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The balanced partitioning problem divides the nodes of a [hyper]graph into groups of
approximately equal weight (i.e., satisfying balance constraints) while minimizing the
number of [hyper]edges that are cut (i.e., adjacent to nodes in different groups). Classic
iterative algorithms use the pass paradigm [24] in performing single-node moves [16, 13]
to improve the initial solution. To satisfy particular balance constraints, it is usual to
require that intermediate solutions satisfy the constraints. Hence, many possible moves
are rejected.
Hypergraph partitioning heuristics have been traditionally proposed for and

evaluated on hypergraphs with unit node weights only. Nevertheless, many real-world
applications entail varying node weights, e.g., VLSI circuit partitioning where node
weight typically represents cell area. Even when multilevel partitioning [3] is performed
on unit-node-weight hypergraphs, intermediate clustered hypergraphs have varying
node weights. Nothing prevents the use of conventional move-based heuristics when
node weights vary, but their performance deteriorates, as shown by our analysis of
partitioning results in [1].
We describe two effects that cause this deterioration and propose simple

modifications of well-known algorithms to address them. Our baseline implementations
achieve dramatic improvements over previously reported results (by factors of up to 25);
explicitly addressing the described harmful effects provides further improvement.
Overall results are superior to those of the PROP-REXest algorithm reported in [14],
which addresses similar problems.
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1. INTRODUCTION

Given a hyperedge- and node-weighted hyper-
graph H- (V, E), a k-way partitioning pk assigns

the nodes in V to k disjoint nonempty partitions.
The k-way partitioning problem seeks to minimize a

given objective function c(P) whose argument is
a partitioning. A standard objective function is net
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cut, i.e., the number of hyperedges (signal nets)
whose nodes are not all in a single partition.
Constraints are typically imposed on the par-
titioning solution, and make the problem difficult.
For example, limits on the total node weight
in each partition (balance constraints) result in
an NP-hard formulation [17]; certain nodes can
also be fixed in particular partitions (fixed
constraints).
A key driver for hypergraph partitioning re-

search in VLSI CAD has been the top-down global
placement of standard-cell designs. Key attributes
of real-world instances include:

size: number of nodes up to one million or more

(all instance sizes equally important)
sparsity: number of hyperedges very close to the
number of nodes, and average node degrees
typically between 3 and 5 in gate- and cell-level
netlists
average hyperedge degrees typically between 3
and 5
small number of extremely large nets (e.g.,
clock, reset)
wide variation in node weights (cell areas) due
to the drive range of deep-submicron cell librar-
ies and the presence of complex cells and large
macros in the netlist
tight balance tolerances, i.e., the sum of actual
cell areas assigned to each partition must be very
close (e.g., within 2%) to the requested target
area.

In this application, scalability, speed and solu-
tion quality are all important criteria. To achieve
speed and flexibility in addressing variant formu-
lations, move-based heuristics are typically used,
notably the Fiduccia-Mattheyses (FM) heuristic
[16, 8].
We note that reporting in the research literature

has centered on hypergraphs with unit node
weights, in particular, the original works of

Kernighan and Lin [24], Fiduccia and Mattheyses
[16] as well as many others evaluate new partition-
ing heuristics on such graphs. Prior works that
address variable node weights have typically used

ACM/SIGDA benchmarks [6] where hypergraph
node weights vary little compared, e.g., to the size
variance in modern VLSI cell libraries, and the
netlist topology has relatively low node degrees
(up to 10). Alpert [2] noted that many of these
circuits no longer reflect the complexity of modern
partitioning instances. Accordingly, the ISPD98
Circuit Benchmark Suite, consisting of 18 larger
benchmarks arising in the physical implementa-
tion flow of internal IBM designs, was released
in early 1998 [2, 1]. Many of the ISPD98 bench-
marks have nodes with area bigger than 10% of
the total and node degrees in the several hundreds;
however, these instances have no large nets. By
contrast, ACM/SIGDA benchmarks have only
low-degree nodes with nearly uniform areas, but
can have nets of degree greater than 1,000.
Akin to [14], this work addresses the differences

between partitioning with varying node weights
and unit node weights. Section 2 critically reviews
iterative partitioning heuristics, including the
popular LIFO and CLIP algorithms, and demon-
strates using partitioning results published in [1]
that varying node areas indeed cause performance
deterioration of those heuristics. Section 3 de-
scribes a particular effect caused by heavy nodes
that affects iterative partitioners, especially CLIP.
The best of the proposed "fixes" to LIFO and
CLIP appear to be quite effective.

In Section 4, we develop a type of temporary
tolerance relaxation to counter the immobility of
heavy nodes. Our technique is somewhat different
than that in [14] and easier to implement.
Calibration of runtimes to results reported in [14]
and subsequent "best of n" tests suggest that our

approach is more effective. Section 5 concludes
with closing remarks.

Effective move-based heuristics for k-way hypergraph partitioning have been pioneered in [24, 16,7], with refinements to FM
given by [25,27, 19,26, 13,3, 11, 18,22,8] and many others. Comprehensive surveys of VLSI partitioning formulations and
algorithms are given in [4, 20]; a recent update on balanced partitioning in VLSI physical design is given by [21].
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2. MOVE-BASED PARTITIONING

Today, competitive partitioning algorithms (e.g.
[22, 3]) are overwhelmingly based on iterative heuri-
stics [24, 16,13] that perform single-node moves in
passes in order to improve the initial solution. It
is typically the case that improvements in these
classic heuristics will also improve leading-edge
heuristics. Furthermore, advances in classic heur-
istics often provide very immediate returns since
there is a large base of users in real-world settings,
as well as a more comprehensive body of results
and implementations available for calibration.

2.1. Satisfying Balance Constraints

The need to satisfy tight balance constraints is
motivated by applications in, e.g., top-down VLSI
placement, where hypergraph partitioning is used
to reduce large problems to smaller ones. Physical
layout considerations for sub-problems translate
into size/area constraints for partitioning (see
[14, 9] for more details).
Turning to [1], we compare results in Table 5 in

[1] for unit-weight partitioning with 2% tolerance
to those in Table 6 in [1] where nodes are assigned
varying (actual) weights. While lowest solution
costs are comparable for both cases (e.g., 274 vs

297 for IBM01), the average performance of FM
and CLIP on IBM benchmarks differs by factors
of least 5-10. Moreover, comparing average cuts
in the FM and CLIP columns of Table VI against
the "#Nets" column of Table II, we see that the
two iterative heuristics essentially failed on many
benchmarks- more than 50% nets are cut on
average in IBM02-IBM04 and IBM06-IBM 13 (11
out of 18) and over 25% in several others, whereas
solutions exist with only several percent of nets
cut. This motivates further analysis of how balance
constraints are treated in move-based partitioners.

To satisfy particular balance constraints, it is
common to generate an initial solution that
satisfies the constraints2 (is "legal") and require
that all intermediate solutions be legal as well.
Thus moves leading to illegal solutions are rejec-
ted regardless of the gain they provide. Nodes that
are heavier than the balance tolerance can never
move in a typical implementation, even though such
nodes often have very large degrees and the
solution cost strongly depends on their assign-
ment. Given an "unfortunate" initial assignment
of several heavy nodes, a move-based partitioner is
never able to recover low-cost solutions. For many
instances, e.g., ISPD98 benchmarks, heavy nodes
are assigned similarly in most low-cost solutions,
which means that a random assignment of heavy
nodes is most likely "unfortunate".

In particular algorithms such as FM and CLIP,
immobile nodes may impair the ability of other
nodes to move, trapping FM- and CLIP-based
iterative partitioners in high-cost local minima

(this corking effect is described and addressed in
Section 3). Such phenomena are magnified by tight
balance tolerances (e.g., < 2%) and the presence
of heavy nodes, e.g., in the instances of the ISPD98
benchmark suite (see [1, Tab. II, p. 81]).

2.2. The FM Algorithm

As is well known, the FM heuristic [16,8]
iteratively improves an initial partitioning solution
by moving nodes one by one between partitions.
FM starts with a possibly random solution and
applies a sequence of moves organized as passes.
At the beginning of a pass, all nodes are free to
move (unlocked), and each possible move is
labeled with the immediate change in total cost it
would cause; this is called the gain of the move
(positive gains reduce solution cost, while negative
gains increase it). Iteratively, a move with highest
gain is selected and executed, and the moving node

In other words, one first solves a respective number partitioning problem. Since iterative partitioners typically get trapped in a
number of relatively high-cost local minima, an important additional requirement is to generate randomized initial solutions with
"sufficiently good" distribution in the hope to non-deterministically avoid high-cost local minima after several independent starts.
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is locked, i.e., is not allowed to move again during
that pass. Since moving a node changes the gains
of adjacent nodes, after a move is executed all
affected gains are updated. Selection and execution
of a best-gain move, followed by gain update, are

repeated until every node is locked, or until no

legal move is available. Then, the best solution
seen during the pass is adopted as the starting
solution of the next pass. The algorithm terminates
when a pass fails to improve solution quality.
The FM algorithm can be easily seen [8] to have

three main operations: (1) the computation of
initial gain values at the beginning of a pass; (2)
the retrieval of the best-gain (feasible) move; and
(3) the update of all affected gain values after a
move is made. The contribution of Fiduccia and
Mattheyses lies in observing that circuit hyper-
graphs are sparse, so that the gain of any move is
bounded by plus or minus the maximal node
degree in the hypergraph (times the maximal edge
weight, if edge weights are used). This allows
hashing of moves by their gains: any update to a

gain value requires constant time, yielding overall
linear complexity per pass. In [16], all moves with
the same gain are stored in a linked list represent-
ing a "gain bucket".
To guarantee that the output solution is

balanced, moves that cause violations of balance
constraints are typically ignored. Furthermore, in
a typical implementation if the first move in a
bucket is ignored, then, for CPU time considera-
tions, the entire bucket is ignored for choosing
moves (it is extremely time-consuming to traverse
a bucket’s entire list, hoping that one of the nodes
in it can be legally moved). Note that moves are

examined in priority order, so the first legal move
found is the best. We believe that current practice
is not only motivated by speed, but is also partly a
historical legacy from partitioners being tuned for
unit-area, exact-bisection benchmarking. Recent
work of Dutt and Theny [14] is notable for
addressing the issue of partitioning with tight
balance constraints, and a comparison of results is

given further below. However, our techniques are

orthogonal in the sense that [14] changes the
structure of a pass in a sophisticated way, while we
simply show how to fix a classic FM implementa-
tion in the context of tight balance constraints and
uneven node weights.

2.3. The CLIP Algorithm

The actual gain of a node in the classic FM
algorithm can be viewed as a sum of initial gain
(i.e., the gain at the beginning of the pass) and
the updated gain due to nodes moved. The CLIP
algorithm of [13] uses updated gain instead of
actual gain to prioritize moves. At the beginning of
the pass, all moves have zero updated gain, and
ties are broken by total (initial) gain. The authors
of CLIP report very impressive experimental
results [13], and CLIP has been cited as enabling
within a recent multilevel partitioner implementa-
tion [3]. The method has also been the basis of
such extensions as [15].

3. THE CORKING EFFECT

As noted above, CLIP begins any pass by placing
all node moves into buckets corresponding to zero

updated gain. The nodes with highest initial gain
are placed at the heads of these zero-gain buckets.
Hence, if the move at the head of each bucket at
the beginning of a CLIP pass is not legal, the
whole pass terminates without making any moves.

Particularly when starting from a random initial
solution, the nodes with highest gain will tend to be
the nodes of highest degree, which correspond to the
heaviest nodes. Furthermore, even if the first move
is legal, CLIP is still vulnerable to termination
soon afterward: without enough time for the
moves to "spread out", nearly all moves will still
be in the zero-gain bucket when it is revisited, and
then ignored due to an illegal move (ending the
pass). We call this the corking effect: the heavy
node at the head of the bucket acts as a cork.

This effect is not unique to CLIP; it can apply, albeit less dramatically, to the original FM heuristic and other variants.
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Our traces of CLIP executions show that
corking occurs quite often with the more modern
ISPD98 benchmarks. This is because these bench-
marks contain very heavy nodes whose weight
approaches or exceeds typical balance tolerances
(see Tab. II in [2]). We have developed three
uncorking techniques to counteract the corking
effect.

Explicit uncorking Continue to look beyond
the first move in a bucket, if the first move is
illegal.
LIFO pass before starting CLIP Execute a

single LIFO FM pass [19] before starting CLIP
passes. This greatly reduces the likelihood of large-
degree nodes having the highest total gain, and
corking the CLIP gain buckets. This technique
should not noticeably increase CPU time as CLIP
typically makes dozens of passes and an additional
LIFO pass will not significantly affect runtime.

Fixing heavy nodes At the beginning of the
pass, do not place any node whose weight is
greater than the balance tolerance into the gain
structure. This technique has essentially zero
overhead.4

We find the first technique to be too time-
consuming, and it moreover appears to have a
harmful effect on solution quality. Independently
applying or not applying the two remaining
techniques-L-Uncorking by adding an initial
LIFO pass, and F-Uncorking by fixing heavy
nodes- yields four different CLIP implementa-
tions: generic (corked) CLIP, L-Uncorked CLIP,
F-Uncorked CLIP, and LF-Uncorked CLIP.
Tables I and II show the cutsize results for these
variants on ISPD98 benchmarks. 5 We report the
best and average cutsize obtained over 100
independent single-start trials for each benchmark,
and we also report the average CPU time (seconds
on a 300MHz Sun Ultra-10 workstation with
128MB RAM) required by a single-start trial.

The experimental data clearly reveals the
correlation between corking effect, early CLIP
termination (small runtimes), and inferior solution
quality. There are substantial performance dif-
ferences between the corked and uncorked CLIP
variants, and we believe that the F-Uncorked
CLIP variant is the most useful in practice. We
also reproduce the best and average cutsizes for
CLIP, published by Alpert in [2]. Our uncorked
CLIP implementation obtains stunning improve-
ments over Alpert’s CLIP implementation (up to
factors of 25 reduction in average cutsize).

4. TEMPORARY TOLERANCE
RELAXATION

A brief examination of the recent ISPD98 Circuit
Benchmark Suite [1] reveals cells(nodes) whose
area(weight) takes more than 10% of the total
area(weight). Such cells are guaranteed to always
be immobile during move-based partitioning with
tolerance less than 10% and likely to be immobile
even with larger tolerance. As explained in Section
2, this prevents move-based algorithms from
achieving low-cost solutions from most initial
solutions.

Temporarily relaxing partitioning tolerance in
order to move otherwise immobile nodes is a
natural idea; it has been explored in [14] where
high-gain nodes could be moved in a pass even
when this caused illegal solutions. Such temporary
illegalities were resolved in the same pass upon
reaching a certain threshold. The proposed algo-
rithms appear difficult to tune, are far from
conventional FM or CLIP and can take up to
four times longer to run. A different type of
temporary tolerance relaxation appears more
successful and easier to implement.

With respect to the breakdown of CPU resources in Section 2, only initial gain computation may be affected- we are adding one
extra +/- f per node. Initial gain computation already has a number of i fs, e.g., in net traversals and cost computations; it also entails
a number of memory accesses which are much more expensive than branching.

Only the first 10 test cases in the ISPD98 suite are used since runtimes for flat CLIP FM quickly become too long to be of interest
in the driving context of top-down placement. I.e., faster multilevel engines would likely be necessary for the larger test cases.
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TABLE Comparison of generic (Corked), L-Uncorked, F-Uncorked, and LF-Uncorked CLIP results for ISPD98 benchmark test
cases. Results shown are minimum/average netcut (average CPU seconds on Sun Ultra-10) obtained over 100 independent single-
start trials, with actual node weights and a 2% balance constraint. We also show the CLIP FM results reported by Alpert in [2]
("Other CLIP")

Test case Generic CLIP L-Uncorked CLIP F-Uncorked CLIP LF-Uncorked CLIP Other CLIP [2]

ibm01 309/559.0(3.7) 279/547.2(3.8) 266/483.7(5.1 299/496.0(5.4) 471/2456
ibm02 305/591.0(4.0) 266/596.0(4.3) 294/498.1 (8.8) 266/486.4(8.3) 1228/12158
ibm03 1288/2683.6(6.8) 1076/2716.7(6.1) 1048/1744.8(21.5) 1019/1835.1(21.2) 2569/16695
ibm04 818/2081.6(7.2) 936/2157.3(8.0) 623/1242.8(30.7) 674/1399.0(30.0) 17782/20178
ibm05 1920/3134.4(23.7) 1814/3045.8(26.4) 1799/2988.1(25.2) 1877/3064.5(27.0) 1990/3156
ibm06 917/1677.1(11.1) 944/1728.3(10.1) 787/1431.3(23.1) 848/1324.8(24.5) 1499/18154
ibm07 1244/2993.8(15.5) 1182/3280.6(16.6) 1008/1835.3(55.6) 1136/2214.6(67.4) 14166/31326
ibm08 1494/3492.0(23.4) 1444/3242.1(28.7) 1544/3385.3(29.5) 1640/2736.4(88.1) 4283/30694
ibm09 1244/3494.3(15.5) 2326/4117.3(16.4) 1105/2087.0(81.4) 1193/2327.1(90.8) 2144/37124
ibml0 1826/3417.0(44.0) 1455/3811.2(55.2) 1594/2720.1(142.0) 1526/3062.0(146.0) 5958/46700

TABLE II Comparison of generic (corked), L-Uncorked, F-Uncorked, and LF-Uncorked CLIP results for ISPD98 benchmark test
cases. Results shown are minimum/average cutsize (average CPU seconds on Sun Ultra-10) obtained over 100 independent single-
start trials, with actual node weights and a 10% balance constraint. We also show the CLIP FM results reported by Alpert in [2]
("Other CLIP")

Test case Generic CLIP L-Uncorked CLIP F-Uncorked CLIP LF-Uncorked CLIP Other CLIP [2]

ibm01 220/441.0(4.7) 221/401.1 (4.6) 250/437.6(4.9) 223/412.8(4.8) 246/462
ibm02 257/436.0(5.7) 269/407.7(6.3) 275/419.2(7.7) 256/412.0(7.1) 439/4163
ibm03 749/1555.3(11.0) 743/1664.0(10.5) 809/1371.9(19.3) 654/1585.2(19.1) 1915/9720
ibm04 526/920.4(16.6) 510/1024.3(19.9) 479/950.3(16.9) 449/924.2(19.3) 488/1232
ibm05 1786/2849.1(25.9) 1732/2961.6(27.9) 1794/2976.3(25.3) 1774/2918.3(27.1) 2146/3016
ibm06 859/1492.4(11.6) 766/1638.8(11.6) 666/1246.9(21.2) 791/1256.9(23.3) 1303/15658
ibm07 727/1520.9(30.8) 737/1882.7(38.6) 746/1576.6(32.5) 737/1861.6(37.2) 748/1711
ibm08 1306/2283.5(52.6) 1466/2840.6(73.4) 1279/1944.7(63.7) 1492/2538.9(63.3) 2176/15907
ibm09 523/1877.5(38.7) 638/2312.0(46.1) 549/1784.8(37.2) 559/2281.2(45.8) 527/2828
ibml0 804/1907.8(64.5) 877/2040.4(71.1) 885/1945.1(63.5) 900/2214.4(77.1) 971/2242

4.1. Proposed Metaheuristic

We perform two or more "chained" calls to a
black-box iterative partitioner; every next call uses
a smaller partitioning tolerance; the tolerance for
the first call is large enough for every node to be
movable, while the last call uses the originally
requested tolerance. Solutions produced by a

proceeding partitioner call are used by the next
call. A solution that is illegal with respect to the
smaller tolerance is "greedily legalized" before the
next partitioner call. To do this, nodes are moved
from overfilled and to underfilled partitions, always
choosing a highest-gain move first. In practice, a

separate "greedy legalization" step is unnecessary
because reasonable FM and CLIP implementa-
tions, if given an illegal initial solution, automa-
tically perform "greedy legalization" whenever
necessary. A similar technique is used in the Me t_ +/- s

package of Karypis et al. (and, likely, in hMef_+/-s

[22,23] as well), which implements multi-level
partitioning heuristics. However, we are not aware
of any works exploring it for flat partitioning.
Two implementation details are useful (but,

strictly speaking, unnecessary): (a) tie-breaking on

balances, and (b) the ability to limit the number of
passes. If during a pass, the current solution has
the best-seen cost, it will be preferred over the
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TABLE III Comparison of LIFO, CLIP, uncorked LIFO (LIFOu), uncorked CLIP (CLIPu), two-stage LIFO (LIFO2) and two-
stage CLIP (CLIP2) partitioning algorithms on IBM test cases. Nodes were assigned varying (actual) weights. Solutions are
constrained to be within 2% of bisection (partitions must contain between 49% and 51% of total). Data expressed as (average cut
average CPU time), with CPU seconds on measured on a 140 MHz Sun Ultra-1

Test case Algo start 2 starts 4 starts 8 starts

LIFO 569(4.5) 494(9.0) 451 (18.0) 418(36.1)
CLIP 505(6.4) 435(12.7) 388(25.5) 350(51.0)

IBM01 LIFOu 569(4.2) 498(8.3) 455(16.6) 415(33.2)
CLIPu 440(10.1) 385(20.3) 336(40.5) 324(81.1

LIFO2 399(4.8) 331 (9.6) 266(19.3) 251(38.5)
CLIP2 401(4.9) 336(9.8) 301(19.5) 274(39.1)
LIFO 498(6.8) 425(13.6) 386(27.1 357(54.2)
CLIP 600(6.6) 518(13.2) 458(26.4) 418(52.8)

IBM02 LIFOu 498(5.2) 435(10.3) 388(20.6) 341(41.3)
CLIPu 480(16.3) 419(32.5) 368(65.1) 327(130.2)
LIFO2 391 (10.3) 351 (20.6) 321 (41.1) 299(82.2)
CLIP2 426(12.5) 376(24.9) 335(49.9) 313(99.8)

LIFO 2137(10.6) 1663(21.2) 1334(42.5) 1152(85.0)
CLIP 2200(8.9) 1709(17.8) 1398(35.5) 1155(71.1)

IBM03 LIFOu 1905(9.4) 1540(18.8) 1241 (37.7) 1048(75.4)
CLIPu 1430(32.6) 1175(65.3) 1015(130.6) 933(261.1)
LIFO2 1914(14.7) 1698(29.4) 1571(58.8) 1474(117.5)
CLIP2 1646(16.3) 1452(32.6) 1330(65.3) 1257(130.5)

LIFO 1989(11.0) 1745(22.1) 1534(44.2) 1348(88.4)
CLIP 2241 (8.8) 1920(17.6) 1685(35.2) 1510(70.4)

IBM04 LIFOu 2061 (9.4) 1799(18.8) 1507(37.6) 1367(75.3)
CLIPu 1432(52.1 1227(104.3) 1048(208.6) 975(417.2)
LIFO2 1659(19.8) 1413(39.6) 1229(79.2) 1062(158.4)
CLIP2 1080(18.3) 856(36.5) 736(73.0) 651 (146.0)

LIFO 3379(33.4) 3160(66.8) 2924(133.6) 2727(267.3)
CLIP 2953(49.2) 2746(98.4) 2568(196.9) 2355(393.7)

IBM05 LIFOu 3525(32.3) 3302(64.6) 3153(129.1) 3033(258.3)
CLIPu 3085(51.3) 2819(102.6) 2615(205.2) 2358(410.3)
LIFO2 2893(39.7) 2567(79.3) 2371 (158.6) 2226(317.2)
CLIP2 2635(26.1) 2387(52.3) 2212(104.6) 2045(209.2)

LIFO 1453(16.9) 1135(33.9) 976(67.7) 891(135.4)
CLIP 1459(16.8) 1211(33.7) 1077(67.4) 965(134.7)

IBM06 LIFOu 1199(14.1) 969(28.1) 849(56.3) 784(112.6)
CLIPu 1383(45.2) 1215(90.3) 1075(180.7) 959(361.4)
LIFO2 1605(23.3) 1393(46.5) 1247(93.1 1088(186.1)
CLIP:z 1508(24.5) 1272(49.1) 1141 (98.2) 1080(196.4)

LIFO 2455(36.5) 1994(72.9) 1732(145.8) 1541(291.7)
CLIP 2786(27.4) 2305(54.9) 1902(109.8) 1693(219.5)

IBM07 LIFOu 2253(26.7) 1884(53.4) 1672(106.7) 1570(213.5)
CLIPu 1779(97.6) 1528(195.3) 1326(390.5) 1211 (781.0)
LIFO2 2181 (32.7) 1893(65.3) 1576(130.6) 1475(261.3)
CLIP2 1865(36.0) 1459(71.9) 1300(143.8) 1147(287.7)

LIFO 2450(42.9) 2134(85.8) 1949(171.6) 1816(343.3)
CLIP 3014(35.5) 2433(71.0) 2111(142.0) 1922(284.0)

IBM08 LIFOu 2760(32.7) 2321 (65.5) 1968(131.0) 1780(261.9)
CLIPu 2362(124.2) 2012(248.4) 1767(496.8) 1652(993.6)
LIFO2 2335(44.6) 2105(89.3) 1918(178.6) 1777(357.2)
CLIP: 2160(48.9) 1918(97.7) 1671 (195.4) 1562(390.9)
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previous best solution if and only if it is closer to
begin exactly balanced. Secondly, the last several
passes in a given partitioning call often produce
very little improvement. Given that the resulting
solution will be processed by another partitioner
call with a different tolerance, it may not be useful
to wait for a non-improving pass. Therefore the
number of passes may be limited; alternatively,
one can require minimal improvement in a pass.

4.2. Empirical Evaluation

To juxtapose the performance of the two proposed
approaches to partitioning with varying node
weights, we compare the best uncorking variants
of LIFO and CLIP (LIFOu and CLIPu) described
in Section 3 to their further improvements LIFO2
and CLIP2 with a simple-minded two-stage tem-

porary tolerance relaxation. For the first pass,
the tolerance is set to the larger of (a) three times
the maximal node weight [5], and (b) 20% of the
total. We also limited the number of passes in the
first stage to 10 and, in CLIP2, used CLIP only at
the first partitioning stage. Appropriate experi-
ments have suggested this particular combination
from among a number of similar settings.
We analyze algorithm performance in the

context of "average best of n" for n 1,2,4, 8.
This technique, advocated in [10], allows detailed
analyses of run-time-versus-quality trade-offs and
is also representative of important application

contexts, e.g., VLSI placement. The results are

presented in Table III and suggest that two-stage
tolerance relaxation indeed improves solution
costs without considerably increasing runtime.
As can be seen in 3, the LIFO2 and CLIP2

algorithms provide substantial improvements over
even the "uncorked" LIFO and CLIP partitioners.
The two-stage algorithms actually improve per-
start runtime for some examples, and improve
results given equal runtimes for nearly all the test-
cases. It is unclear whether LIFO2 or CLIP2 is the
superior algorithm. This is surprising, given the
clear dominance of CLIP over LIFO. The IBM04
testcase is a particularly striking example, as it
shows an improvement of 25% from CLIPu (the
best uncorked result) to CLIP2 (the best 2-stage
result) and a reduction in single-start runtime of
65%! Of the eight examples presented, IBM04
contains the largest number of nodes larger than
the tolerance of 2%. Thus, it is encouraging to see
that the two-stage approach addresses this difficult
problem so well.

Next, we compare our two-stage temporary
tolerance relaxation to PROP-REXest, a leading
algorithm from [14] which employs temporary
illegalities within passes to address similar issues.

PROP-REXest is the best of the several algorithms
reported in [14]. 6 These experiments were per-
formed on a 140 MHz Sun Ultra-1 workstation.
To calibrate our runtimes to those reported in
[14], we ran our plain FM implementation on the

TABLE IV Comparison of reported CLIP-REX results with those produced by 2-stage LIFO and CLIP methods. Nodes were

assigned actual cell areas. Solutions are constrained to be within 0.5% of bisection (partitions must contain between 49.75% and
50.25% of total cell area). Data expressed as average cut(average CPU time). CPU times were normalized to those reported in [14]

LIFO2 CLIP:
Test case PROP-REXoxt Start 2 Starts 4 Starts Start 2 Starts 4 Starts

avq_large 494.8(58.44) 725(10.1) 639(20.2) 570(40.4) 511(7.9) 452(15.9) 393(31.8)
avq_small 452.0(50.49) 599(17.8) 533(35.6) 488(71.3) 386(16.2) 341(32.5) 308(64.9)
biomed 134.4(13.48) 123(2.7) 111(5.5) 103(11.0) 120(2.6) 104(5.3) 95(10.4)
industry2 351.9(45.67) 504(8.5) 462(17.0) 427(34.2) 392(9.0) 339(17.9) 294(35.9)
primaryl 58.5(0.89) 64(0.3) 58(0.7) 53(1.4) 63(0.3) 58(0.7) 55(1.4)
primary2 194.8(5.80) 256(1.7) 238(3.5) 221(7.1) 224(1.9) 206(3.7) 190(7.5)

6The results of PROP-REXest may be found in Table III of [14].
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ACM/SIGDA benchmarks [6] used in that work.
The overall performance ratio of approximately
1.7 was fairly consistent, and our FM implementa-
tion produced very similar average solution costs.
The results of our comparisons to PROP-REX

are given in Table IV. They suggest that four starts
of our two-stage CLIP variant CLIP2 achieves
superior solution costs in comparable amounts of
time, improving upon the performance of PROP-
REX by up to 31%. A single start of CLIP2
produces results similar to that of PROP-REX,
while requiring much less runtime (up to 86% less
for the avq_small testcase). At the same time,
CLIP2 is only a "fix" to CLIP and is rather simple
to implement.

substantial performance differences between our
CLIP implementation and, e.g., that reported by
Alpert [2] suggest that the partitioning research
community can still benefit from improved under-
standing of the iterative heuristics upon which new
methods are based.
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5. CONCLUSIONS

From analysis of partitioning results from [1], we
notice that the performance of FM and CLIP
partitioners deteriorates when node areas are
allowed to vary. We describe two general effects
that cause such performance deterioration, and
that are likely to affect a wide variety of iterative
partitioners. In addition, we describe the pre-
viously unknown corking effect, which is particu-
larly harmful to the popular CLIP algorithm [13],
notably within CLIP’s motivating context of top-
down standard-cell VLSI placement. We propose
easy-to-implement, low-overhead techniques to
counteract the latter problem, and demonstrate
notable improvements in solution quality. We
speculate that the CLIP corking effect was not
diagnosed earlier because of the tendency to
compare partitioners according to unit-area bisec-
tion results, and because of a reliance on older
benchmarks that have only uniformly-sized cells.
We also propose a simple technique of temporary
tolerance relaxation, different and more successful
than the best of all techniques presented in [14].
Our results suggest that prospective advances in

algorithm technology should be evaluated with
respect to a full range of applicable instances and
contexts (i.e., use models). Furthermore, the
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