the random simulations. These techniques are
still fairly costly in terms of computational requirements
and can often fail when dealing with large-scale systems.

A particularly difficult problem for simulation-based ver-
ification has been developing metrics to quantify the degree
of coverage provided by a set of simulation patterns and to
identify aspects of the system behavior that require greater
testing. In purely numerical terms, one can easily argue that
complete coverage by simulation is a hopeless task. Even
a simple 32-b adder has over possible input combina-
tions. A processor that could simulate 100 billion patterns per
second would require over three years to simulate that many
combinations. If we scale to a 64-b adder, the total simula-

tion time becomes unimaginably large. Clearly, simulators
do a better job of discovering errors in circuit designs than
this purely combinatorial analysis would lead one to believe.
Recently, the EDA industry has provided coverage analysis
tools for logic simulators that adapt the “line coverage” met-
rics of the software industry. That is, they make sure that
every line of code in the VHDL or Verilog model is evalu-
ated at least once. While such a standard is clearly a minimal
requirement for coverage, most users agree that it is not ad-
equate. First, even if some line of code is evaluated, there is
no guarantee that the result of that evaluation will reach any
point in the circuit where its effect is observed. In the ter-
minology of testing, it only ensures that a potential error is
excited. More seriously, it measures only the occurrence of
the individual events and not their interactions. Unlike soft-
ware in which much of the complexity is in its sequential be-
havior and hence reaching a particular point in the code can
be quite significant, hardware systems typically consist of
fairly simple components having complex interactions. Code
coverage fails to measure the occurrence of event combina-
tions.

This lack of effective coverage metrics is a major im-
pediment in making simulation more effective. As a simple
example, the industry has no reliable means of knowing
when it has performed enough verification to be able to
declare a product ready for shipment. Most companies
simply look at the number of errors that have been detected
by simulation each day and declare their task as done
once the number drops below some threshold for a long
enough period. Without coverage metrics, there is no way
to determine whether this decline in the number of detected
errors is due to a low number of actual errors or that the
additional simulation is not covering any new forms of
behavior. Without coverage metrics, it is difficult for a
novice verification engineer to learn his or her task or
measure success. As a result, simulation remains somewhat
of a “black art” that can take years to master.

C. Timing Closure

The timing closure problem is caused by the inability to
predict interconnect loading on logic gates with adequate
precision prior to physical design. Logic is optimized with
respect to timing, power and area objectives with assumed
values for interconnect load capacitances, but the actual
values of these loads cannot be known until after layout. This
chicken–egg impasse has in the past been broken by the use
of wireload models, which statistically predict interconnect
load capacitance as a function of signal net fanout, tech-
nology data, and legacy design information. At 0.5m and
older technologies, logic synthesis could perform reasonably
effective technology mapping, gate/cell sizing, and buffering
using wireload models, since interconnect capacitance was
a modest fraction of the total net capacitance. However, in
DSM technologies the interconnect capacitance is a larger,
sometimes dominant portion of the total net capacitance
since device input capacitances scale downward while lat-
eral intralayer interconnect capacitances scale upward much
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Fig. 4. Wirelength as a function of fanout for a modern design (source: Wilsin Gosti).

faster. Metal resistance effects also increase with routing
length and are topology-dependent (i.e., dependent on where
the routing tree branches are located, not just on how much
wire is used in the tree); there is no simple statistical model
to predict their impact on delay. Other basic reasons for
the failure of wireload models in DSM are as follows. 1)
The resistance–capacitance (RC) product per micrometer of
IC wiring can vary by factors exceeding 100 depending on
whether a connection is made on local layers (layers M1
and M2) or on global layers (layers M7 and M8 in recent
processes); this means that detailed placement and routing
information is needed for accurate parasitic estimates. 2)
Interconnect estimates are used to validate designs in terms
of worst case timing paths (critical paths) or other “max”
criteria (by contrast, total wirelength is a “sum” criterion and
is easier to predict). In this light, [85] uses order statistics
arguments to explain why interconnect prediction (whether
by wireload model or more sophisticated means) necessarily
fails in the DSM regime. 3) With each process generation
the increased system complexity and functionality causes
average interconnect length to decrease less slowly than
other physical dimensions. The result is an increase in the
absolute number of outlying nets, i.e., nets that are not
accurately captured in terms of a wireload capacitance
model.

The above analyses imply that wireload models can be ef-
fective for a significant population of nets as scaling con-
tinues into the nanometer range, but can fail spectacularly
for long and high-fanout nets [58], [60]. Fig. 4 shows the ac-
tual length (the first-order predictor for wiring capacitance
and delay) for a modern 0.18-m design as a function of the
fanout (number of connected inputs) of each net. Not only
does the wireload model fail to accurately follow the trend,
but no simple formula could: wirelength is hardly correlated
with fanout at all.

Of course, even if capacitance per unit wirelength does
not scale with device input capacitance, there exists some
net length for which device capacitance still dominates

wire capacitance. This observation can be applied to a
block-based chip design problem. Namely, for a given
technology, one can predict the net lengths within the blocks
will be small enough such that the timing estimates from
statistical wireload models are sufficiently accurate [58].
It follows that current approaches for top–down synthesis
can be applied to these block sizes. The corresponding
interblock wires are by this definition considered long wires
and remain problematic for such a block-based top–down
design strategy. Unfortunately, long interblock nets often
comprise portions of the critical timing paths. In the fol-
lowing, we review current approaches to timing closure and
the open issues associated with each.

1) Placement-Aware Synthesis:To overcome the in-
ability to predict delays via wireload models for certain
block/design sizes, there has been a recent trend toward
placement-aware synthesis. Placement-aware synthesis
attempts to use a placement tool [46]–[48], [61] to per-
form a partial physical design to compute more accurate
interconnect loading estimates on a net-by-net basis. Using
this snapshot of placement information to remap logic
immediately invalidates the physical design information,
so incremental replacement is used in such approaches
to iteratively refine such solutions. Convergence of such
approaches is uncertain.

In addition to placement prediction, routing estimation
is critical for accurate delay prediction of long DSM nets.
Since delay prediction accuracy depends on both wiring
lengths and layer assignments, placement information alone
cannot capture all of the interconnect model detail, such
as the increase in loading required to meander around a
memory block or a clock tree spine. In addition, the in-
creased coupling effects for DSM that are most problematic
for long global nets cannot be predicted without some
amount of routing detail.

2) Bounded Block Size for Logic Synthesis:Depending
upon how one defines the scope of the tasks associated with
logic synthesis, DSM trends may or may not require dramatic
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change in the waysynthesisis performed. For example, if
synthesis algorithms are limited to blocks based on their own
inherent complexity, then wireload models are likely to suf-
fice. On the other hand, synthesis in the broader sense of the
word, applied at chip level, will not be stretched easily into
the DSM era.

There are two ways in which emerging technologies,
and interconnect process scaling in particular, can require
new synthesis methodologies. First, design styles and
the multiperson nature of large IC design teams dictates
the use of hierarchy in the modeling and analysis. If
the hierarchical blocks are of a large enough size that
interconnect effects become a factor, then layout-aware
synthesis is warranted. Second, independent of how
block synthesis is performed, an increasing number of
components on a chip implies either that block sizes
must increase correspondingly, or that the resulting
block-assembly physical design problem will be quite
difficult. In other words, if all blocks remain at the size
for which interconnect is nondominant, this is at best
a constant size (and at worst a decreasing block size).
Therefore, the number of overall components (blocks)
must be increasing, such that the number of interblock
connections (now defined as wires for which interconnect
can be dominant) explodes.

3) Time Budgeting Among Blocks:One way of ad-
dressing timing closure of hierarchical block-based designs
is to allocate timing budgets to all of the subsystem com-
ponents, including the global interconnects [49], [50], [52],
[55], [57], [62]. The obvious problem is that reasonable
delay prediction for global interconnects is difficult, if not
impossible, before the design is physically constructed. In
the best of circumstances numerous design iterations are
required to achieve timing closure. Suboptimality arises if
timing slack is wasted on regions that were overbudgeted
due to insufficient physical design information. Meanwhile,
other areas that were underbudgeted result in negative
timing slack and overall failure to achieve timing closure.
It should be emphasized that reallocating extra slack from
one region to another over subsequent design iterations is
an extremely difficult task for large designs. Each design
iteration is quite costly, and the slack reallocation schemes
can be oscillatory and/or nonconvergent. Unfortunately, the
delay budgeting problem will only become more difficult
as more wires become global wires whose pin-to-pin delays
are strongly dependent on their actual implementation by
detailed routing tools.

4) Constant Delay Synthesis:Instead of timing bud-
geting at the block level, elegant algorithms for finer
grain delay budgeting have been proposed [3], [4]. These
approaches rely on the notion that the “logical effort”
(based on the fact that different gate topologies such as
inverter or NOR have different inherent ability to drive
capacitive load) should be equalized at all logic stages
along any timing path [4]. For the case of no interconnect
and no branching paths, the mathematics are elegant and
the solutions are of comparable quality to hand-tuned
design. The branching effects, however, are handled at

the price of algorithmic elegance and solution quality. For
long interconnects that dominate circuit performance, the
constant-delay-effort derivation is further compromised
since the constant-effort relies on a model of gates driving
other gate capacitances only [4]. Therefore, dominant
interconnect would seemingly impact the overall quality
of the constant-delay synthesis results when considering
general interconnect paths.

Technology trends [1] suggest that these negative impacts
on quality will only worsen over time. For DSM it is apparent
that interconnect capacitance alone will comprise an increas-
ingly larger portion of a net’s overall capacitance. For this
reason constant delay synthesis seems to be an alternative
to traditional synthesis only for problems that are accurately
gauged in terms of wireload fanout models. Extending either
of these synthesis methodologies to "global" wires seemingly
requires physical design information, which precludes any
possibility ofone-passsynthesis success.

5) Wire Planning: Recognizing that without physical in-
formation one-pass convergence is unlikely,combinedwire
planning and constant delay synthesis was proposed in [58]
and [51]. The methodology is based on a block-design style
where the wires among blocks are planned, or constructed,
and the remaining slack is allocated for the constant delay
synthesis within the blocks. The difficulty with such an ap-
proach for DSM technologies is as follows. If blocks are of
significant size, then the synthesis-with-dominant-intercon-
nect problem remains. In contrast, if block sizes remain rela-
tively small such that constant-delay synthesis with wireload
models works, then blocks will eventually appear as point
objects (sea-of-blocks) for gigascale integration. In this latter
scenario, the majority of the wiring will be global wiring and
the physical placement of the point-like blocks will be abso-
lutely critical to the overall wire planning quality. If we fur-
ther acknowledge the need to incorporate reused IP blocks,
generated datapaths, etc., this corresponds to an extremely
challenging physical design problem.

D. Physical Design and the Interface to Manufacturing

Physical designencompasses traditional steps of floor-
planning, timing optimization, placement, and routing.
These steps are increasingly intertwined withphysical veri-
fication, which encompasses electrical rule checking (ERC),
layout-versus-schematic checking (LVS), and design-rule
checking (DRC), as well as resistance, inductance, and
capacitance (RLC) parasitic extraction, delay calculation,
and (static) verification of system timing and signal integrity.
The accelerating technology roadmap, to first order, brings
lower supply and threshold voltages, higher aspect-ratio
local interconnects, and higher current and power densities
along with exponentially rising design complexities. A
number of DSM effects (signal delay, crosstalk-induced
noise and delay uncertainty, inductance effects, substrate
noise, etc.) make achieving speed–power performance
goals extremely difficult. As a result, moredegrees of
freedomin circuit design are exploited. With interconnect
design in particular, the number of available techniques is
large: for on-chip global signaling, designers may exploit
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shields/spacing/interleaving, wire tapering, driver/repeater
insertion and sizing, low-swing differential-pair structures,
etc. In this context, performance analysis and verification
become key challenges within the design process:static
and “filtering-based” methodologies must be applied to
handle complexity, even as relevant phenomena such as
crosstalk-induced signal delay are inherentlydynamic(see,
e.g., [70]). This results in increasedguardbanding that
leaves performance and value on the table to achieve a more
tractable design process. Other “DSM effects” arise with
respect to economics and with respect to manufacturability,
reliability, and the design–manufacturing interface. These
effects motivate restructuring of existing handoffs between
physical design/verification and the mask and fabrication
segments of the IC industry; they also motivate a need for de-
sign for manufacturability (DFM) across all levels of design
abstraction. In this section, we first discuss consequences
of device, interconnect, and supply scaling; we then discuss
economic consequences and the design–manufacturing
interface.

1) Coupling-Induced Timing Uncertainty:Crosstalk can
affect the behavior of VLSI circuits in two ways: 1) incor-
rect functionality through introduction of noise at sensitive
nodes; and 2) increasing (or decreasing) the interconnect de-
lays. A major cause of timing (or delay) uncertainty is the
increasing effect of crosstalk between parallel intercon-
nect lines in DSM circuits [65], [66]. For DSM processes, the
coupling capacitance can be as high as the sum of the area and
fringe capacitance of a wire. A small sampling of available
design methodologies for controlling coupling-induced logic
and timing errors includes: 1) staggering clock arrival times
at latches; 2) using shield wires; 3) increasing spacing be-
tween wires; 4) using repeater insertion to reduce noise sen-
sitivity; 5) upper and lower bounding slew times to control
coupling effects, etc. We require new quantified assessments
of which design techniques are best—e.g., in terms of design
time as well as chip-quality metrics such as speed, area, of
yield—according to specific analysis techniques, and in spe-
cific contexts.

2) Clocking and Power Distribution:Further complica-
tions are expected for gigascale systems due to decreasing
integrated-circuit dimensions and higher clocking fre-
quencies. The implications are that synchronous systems,
as we know of them today, will not be feasible in the
future. Instead, designs will have some portions that are
asynchronous, in terms of new global communication
components, or quasi-synchronous, based on multicycle
signal propagations. Timing verification must also handle
IP cores and span the entire spectrum of design issues from
interconnect effects to high-level timing and scheduling.

Control of power dissipation and power density is in
many ways more daunting than timing. Power increases in
direct proportion to functionality and operating frequencies;
hence, voltages are scaled to the lowest limits permitted
by noise margins and performance requirements. Voltage
scaling, even when augmented by multithreshold and
multisupply process technology, is not enough. Turning off
unused portions of the system via gated clocking modes

saves power, but it increases the complexity of the physical
design and verification process.

Particularly at the early phases of design, prediction
of timing and power dissipation is extremely difficult for
gigascale systems since the design is obviously based on
incomplete data. Any forecasted data must be bounded by
confidence intervals that reflect the incompleteness of the
design information. But providing such bounds remains
a difficult problem at almost all design-abstraction levels.
DSM technologies and the interconnect performance dom-
ination that comes with them creates new challenges for
model abstraction and performance prediction. For instance,
forecasting the impact of coupling prior to physical design
and routing is currently not possible at the synthesis level,
yet can make the difference in terms of timing closure.

3) Impact of Manufacturability on Physical Design and
Verification Flows: In ultra-DSM processes of 100 nm
and below, statistical fluctuations of dopant concentrations,
thin-oxide-layer thickness, chemical–mechanical planariza-
tion of shallow-trench isolation and damascene local metal,
etc., have enormous performance implications. Even today,
cross-chip, cross-wafer, and cross-lot variations in feature
dimensions depend not only on local geometric context
(e.g., layout pattern density), but also on where in the reticle
the line occurs and even which copy of the stepper was
used (lens aberrations differ in each laser). In this context,
even simple concepts such as “signal delay” can no longer
be abstracted as numbers (possibly dependent on operating
conditions, as noted above), but rather must be treated as
distributions. Such numbers also have unprecedented corre-
lations, e.g., 1) an overpolished (thin) M1 layer may imply a
thick M1–M2 interlayer dielectric and taller via geometries;
or 2) gates near the center of the die may have different
speeds than gates near the boundary of the die [64], [78].

The heightened interdependencies between design and
manufacturing are due in part to a fundamental crossover
point in the evolution of VLSI technology. This crossover
point occurs when minimum feature dimensions and spac-
ings decrease below the wavelength of the light source.
Pattern fidelity deteriorates markedly in this subwavelength
lithography regime: to achieve desired critical dimension
(CD) control, optical lithography must apply compensation
mechanisms [69], [72]–[74], [77], [83] that either perturb
the shape [via optical proximity correction (OPC)] or the
phase [via phase-shifting masks (PSM)] of transmitting
apertures in the reticle. The fundamental design problem
introduced by OPC and PSM is that there is no longer any
“isomorphism” between the layout design and the mask,
nor between the mask and the fabricated silicon—although
the layout and silicon must be as similar as possible. Yet
another design–manufacturing link is introduced as more
interconnect layers are required at each successive tech-
nology generation. For multilayer interconnects, we see a
strong requirement forplanarizedprocesses that rely on
chemical–mechanical planarization (CMP). Manufacturing
steps involving CMP have varying effects on device and
interconnect features, depending on localdensitycharacter-
istics of the layout pattern; hence, layout must be augmented
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with “dummy” features to even out the layout density. This
link between layout and manufacturability has grown in
importance with the move to shallow-trench isolation and
inlaid-metal processes [68], [81], [82].

Such design–manufacturing dependencies place burdens
on the underlying design technology in unprecedented ways
[67]. First, traditional physical verifications such as para-
sitic extraction and performance verification cannot be per-
formed accurately without close understanding and modeling
of, e.g., downstream dummy metal insertion. Second, mask
manufacturing capabilities and costs must be carefully con-
sidered. For example, to control mask yield and cost, OPC
and PSM insertion must understand that only some device
or interconnect dimensions are worth the expense of careful
enforcement—i.e.,functional intentmust be passed to tra-
ditional physical verification steps. Inserted OPC and PSM
features must also beinspectableby optics-based inspec-
tion systems, and appropriate measures of downstream mask
costs will additionally need to be applied at the layout level.
Third, both PSM and CMP createglobaleffects in layout ver-
ification: a given feature may affect the correctness (phase-
assignability or surrounding layout density) of another fea-
ture thousands of micrometers away. This fundamentally dif-
fers from today’slocal context for DRC and requires the
definition of new criteria for “design-rule correctness.” Fi-
nally, thorny issues are raised by hierarchy and reuse (e.g.,
composability of PSM- or CMP-correct layouts in cell- or
block-based design).

4) “Cost Contradictions” and Structure of the Design–
Manufacturing Interface:Three root assumptions in the
ITRS postulate: 1) exponential decrease in minimum fea-
ture size; 2) exponential decrease in memory size; and 3)
exponential increase in “transistor density” for DRAMs,
microprocessors (MPUs) and ASICs, with rates dictated by
Moore’s Law [95]. The ITRS also suggests that aggressive
die size shrinks will be applied to achieve the necessary
exponential decreases in cost per transistor/bit consistent
with historical trends. From these assumptions one can
derive [96] cost per chip trends and cost per layer per cm
trends: for future technology generations, cost per chip
(computed this way) increases while cost per layer per cm
remains constant. Hence, at some point the cost of a die may
be too high to be acceptable by the high-volume market.
Since decreasing the cost per layer per cmseems difficult
in light of the complexity of next-generation lithography
and defect control techniques, we arrive at a fundamental
“die cost—manufacturing cost contradiction” [96].

These contradictory cost pressures suggest either, or a
mix, of two basic scenarios within the IC industry. In one sce-
nario, cost per transistor/bit could be kept at ITRS-mandated
levels, but this may lead to a shortage of R&D resources
required for development of new processes and equipment.
Alternatively, the cost per transistor/bit restriction could
be relaxed, allowing cost per die to increase, but this may
have negative impact on the volume of ICs produced and
sold. We believe [96] that (outside of forcing acceptance
by the market of higher chip prices) the IC industry will
therefore be compelled to improve, as aggressively as

possible, manufacturing efficiency in three fundamental
ways: 1) by seeking market positions that allow increase
of manufacturing volumes; 2) by attempting to decrease
the variety of processes and products; and 3) by practicing
design for manufacturability(DFM) at all levels of design
abstraction. Approaches 1) and 2) are consistent with the
emergence of programmable platform-based design, as
detailed in Section IV-B below. Approach 3) suggests new
structure in the interface between design and manufacturing
domains, which we will describe in Section IV-F.

E. Manufacturing Test and Analysis

DSM technology and high integration of system-on-a-chip
designs are challenging test in a number of areas. The test
community must cope with an enormous spectrum of dif-
ficult problems ranging from, for instance, high-level test
synthesis for component-based design to noise and power
dissipation problems in extremely high-performance (in re-
ality analog) pin electronics. The new test challenges come
from three different sources: 1) automated test equipment
(ATE) technology; 2) design technology; and 3) semicon-
ductor technology. In the following we briefly discuss the
impact imposed by the trends in these three areas.

1) Automatic Test Equipment is Reaching Limitations in
Testing High-Performance Devices:On-chip clock speeds
are increasing dramatically while the tester overall timing
accuracies (OTA) are not. The ITRS roadmap predicts that
ATE accuracy will improve marginally from 200 to 175 ps
by 2012 while the clock period of high-speed IC can reach
330 ps by 2012. This translates into increasing measurement
errors that it could reach over 50% of the clock period by
2012. This trend implies increasing yield loss (estimated to
be up to 48% by 2012) as guardbanding to cover tester errors
results in the loss of more and more good chips.

The volume of test data per gate is expected to remain con-
stant (up to about 1 kB test data per gate), which implies that
much more data need to be stored in the tester and also passed
across the chip boundary (about 10 GB test data for a ten-mil-
lion-gate design), resulting in capacity and bandwidth prob-
lems. Furthermore, long test application time and excessive
cost of ATE also contribute to the increasing overall test cost
(and hence system cost).

2) Integration of Complex, Heterogeneous Components
in SOC Poses New Test Problems:A key challenge of
testing embedded components and component-based SOCs
is the heterogeneity of the components along several di-
mensions: the components can be microprocessors, DSPs,
multimedia, telecommunication, or interface components;
either soft, firm, or hard cores; either digital or analog; and
either synchronous or asynchronous. The diversity of the
components makes different choices of component-level
test strategies, like boundary scan, automatic test pattern
generation (ATPG), or built-in self-test (BIST), more appro-
priate for each different type of component, necessitating a
system-level test strategy that can incorporate all the diverse
component-level test schemes. The gigascale system-level
integration, while benefiting the system design process in
several ways, makes accessibility and diagnosability of
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deeply embedded components a major problem. Moreover,
the configurability and customizability of system compo-
nents available in the SOC design paradigm, like processors,
peripheral components, and the underlying bus, memory,
and communication architectures, make SOC testing using
standard test and access mechanisms a challenge.

Cost-effective methods to test embedded analog,
mixed-signal, and RF components and devices using
multiple technologies, multiple logic families, and even
multiple voltage levels are not available for such heteroge-
neous chips. A significant fraction of systems-on-silicon
chips are mixed-signal designs due to the natural trend
of incorporating the analog interface circuitry into digital
chips. Even though for most mixed-signal high-end ICs,
the analog circuitry accounts for only a small fraction of
the total silicon, the cost to produce such mixed-signal
devices is being dominated by their analog costs. It has been
predicted by several sources that the ratio of analog testing
cost to the total mixed-signal product cost will continue to
increase if change to analog testing is not made. Currently,
test evaluation, design-for-test, and self-test solutions for
analog blocks and converters remain very limited. Most
of the existing solutions are primarily based on functional
testing and have frequency limitations. There are no standard
figures of merit for evaluating analog test program and there
exists no systematic test strategy for RF circuits. Developing
cost-effective test methodologies and techniques for analog
and mixed-signal components is therefore an essential part
of the task for devising a complete solution for testing
heterogeneous SOCs.

Also, conventional issues of overhead caused by de-
sign-for-testability circuitry will be replaced by new
problems. For example, wires will cost more than gates,
both in silicon area and delay. Because Moore’s law shows
no sign of abating, it is vital that the test solutions are able
to scale as design size increases, which is not the case for
many of today’s test solutions.

3) Deeper Submicrometer Technology Invalidates Ex-
isting IDDQ Test Solutions and Causes New Failure
Modes: For deeper submicrometer technology, the back-
ground quiescent current to ground (IDDQ) increases
inexorably and the spread of IDDQ distribution is also
increasing. IDDQ testing must be adapted to exist in an en-
vironment of decreasing signal to noise ratio, or be replaced
with a better suited method that maintains its effectiveness
in defect screening and reliability prediction.

Geometries shrink year by year while the defect sizes
do not shrink proportionally. Furthermore, the increase of
wiring levels and the increasing dominance of wire delay
demand new fault models. Furthermore, many of today’s
signal integrity problems (which are targets of DSM design
validation) are becoming test problems as well. Examples
are distributed delay variations, crosstalk induced delay, and
logic errors, excessive voltage drop and/or swing on power
nets, and substrate and thermal noise. The effects of these
noise sources to the product quality remain unknown, while
it is becoming clear that process variations are now more
likely to cause devices to marginally violate the performance

specifications. Testing must target not only spot defects but
also such parametric performance failures. A new class of
“noise” faults caused by above-mentioned DSM parametric
variations needs to be properly modeled to the levels of
abstraction higher than the present electrical, circuit, and
transistor levels, to support applications in fault simulation,
test generation, design for testability, and built-in self-test.

4) Paradigm Shifts:Innovative test solutions are needed
to address the challenges outlined above. Without new
test methods, testing may become a key showstopper that
limits future design and manufacturing technologies. Test
technology must be able to support higher level design and
test handoff. Testability must be analyzed and test circuitry
must be inserted early in the design process of chips and
systems at high level of design abstraction. To overcome
ATE limitations, the ATE systems must become simpler
and ICs must be capable of more self-testing. Finally,
manufacturing tests need to target a new class of parametric
noise faults in digital DSM devices, and test tools must be
able to generate high-quality tests and insert necessary DFT
circuitry to identify such hard-to-detect defective devices.

IV. EMERGING APPROACHES INDSM DESIGN

In the previous section, we have outlined the major stan-
dard approaches in use today for the design, verification, and
test of complex single-chip digital systems. We have also
pointed out a number of the most significant limiting aspects
of such approaches. In the following, we describe a number
of the highest potential approaches—methodologies, tools,
and algorithmsand infrastructure—that we believe can ame-
liorate these limitations and extend our ability to exploit the
fundamental limits of silicon technology.

A. Design Reuse and Component-Based Design

One of the major advances in software over the last few
years has been the widespread and growing appreciation for
component-based application development. In fact, many
would argue that in the commercial world component-based
software construction is proving considerably more effective
than object-oriented techniques for a wide class of applica-
tions programming. In a component-based approach, there
are two major phases in the design of an application: the
component development phaseand thecomponent assembly
phase.

During component development, the components them-
selves are constructed by experts who have expertise both in
the domain of the component (e.g., graphics, user interface,
signal processing) as well as in the construction of efficient,
object-oriented software.For the development of the compo-
nent, the quality and efficiency of the tools (e.g., compilers,
debuggers) and the development environment are essential to
success.In the component development world, there is a sig-
nificant amount of reuse via objects and associated class li-
braries, but the most useful classes are usually very low-level
interfaces to system services. For reasons of optimization and
the need for sufficiently useful interfaces, much of the code
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in a component is developed from scratch and is particular to
a relatively small group of components.

In an object-oriented approach to software development,
the application developer then assembles objects to build a
particular applicationusing the same development environ-
ment that was used to develop the underlying classes them-
selves. That is, the applicationdeveloper must be as much an
expert in object programming as the developer of the under-
lying classes. This is where the component-based approach
differs significantly from its object-programming alternative.
In an ideal component world,the assembly of components
can be performed reliably by an expert on the application of
the components, one who need not be an expert on the in-
ternals of the component itself. In this way, the component
performs a role similar to that played by the architecture of
a processor, which “orthogonalizes” the software developer
from the underlying hardware implementation. In a compo-
nent-based approach, the systems programmer plays the role
of application developer. By enabling the person who under-
stands the “market” for the system under development, it is
possible to rapidly configure and iterate applications to suit
the needs of particular situation.

Recall that at the system level it is crucial to distinguish
between thefunctionalityto be implemented and thearchi-
tecture (software and/or hardware) andmicroarchitecture
upon which it is to be implemented. In a component-based
approach to design, the most critical aspect of the imple-
mentation architecture is not the choice of the components
themselves, but rather thecommunication infrastruc-
ture—the protocols and interfaces—used to compose the
components into a system that implements the desired func-
tionality. So while we advocate a component-based approach
to design reuse, we also believe future research emphasis
must be placed on the formalisms (both combinational and
sequential) and implementation details associated with the
composition of multiple components. Since chips are getting
bigger and faster, and since a single clocked-synchronous
approach to managing on-chip concurrency will be wasteful
of power or performance (or both!), we believe that a major
research challenge in the design of such an infrastructure
is the efficient and reliable implementation of concurrency,
including the interfaces to the external world. The optimal
implementation and verification of (possibly concurrent) re-
liable communication among a collection of components on
a complex chip and their associated chip-level input–output
(I/O) requirements will be a major research challenge in
the years ahead. Here, optimality is measured in terms of
some combination of performance, power, and cost, and the
interpretation of “reliable” will be situation-dependent. For
example, some values may need to be transferred between
components within a specifically bounded interval, while
others may have much less stringent requirements for reli-
able communication. Hence, we do not believe that a single,
general approach (e.g., a scheme implemented on a single,
standard bus) is a viable overall solution. Rather, we must
develop a set ofgeneral principlesthat can be applied to and
adapted for many different communication requirements and
implementation strategies. These principles must be couched

in a formal framework that allows for formal, or complete,
verification of the critical properties of the communication
medium, when such verification is necessary to guarantee
reliable and correct functionality. (For example, while the
component-based approach is clearly very interesting for
system design in general, it is important to emphasize that it
is semiformal and relies on implicit assumptions about the
models of concurrency of the components.)

The situations in which component-based approaches
have failed in the past are where the interfaces and protocols
are complex and where components are developed by
different groups in different locations. Usually, it is the
verification issue that limits the utility of such systems; this
represents a major research challenge, as we have discussed
in Section III-B.

B. Platform-Based Design

Over the past 15 years, as chips have become more
complex we have continued to raise the level of abstraction
at which the design is described—from transistor-level de-
scriptions, to gate-level schematics, to the register-transfer
level and even to domain-specific behavioral descriptions
today—to keep up with growing design complexities.
However, the level at which the design is handed off to the
manufacturer has not really evolved beyond a gate-level
netlist. As a result, we currently rely on the synthesis process
to reliably predict the eventual performance of a design at
the netlist level from a very high level of design entry. As
discussed in Section III-C, the increasing role of physical
embedding effects, especially interconnect-related effects,
has made such predictions virtually impossible. Just as the
design handoff level was raised from mask-level rectangles,
to transistors, and eventually to logic gates in the early
1980s with the advent of the ASIC era, we believe that it is
essential toraise the handoff levelagain. Given a predictable
path to implementation from a higher level of abstraction
than the gate level, we believe designers will again achieve
the short design times and predictable implementations they
seek.

It appears that the most reasonable level to propose for
such a handoff is the boundary between architecture and mi-
croarchitecture, which we refer to as the architectural level
of representation in Fig. 5. By using a component-based ap-
proach where the components are the major elements of a
microarchitecture and by applying a communication-based
integration approach, its should be possible to significantly
improve the predictability and the robustness of implemen-
tation from much higher levels than we are accustomed to
today. Of course, this will also require major advances in the
logic/physical implementation phases of design, where a reli-
able and predictable implementation from the microarchitec-
tural level is required. Possible approaches that lead to such
advances are presented in Section IV-D below.

We must also consider the “bounded” nature of the
handoff. A primary reason for the success of the ASIC
methodology, and for why gate-level handoff has been the
industry standard for so many years, is that the number
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Fig. 5. Design entry and design handoff levels for ASIC and platform-based approaches.

of components the designer can choose from at the gate
level is finite. That is, the library can be precharacterized,
with the characterized models used directly for prediction
of function and performance.1 For an architectural-level
handoff to work as effectively, it is necessary to provide a
similar form of limitation to the classes of designs that can
be implemented from the microarchitectural level. Such
an approach is also important for the implementation of
significant component-level reuse as well. A family of archi-
tectures that allows substantial reuse of microarchitectural
components is what we refer to as ahardware platform. We
believe that hardware platforms will take the lion’s share
of the IC market in the years ahead. However, the concept
of hardware platform by itself is not enough to achieve
the level of application software reuse that we seek. To be
useful, the hardware platform must be abstracted such that
the application software sees a high-level interface to the
hardware, which we call theapplication program interface
(API). There is a software layer, orsoftware platform, that
is used to perform this abstraction: the software platform
wraps the different parts of the hardware platform, i.e.,
the programmable cores and the memory subsystem via
a real-time operating system (RTOS), the I/O subsystem
via the device drivers, and the network connection via
the network communication subsystem. We refer to the
combination of the hardware and the software platforms as a
system platform. We believe that platform-based approaches
to the implementation of microelectronic systems—where
platforms may be implemented as collections of hardware
components and their interconnects, as collections of soft-
ware components and an underlying execution model, or as
combinations of the two—represent a major methodology
change for the semiconductor industry and are likely to
comprise the most effective approach to the implementation
of design reuse.

1In today’s ASIC methodology, the specific interconnections used in a
design cannot be precharacterized in the same way, leading to the timing
closure problem described earlier.

Last, recall that economics of NRE and time-to-market
dictate a paradigm of reuse. The mapping of function to ar-
chitecture is an essential step in moving from conception to
implementation. But when mapping the functionality of the
system to an integrated circuit, the economics of chip design
and manufacturing determine the quality and the cost of the
system. It is critical to find common architectures that can
support a variety of applications and yet reduce design costs
through reuse. In particular, since system designers will more
frequently use software to implement their products, there is
a need for design methodologies that allow the substantial
reuse of software. This implies that the basic architecture of
the implementation is essentially “fixed,” i.e., the principal
components should remain the same within a certain degree
of parameterization. For embedded systems, which we be-
lieve are going to be the dominant share of the electronics
market, the “basic” architecture consists of programmable
cores, I/O subsystem, and memories.

C. Programmable Embedded Systems

The trends of increasing NRE cost, time-to-market pres-
sure, verification cost, and complexity of contexts in which
designs are used (makingin situdebugging almost essential)
together lead to increased value of programmable solutions
to today’s designs. Coupled with the concept of a prechar-
acterized, optimized, and preverified platform (i.e., microar-
chitectural family), we obtainprogrammable platformsas a
likely future design methodology. Here,programmableen-
compasses the full range of “commit-after-fabrication” de-
vices—not only Von Neumann-style instruction-set proces-
sors, but also parameterizable application-specific accelera-
tors, and configurable processing modules that employ spa-
tial programming in the style of field-programmable gate ar-
rays (FPGAs). Such a wide range of options is necessary to
meet the stringent energy, performance, reliability, and cost
requirements imposed by the embedded applications where
most of these SOCs will be deployed. We foreseeparame-
terized“standard programmable platforms” for the imple-
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mentation of embedded systems, replacing the “unique as-
semblies of components” approach currently taken for each
new design. While the idea of a platform itself is not new
(e.g., Intel 86 architecture, or Texas Instruments TMS 320
DSP family), a broad movement toward platform-based de-
sign would represent a major discontinuity for the semicon-
ductor industry.

For the programmable platform-based design approach
to be viable, the critical challenge is understanding what it
means to program a complex SOC efficiently, i.e., “What
is the programmer’s model?” or “How should the pro-
grammer view the underlying hardware and I/O systems?”
On one hand, we want to hide as many of the details of the
underlying implementation as possible, but on the other
hand we want to make visible a sufficient level of control
that the application programmer can develop an efficient
solution—in terms of performance, power, and reliable
functionality. From the discussion in Section III-A, any
successful solution to this problem must also comprehend
the issue of concurrency, both in terms of instruction-level
parallelism as well as more general forms of concurrency.
This is particularly important when viewed in the context of
power consumed per unit of work done [e.g., milliwatts per
million instructions per second (milliwatts/MIPS)]. Today,
depending on the application domain and nature of the
programmable processor, programmed implementations of
many common algorithms can be as much as 10 000 times
worse than a hardware-only single-chip solution in terms
of this metric, an unacceptable penalty for many applica-
tions. Of course, this is not a new problem in the general
sense. The design of efficient, instruction-level parallel
processor architectures, microarchitectures, and associated
compilation technology is a very active field of research
today. However, much of this work has been targeted toward
high-end processors rather than embedded systems, and the
issue of optimal power/performance has not been addressed
comprehensively.

The major aspects of this problem are illustrated above
in Fig. 6. To gain the maximum benefit from the final sil-
icon, we believe any successful research agenda must break
down the conventional hardware/software boundary and ex-
amine more thoroughly the possible advantages of simulta-
neously exploring architectural and microarchitectural trade-
offs in conjunction with programming models, software, and
compilation. Due to our need to deal with concurrency ex-
plicitly and efficiently, this work must also transcend aspects
of the conventional operating system boundary.

D. Reliable and Efficient Physical Design

With the necessary functional partitioning for system-level
design, it is apparent that the initial design of any gigascale
IC must be hierarchical and block-like. Ideally, this would
not require that the physical instantiation of this design
conform to rigid fixed-shape blocks, nor would it require
that hierarchical block-based design styles restrict the ability
to perform logic redesign and resizing within blocks during
physical assembly of blocks. Once the blocks of a gigascale
hierarchical design are combined for physical design, a

Fig. 6. Major aspects of a programmable solution.

completely flattened physical design that includes resizing
and remapping couldtheoreticallyproduce superior delays,
hence more readily achieve timing closure, due to the in-
creased degrees of freedom in optimizing the design. Simply
put, a rigid block-based physical design with buffered global
wiring among the blocks has only a small subspace of the
flattened design’s solution space. However, how much of
that space we can effectively explore, and how thoroughly
we can explore it, is an important open question.

1) Constructive Blocks:If the gates could also migrate
among blocks, and the blocks could change in shape, it is
apparent that the a much larger portion of the physical de-
sign space could be explored. Importantly, as we approach
gigascale integration, if the block sizes decrease relative to
the chip size as suggested in [2], one could consider the re-
design and/or remapping of a block as analogous to a single
gate resizing as it is performed today. In contrast to gate
sizing, to simply resize the gates along the hierarchical pe-
riphery is obviously suboptimal in terms of timing. For ex-
ample, constant-delay-effort synthesis rules for even the sim-
plest of examples would be violated in such cases. But just as
with gate resizing, block redesigning is best performed with
physical design information, especially for future DSM tech-
nologies. Therefore, one of the most important challenges
that lies ahead is to develop new methodologies for on-de-
mand remapping and redesign of blocks.

2) Measurement and Prediction:Even with a construc-
tive block capability, some form of performance prediction
is required prior to physical design. Just as we today have
some notion of the capabilities of a gate, cell, or small
block over various sizes, a similar capability would be
required for predicting the performance ofsoft, construc-
tive blocks, prior to their actual design. Beyond obvious
statistical methods for prediction (i.e., estimates of tool
outcomes based on parameters of design artifacts and design
optimization heuristics), design technology can exploit a
variety of methods for buildingpredictability into design
tools and methodology. As one example, circuit design
styles (based on programmable logic arrays (PLAs), or
power-signal-signal-ground (PSSG) style-shielded inter-
connect design, etc.) can improve timing predictability by
enforcing fixed stage delays or by limiting the amount of
noise coupling. As a second example, any lack of “good
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predictions” in forward synthesis can be made up for by “en-
forceable assumptions.” The constant-delay methodology
referred to above is such an “enforceable assumption”: one
assumes that the delay of a given gate is independent of its
fanout and load (thus simplifying RTL synthesis, technology
mapping, and other tasks), then makes the assumption
true via constraints on downstream sizing, buffering and
clustering operations. A third example approach is to adopt
design methodologies that remove some of the requirements
for predictability. For example, we have noted that the
number of clock cycles required for two components to
communicate may depend heavily on the physical place-
ment of these components. Globally asynchronous locally
synchronous design styles can eliminate any need for global
clocking, and will in any case be required by the 50-nm
process generation [60]. Latency-independent synchro-
nization can apply protocols to guarantee that the design
behaves correctly no matter how many clock cycles separate
components.

3) Design Reuse at the Physical Layout Level:With
shrinking design resources and tighter time-to-market sched-
ules, reuse of intellectual property (IP) plays an enormous
role in gigascale design. The increasing number of fabless
design houses and use of multiple fabs makes reuse most
practical at higher levels of design abstraction. For example,
reuse of soft and firm IP is clearly a superior design model as
compared to hard IP, given the way in which manufacturing
is evolving. The ability to construct large blocks from soft
IP would greatly enhance design reuse and gigascale design
in general.

E. New Approaches to System-Level Test

While the vast heterogeneity and complexity of the com-
ponents may make one unified testing methodology diffi-
cult to achieve, it is obviously advantageous to develop com-
ponent-level and system-level techniques to make the em-
bedded components, and the systems comprised of the com-
ponents, self-testable. The self-test mechanisms should be
able to respond to configurability and customizability of the
components, with the ability to synthesize the self-tests auto-
matically. Furthermore, it is essential to develop techniques
to make the SOC self-diagnosable, facilitating both manu-
facturing testing and on-line testing, utilizing the self-testa-
bility features of the system. In utilizing the configurability,
modularity, and customizability available in a SOC, the ul-
timate goal would be to develop self-repair techniques for
safety-critical applications, based on the on-chip self-testing
and self-diagnosis capabilities inserted.

1) Component-Level Self-Test Methodologies:While
self-testability can be achieved for components with regular
structures, such as memory and DSP components, further
investigation is necessary for new ways of making con-
trol-intensive components (interface and communications
components, and programmable components like processor
and micro-controller cores) self-testable.

Almost all SOCs consist of some programmable com-
ponents such as processor cores, DSP cores, or FPGA
cores. Such programmable components can be used for test

objectives such as test generation and response analysis. For
such programmable components, new self-test techniques
that can obviate the need for incorporating special BIST
hardware [e.g., linear feedback shift registers (LFSRs)]
in the component are being investigated in the research
community today [91]–[93]. It is possible to use the instruc-
tion-set of the component to synthesize self-test programs
that, when executed, will result in high stuck-at and delay
fault coverages. For example, the registers of the processor
can be loaded with random patterns by executing random
number generation programs [93], instead of having to add
special hardware. However, not all parts of the processor
will either preserve the randomness or be amenable to
random patterns. For such a part, e.g., the instruction decode
unit, synthesizing a random sequence of instructions that
can provide a high fault coverage for the unit is desirable. It
may be necessary to add special test instructions that may be
added to the instruction set and used in the self-test program
to enhance the fault coverage of the self-test program. The
test instructions will be particularly helpful in testing the
complex controllers of a processor core, by generating state
transitions that are not possible with regular instructions.
The test instructions will also have the ability to introduce
“soft” test points, to enhance the random-pattern testability
of the processor core.

2) System-Level Test, Test Access Interface, and Diag-
nosis: For embedded systems consisting of programmable
components, we believe that a promising direction lies in
the investigation of a new self-testing methodology for the
entire system, using the instruction-set of the processor core
to synthesize test programs for each existing component in
the SOC.

While a self-test for the processor core can be generated
using the component-level analysis and synthesis approach
described above, generation of the test programs for the
other components will be achieved by using self-testability
requirements that need to be specified for each component in
the component’s test protocol. Subsequently, the processor
core can test a component by executing the assigned test
program that will exercise the component-under-test and
reading and analyzing the component’s response. Delivery
mechanisms of the test programs to the other components
may not be trivial. Modifications to the integration and
communication architectures and protocols used in the
system-on-chip, like the bus arbiter, may be necessary.

Based on the ability to test each component, techniques
for self-diagnosis, wherein a self-diagnosis program will be
generated to identify the location of an error in the SOC,
need to be further developed. Using the self-testing and
self-diagnosis capabilities inserted in a SOC, on-line testing
and debugging capabilities for system maintainability then
become feasible. For safety-critical applications, self-repair
techniques exploiting the configurability, and customiz-
ability available in the SOC design paradigm should be
further investigated. A key issue for investigation is how the
reconfigurability allowed by adding coprocessors, special
instruction sets, and peripheral units, to a modern embedded
processor core can be utilized for self-repair.
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3) Fault Modeling, Test Generation, and Diagnosis for
DSM Defects:Noise faults must be detected during both
design verification and manufacturing testing. When cou-
pled with process variations, noise effects can produce worst
case design corners—combinations of design characteristics
that represent extreme operating conditions. These corners
must be identified and checked as part of design validation.
This task is extremely difficult, however, because noise ef-
fects are highly sensitive to the input pattern and to timing.
Timing analysis that cannot consider how noise effects influ-
ence propagation delays will not provide an accurate estimate
of performance nor will it reliably identify problem areas in
the design.

An efficient test generation method must be able to
generate validation vectors that can excite these corners.
To do this, it must integrate accurate timing information
when the test vectors are derived. For manufacturing testing,
existing test generation techniques must be augmented and
adapted to new failure conditions introduced by nanometer
technology. Tests for conventional fault models, such as
stuck-at and delay, obviously cannot detect these conditions.
Thus, to check worst case design corners, test vectors must
sensitize the faults and propagate their effects to the primary
outputs, as well as produce worst case noise effects [87].
They must also scale to increasingly larger designs.

a) Power supply noise:For a highly integrated
system-on-a-chip, more devices are switching simul-
taneously, which increases power supply noise. One
component of this noise, inductive noise, results from
sudden current changes on either the package lead or
wire/substrate inductance. The other component, netIR
voltage drop, is caused by current flowing through the
resistive power and ground lines. The noise can cause a
voltage glitch on these lines, resulting in timing and/or
logic errors. Moreover, large current densities through the
power supply lines can cause electromigration, which in
turn can cause short or open circuits. To activate these
defects and propagate them to the primary outputs, test
vectors must be carefully selected.

Power supply noise can affect both reliability and per-
formance. It reduces the actual voltage level that reaches
a device, which in turn, can increase cell and interconnec-
tion propagation delays. SPICE simulations show that a
10%–15% voltage drop during cell transition can cause a
20%–30% increase in cell propagation delay. If the cell is
a clock buffer or is in the timing-critical path, this delay
deviation could cause serious clock-skew problems or a
nontrivial increase in the critical path delay.

One way to detect these effects is to apply delay tests.
Unfortunately, most existing delay techniques are based on
simplified, logic-level models and cannot be directly used to
model and test timing defects in high-speed designs that use
DSM technologies. New delay testing strategies are needed
to close the gap between the logic-level delay fault models
and physical defects. The tests must produce the worst case
power supply noise along the sensitized paths and therefore,
cause the worst case propagation delays on these paths [86],
[90].

b) Crosstalk effects:The increased design density in
DSM designs leads to more significant interference between
the signals because of capacitive coupling, or crosstalk.
Crosstalk can induce both Boolean errors and delay faults.
Therefore, ATPG for worst case crosstalk effects must
produce vectors that can create and propagate crosstalk
pulses as well as crosstalk-induced delays. Crosstalk-in-
duced pulses are likely to cause errors on hazard sensitive
lines such as inputs to dynamic gates, clock, set/reset,
and data inputs to flip-flops. Crosstalk pulses can result
in logic errors or degraded voltage levels, which increase
propagation delays. ATPG for worst case crosstalk pulse
aims to generate a pulse of maximum amplitude and width
at the fault site and propagate its effects to primary outputs
with minimal attenuation [3].

Studies show that increased coupling effects between sig-
nals can cause signal delay to increase (slowdown) or de-
crease (speedup) significantly. Both conditions can cause er-
rors. Signal slowdown can cause delay faults if a transition
is propagated along paths with small slacks. Signal speedup
can cause race conditions if transitions are propagated along
short paths. To guarantee design performance, ATPG tech-
niques must consider how worst case crosstalk affects prop-
agation delays.

Finally, fault diagnostic methods need to be enhanced for
DSM faults. Existing fault diagnosis techniques are based
on the stuck-at fault model, which is two generations re-
moved from the DSM fault models and will not be effective
in DSM devices. Increasing pressure to shorten the process
debugging time and cost exacerbates this issue. Such tech-
niques must be dynamic, instead of static, to diagnose DSM
faults. The diagnostic method need to be compatible with
the emerging BIST methodology as well. One key diagnostic
focus should be on ac failures due to the fact that most of the
new defect types of DSM devices are more likely related to
timing and noise-related faults.

4) Supporting Heterogeneity: Test Technologies for
Analog/RF Circuits: For most mixed-signal high-end ICs,
the analog circuitry accounts for only a small fraction of
the total silicon area while a major fraction of the test
equipment investment and test time is devoted to the analog
parts. Therefore, analog BIST, which could significantly
reduce the need of expensive external analog testers, shorten
the test time, and minimize the measurement noise, offers
great promises. BIST for analog blocks requires integrating
analog signal sources and measuring circuitry on chip.
Moreover, these circuits will be used to characterize others
and therefore, they should involve little or no calibration and
occupy minimal area.

A promising approach to analog self-test is to use
DSP-based techniques for both stimulus generation and re-
sponse analysis. DSP-based testing techniques utilize digital
techniques for signal generation and for response analysis.
For SOCs with on-chip digital-to-analog and analog-to-dig-
ital converters and DSP cores, such components can be
utilized as part of the signal generator and the response
analyzer. This direction has obvious advantages such as
lower hardware overhead, lower performance intrusion, and
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higher flexibility. Not only is most of the test logic coming
from functional logic, but the same test hardware can be
used to perform a multitude of test functions.

Stimulus generation using delta-sigma modulation is also
an attractive alternative self-test approach [94]. The hardware
requirement includes memory storage for storing a 1-b dig-
ital sequence (i.e., a sequence of binary numbers), a 1-b DA
converter, and a low-pass filter. Due to its oversampling na-
ture, this technique has high tolerance to the required DA
converter and filter. For response analysis, a couple of ap-
proaches are being investigated. The first approach is to uti-
lize a 1-b delta-sigma encoder (without the output decimator
and filter) that is either part of the original design or dedicated
BIST structure to encode the signal (dc or ac) of interest as
a 1-b digital stream (i.e., a stream of binary numbers) [88].
The advantages are: 1) reduced signal processing power, e.g.,
the multiplication operation needed for DFT analysis can be
realized by addition and multiplication and 2) the desired dc
measurement accuracy can be attained by adjusting the test
time. The second approach is to use a linear ramp signal to-
gether with an analog comparator for measuring the differ-
ence between two analog quantities [89]. The common offset
voltage of the analog comparator has little effect on the test
accuracy as it is canceled out in the “difference” operation.

a) Potential extension to RF testing:Through the ap-
plication of heterodyning or undersampling, the DSP-based
self-test schemes can further extend their frequency measure-
ment capabilities to the IF or RF frequency bands. The basic
idea is to translate the IF/RF response back down into the
baseband range of the digitizer for DSP processing. By doing
so, the DSP-based self test structure could be maintained for
RF measurements. The issues of minimizing the area of the
test circuitry, minimizing/eliminating performance intrusion,
maximizing the test quality, and characterizing the noise ef-
fects need to be carefully investigated.

F. Structure of the Design-Manufacturing Interface

Recall from above the assertion that the “cost contradic-
tion” inherent in the ITRS compels improvement of manu-
facturing efficiency, including the practice ofdesign for man-
ufacturability (DFM) at all levels of design abstraction. We
believe that associated structural changes at the design-man-
ufacturability interface will arise as follows. First, it is likely
that small design houses will have a tendency to focus on
higher levels of design abstraction, e.g., some will focus on
fast “IP assembly” to avoid the challenges of DSM physical
reality, and all are likely to seek market advantage in domains
located farther and farther from physical reality of the de-
sign implementation. On the other hand, the key mission of
silicon providers will be high manufacturing efficiency, i.e.,
full utilization of available manufacturing hardware will be
their only relevant goal. These two trends are likely to re-
sult in a widening gap between the design and manufacturing
domains, which will constitute an opportunity for new kinds
of design specialization/services. Some of these are already
emerging, e.g., services related to characterization and test
of IP blocks are already offered by key silicon providers.

Fig. 7. Global view on design for manufacturability (DFM) and
related issues.

Ultimately, however, interface needs between design
and manufacturing are likely to be served by independent
“IP bank,” “IP design/redesign,” and “test and yield ramp”
services that have yet to emerge. Each of these domains must
evolve from existing domains of IC design expertise via
investments in such areas as: 1) design for manufacturability
(DFM), broadly defined as a domain allowing for profit
maximization [97]–[100] (see Fig. 7); 2) performance and
cost forecasting, which will be used to assess economic
aspects of design decisions at all levels of design abstraction
[101]–[105]; and 3) design and test for defect observability,
which is needed for predesign assessment of true capabilities
of potential silicon provider partnerships and for adequate
test development purposes [106]–[108]. From the research
perspective, broad-based and collaborative attention from
a range of disciplines (and with respect to a number of
“less-scientific” considerations) will be required in the DFM
domain.

G. Measurement and Continuous Improvement of Design
Technology

Earlier discussion has described how various factors
cause today’s design processes to be less able to meet
project goals: more designs miss time-to-market windows
and/or end up substantially over budget. This trend is
accelerated as designers rely on IP reuse and integration to
meet turnaround time requirements, since the complexity
of the design process is increased along such axes as cost,
testability, etc. The result is that today’s design processes
are more “art” than “science”: temporary solutions, unique
to individual projects, are created based on the intuition of
senior engineers. Such solutions typically last for one project
only, while the basic issue of unpredictable design success
remains unaddressed. In this light, a fundamental new
avenue of research concerns the understanding, diagnosis,
optimization, and prediction of the system design process
itself.

Design process optimization refers to the continuous opti-
mization of a design process. In automobile, steel, or semi-
conductor manufacturing, process optimization is a well-es-
tablished precept. Furthermore, before a process can be op-
timized on a continuous basis, it must first be measured.
Today there are no standards or infrastructure for measuring
and recording the semiconductor design process. As a result,
a product team cannot quantify inefficiencies in its design
process, and subjective opinions are formulated as to why a
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given project failed or succeeded (failure may be generically
blamed on “CAD tools” or “inexperienced design team,”
while real causes of failure remain unidentified).

Two basic gaps prevent us from measuring the design
process. First, the data to be measured are not available.
Second, and more important, we do not always know what
data should be measured. Some metrics of tool performance
or design artifacts are “obviously useful,” e.g., number of
placeable objects, number of signal nets left unrouted after
detailed routing, maximum negative slack over all timing
paths, etc. Other metrics are less obviously useful, e.g., it
is not clear whether the number of literals after logic opti-
mization has any relationship to the quality of the resulting
netlist from a physical implementation perspective. Finally,
yet other metrics are almost impossible to discerna priori,
e.g., it may turn out that the number of clocks in the design,
or the number of specification changes, might be the best
predictor of project success.

The research and infrastructure changes that will bridge
these two gaps must be developed along two main fronts.
First, relevant and useful metrics of the design process, of
design artifacts, of particular tool classes, etc., must be iden-
tified, and inefficiencies in the design process must be diag-
nosed. To this end, techniques from continuous process im-
provement (CPI)—a methodology that analyzes a (design)
process and optimizes it on a continuous basis—will likely be
applicable. CPI is the best known embodiment of the “mea-
sure, then improve” precept and is currently applied in most
manufacturing industries. When many parameters are avail-
able to be measured and improved, they cannot all be im-
proved at once (e.g., total chip design effort trades off against
chip area/power/speed). Techniques for identifying improve-
ments due to CPI are given by, e.g., [45]. Reference [33]
gives a method for identifying the most important metrics
for collection, to reduce the complexity of data gathering.
Data mining [32], [36], [39] (the AI- and statistics-based ex-
traction of predictive information from large databases) and
visualization [27], [34], [37] technologies will also enhance
human understanding of correlations and trends within con-
tinually evolving design processes.

Second, a standard infrastructure (semantics, schema,
collection infrastructure, etc.) for design process metrics
must be established. An example of infrastructure for project
tracking is found in the -dim design support system [29],
[38], [40], which collects and maintains design information,
and also analyzes this information for project management
purposes. -dim tracks changes so that design information
is always relevant and complete; information storage is
transparent to possible changes in the underlying design
process, so that no “loose data” is lost in translation to new
projects. The -dim system is tightly focused on project
data tracking and does not address the improvement of the
design process, hence it complements the first research front
described above. Rapid growth in Internet and e-commerce
infrastructure will also aid in the creation of infrastructure
for metrics, since many of the technical challenges appear
similar. Such infrastructure has been discussed mostly in
the context of distributed and collaborative design. Dis-

tributed web-based design environments include Fujitsu’s
IPSymphony [31], the Berkeley WELD project [44], and
the VELA project [43]. E-commerce efforts toward time-
or token-based tool use, possibly on external server farms
(application service providers), include [30], [35], [41].
Such web and server farm infrastructure is highly conducive
to recording of design process metrics.

V. SUMMARY

Without design technology, it would be impossible to
implement, verify, and test the complex, single-chip elec-
tronic systems that are the foundation of today’s information
technology revolution. It is through design technology that
the ideas and objectives of the electronic systems designer
are transformed into reality, and the quality of the design
tools and associated methodologies determine the design
time, performance, cost, and correctness of the final system
product. While it would be very useful to know how close
a given piece of design technology is to its “fundamental
limits” of performance—e.g., as a synthesis, verification, or
test system—we observe that such a question is ill-posed
and intractable: in some sense, there are only “fundamental
limitations” of design technology. These limitations include:
1) the multiobjective nature of the design problem, which
inherently casts design as a set of tradeoffs; 2) the external
context for design, which partially decouples “optimal use
of silicon” from the underlying design technology; and
3) the (intractable) optimization-centric nature of design,
which forces heuristic approaches throughout all aspects of
design. This last is perhaps the sole “fundamental limit” in
design technology.

Our discussion has summarized the mainstream method-
ologies used by CMOS silicon designers today and—against
the backdrop of International Technology Roadmap for
Semiconductors (ITRS) forecasts—pointed out fundamental
limitations to the ability to achieve “optimal” design quality
within reasonable resources. In key areas of today’s main-
stream design flow, we have identified factors that limit
progress or pointed out the work that must be done to obtain
such an understanding. We have also presented a number
of potential solutions to these problems, in the form of
methodological approaches and major outstanding research
questions that are being considered actively within the
design technology research community.

Finally, many aspects of design technology have been be-
yond the scope of our discussion due to space limitations.
Among these, we would highlight the problem of collabora-
tive design, the development of distributed design tools and
methodologies, the role of human factors and integration fac-
tors in design technology, and the special requirements of
domain-specific design technology (e.g., for analog and RF
subsystems).
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