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Abstract

The top-down “quadratic placement” methodology is rooted in such works as [36] [9] [32] and is reput-
edly the basis of commercial and in-house VLSI placement tools. This methodology iterates between two
basic steps: solving sparse systems of linear equations to achieve a continuous placement solution, and
“legalization” of the placement by transportation or partitioning. Our work, which extends [5], studies
implementation choices and underlying motivations for the quadratic placement methodology. We first

recall some observations from [5], e.g., that (i) Krylov subspace engines for solving sparse linear systems
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are more effective than traditional successive over-relaxation (SOR) engines [33] and (ii) that correlation
convergence criteria can maintain solution quality while using substantially fewer solver iterations. The
focus of our investigation is the coupling of numerical solvers to iterative partitioners that is a hallmark
of the quadratic placement methodology. We provide evidence that this coupling may have historically
been motivated by the pre-1990’s weakness of min-cut partitioners, i.e., numerical engines were needed to
provide helpful hints to weak min-cut partitioners. In particular, we show that a modern multilevel FM
implementation [2] derives no benefit from such coupling. We also show that most insights obtained from
study of individual min-cut partitioning instances (within the top-down placement) also hold within the

overall context of a complete top-down placer implementation.

Keywords: quadratic placement, multi-level min-cut partitioning, hierarchical top-down placement.

1 Introduction

In the physical implementation of deep-submicron ICs, placement solution quality is a major determinant
of whether timing correctness and routing completion will be achieved. The first-order objective is to place
connected modules close together, to reduce total routing and lower bounds on signal delay. This implies
a minimum wirelength based placement objective. Because there are many layout iterations (including
those between placement and global/detailed routing, performance optimizations, technology mapping and
logic synthesis) and because fast (constructive) placement estimation is needed within the floorplanner,
an ideal placement tool will offer fast, consistent, and high-quality results. Due to its speed, “global”
perspective, and ability to address wirelength-based objectives, the quadratic placement methodology (cf.

such antecedents as [36] [14] [9] [33]) has been widely adopted in industry.

In this work, we revisit the quadratic placement methodology and develop insights into its effective

implementation, particularly in light of recent algorithmic developments for partitioning. Our paper is



organized as follows. After defining notation, Section 2 synthesizes a generic model of the quadratic place-
ment methodology. The key elements of our model are: (i) top-down hierarchical placement, and (ii) use
of a sparse linear systems solver, coupled with a min-cut iterative (FM-type) partitioner, to obtain any
given partition within the top-down placement process. Section 3 discusses effective implementation of
the quadratic placement methodology. We briefly review previous results [5] that suggest use of Krylov-
subspace solvers, along with correlation convergence criteria within the solvers, to improve efficiency. We
then focus on the coupling between the linear system solver and the min-cut partitioning step as the key
to implementing quadratic placement: issues include the type of wirelength-based objective addressed by
the solver, how the solver result is used by the partitioner, and the type of partitioning engine employed.
In Section 4, we use a high-quality placement testbed to experimentally assess our various hypotheses.
Our most significant results show that the solver-partitioner coupling may have historically been motivated
by the pre-1990’s weakness of min-cut partitioners, i.e., numerical engines were needed to provide helpful
hints to weak min-cut partitioners. In particular, we show that a modern multilevel FM implementation
[2] derives no benefit from such coupling. We also contrast the abilities of linear-wirelength and squared-
wirelength solver objectives to drive partitioners to good solutions. Finally, we show that insights obtained
from study of individual min-cut partitioning instances (within top-down placement) apply to the overall
top-down placement results as well. We conclude the paper in Section 5 with a list of ongoing research
directions, and some comments on the relevance of the quadratic placement methodology to future design

methodology requirements.



2 A Synthesis of the Quadratic Placement Methodology

2.1 Notation and Definitions

A gate-level netlist is represented for placement by a weighted hypergraph. The n vertices correspond to
modules, with vertex weights representing module areas or routing requirements. Hyperedges correspond
to signal nets, with hyperedge weights representing criticalities and/or multiplicities. The two-dimensional
layout region is represented as an array of legal placement locations. Placement seeks to assign all modules
of the design to legal locations, such that no modules overlap and chip timing and routability are optimized.

The placement problem is a type of NP-hard quadratic assignment.

The numerical techniques used within the quadratic placement methodology apply only to graphs (hyper-
graphs with all hyperedge sizes equal to 2). Therefore, we must assume some transformation of hypergraphs
to graphs via a net model. Throughout the discussion and experiments reported below, we use the standard
clique model for nets of degree 10 or less, and the directed star model for nets of degree larger than 10, to
preserve sparsity. For a given multipin signal net with k& pins, the graph edges that represent the net may
be constructed in several ways, e.g., a directed star model of k — 1 edges, an unoriented star model, or an
unoriented clique model of @ edges (see [3] for a review). The resulting weighted graph representation
G = (V, E) of the circuit topology has edge weights a;; derived by “superposing” all derived edges in the

obvious manner. The standard undirected clique model [25] assigns all clique edges weight 1.1

Definition: The n x n Laplacian matriz Q = (g;;) has entry g;; equal to —a;; for ¢ # j and diagonal

entry g; equal to E?Zl aij, i.e., the sum of edge weights incident to vertex v;.

1Some other clique models have been proposed, e.g., the model of [33] assigns all clique edges weight k%‘ We have obtained
similar results for the clique model of [33] as well as for a directed star model.



Certain vertices are fized, typically due to pre-placement of I/O pads or the inducing of terminals around
a block’s periphery during top-down placement. All other vertices are movable. The one-dimensional
placement problem seeks to place mowvable vertices onto the real line so as to minimize an objective function
that depends on the edge weights and the vertex coordinates. The n-dimensional placement vector x = (x;)
denotes the physical locations of modules vy, ...,v, on the real line, i.e., x; is the coordinate of vertex
v;. Let ¢ be the number of movable modules and let f = n — ¢ be the number of fixed (“pad”) modules.
Without loss of generality, the ¢ movable modules are vy, ...,v. and the f fixed modules are v.y1,...,v,.

The modules can always be permuted prior to optimization to ensure this condition is satisfied.

Squared Wirelength Formulation: Minimize the objective

P,(x) = Zaij(wj —x;)? such that zcy1,...,2, are fixed.
i>j

This function can also be written as ®,(x) = 1x7Qx.
We are interested in quadratic placers that solve the two-dimensional placement problem with a top-
down approach, i.e., one-dimensional placement in the horizontal direction is used to divide the netlist into

left and right halves, after which one-dimensional placement in the vertical direction is used to subdivide

the netlist into quarters, etc.2

2«“Decomposition” of the two-dimensional placement problem into independent one-dimensional placement problems is
used in the quadratic placement methodology to yield smaller linear systems. Notice that for the quadratic objective, the
Euclidean problem decomposes cleanly into coordinates (by Pythagoras’ theorem) while the Manhattan problem does not.
(Hence, we presumably are minimizing squared Euclidean wirelength.) For the linear objective, the Euclidean problem does
not decompose while the Manhattan objective does.



2.2 Essential Structure of a Quadratic Placer

We now state the essential components of the quadratic placement methodology. Our primary goal is to
establish the coupling between (i) numerical methods for sparse linear systems and (ii) min-cut optimizations
or other means of “spreading”, or “legalizing”, a continuous placement solution. We illustrate our discussion

by referring to the PROUD algorithm of Tsay et al. [32] [33].

Like other works, PROUD considers the squared wirelength objective &,(x) = %XTQX. An uncon-
strained formulation is obtained by optimizing the objective function ®,(x) for ¢ movable modules while
satisfying f fixed pad constraints, but without discrete slot constraints. (The term slot constraint, orig-
inated by Cheng and Kuh [9], refers to the fact that a legal placement must locate modules within the
two-dimensional array of allowed locations (slots). E.g., the first-order slot constraint forces the sum of

module coordinates to equal the sum of slot coordinates.) The objective function can be written as

|: :| Qcc ch Xc
X Xf
Qre Qs Xy

N | =

1
2 (XZQccxc + XZchXf + X?chxc + X?foxf)
where x; denotes the vector of fized module positions and x. denotes the vector of movable module positions;

the Laplacian Q is partitioned into four corresponding parts Qcc, Qcr, Qfc and Qyy with Qch = Qye.

In this formulation, the optimal positions of all movable modules are inside the convex hull of the fixed
module locations [33]. Hence, we can consider the minimization problem for ®,(x) over this convex hull.

Since ®,(x) is a strictly convex smooth function over a compact set (in c-dimensional Euclidean space), the



unique minimum objective function value is attained at the extremal or a boundary point; the nature of
the problem implies that it will be at the extremal point. To find the zero of the derivative of the objective

function ®,(x), we solve the ¢ x ¢ linear system

V®,(x) = Qeexe + Qesxy =0

which can be rewritten as

Qccxc = _chxf (1)

This development is similar to that of other “force-directed” or “resistive network” analogies (see,
e.g., [36] [27] [14] [9]). The essential tradeoff is the relaxation of discrete slot constraints, along with the
changing of the “true” linear wirelength objective into a squared wirelength objective, to obtain a continuous
quadratic objective for which a global minimum can be found. The typical resulting “global placement”
concentrates modules in the center of the layout region. Hence, the key issue is how the “global placement”
(actually, a “continuous solution obtained using an incorrect objective”) should be “spread” or “legalized”

into a solution to the original discrete problem.

Two approaches have been used to obtain a feasible placement from a “global placement”. The first
approach is based on assignment, either in one step (to the entire two-dimensional array of slots) or in two
steps (to rows, and then to slots within rows) [14]. The second and more widely-used approach is based
on partitioning: the global placement result is used to derive a horizontal or vertical cut in the layout, and
the continuous squared-wirelength optimization is recursively applied to the resulting subproblems (see [36]
[27] [9] [24])- The main difficulty is making partitioning decisions on the extremely overlapped modules in

the middle of the layout. The obvious median-based partitioning (find the median module and use it as a



“splitter”) is sensitive to numerical convergence criteria. Thus, FM-type iterative improvement strategies
([22] [13]; see [3] as well as the discussion of Section 3 for a review) are commonly used to refine the
resulting partitioning (see, e.g., [24]). Since the typical objective for iterative improvement partitioning is
some form of minimum weighted cut,® the quadratic placement methodology can be seen to be quite similar
in structure to top-down min-cut placers, with initial cuts induced from (one-dimensional) placements under

the squared-wirelength objective.

We summarize the essential structure of a quadratic placer as consisting of:

e 3 sparse linear systems solver;

e a min-cut iterative (FM-type) partitioner; and

e a top-down hierarchical min-cut framework wherein for any given partitioning instance the solver

results are used to induce an initial solution for the iterative partitioner.

3Formally, denote the n modules of the netlist hypergraph H(V,E) as V = {v1, v2, ...vn}. A net e € E is a subset of V
with size greater than one. A bipartitioning P = {X,Y} is a pair of disjoint clusters (i.e., subsets of V) X and Y such that
X UY = V. The cut of a bipartitioning P = {X,Y} is the number of nets which contain modules in both X and Y, i.e.,
cut(P) = [{e | enX # 0,eNY # 0}|. Let A(v) denote the area of v € V and let A(S) = EvGS A(v) denote the area of a
subset S C V. Given a balance tolerance r, the min-cut bipartitioning problem seeks a solution P = {X,Y} that minimizes
cut(P) subject to W <A(X),A(Y) < w.

4The PROUD placer [33] [32], which we have cited as a prototype for the quadratic placement methodology, is more careful
than previous works in how it applies partitioning during the top-down min-cut process. Suppose that a vertical cut has
been made along some centerline, so that the left and right halves must each be split by horizontal cuts. PROUD applies
a “block Gauss-Seidel” analogy, as follows. Modules in the left half are ordered vertically, followed by terminal propagation
(projection) to the centerline. The projected terminals then influence the vertical ordering of the modules in the right half.
The modules of the right half are then fixed and projected to the centerline, where they influence a new vertical ordering of
the left half. Eventually, both orderings converge and can be split to induce subproblems. In this way, PROUD affords more
global interaction between siblings in the hierarchy (see also the “cycling and overlapping” metaheuristics discussed in [19]).

More generally, we recognize (i) that intermediate steps involving assignment or transportation may also be used to derive
hierarchical subproblems from the initial global placement; (ii) that while top-down bipartitioning is the standard approach,
hierarchical subproblems may also be derived by top-down quadrisection; (iii) that iterative partitioners can use more sophis-
ticated (placement-based) objectives than the traditional weighted min-cut, and (iv) that any number of metaheuristics can
be used within the general top-down framework to improve routability, timing, etc. (such recent works as [34] [19] exemplify
such possibilities). Nonetheless, we have chosen to synthesize a quadratic placement methodology based on FM-type iterative
bipartitioning: this is the cleanest (and most typical) framework for the solver-partitioner interaction in quadratic placement.



3 Effective Implementation of the Quadratic Placement Method-

ology

In this section, we list five major degrees of freedom in the implementation of the quadratic placement
methodology. For two of these degrees of freedom — the use of modern Krylov-subspace solvers with pre-
conditioners, and correlation convergence criteria — we refer the reader to earlier work of [5]. The remaining
three degrees of freedom — linear-wirelength vs. squared-wirelength objectives, the solver-partitioner inter-
face, and the use of modern (multilevel) FM partitioners — are the focus of detailed experiments in Section

4 below.

Of course, we realize that there are many other degrees of freedom in the implementation of a “quadratic
placer”, e.g., the number of partitioning trials made at a given level of the top-down placement, the
integration of metaheuristics such as cycling and overlapping [19], etc. In our experience, tuning these
degrees of freedom is an important activity, requiring substantial effort. However, we have chosen to
concentrate on what we believe are the more fundamental issues for quadratic placement implementation.
In particular, our line of investigation is motivated by the recent advances in algorithm technology for
iterative partitioning. Our main question is: Do modern partitioners really require seeding from (one-
dimensional placements computed by) numerical solvers? Our discussion sets the stage for experimental
evidence showing that implementation choices for quadratic placement are dominated by the strengths of

i

modern multilevel partitioners. We find that the “quadratic placement methodology” no longer benefits

significantly from the use of linear systems solvers that minimize quadratic wirelength objectives.



3.1 Use of Krylov-Subspace Solvers with Preconditioners

Recall that quadratic placement requires solving sparse linear systems with dimensions on the order of the
number of movable modules in a given one-dimensional placement instance. The time complexity of an
iterative solver depends on both the cost of a single iteration (which is constant during the solution of a given
system) and the number of iterations needed until iterates adequately approximate the true solution. The
theory of iterative methods shows that the number of iterations needed to obtain a good approximation
in norm depends on the spectrum of the matrix involved [15]. Hence, the idea of a preconditioner —
a way to transform the original system to an equivalent one with “improved” spectrum. Because most
implementations of preconditioners entail additional per-iteration cost, one must carefully examine the
overall efficiency of solver/preconditioner combinations on particular classes of instances: more expensive

iterations must be balanced against the number of iterations saved.

The work of [5] experimentally compares iteration counts and CPU times for various combinations of
solvers and preconditioners when solving typical systems arising within the quadratic placement method-
ology. These studies were motivated by the observation that works such as [33] use the 1950’s-era SOR
iteration to solve the linear system in Equation (1), despite many improved methods for solving sparse
symmetric linear systems having been developed in recent years. (See [7] for pseudocodes of solvers and
preconditioners, as well as a taxonomy of the types of systems to which these iterations apply; [15] gives
theoretical analyses.®) The authors of [5] test comparable implementations of solver-preconditioner combi-

nations using the PETSc library [6], and conclude that BiConjugate Gradient Stabilized (BiCGS) is among

5Briefly, iterative methods for solving large systems of linear equations can be classified as stationary or non-stationary.
Stationary methods include Jacobi, Gauss-Seidel, Successive Over-relaxation (SOR) and Symmetric Successive Over-relaxation
(SSOR). They are older, easier to implement and computationally cheaper per iteration. Non-stationary methods include
Conjugate Gradient (CG), Generalized Minimal Residual (GMRes) and numerous variations. These are relatively newer and
harder to implement, but afford much faster convergence. Additional computational expense per iteration is normally justified
by much smaller numbers of iterations. Solvers which provide smooth convergence can be also used as preconditioners. Direct
solvers present a different source of preconditioners for iterative methods, with examples being incomplete Cholesky (ICC),
LU-factorization and incomplete LU-factorization (ILU).

10



the best solvers. Though it does not guarantee convergence, BiCGS is good even for degenerate (not
necessarily symmetric) matrices and provides more robust convergence than conjugate gradient (CG). For
preconditioners, Incomplete LU-factorization and the Successive Over-relaxation family (including SSOR)
are particularly successful. In verifying the superiority of BiCGS, performance of SOR and SSOR was eval-
uated with the best value of w parameter, which was determined to be w = 1.95 (for SOR/SSOR solvers)

and w = 1.0 (for SOR/SSOR preconditioners) over a range of problem instances.

3.2 Linear-Wirelength vs. Squared-Wirelength Objectives

In Section 2.2 above, we saw that the continuous placement formulation with squared wirelength objective
has a unique optimum solution that can be found by solving a sparse linear system. However, while being
convenient to work with, the quadratic objective does not correspond to any intuitive physical quantity.
Compared to the linear objective, the quadratic objective more heavily weights long connections and less
heavily weights short connections. To see this, consider the example of two wires with respective lengths 2
and 10. According to the linear objective, the relative cost of the long versus the short wire is 10/2 = 5,
but according to the quadratic objective, the relative cost of the long versus the short wire is 100/4 = 25 —

i.e., the cost ratio of long to short wires is much higher under the quadratic objective.
Several works have suggested that the following linear wirelength objective is superior for placement:

Linear Wirelength Formulation: Minimize the objective

P(x) = Za,ﬂmi — x| suchthat zcyq,...,2, are fixed.
i>j

Mahmoud et al. [26] and Sigl et al. [31] demonstrate the superiority of the linear wirelength objective

11



for analog and row-based placement, and Riess et al. [30] show that a one-dimensional placement which

minimizes linear wirelength can lead to excellent netlist bipartitioning results.

Optimizing the linear wirelength objective is less straightforward. For example, there can be multiple
optimal solutions (consider a single movable module connected to two fixed pads by edges of equal weight —
this module can be optimally placed anywhere between the two pads). The set of optimal placements is again
closed and contained within the convex hull of fixed pad locations (see [33]). Thus, direct minimization of
the linear wirelength objective can be achieved by linear programming, but this is usually computationally
expensive. Consequently, most placers that address the linear wirelength objective find a solution by
iteratively solving several quadratic formulations. We use the GORDIAN-L placer [31] to illustrate this
technique. (Note that the set of constraints that GORDIAN-L can handle is more general than described
here. In particular, GORDIAN-L can handle center-of gravity constraints whereby the coordinates for any
subset of modules must be centered around a prescribed center. However, the technique described here for
optimizing a linear objective by transforming it into a quadratic objective is independent of the types of

constraints applied.)

The objective ®; can be rewritten as

2
Q;i\T; — T4
Bi(x) = ) ayles — 5] = ZM

i>3 > e ail

If the |z; — z;| term in the denominator were constant, then a quadratic objective would result which
can be solved via the above technique. GORDIAN-L first solves the system &,(x) to obtain a reasonable

approximation for the |z; —= ;| terms. Call this solution x°. GORDIAN-L then derives successively improved

solutions x',x?2, ... until there is no significant difference between x*~! and x*. From a given solution x*~1,

12



the next solution x* is obtained by minimizing

(3

ICOEDY = > g (@f—af)’

a;j(zf — z})?

k1 _ Kk

i>j |25~ — 2j (i,)€EE
where gfj =a;j/|lzF ! - xf*1|. Note that the coeflicients gfj are adjusted between iterations. The iterations
terminate when the factors (zf — z¥) no longer change significantly. (It turns out that this approach is

actually a special case of a method due to Weiszfeld [35]; see [5] for a detailed discussion.) Below, we will
experimentally study the effects of the choosing the linear-wirelength, vs. the squared-wirelength, objective
for one-dimensional placement within the quadratic placement methodology. In particular, we will consider

the effects on individual cutsizes as well as on total placement wirelength.

3.3 Correlation Convergence Criteria

Any iterative solver builds a sequence of iterates that converges to the solution x of Equation (1). In the
quadratic placement methodology that we have described, the one-dimensional placement information is
used to “seed”, i.e., construct an initial solution for, the partitioner. How soon the iteration can be stopped
will affect the CPU efficiency of the overall implementation. Typically, iterative solvers have stopping
criteria, or convergence tests, that are based on some norm of the residual vector for an iterate®, which
is taken to represent error with respect to the true solution. In practice, most norms are equivalent, and
various heuristics (check convergence every j iterations, check differences of iterates rather than residual

vectors, etc.) can reduce the time spent on convergence tests.

Constructing an initial min-cut partitioning solution from a one-dimensional placement solution wastes

information, particularly if nothing is retained but memberships of vertices in “left” and “right” initial

8When solving the system Ax = b, the residual vector for a given iterate x¥ is b — Axk.

13



partitions. If the final iterate will be sorted and split to induce an initial solution for the min-cut partitioner,
then the iteration should terminate as soon as further changes will be inessential to the partitioner.”
Determination of “inessential” fundamentally depends on the strength and stability of the partitioner, as will
be discussed in the next subsection. However, regardless of what partitioner is used, solver iterations should
certainly stop when the left and right groups stabilize. The work of [5] proposed a number of correlation
convergence criteria, based on permutations, that may be useful in efficiently measuring such stabilization.
Instead of residual norms, correlation convergence criteria use correlations and rank correlations between
successive iterates to compute their similarity. Convergence is detected when such a measure becomes
sufficiently close to 1, and iterations are stopped. (Note the analogy to residual norms which are used in
traditional convergence criteria, but tend to 0 rather than to 1.) In Section 4 below, we provide evidence

that simple and efficiently-computed measures of correlation or rank correlation between successive iterates

indeed yield useful correlation convergence criteria.

3.4 The Solver-Partitioner Interface

A fourth degree of freedom in implementing the quadratic placement methodology is the “solver-partitioner
interface”, namely, the manner in which an initial solution for min-cut partitioning is constructed from a
given solver iterate. The key decision concerns how much information to retain from the iterate when
“seeding” the partitioner. Above, we noted that the usual practice is to sort coordinates of the iterate, then
pre-seed some percentage of modules (corresponding to the most extreme coordinates) into the left and

right initial partitions. Many implementation choices must be faced, e.g., whether the pre-seeded modules

"This precept also applies when the iterate is used to “seed” the partitioner. For example, one can seed the initial
partitioning solution with only a percentage (say, 20%) of vertices having the most extreme coordinates (with all other vertices
randomly assigned), because these vertices are more likely to be “correctly” assigned. The GORDIAN and GORDIAN-L
placers use such a strategy [24] [31].

14



should be locked or unlocked within the partitioner; how to construct initial assignments for the remaining
(not pre-seeded) modules; whether the pre-seeding should be based on module areas or module cardinalities;

etc. In our experiments below, we apply the following procedure to create the initial bipartitioning solution.

e The midpoint of the iterate is determined, such that the sums of module areas on either side of the

midpoint are as close to equal as possible.

¢ Fixed pads are assigned to left or right partitions according to whether they are to the left or right

of the midpoint in the iterate.

e On the left (right) side of the midpoint, a prescribed seeding percentage of the modules with smallest
(largest) coordinates are pre-seeded (but not locked) into the left (right) partition. The percentage is
computed on each side according to module cardinality, rather than module area. In the experiments

below, we study seeding percentages of 0%, 25%, 50% and 100%.

e Remaining (not pre-seeded, not pad) modules are randomly assigned to the left and right partitions,
such that the resulting partitioning is balanced. More precisely, we randomly order these remaining

modules, then assign each in turn to the partition that currently has smaller total module area.

3.5 Use of Modern (Multilevel) FM Partitioners

Recall that a motivation for our present investigation is that the use of numerical linear systems solvers that
minimize quadratic wirelength may be a historical accident, resulting from the pre-1990’s weakness of min-
cut partitioners. The standard FM bipartitioning approach consists of iterative improvement based on the
Kernighan-Lin algorithm, using the improvement of Fiduccia-Mattheyses [13]. The FM algorithm begins

with some initial solution {X,Y} and proceeds in a series of passes. During a pass, modules are successively

15



moved between X and Y until each module has been moved exactly once. Given a current solution {X',Y"'},
the previously unmoved module v € X' (or Y') with highest gain (= cut({X' —v,Y' + v}) — cut({X,Y}))
is moved from X' to Y. After each pass, the best solution {X',Y"'} observed during the pass becomes the

initial solution for a new pass, and the passes terminate when a pass does not improve the initial solution.

Recent work [1] [2] [17] [18] [21] [20] has illustrated the promise of multilevel approaches for partitioning
large circuits. Multilevel partitioning recursively clusters (“coarsens”) the instance until its size is smaller
than a given threshold, then unclusters (“uncoarsens”) the instance while applying a partitioning refinement
algorithm. Work in multilevel partitioning was originally prominent in the scientific computing literature
for partitioning finite-element graphs [18] [21] [28]. Hendrickson and Leland [18] developed a very efficient
multilevel partitioning algorithm, included in their Chaco package. Metis, another multilevel partitioning
package targeted to finite-element graphs, was developed by Karypis and Kumar [21]. In the VLSI CAD
community, previous multilevel works include [1] [10] [17], [20] and [2]. As shown in [20] and [2], multilevel
implementations of the FM approach give the strongest and most stable results yet reported in the VLSI
partitioning literature. Thus, our fifth degree of freedom assesses the use of multilevel FM versus traditional

FM implementations.

4 Experimental Results

4.1 Experimental Setup

Our top-down placement testbed includes the following elements.

e Plain FM and multilevel FM bipartitioning engines. The plain FM implementation uses a LIFO

gain bucket organization for improved performance [16]. The multilevel FM implementation uses a

16



CLIP-FM core [11] and follows the description of [2] with respect to use of heavy-edge matching for

coarsening [20, 2], and the value of the matching ratio (r = 0.33) for coarsening/uncoarsening.

e Numerical iterations to minimize the squared-wirelength and linear-wirelength objectives. To mini-
mize squared wirelength, we use a BiConjugate Gradient Stabilized (BiCGS) solver without precondi-
tioner, following the conclusions of [5]. To minimize linear wirelength, we apply the Weiszfeld iteration
described in [4], using the same BiCGS solver. For this objective, we also use an ILU preconditioner

since linear-wirelength minimization is inherently harder than squared-wirelength minimization.

e A top-down quadratic placer framework. Within this framework, relevant implementation choices are:

Final (non-overlapping) module placements are evaluated by the sum of net bounding box half-

perimeters.

Nets are modeled as weighted graph edges for the numerical solvers using the standard clique

model for nets of degree 10 or less, and the directed star model for nets of degree greater than

10.

Pads (or block terminals) are kept fixed in the positions originally specified by the designer.

— For multi-pin nets with pins outside the current partitioning instance, straightforward terminal

propagation is used.

We use four standard-cell test cases from industry, which we read in Cadence LEF/DEF 4.5 format (see

Table 1).

Our basic experiment explores the various degrees of freedom from the previous section, as follows.

e For each bipartitioning instance with > 50 modules we use a solver to obtain a one-dimensional

17



Test Cases
Test Case || Pad Cells | Core Cells | Nets
Casel 1083 5840 7637
Case2 182 8829 11962
Case3 711 12146 10880
Cased 185 20392 25634

Table 1: Parameters of four standard-cell test cases from industry.

placement minimizing either squared or linear wirelength. For smaller instances, we do not produce

placements and instead use a random initial solution in the bipartitioning.

e We use the linear placement to pre-seed an initial bipartitioning solution, either fully (100%), partially

(50% or 25%) or not at all (0%).

e We use either LIFO FM (FM) or ML CLIP-FM (MLFM) to obtain a minimum-cut exact bisection
(using exact module areas, with tolerance equal to the largest individual module area in the instance).
Note that when MLFM is used, its coarsening phase is constrained by the pre-seeding. Pre-seeded

modules are not allowed to be matched to modules pre-seeded in the opposite partition.

¢ Exhaustive enumeration of all possible placements is used for end-cases having 5 modules or fewer.

e Fach minimum-cut bisection is the best result from 5 multi-starts, with randomization in the initial
assignment of non-pad/non-seeded modules, and in the heavy-edge matching based coarsening stage

of MLFM.

Runtimes for our placer on a 300MHz Sun Ultra-10 are given in Table 2. We emphasize that a tuned
implementation would be much more efficient, e.g., in practice solvers would not be run with such rigorous
convergence criteria. For the top-level bipartition instances alone, the quadratic solver required 11 seconds

(178 iterations) and 45 seconds (154 iterations), for Case 1 and Case 4 respectively. The 5 starts of LIFO
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| Partitioner | Analytical Placer | Case 1 (sec) | Case 4 (sec) ]

LIFO FM Quadratic 110 660
Linear (Weiszfeld) 180 767

ML Clip-FM Quadratic 156 820
Linear (Weiszfeld) 205 802

Table 2: Total CPU times for our placer (300MHz Sun Ultra-10) on smallest and largest
test cases, under various configurations, with 100% pre-seeding.

FM required 2 and 11 seconds, and the 5 starts of ML CLIP-FM (including all clustering operations)

required 4 and 20 seconds, for Case 1 and Case 4 respectively.

4.2 Experimental Data

For each experiment configuration and test case, we examine both the final placement result as well as the
results of the top-level bisection step. In the context of the top-level bisection, we save 20 different iterates
of the squared-wirelength minimization (BiCGS engine) to pre-seed partitioners in separate experiments.
These 20 iterates are chosen uniformly spaced in the interval between the first and final solver iterates (the
stopping criterion is for successive iterates to differ by less than 1e~® times the norm of the residual). For
each of these iterates, each partitioning engine, and each level of pre-seeding, Figures 1 through 4 show
the best cuts achieved in 5 random starts, averaged over 5 separate trials. Oscillations in the Figures,
particularly for MLFM results, are due to the randomizations inherent in the experimental setup. For
linear-wirelength minimization only a one iteration is available, as Weiszfeld typically converges in a single
iteration. The best cutsizes obtained when this iterate is used for pre-seeding (100%, 50%, 25% and 0%

pre-seeding) are given in the captions of each Figure.

Tables 3 through 6 document the similarity of each iterate of the squared-wirelength minimization to the
next iterate and to the final iterate, using correlation and rank correlation measures [29]. We additionally
report the similarity of the resulting partitioning solutions to the solution achieved using the final iterate.
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Here, the similarity measure is Hamming distance, i.e., the minimum number of modules that must be

moved to transform one solution into the other.®

In our study of complete placement results, within each experimental configuration we pre-seed each
partitioner call with the corresponding final solver iterate, and report the sum of net bounding box half-

perimeters in the final placement. These results are given in Table 7.

4.3 Discussion

We first note that fully pre-seeded (100%) runs are still somewhat randomized as we do not pre-seed
partitioning instances of size 5 through 50 (small instances with 5 or fewer cells are solved optimally with
an enumerative approach). Figures 1 through 4 justify the traditional quadratic placement methodology,
in the sense that a a (LIFO) FM partitioner clearly benefits from pre-seeding by a quadratic (squared-
wirelength) solver. We see that full (100%) pre-seeding reduces the FM cutsize by as much as 35n0 (0%)
pre-seeding. On the other hand, MLFM cutsizes are clearly not improved, and in some cases worse when
pre-seeded with results of the quadratic solver. For all test cases MLFM with 0% pre-seeding is clearly
superior to FM with 100% pre-seeding. This confirms that with modern partitioners, pre-seeding from

analytical placements only hurts solution quality.

With regard to the use of a linear-wirelength minimizer, we observe that the FM partitions are still
generally better with more pre-seeding, but that the improvement versus pre-seeding with the quadratic
solver is somewhat unpredictable (in two cases, FM results are distinctly worse when pre-seeded with the

Weiszfeld solution).® The MLFM partitioner is still hurt by pre-seeding, but the linear-wirelength pre-

8More precisely, we treat each bipartitioning solution as a 0-1 vector, so the Hamming distance between two partitioning
solutions is a measure of how dissimilar two solutions are. If X = z; and Y = y; are two bipartitioning solutions, their
Hamming distance is Z?:I |z; —yi|. If this quantity is larger than n/2 then the coordinates in Y are flipped and the quantity
is recomputed.

9From the results of [30], we would expect superior performance from a Weiszfeld-seeded FM partitioner.
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seeding is less damaging than the squared-wirelength pre-seeding. Again, our main conclusion is that a
modern multilevel partitioner no longer requires pre-seeding by an analytical solver, particularly for large

instances.

The Hamming distance studies in Tables 3 through 6 show that pre-seeding with early iterates leads
to partitioning solutions that are structurally similar to those achieved with later iterates.!® We also see
that correlation and rank correlation to the next iterate increase steadily. Since using later iterates does
not usually improve cutsize, this suggests that correlation convergence measures can be used for early
termination of numerical solvers. Finally, we observe that linear-wirelength minima do not seem strongly

correlated with squared-wirelength minima.

Case 1 (FM) Case 1 (ML)
700 T T T 420 T T T
FM 0% —— ML 0% —
i FM 25" ——— ML 25" ——
650 | £ FM50% - 400 | ML 50% -~ |

FM 100% ML 100%

600 -

500 |
450 |

400

350 I I I I 280 I I I I

Figure 1: Best cut after pre-seeding with solver iterates for Case 1. The z-axis is the
index of the iterate, and the y-axis is the cutsize. When pre-seeding with the final (converged)
Weiszfeld iterate, the best cuts were 485, 492, 550 and 571 for FM (0%, 25%, 50% and 0%
pre-seeding); and 315, 339, 328 and 307 for MLFM (0%, 25%, 50% and 0% pre-seeding).

10The Hamming distances are occasionally surprisingly large, even though cutsizes are similar. We recognize that our
experiments do not address other issues, notably (i) the number of multi-starts required for stable solution quality, and (ii)
reproducibility of solution structure, that may yet reveal advantages of solver-based pre-seeding strategies. Since these issues
move us into details of metaheuristics within the top-down placement, we defer them to future research.
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Case 1 - Quadratic Wirelength

Iterate Corr. Rank Corr. Rank Hamming Distance to Final
Corr. Corr. LIFO FM ML Clip-FM

to next to final 0% | 25% | 50% | 100% | 0% | 256% | 50% | 100%
1 0.98974 | 0.938893 | 0.843959 | 0.811998 || 1220 | 1100 | 1514 | 2594 | 832 | 723 | 1447 | 1576
2 0.998518 | 0.989313 | 0.887373 | 0.877041 || 1414 | 1170 | 1512 | 456 | 446 | 1069 | 1367 | 1543
3 0.996944 | 0.98943 | 0.902439 | 0.893202 || 1193 | 1117 | 1426 | 555 | 750 | 802 | 1459 | 1590
4 0.998996 | 0.992139 | 0.921435 | 0.909269 || 870 | 1264 | 1457 | 501 | 237 | 768 | 1179 | 980
5 0.999269 | 0.997498 | 0.932654 | 0.924666 || 1233 | 1427 | 1139 | 217 | 992 | 149 | 1025 | 971
6 0.998947 | 0.996191 | 0.941326 | 0.930699 || 1186 | 1276 | 1308 | 210 | 479 | 284 | 1443 | 984
7 0.999457 | 0.997867 | 0.951809 | 0.939749 || 940 | 1331 | 1481 | 354 99 | 961 | 1464 | 1028
8 0.999324 | 0.99767 | 0.958524 | 0.945523 || 1724 | 1189 | 1155 | 304 | 397 | 116 | 1447 | 937
9 0.999328 | 0.998888 | 0.965899 | 0.951144 || 770 | 1089 | 1267 | 126 | 209 | 687 | 1529 | 923
10 0.999833 | 0.999403 | 0.972098 | 0.954903 || 806 | 1480 | 1499 | 391 | 757 | 276 | 1065 | 1085
11 0.999643 | 0.998387 | 0.975049 | 0.957211 || 1440 | 1253 | 1149 | 136 | 156 | 69 | 1452 | 191
12 0.999698 | 0.998566 | 0.978848 | 0.96131 || 2065 | 1670 | 1157 | 155 | 546 | 606 | 1485 | 1627
13 0.999885 | 0.999276 | 0.982403 | 0.965475 || 1442 | 1395 | 1326 | 422 | 604 | 714 | 1475 | 273
14 0.99995 | 0.999491 | 0.98427 | 0.967885 || 1446 | 898 | 1133 | 213 | 997 | 91 | 1519 | 1692
15 0.999777 | 0.997455 | 0.985507 | 0.96939 || 1391 | 1278 | 957 197 | 301 | 1045 | 1532 | 901
16 0.9999 | 0.998801 | 0.988169 | 0.97446 | 1503 | 1368 | 1187 | 115 | 117 | 802 | 1437 | 216
17 0.99981 | 0.996813 | 0.989733 | 0.97735 || 1404 | 1021 | 1090 | 115 | 334 | 499 | 1472 | 184
18 0.999923 | 0.999515 | 0.991954 | 0.983116 || 1455 | 1372 | 1457 | 128 | 310 | 595 | 1101 | 1530
19 0.999944 | 0.999332 | 0.99318 | 0.984812 || 1049 | 1074 | 1296 | 205 | 110 | 977 | 1593 | 1638

20 0.999952 | 0.999312 | 0.994174 | 0.98658 1598 | 1109 | 15637 | 205 | 598 | 101 | 1129 | 1625

Final - - 1 1 0 0 0 0 0 0 0 0

Table 3: Correlation convergence studies for the top-level bisection of Case 1 and
pre-seeding with early iterates of the squared-wirelength minimization.
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Case 2 - Quadratic Wirelength

Iterate Corr. Rank Corr. Rank Hamming Distance to Final
Corr. Corr. LIFO FM ML Clip-FM

to next to final 0% | 25% | 50% | 100% | 0% | 256% | 50% | 100%
1 0.99445 | 0.705295 | 0.614096 | 0.392017 || 2378 | 2972 | 3731 | 4192 | 2367 | 299 | 2246 | 3861
2 0.995601 | 0.960569 | 0.638045 | 0.682129 || 2548 | 2228 | 2570 | 2145 | 2832 | 3315 | 2384 | 2668
3 0.998306 | 0.987488 | 0.659515 | 0.745051 || 2833 | 2165 | 2606 | 1449 | 278 | 791 | 2283 | 3895
4 0.998757 | 0.992223 | 0.675138 | 0.773531 || 3471 | 3478 | 2690 | 1251 | 1750 | 4019 | 2204 | 3757
5 0.998027 | 0.995468 | 0.689994 | 0.793538 || 3814 | 2470 | 2841 | 1311 | 1926 | 4402 | 917 | 3159
6 0.998181 | 0.997799 | 0.710364 | 0.81365 || 3756 | 2398 | 3064 | 1261 | 1689 | 3407 | 1832 | 3825
7 0.998545 | 0.998154 | 0.729696 | 0.826896 || 3752 | 2899 | 2291 | 1302 | 2710 | 339 | 2635 | 3864
8 0.999051 | 0.999162 | 0.750016 | 0.842943 || 3110 | 3243 | 2521 | 1382 | 2519 | 4388 | 2355 | 3791
9 0.999169 | 0.998872 | 0.7666 | 0.854092 || 2904 | 2628 | 2823 | 1219 | 2297 | 3307 | 2607 | 3847
10 0.999185 | 0.9993 | 0.785464 | 0.869296 || 2399 | 2743 | 2388 | 1028 | 2752 | 3866 | 2416 | 3829
11 0.998488 | 0.998786 | 0.803803 | 0.881228 || 2507 | 2923 | 2714 | 968 | 2529 | 3803 | 1829 | 3916
12 0.998938 | 0.999046 | 0.829433 | 0.897179 || 1906 | 3037 | 1883 | 1013 | 2434 | 402 | 2374 | 3616
13 0.998435 | 0.998875 | 0.851125 | 0.910766 || 2717 | 2379 | 2637 | 894 | 1985 | 4338 | 994 | 3833
14 0.998147 | 0.998721 | 0.87616 | 0.925172 || 2755 | 2721 | 2670 | 655 | 1656 | 3732 | 4062 | 1429
15 0.997945 | 0.998286 | 0.901718 | 0.939449 || 3107 | 2961 | 2549 | 902 | 1650 | 4372 | 2516 | 3162
16 0.997114 | 0.998252 | 0.925989 | 0.954149 || 2546 | 2510 | 1937 | 981 617 | 3846 | 2313 | 1387
17 0.998156 | 0.998953 | 0.95073 | 0.96779 || 2459 | 2642 | 1862 | 688 523 | 4389 | 2429 | 1495
18 0.998083 | 0.998727 | 0.967119 | 0.976922 || 2755 | 2307 | 1321 | 685 583 | 3264 | 3312 | 101
19 0.998301 | 0.99869 | 0.980637 | 0.98533 || 3324 | 2662 | 1682 | 478 | 2702 | 4061 | 2318 | 1224

20 0.999164 | 0.999046 | 0.999164 | 0.999046 || 2454 | 2606 | 2036 59 1744 | 3993 | 2737 | 1266

Final - - 1 1 0 0 0 0 0 0 0 0

Table 4: Correlation convergence studies for the top-level bisection of Case 2 and
pre-seeding with early iterates of the squared-wirelength minimization.

Case 2 (FM) Case 2 (ML)
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Figure 2: Best cut after pre-seeding with solver iterates for Case 2. The z-axis is the
index of the iterate, and the y-axis is the cutsize. When pre-seeding with the final (converged)
Weiszfeld iterate, the best cuts were 737, 745, 687 and 605 for FM (0%, 25%, 50% and 100%
pre-seeding); and 303, 310, 302 and 315 for MLFM (0%, 25%, 50% and 100% pre-seeding).
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Case 3 - Quadratic Wirelength

Iterate Corr. Rank Corr. Rank Hamming Distance to Final
Corr. Corr. LIFO FM ML Clip-FM

to next to final 0% | 25% | 50% | 100% | 0% | 256% | 50% | 100%
1 0.977774 | 0.805804 | 0.607565 | 0.638514 || 3169 | 3114 | 3475 | 3871 | 3813 | 4266 | 1450 | 2905
2 0.990913 | 0.979015 | 0.690443 | 0.830686 || 1851 | 3700 | 2971 | 3886 | 277 | 3879 | 2984 | 2469
3 0.993253 | 0.995148 | 0.744298 | 0.875779 || 2723 | 3525 | 3683 | 3680 | 2838 | 2646 | 2838 | 1111
4 0.995701 | 0.996973 | 0.789769 | 0.898059 || 2669 | 3334 | 2955 | 2882 | 258 | 3948 | 1429 | 4361
5 0.997248 | 0.998161 | 0.825311 | 0.915763 || 2788 | 3745 | 3404 | 2546 | 453 | 4350 | 376 | 4414
6 0.997744 | 0.998767 | 0.852773 | 0.929199 || 3120 | 2974 | 3619 | 3044 | 187 | 4004 | 1405 | 4376
7 0.998409 | 0.999132 | 0.87671 | 0.940352 || 2868 | 3725 | 2866 | 3121 | 887 | 293 | 3486 | 791
8 0.998692 | 0.999151 | 0.895874 | 0.94939 || 2716 | 3143 | 3631 | 3069 | 2735 | 3264 | 1453 | 4331
9 0.998422 | 0.999177 | 0.912526 | 0.957789 || 2774 | 4148 | 3215 | 2682 | 3140 | 3955 | 1690 | 1224
10 0.998945 | 0.999413 | 0.92911 | 0.96547 || 2405 | 3593 | 2976 | 2827 | 3954 | 329 | 2857 | 2616
11 0.999375 | 0.999638 | 0.941674 | 0.971347 || 2508 | 3380 | 2999 | 2927 | 279 | 3923 | 1309 | 3004
12 0.998969 | 0.999268 | 0.950603 | 0.975456 || 3610 | 3974 | 3658 | 2954 | 3151 | 4377 | 1052 | 4036
13 0.99946 | 0.999728 | 0.961839 | 0.981017 || 2960 | 3512 | 3512 | 3155 | 4379 | 3844 | 3311 | 4170
14 0.999278 | 0.999556 | 0.96884 | 0.984048 | 2417 | 4267 | 3679 | 3056 | 4039 | 2638 | 1727 | 253
15 0.999619 | 0.999797 | 0.976438 | 0.98757 || 2775 | 3662 | 3285 | 2899 | 345 | 3765 | 15635 | 3960
16 0.999688 | 0.999816 | 0.981134 | 0.98958 || 2939 | 2911 | 3852 | 2992 | 1570 | 2494 | 1254 | 4397
17 0.999829 | 0.999903 | 0.985025 | 0.991328 || 3259 | 3432 | 4040 | 3157 | 3147 | 2953 | 1785 | 4400
18 0.999607 | 0.99973 | 0.98757 | 0.992461 || 2073 | 3582 | 3606 | 3214 | 2702 | 4010 | 1400 | 260
19 0.999868 | 0.999921 | 0.991186 | 0.994243 || 3657 | 3548 | 4144 | 3195 | 3139 | 2930 | 3185 | 4387
20 0.992901 | 0.995008 | 0.992901 | 0.995008 || 3184 | 2973 | 3892 | 3230 | 2713 | 318 | 3067 | 3748

Final - - 1 1 0 0 0 0 0 0 0 0

Table 5: Correlation convergence studies for the top-level bisection of Case 3 and
pre-seeding with early iterates of the squared-wirelength minimization.
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Figure 3: Best cut after pre-seeding with solver iterates for Case 3. The z-axis is the
index of the iterate, and the y-axis is the cutsize. When pre-seeding with the final (converged)
Weiszfeld iterate, the best cuts were 515, 492, 465 and 340 for FM (0%, 25%, 50257, 250, 262
and 251 for MLFM (0%, 25%, 50% and 100% pre-seeding).
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Case 4 - Quadratic Wirelength

Iterate Corr. Rank Corr. Rank Hamming Distance to Final
Corr. Corr. LIFO FM ML Clip-FM

to next to final 0% 25% | 50% | 100% | 0% | 25% | 50% | 100%
1 0.982226 | 0.627657 | 0.449465 | 0.500442 || 10060 | 1694 | 2664 | 7230 | 3736 | 3491 | 274 | 3843
2 0.997357 | 0.955058 | 0.501609 | 0.822398 || 4321 | 3456 | 4176 | 3972 | 1165 | 141 91 549
3 0.996133 | 0.997686 | 0.528977 | 0.897615 || 3985 | 2479 | 4134 | 1951 | 3697 | 2972 | 3744 | 495
4 0.998251 | 0.998819 | 0.565941 | 0.911946 || 6956 | 5965 | 3863 | 2073 | 672 | 147 | 3235 | 2387
5 0.997302 | 0.99901 | 0.594907 | 0.922433 || 8704 | 3442 | 3410 | 3312 | 3799 | 128 | 197 492
6 0.997553 | 0.99931 | 0.633184 | 0.932492 || 6606 | 4215 | 3142 | 3434 | 3721 | 186 | 3244 | 522
7 0.997205 | 0.999182 | 0.670902 | 0.940816 || 4795 | 2242 | 3975 | 1379 | 1185 | 3472 | 321 525
8 0.996913 | 0.999497 | 0.713008 | 0.949826 || 7036 | 3866 | 4573 | 1038 | 1050 | 118 | 307 673
9 0.997377 | 0.999591 | 0.755451 | 0.95665 9381 | 4113 | 4587 | 818 | 3655 | 106 63 618
10 0.997351 | 0.999652 | 0.793298 | 0.962594 || 7964 | 4774 | 2866 | 908 506 | 119 | 105 | 2360
11 0.996165 | 0.999566 | 0.829006 | 0.967859 || 6906 | 3039 | 4214 | 891 | 3643 | 116 | 257 517
12 0.997065 | 0.999662 | 0.868215 | 0.97342 7586 | 2797 | 4029 | 1819 | 3700 | 171 | 3237 | 499
13 0.997577 | 0.999622 | 0.898789 | 0.977999 | 4857 | 5310 | 3685 | 1749 | 3669 | 3060 | 88 294
14 0.998607 | 0.999793 | 0.92385 | 0.982489 || 4596 | 5907 | 3705 | 1696 | 3698 | 3643 | 2554 | 313
15 0.998706 | 0.999715 | 0.94039 | 0.985462 || 7030 | 2051 | 4050 | 1044 | 259 98 | 3775 | 343
16 0.998054 | 0.999573 | 0.954994 | 0.988675 || 6853 | 3956 | 3746 | 951 713 | 141 | 277 340
17 0.998796 | 0.999746 | 0.970299 | 0.992146 || 5066 | 2175 | 3856 | 1446 | 3630 | 206 | 282 | 3348
18 0.999387 | 0.999803 | 0.980137 | 0.994402 || 5102 | 2505 | 2538 | 1108 | 3696 | 137 | 190 | 2338
19 0.999211 | 0.999756 | 0.986279 | 0.996104 || 4929 | 1803 | 4577 | 880 631 | 153 78 2388
20 0.999047 | 0.999685 | 0.999047 | 0.999685 || 7567 | 3330 | 3763 | 657 | 1111 | 210 | 116 413

Final - - 1 1 0 0 0 0 0 0 0 0
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Table 6: Correlation convergence studies for the top-level bisection of Case 4 and
pre-seeding with early iterates of the squared-wirelength minimization.
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Figure 4: Best cut after pre-seeding with solver iterates for Case 4. The z-axis is the
index of the iterate, and the y-axis is the cutsize. When pre-seeding with the final (converged)
Weiszfeld iterate, the best cuts were 737, 754, 643 and 590 for FM (0%, 25%, 50% and 100%
pre-seeding); and 318, 328, 337 and 331 for MLFM (0%, 25%, 50% and 100% pre-seeding).
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Partitioner Analytical Placer Ave Final WL for % seeded
0% | 25% | 50% | 100%

CASE 1
LIFO FM Quadratic 2.461 | 2.580 | 2.699 | 2.871
Linear (Weiszfeld) || 2.468 | 2.539 | 2.752 | 3.105
ML CLIP-FM Quadratic 2.329 | 2.365 | 2.395 | 2.443
Linear (Weiszfeld) || 2.329 | 2.358 | 2.370 | 2.452

CASE 2
LIFO FM Quadratic 7.463 | 7.535 | 7.114 | 6.390
Linear (Weiszfeld) || 7.463 | 7.574 | 7.111 | 6.414
ML CLIP-FM Quadratic 5.250 | 5.344 | 5.353 | 5.365
Linear (Weiszfeld) || 5.250 | 5.219 | 5.235 | 5.345

CASE 3
LIFO FM Quadratic 3.970 | 3.917 | 3.874 | 3.633
Linear (Weiszfeld) || 3.970 | 3.976 | 3.853 | 4.129
ML CLIP-FM Quadratic 3.139 | 3.172 | 3.168 | 3.233
Linear (Weiszfeld) || 3.139 | 3.152 | 3.202 | 3.320

CASE 4
LIFO FM Quadratic 9.436 | 9.297 | 9.503 | 8.921
Linear (Weiszfeld) || 9.436 | 8.575 | 8.724 | 8.523
ML CLIP-FM Quadratic 6.860 | 6.948 | 6.953 | 7.047
Linear (Weiszfeld) || 6.860 | 6.859 | 6.767 | 6.878

Table 7: Average final wirelength results for top-down placement of Case 4.

We conclude this section by discussing the total wirelength results for complete placements obtained
with each of the experimental configurations. From Table 7, we see that conclusions obtained for individual
bisection instances still apply to complete placements: (i) FM is weaker than MLFM; (ii) FM benefits
from 100% pre-seeding (but not always from 25% pre-seeding) but MLFM does better with no pre-seeding
than with pre-seeding from quadratic placement; and (iii) MLFM performs somewhat better when partially
pre-seeded with the placements produced by the Weiszfeld algorithm, while FM does not benefit from such
pre-seeding. Overall, the worst results were achieved by FM with no pre-seeding, with partial pre-seeding
by a squared-wirelength solver, or with full pre-seeding by a linear-wirelength solver. The best results were

achieved by MLFM with no pre-seeding or with linear-wirelength based pre-seeding.
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5 Conclusions and Futures

7

We have synthesized the motivations and structure for a generic “quadratic placement” methodology, and
developed a testbed that allows exploration of several key implementation decisions. Our experiments

compare different combinations of partitioners, analytical solvers, and pre-seeding strategies within the

solver-partitioner interface. We observe that:

e Traditional pre-seeding with a quadratic (squared-wirelength) engine does not improve either cutsize

or placement results if a strong partitioner (e.g. ML Clip-FM) is used.

o If pre-seeding is used, earlier iterates are often as good as later iterates, and correlation convergence
tests based on correlation and rank correlation between iterates can save CPU time by detecting when

the relative order of module locations stabilizes.

e Pre-seeding with a linear-wirelength engine may be useful if issues such as stability and reproducibility
of solution structure are considered — but such a conclusion, if true, would require a more elaborate

experimental design to demonstrate.

These observations suggest that with the transition from classic FM partitioners to modern multilevel
partitioners, quadratic engines may no longer be necessary in top-down placement, and may even lead to a

loss of solution quality when applied.

Our ongoing research encompasses the following areas.

e We are improving our placement testbed to enable “apples-to-apples” comparison with commercial
tools. This entails building infrastructure for timing-driven layout (industry-standard timing models,
timing constraints formats, delay calculation and static timing analysis algorithms, etc.) as well as
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interfaces to leading routing engines. Our existing placement capability is extremely competitive
for wirelength minimization, but routability analyses and legality-checking are inferior to those in

commercial systems, making direct comparisons difficult.

e We are studying non-hierarchical alternatives for the interface between analytical solvers and the lay-
out substrate. Several recent approaches, based on novel formulations for both solver and “legalizer”,

appear promising.

e Finally, several drivers suggest looking beyond the quadratic placement methodology. (1) Well-known
limits of quadratic placers include inability to naturally model path timing constraints, invariance of
orderings to unequal horizontal and vertical routing resources, and the requirement of pre-placed
pads to “anchor” the analytical placement. (2) Future top-down design methodologies will tend to
have smaller random-logic blocks in order to gain predictability; these may not be large enough for
a quadratic placer to show its “global awareness” and runtime advantages. (3) The advent of block-
based designs, with synthesized glue logic spread out over disconnected regions, may lead to a design
planning - block building - assembly flow that is also ill-matched to quadratic placers. Thus, we must

also seek new placement approaches that can be better suited to future placement contexts.
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