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Abstract 

The gvuph partitioning problem is to divide the vertices of a graph into disjoint clusters 
to minimize the total cost of the edges cut by the clusters. A spectral partitioning heuristic 
uses the graph’s eigenvectors to construct a geometric representation of the graph (e.g., linear 
orderings) which are subsequently partitioned. Our main result shows that when all the eigen- 
vectors are used, graph partitioning reduces to a new vector partitioning problem. This result 
implies that as many eigenvectors as are practically possible should be used to construct a so- 
lution. This philosophy is in contrast to that of the widely used spectral hipartitioning (SB) 
heuristic (which uses only a single eigenvector) and several previous multi-way partitioning 
heuristics [S, 11, 17, 27, 381 (which use k eigenvectors to construct k-way partitionings). Our 
result motivates a simple ordering heuristic that is a multiple-eigenvector extension of SB. This 
heuristic not only significantly outperforms recursive SB, but can also yield excellent multi-way 
VLSI circuit partitionings as compared to [l, 111. Our experiments suggest that the vector parti- 
tioning perspective opens the door to new and effective partitioning heuristics. The present paper 
updates and improves a preliminary version of this work [5]. 0 1999 Published by Elsevier 
Science B.V. All rights reserved. 

1. Introduction 

Automatic circuit partitioning has become an essential tool for such important VLSI 

CAD applications such as top-down hierarchical cell placement, simulation and em- 

ulation [4]. Systems with several million transistors entail problem complexities that 

are unmanageable for existing logic- and physical-level design tools. Thus, partition- 

ing is used to divide the system into smaller, more manageable components, with 

the traditional goal being to minimize the number of signals which pass between the 

components. 

A VLSI circuit netlist consists of a set of cells which are connected by signal 

nets. Each net consists of a unique source (an output terminal of a cell) and 
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multiple sinks (input terminals of other cells, to which the signal must be 

propagated). A circuit netlist is typically represented by a 12)iperyruph H( VH,EH), 

where the set of vertices VH corresponds to the cells, and the set of hyperedges EN 

(i.e., subsets of I$) corresponds to the signal nets. A cell 2: E VH is incident to the 

net e E EH if v E e. Typical mathematical approaches to circuit partitioning (such as 

quadratic optimization or eigenvector computations) require the circuit to be repre- 

sented as a graph G( V,E), i.e., a hypergraph with lej = 2 for each e E E. We write each 

edge e E E as a pair of vertices. Many hypergraph-to-graph transformations have been 

proposed (see [4] for a detailed survey) including (i) creating a dummy vertex U’ 

for each hyperedge e E EH, and inserting edges (v, a’) in E for each v E v’ [3 11; 

(ii) mapping each hyperedge to a vertex in G and constructing an edge between two 

vertices if their corresponding hyperedges are incident to a common vertex [35]; 

and (iii) for each hyperedge e, constructing an edge (v, w) for every pair of 

vertices u, u’ E e. 

This last transformation is called the clique model; we (and most previous authors) 

adopt it since it is the only one which uses the same set of vertices in the graph and 

the hypergraph, so that a partitioning of the vertices of G directly corresponds to a par- 

titioning of the circuit. The problem remains as to how to assign costs to edges in G. 

Ideally, the total cost of the cut edges should be one, corresponding to the cut of a sin- 

gle hyperedge, no matter how the vertices of that hyperedge’s clique are partitioned. 

However, Ihler et al. [32] prove that such a “perfect” clique model is impossible, and 

Lengauer [33] shows that for any cost function there is some partitioning solution with 

Q(m) deviation from the desired unit cost of cutting the hyperedge e. Hence, many 

different cost functions have been proposed for the clique model: 

l The “standard” clique model [33] assigns cost I/(lel ~ 1) to each clique edge; it is 

motivated by linear placement into fixed locations at unit separation [12]. 

l The “partitioning-specific” model assigns cost 4/( lel( lel ~ 1)). (2i”i - 2)/21’1 to each 

clique edge so that the expected cost of each cut hyperedge is one. 

l The “Frankle” model [20] proposes assigning cost (2//el)3’2 to each clique edge to 

address linear placement with a quadratic optimization objective. This model has 

been utilized in the partitioning heuristic of [ 111. 

l Costs of 2/\el [29], (2/lel)3 [42], and 4/(le12 - lel) [16] have also been proposed. 

It remains open as to which model is best for a given application. For VLSI netlist 

partitioning, Alpert and Kahng [2] empirically showed that the Frankle and partitioning- 

specific models are comparable, and that both are better suited than the standard model 

for multi-way partitioning. 

Given a circuit netlist, we assume that a hypergraph-to-graph transformation has been 

applied to generate the graph G( V, E), where V = { ~1, ~2,. . . , u,,}. The symmetric n x n 

adjacency matrix A = (a;,) gives the costs of the edges in E, where aij > 0 is the cost 

of edge (vi, vl) E E and a,j = 0 if (uf,vj) $! E. Let deg(vi) = cl=, aij be the degree of 

v,. The n x n degree matrix D = (dij) is given by dii = deg(vi) and dij = 0 if i # j. The 

n x n Luplacian matrix of G is defined as Q = D - A. 
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Definition. A k-way partitioning of G is a set of non-empty clusters (subsets of V) 

Pk = (C,) c,, , . . ) ck} such that each Ui E V is a member of exactly one CA, 1 <h dk. 

The most common graph partitioning objectives involve some combination of the num- 

ber of cut edges and cluster size balance. We assume that cluster sizes must satisfy 

prescribed bounds, and that the objective is to minimize the total cost of all cut edges. 

Later, we discuss other possible partitioning objectives. 

Min-Cut k-Way Graph Partitioning. Given the adjacency matrix A corresponding 

to a graph G, a prescribed number of clusters k, and lower and upper cluster size 

bounds Lh and Wh, find Pk that satisfies Lh d / cj) d wh for each 1 d h d k and minimizes 

f (Pk) = & Eh where Eh = c c aii. (1) 
h=l L’,ECh fi,‘igCh 

In other words, ,!?A is the cut of cluster CA. Notice that f counts the cost of each cut 

edge twice. 

Min-cut graph partitioning is known to be NP-complete, and many heuristic meth- 

ods have been proposed (see [4] for a survey). Spectral methods are well estab- 

lished [8, 17, 19, 28, 371 and have also been the subject of extensive study in recent 

years [2, 6, 7, 11, 20, 24, 26, 30, 38, 411. These methods use eigenvectors of the Lapla- 

cian or adjacency matrix to construct various types of geometric representations of the 

graph. We loosely categorize previous spectral partitioning methods according to five 

basic representations: 

Linear orderings (spectral hipartitioning): The classic works of Hall [28] and Fiedler 

[19] gave theoretical motivation to the spectral bipartitioning (SB) heuristic, which 

is widely used in both the VLSI and scientific computing communities. SB takes 

the linear ordering induced by the second eigenvector of the Laplacian (also called 

the Fiedler vector) and splits it to yield a 2-way partitioning. Subsequent works 

have proposed variations of this algorithm [7, 24, 26, 37, 411 and analyzed its per- 

formance. 

Multiple linear orderings: Barnes [8] proposed a multiple-eigenvector extension to 

spectral bipartitioning. Barnes tries to map each cluster in a k-way partitioning to 

one of k eigenvectors while minimizing the rounding error according to a trans- 

portation formulation. If there is zero rounding error, the optimum cut value - equal 

to a weighted sum of the largest k eigenvalues (of the adjacency matrix) [ 171 - is 

obtained. An extension of Barnes’ approach was proposed by Rend1 and Wolkowicz 

[38], and iterative improvement post-processing was proposed by Hadley et al. [27]. 

Points in d-dimensional space: Hall [28] proposed using the coordinates of the sec- 

ond and third eigenvectors of the Laplacian to construct a two-dimensional place- 

ment. Alpert and Kahng [l] extended this idea to higher dimensions, i.e., the ith 

entries of d eigenvectors yield the coordinates of vi in d-space. They used a space- 

filling curve to induce a linear ordering of the embedded vertices, and then split 
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the ordering into a multi-way partitioning via dynamic programming. Hendrick- 

son and Leland [30] have also used this embedding; they use d eigenvectors to 

construct a partitioning with 2d clusters. Arun and Rao [6] propose a bipartitioning 

heuristic that constructs a two-dimensional embedding, then partitions to minimize 

the distance between the centroids of the two clusters. 

l Probe vectors: Frankle and Karp [20] proposed an algorithm that searches for a good 

solution by defining probe vectors in the d-space spanned by the d smallest eigen- 

vectors of Q. For each probe, they find the binary vector (a vector containing only 

OS and 1s) that maximally projects onto the probe in O(n log n) time. This vector 

corresponds to a bipartitioning solution. For the Max-Cut problem (in which the 

objective f is maximized), Goemans and Williamson [23] construct a set of d- 

dimensional vectors that correspond to the vertices. They choose a random probe 

vector and assign vectors with positive projection onto the probe into one cluster, 

and those with negative projection onto the probe into the other cluster. They prove 

a strong approximation bound on the expected performance of their heuristic. 

l Vectors in d-space: Chan et al. [ 1 l] use the same embedded vertices as in [2, 281, 

but view each embedded vertex as a vector rather than as a point. Their KP algorithm 

constructs partitioning solutions using the directional cosine between two vectors as 

a similarity measure between vertices. Each cluster is constructed to minimize the di- 

rectional cosine between vectors of the cluster and the “cluster center prototype” vec- 

tor for that cluster. For the Max-Cut problem, Frieze and Jerrum [21] apply a simpler 

version of KP to vectors obtained from solving a relaxation of the Max-Cut objective. 

In our work, we propose a new geometric representation that is based on a re- 

duction from the graph partitioning problem to a vector partitioning problem. This 

representation is similar to that used by Chan et al. [ 111, but the coordinates are scaled 

by a function of the eigenvalue. The resulting vectors comprise a vector partitioning 

instance; the bijection between graph vertices and vectors permits us to develop a cor- 

respondence between graph and vector partitioning solutions. We make the following 

specific contributions: 

l We propose a new vector partitioning formulation. A set of vectors is to be parti- 

tioned into k disjoint subsets, and the vectors in each subset are summed to form 

k subset vectors. The objective can be either to minimize or maximize the sum of 

the squared magnitudes of the subset vectors. Unlike the directional cosines-based 

approach of [ 111, our objective captures both vector magnitude and direction. We 

show that when all n eigenvectors are used, graph partitioning reduces to vector 

partitioning. 

l This result motivates the use of as many eigenvectors as are practically possible. We 

propose a greedy ordering heuristic that extends SB to multiple eigenvectors and re- 

duces to SB when only a single eigenvector is used. Our experimental results show 

that the information embedded within additional eigenvectors of the graph’s Lapla- 

cian yields significant improvements over both SB and its recursive implementation. 

l We show that our heuristic also outperforms the multi-way partitioning heuristic 

of Chan et al. [l l] which uses k eigenvectors to construct a k-way partitioning. 
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Hence, we provide theoretical and empirical evidence that as many eigenvectors as 

practically possible should be used. Our experimental results suggest that more so- 

phisticated vector partitioning heuristics hold much promise for graph and circuit 

partitioning applications. 

A preliminary version of this work appeared in the 1995 Design Automation Con- 

ference [5]. The present paper improves over [5] in several respects: 

l A discussion of net models for converting circuit hypergraphs into weighted graphs 

has been included. 

l We show that our approach is a natural extension of spectral bipartitioning to mul- 

tiple eigenvectors. 

l We discuss applications to the Max-Cut problem which has been studied extensively 

in the computer theory literature. We show how to extend our results to reduce Max- 

Cut partitioning into max-sum vector partitioning. 

l The theoretical discussion has been changed significantly. We now show that min- 

cut graph partitioning directly reduces to min-sum vector partitioning (as opposed 

to max-sum vector partitioning). This reduction makes the corresponding proofs 

simpler and more elegant. The relationship to max-sum vector partitioning is then 

established via a simple extension. 

l Our experimental results section has been expanded. We present detailed results 

that compare the various weighting schemes used for approximating n eigenvectors 

with d eigenvectors. In addition, we present experimental results for using partition- 

ing with just one eigenvector versus with ten eigenvectors. These results directly 

show that our method is more effective than spectral bipartitioning. 

The rest of our paper is as follows. Section 2 develops the relationship between 

eigenvectors and the min-cut objective. Section 3 presents the vector partitioning prob- 

lem and proves the equivalence between graph and vector partitioning. We also extend 

this result to alternative graph partitioning objectives. Section 4 presents our order- 

ing heuristic. Section 5 presents experimental results, and Section 6 concludes with 

directions for future research. 

2. Eigenvectors and Min-Cuts 

In this section, we review terminology and key results that have appeared in the 

literature. 

Definition. For any k-way partitioning P x the corresponding n x k assignment matrix , 

X = (.x~A) has ~~1~ = 1 if U, E Ch and xih = 0 otherwise. Column h of X is the indicator 

vector corresponding to cluster Ch, and is denoted by xh. 

In other words, X represents a k-way partitioning solution as a O-l matrix with k 

columns and exactly n nonzero entries. Each row of X has sum one, and column h 

has sum ]C’h 1. A well-known result is that the min-cut objective f can be directly 

expressed in terms of the Laplacian and assignment matrices (see e.g., [ll, 381). 
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Theorem 1. f(Pk) = trace(XTQX). 

The trace of a matrix is the sum of its diagonal entries, e.g., trace(d) = c:=, aii. 

Theorem 1 directly follows from the result of Hall [28] that Eh = XcQXh. 

Definition. An n-vector p is an eigenvector of Q with eigenvalue /I if and only 

if Qr( = AI(. We denote the set of eigenvectors of Q by p,, p2,. . . , p, with 

corresponding eigenvalues ii 6 Jti2 d. . . <A,,. The n x d eigenvector matrix Ud = (/tij) 

has columns p,,~~, . , pd and the d x d eigenvulue matrix A = (nii) has diagonal 

entries iii = /1, and 0 entries elsewhere. When d =n, we will use U for U,, and 

A for A,,. 

We assume that the eigenvectors are normalized, i.e., for 1 <j dn, pTpj = ]ir(ji12 = 1. 

The eigenvectors of Q have many interesting properties, including the following [34]: ’ 

1. The eigenvectors are all mutually orthogonal, hence they form a basis in n-dimen- 

sional space. 

2. Each eigenvalue /zi of Q is real. 

3. The smallest eigenvalue Rt is 0 and has a corresponding eigenvector p, = 

[l/v% llfi,, . ’ > lIvwT. 
4. If G is connected then 22 >O. Furthermore, the multiplicity of 0 as an eigenvalue 

of Q is equal to the number of connected components of G. 

For simplicity, we assume that G is connected. Because the eigenvectors form a ba- 

sis in n-dimensional space, any n-vector x can be expressed in terms of this new 

basis. Since the eigenvectors are orthonotmal, UTU = UUT = I, and we may write 

x = UUTx = U(UTx), or equivalently x = ~~=i ($x)p,. 

Definition. The n x k projection matrix r= (OLjh) is given by ajh = p:&, and thus 

r = UTX. Column h of r is given by rh = UT&,. The magnitude of the projection of 

& onto pj is given by xjh. 

Thus, rh is the indicator vector for cluster Gh using the transformed eigenvector basis. 

Each indicator Vector xh can now be WrittCn as urh, or KpiValCntly, & = cJ”=, %jhpj. 

Notice that lchl = l]xh112 = xi”=, o(Th = llrh112. 

Finally, we can express the min-cut objective in terms of eigenvector projections. 

Theorem 2. trace(XTQX) = trace( TT AT). 

’ The first two properties also hold for the eigenvectors of the adjacency matrix A. Some early spectral 

partitioning works used the spectra of A (e.g., [8, 171); however, the last two properties of the Laplacian 

make Q more convenient and hence preferable. All the results of this work can be equivalently established 

with A instead of Q (except Corollary 4 which follows from the third property). We believe that A and Q 

are theoretically equivalent, i.e., any spectral result can be derived from either the eigenvectors of A or Q. 

but this equivalence has not yet been established (or disproven). 



C.J. Alpert et al. I Discrete Applied Mathematics 90 (1999) 3-26 9 

Theorem 2 follows from definitions: for each pj, Qpj = I_j/.lj, hence QU = UA and 

trace(XTQX) = trnce(XTUAUTX) = truce(( UTX)TA( UTX)) = tmce(rTAr). 

By combining Theorems 1 and 2 and performing the matrix multiplication, we observe: 

Corollary 3. f(pk) = Et=, cyl=, ClJ2hij. 

This corollary is a multi-way extension of the bipartitioning result [20]: Et = XTQXt = 

C,J=t $1 j:i. 
Using indicator vectors to represent partitioning solutions allows us to express the 

cost of a solution in terms of the projections of indicator vectors onto eigenvectors. 

We now define the vector partitioning problem, show how to create an instance of 

this problem, and prove that an optimal vector partitioning solution corresponds to an 

optimal min-cut graph partitioning solution. 

3. The vector partitioning problem 

Definition. A k-way vector partitioning of a set of vectors Y is a set of k non- 

empty subsets Sk = {Sl,&,. . . ,&} such that each y E Y is a member of exactly one 

Sh, I<h<k. 

The vector partitioning objective can either be minimized or maximized. We first 

show how graph partitioning reduces to the min-sum vector partitioning problem, then 

show a reduction to max-sum vector partitioning. The latter formulation permits more 

intuitive heuristic algorithms. 

Vector Partitioning. Given a set Y of n vectors, a prescribed number of subsets k, 

and lower and upper size bounds Lh and wh, find Sk that satisfies Lh d IShI d wh for 

each 1 <h <k and optimizes 

g(Sk) = C 11 Yh112 where & = C y. 
h=l JGh 

(2) 

We call I$ the subset vector for Sh. Let yp denote row i of Alj2Ud. Consider the 

d-dimensional vector partitioning instance with the vector set Y = {y;‘,y,“, . . . ,y,“}, in 

which each graph vertex vi corresponds to a vector yi”. (Observe that y,! is the indicator 

vector corresponding to {vi} in the scaled eigenspace.) We say that a graph partitioning 

Pk = {Cl, CZ,. . , ck} corresponds to a vector partitioning Sk = {St,&, . . . ,Sk} if and 

only if vi E C, whenever yt E Sh. We now show that when d = n the min-cut graph 

partitioning and mm-sum vector partitioning objectives are identical. 

Theorem 4. Let S = {y;, . . . , JJ,“}, where y: is row i of Ai U, then if Pk corresponds 

to Sk, then f(Pk) = g(Sk). 
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Proof. For a given 5’, E Sk, let Y$ = C4’,,E,s,, yy. We have 

since membership of yf E & corresponds to membership of v; E Ch. Since Eh = c,“=, z/’ 

1Lj (from Corollary 3), we have llY/l12=E~,. Hence LJ(S~)=C~=, IIY/l12=C~=lEh= 

f(Pk). 0 

Corollary 5. hfin-cut graph partitioning reduces to min-sum vector partitioning, hence 

min-sum vector partitioning is NP-hard. 

It is not hard to show that min-sum vector partitioning is actually NP-complete, 

although optimum bipartitioning solutions have been found with time complexity poly- 

nomial in d [6, 201. 

Corollary 6. ]]y:l12 =deg(vj). 

This result directly follows from ]I Yl]12 =Eh Corollary 6 helps in understanding 

why the graph partitioning and vector partitioning formulations are equivalent. We 

see that the degree of each graph vertex can be computed from the magnitude of its 

corresponding vector, and further, when these vectors are added together, the magnitude 

of the resulting subset vector gives the cost of the edges cut by the cluster. 

If we ignore the eigenvector p, = [l/v’%, l/&,. . . , l/,/‘&j, then Theorem 4 still holds, 

but our vector partitioning instance has a nice geometric property that may be useful 

in designing vector partitioning heuristics. 

Corollary 7. Given a vector partitioning solution Sk for Y = {_v;',J$, . . . ,Y,“>, if the 

jrst component of each yt is discarded, then xi=, EyEsA Y = 0. 

The result follows from the fact that each eigenvector ,+, . . .,p,, is orthogonal to pl, 

hence C:=, pii= for 2dj<n. 

Good heuristics for vector partitioning with a min-sum objective must be somewhat 

unintuitive. When each subset should consist of a set of vectors that sums as closely as 

possible to the zero vector, the vectors in a given subset will point in many different 

directions and it is not clear whether two similar vectors should belong in the same 

subset. Contrast this to a max-sum objective where s(Sk) is to be maximized and we 

seek subsets of vectors that point in the same general direction. This objective allows 

much more intuitive approaches to the problem. Eq. (2) induces an obvious pairwise 

similarity measure for max-sum vector partitioning. If yZ and yj sum to a vector of large 
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magnitude (relative to the sizes of si and yj), then these vectors likely belong in the 

same subset. Graph partitioning has no analogous natural similarity measure between 

vertices (cf. the many ad hoc means in the literature, such as all-pairs shortest paths, 

k - 1 connectivity [22], degree/separation [25], etc.). 

To establish a reduction between min-cut graph partitioning and max-sum vector 

partitioning, we reformulate the min-cut objective as the maximization objective nH 

- f(Pk) (following [20]), where H is some constant greater than or equal to j+, (for 

now, the choice of H is inconsequential). Using Corollary 3, we formulate a new 

maximization objective for graph partitioning as 

k ,I 

=cc $/_,(H - 1j). (3) 
h=l j=l 

The choice of H >%,, ensures that nH - f (Pk) > 0. 

Definition. The n x d scaled eigenvector matrix F$ = (Vii) is given by vij = pijJ_, 

i.e., by the matrix ud with each column pj scaled by dm. 

Theorem 8. Let S = {y;,. . . ,y,“}, where y: is row i of K,. Zf Pk corresponds to Sk, 

then nH - f(Pk) = g(Sk). 

Following the proof of Theorem 4, one can establish that 11 Y; II2 = C,“=, c~;~(?h(H - %, ). 

Combining this observation with Eqs. (3) and (2) yields nH - f(Pk) =g(Sk), the 

desired result. Equivalent results established for min-sum vector partitioning also hold 

for the max-sum problem, i.e., Corollaries 5, 6, and 7. 

3.1. An example 

Fig. l(a) gives a possible bipartitioning for a graph with five vertices. The eigen- 

values of the Laplacian of this graph are 

I., = 0.000, A2 = 2.298, 3.s = 2.469, A4 = 8.702, A5 = 10.531. 

We choose H = 3.5 so that the last column of Vs is zero, and obtain 

- 0.447 0.309 0.530 0.452 0.467 - 

0.447 0.131 0.468 -0.532 -0.530 

u, = 0.447 -0.880 0.000 0.159 0.000 ) 

0.447 0.131 -0.468 -0.532 0.530 

0.447 0.309 -0.530 0.452 -0.467 _ _ 
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Fig. 1. (a) A bipartitioning solution for a graph with five vertices, and (b) the construction of the subset 

vectors Y, and Y2 (shown as Cl and C2) for the corresponding vector partitioning instance. 

- 1.451 0.886 1.505 0.612 0.000 - 

1.45 1 0.377 1,329 -0.719 0.000 

Vs = 1.45 1 -2.526 0.000 0.215 0.000 

1.451 0.377 -1.329 -0.719 0.000 

1.451 0.886 - 1.505 0.612 0.000 _ _ 

The first five rows of V, yield our vector partitioning instance, Y = (~1,. . . ,ys}, but 

Corollary 7 permits us to discard the first column, and our choice of H permits us to 

discard the last column. Thus, the subset vectors corresponding to the bipartitioning 

{{~1~~2~~3)~{~4,uS)) are 

Yt =yt fy2 +y3 = [-1.263,2.834,0.1081T, 

Y2 = y4 + ys = [ 1.263, -2.834, -0.108]T. 

The construction of these vectors is illustrated in Fig. l(b). 

We can now verify Theorem 8 for this example. We have 11 Yl /I2 = 11 Y2112 = 9.637. 

The sum of the magnitudes of the discarded components is (using & = PTX~ = ICh 12/n) 

k 

c &(H - 2, ) = H(cr;, + a:,) = 10.531 (; + ;) = 27.378. 
h=l 

We have g(S2) = 9.637 + 9.637 + 27.378 = 46.655. The graph partitioning maximization 

objective nH ~ f (Pk) evaluates to 5 x 10.531 - (3 + 3)=46.652, and we see that the 

objectives (except for rounding errors) are identical. 
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3.2. Other graph partitioning formulations 

The standard minimum-cut objective is not the only graph partitioning objective 

that can be captured by our reduction to vector partitioning. We now observe how 

other graph partitioning objectives can be reduced to corresponding max-sum vector 

partitioning problems. In fact, any graph partitioning objective that is a function of the 

cluster cutsize (i.e., Eil) has an obvious corresponding vector partitioning objective. 

Cluster Area Constraints. Instead of having cardinality bounds on cluster sizes, each 

vertex Ui can have an associated weight or area denoted by w(vi). The weight of a clus- 

ter Ch is defined as the sum of the weights of its modules, i.e., w(Ch) = C,,tc, W(Q), 

and the constraints of the graph partitioning formulation are Lh 6 w(Ch) < wh. When 

the weight of vertex Ui is extended to be the weight of yp, the vector partitioning 

constraints are simply Lh <w(Sh)< wh, for 1 d h 6 k. 

Minimum Scaled Cost. Chan et al. [I I] proposed to minimize the scaled cost objective 

f(pk)=L+ 
n(k - 1) hz, IGI 

with no cluster size constraints; this objective reduces to the ratio cut objective 

f(p*)= ,c,~‘lC21 for k=2. 

For this objective, instead of using nH - f(Pk) for the maximization objective, we 

use (after removing the constant l/(n(k - 1)) coefficient from f(pk)) 

The proof of Theorem 4 established that I] Y/(1’ = Eh; the analogous result for max-sum 

vector partitioning is /I YJ]* =H]C+Eh which implies ]I Y,“]]*/IChl =H-Eh/lCh]. This 

is exactly the cost of cluster Ch in our new maximization objective kH - f(Pk). The 

corresponding max-sum vector partitioning objective becomes y(sk) = ci=, I/ Yh]]*/l&], 

which captures an “average vector” formulation: we wish to maximize the sum of the 

squared magnitudes of each subset vector divided by the number of vectors in the 

subset. 

Minimum Largest Cut. Partitioning of logic onto multiple integrated-circuit devices 

(such as field-programmable gate arrays) might require minimizing the maximum 

degree of any cluster, rather than minimizing the sum of cluster degrees in the min-cut 
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objective. The partitioning objective for this application is to minimize f(pk) = 

maxl <h<kEh=maXl</,<k $/,lbj*i, or equivalently, maximize f’(pk) = mini <h<X_!$, 

(H - 1-j). The corresponding partitioning objective is to maximize y(,Sk)= 

minl ihGk liy;il*. 

Max Cut. Another problem which has received much attention in the recent literature 

is the max-cut problem [14, 15, 361: 

Maximize: f(pk)=x \&ch>i. 

h=l 

The same mapping of y; to row i of A ‘i*U that was used to reduce min-cut graph 

partitioning to min-sum vector partitioning can be used to reduce the max-cut problem 

to max-sum vector partitioning. 

4. Linear ordering algorithm 

We now propose a simple, greedy graph partitioning heuristic that utilizes the corre- 

sponding max-sum vector partitioning instance. Instead of explicitly solving the vector 

partitioning problem, we construct a linear ordering of the vectors, which corresponds 

to a linear ordering of the graph vertices. Previous work [ 1, 26, 391 has shown the 

utility of ordering-based partitionings for VLSI applications. In addition, the idea of 

constructing an ordering and splitting it into a partitioning is at the heart of spectral 

bipartitioning (SB) [8, 371. Our construction seeks to combine d distinct eigenvectors 

(where d is as large as practically possible) into a single vertex ordering that uti- 

lizes all the eigenvector information. When d = 1, our approach reduces to spectral 

bipartitioning, i.e., the linear ordering is the same as the sorted Fiedler vector. 

In a good vector partitioning solution Sk, any given subset of vectors Sk will consist 

of vectors that sum to a vector of large magnitude. Fig. 2 describes our (multiple 

eigenvector linear orderings) (MELO) heuristic, which greedily seeks to construct such 

a subset. MEL0 first constructs the d-dimensional vector partitioning instance and 

initializes the set S to empty (Steps l-2). MEL0 then adds to S the vector with 

largest magnitude, removes this vector from Y, and labels the vector’s corresponding 

vertex first in the ordering. Each subsequent iteration through Steps 4-6 chooses the 

“best vector” yp remaining in Y, i.e., the one that maximizes the magnitude of the 

sum of vectors in S plus y,@. Thus, at any stage of the MEL0 execution, S should 

consist of a reasonably good subset for vector partitioning. MELO’s time complexity 

is no worse than O(dn2), with some speedups possible; we discuss this in detail in the 

last section. 

The idea of iteratively constructing a cluster (i.e., subset of vectors) seems to be 

the most direct method for constructing a linear ordering. MEL0 may not seem much 

different from a graph traversal (cf. [3]), e.g., choose some vertex to be in its own 
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The MEL0 Algorithm 
Input: G( V, E) = Undirected weighted graph 

d s Number of eigenvectors to compute 

Output: Linear ordering of V 
1. Compute the d smallest eigenvectors of the Laplacian of G and construct V,. 

2. Set Y = {y;‘,y,“, . . , y,“}, where yp is row i of l+. Set S=0. 

3. forj=l to n do 

4. Find y,! c Y such that the magnitude of the vector cJEsu (rd)- y is maximum. 

5. Add yf to S and remove yf from Y. 

6. Label vi as vertex j in the ordering. 

Fig. 2. The multiple eigenvector linear orderings (MELO) Algorithm. 

cluster and iteratively add vertices to the cluster to minimize the cluster degree. How- 

ever, with our approach each vector contains global partitioning information; the set of 

edges connected to any vertex in the original graph representation comprises strictly 

local information. Graph traversals often have many equivalent choices of vertices, 

while ties are extremely rare in MELO. 

We may also motivate MELO’s greedy approach in terms of the maximization ob- 

jective nH -f(Pk) used in the reduction to max-sum vector partitioning. For k = 2, the 

degree of the first cluster is the same as the degree of the second cluster (i.e., El = E2) 

and the maximization objective equivalently becomes H - f(P2)/2 = cT=t LX;, (H - /1,). 

Since in practice we have only d of the eigenvectors, 2 we cannot evaluate all the terms 

in this summation; however, we can approximate it by using the first d terms (since 

these are the most dominant terms), i.e., 

H _ f(p2> o( d ,2 (H _ /? .) 

2 c .I’ J ’ 

i=l 

Assuming that this approximation is reasonable (which we observed in practice by the 

distribution of eigenvalues), if we can find a cluster Ct that maximizes this summation, 

then the partitioning objective H - f(P2)/2 should be close to optimal. A reasonable 

algorithm for constructing Cl is to begin with Ct = 8, and then iteratively add the 

vertex to Cl that optimizes the approximation in Eq. (4). Continuing until every vertex 

is a member of Cl induces a linear ordering of vertices; this is exactly the MEL0 

construction. 

Observe that when d = 2, this algorithm is identical to spectral bipartitioning. 

By Corollary 7, we can ignore p,, so the right-hand side of Eq. (4) reduces to 

* We use the Lanczos algorithm [40] to compute the Laplacian eigenvectors. When computing the eigen- 

vectors with the smallest corresponding eigenvalues, pj will always converge faster than pj if i<j, e.g., it 

will never be the case that say the p2c is known but pi0 is not. Thus, since we wish to utilize as much 
information as possible, we assume that if the eigenvector pd is available, the eigenvectors ct through pd_t 

are as well. 
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(&X:!)2 (H - %2). MEL0 iteratively maximizes this sum by choosing the largest coor- 

dinate in p,, followed by the second largest, and so on. This corresponds to constructing 

a linear ordering by sorting the coordinates of p2. The success of SB shows that the 

approximation in Eq. (4) is reasonable, even for d = 2. As d increases, the approxi- 

mation becomes successively better, so MEL0 comes closer to optimizing the actual 

partitioning objective. Both SB and MEL0 construct a linear ordering based on this 

approximation, but MEL0 extends SB to multiple eigenvectors by combining multiple 

eigenvector orderings into a single linear ordering. 

We have not yet discussed how to choose H. When d =n the choice of H is 

inconsequential, but since d # n in practice, the choice of H significantly affects the 

linear ordering. Indeed, the accuracy of the approximation in Eq. (4) significantly 

depends on H. We tried the following different schemes for scaling the eigenvectors; 

experimental data for each scheme appears in the next section. 

Scheme #l: H = cm. This is equivalent to no scaling, i.e., the eigenvector projections 

are equally weighted. 

Scheme #2: H = & + A*. Here H is chosen to be relatively close to the largest used 

eigenvalue, ensuring that the ,,J”- scaling factors will vary considerably with j. 

Scheme #3: Instead of using MEL0 in the context of Eq. (4), we attempt to preserve 

the original projection weights from Corollary 3, i.e., f(P2) = cy=, $,1,. Recall that 

c;=, $1 = IC 1 I t IS a constant, hence the coefficients for the smaller Ai terms should be 

as large as possible. Instead of minimizing EYE, x/2iii, we maximize C;=, u,‘,/i_j. 

With this objective, each pair of z/‘, terms remains in the same proportion as in 

Corollary 3. 

Scheme #4: The effect that maximizing the Eq. (4) summation has on minimizing 

cut cost depends on the accuracy of the approximation. To minimize the error of this 

approximation, we require that the sum of the “contributions” of the unused n ~ d 

eigenvectors is zero, i.e., EYE,+, ), x? (H - T-i) = 0. This occurs when [20] 

Thus, after Step 6 in Fig. 2, H is recomputed using Ci as the set of vertices 

corresponding to vectors in S, and the coordinates of the vectors in Y and S are then 

readjusted. This scheme does not increase the time complexity of MELO; however, 

it may make possible speedups infeasible. 

5. Experimental results 

In this section, we present four sets of experiments that we performed with MELO: 

l Comparisons of the weighting schemes proposed in the previous section, 

l Comparisons with different values of d, 
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Table I 
Benchmark circuit characteristics 

Test case # Modules # Nets # Pins 

19ks 2844 3282 10547 

bml 882 903 2910 

prim1 833 902 2908 

prim2 3014 3029 11219 

test02 I663 1720 6134 

test03 1607 1618 5807 
test04 1515 1658 5975 

test05 2595 2750 10076 

test06 1752 1541 6638 

balu 801 735 2697 

struct I952 1920 5471 

biomed 6514 5742 21040 

~9234 5866 5844 14 065 

~13207 8772 8651 20 606 

~15850 10470 10383 24712 

industry2 12637 13419 48 404 

. Multi-way partitioning comparisons with recursive spectral bipartitioning (RSB), 

KP [I 11, and SFC [l] algorithms, 

. Balanced 2-way partitioning comparisons with SB [26] and PARABOLI [39]. 

Our experiments use the set of ACM/SIGDA benchmarks listed in Table 1 (available 

via the World Wide Web at http://vlsicad.cs.ucla.edu). The eigenvector computations 

were performed using LAS02 code [40], with a driver provided by the authors of [ 111. 

Before the eigenvectors were computed, each netlist was transformed into a graph using 

the partitioning-specific clique model. We also discuss use of the standard and Frankle 

clique models. 

To generate multi-way partitionings from MEL0 orderings, we apply the “DP-RP” 

algorithm of [ 11. DP-RP accepts a vertex ordering and returns a restrictenpartitioning, 

i.e., a k-way partitioning such that each cluster is a contiguous subset of the ordering. 

DP-RP uses dynamic programming to find the optimal set of k - 1 splitting points 

in the ordering; it applies to all of the partitioning objectives that we have discussed. 

We choose to minimize the SC&~ Cost objective since it has no size constraints, 

provides a single quantity that measures the quality of a linear ordering, and permits 

comparisons to previous algorithms. With the Scaled Cost objective and no cluster size 

bounds, DP-RP has O(kn2) time complexity. 

Our first experiments compare MEL0 orderings using the four proposed weighting 

schemes. For each scheme, we generated ten linear orderings for each benchmark by 

using the d eigenvectors with smallest eigenvalue (ignoring p, ) for 1 <d < 10. DP-RP 

was applied to each of the ten orderings, and the best Scaled Cost values that were 

observed are reported in Table 2. The Scaled Cost values did not vary much for the 

different schemes, although the second and third schemes performed slightly better. The 
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rightmost column of Table 2 reports the average percentage improvement of Scheme #2 

versus the other schemes. Positive improvement is indicated by a +; if the improvement 

is negative, we report the percent improvement of the superior scheme versus Scheme 

#2 and indicate this with a -. The percentage improvements of Scheme #2 as a function 

of k are given in the last rows of the table. From the bottom right of the table, we see 

that #2 averages 1.70%, O.Ol%, and 1.41% improvement over Schemes #l, #3, and 

#4, respectively. The results for the second and third schemes are indistinguishable; we 

choose the second scheme for our remaining experiments since it is derived directly 

from the vector partitioning instance. The fourth scheme performed surprisingly poorly; 

however, we observed that although H fluctuated, it remained considerably higher than 

3”~ + &, i.e., the eigenvectors were not scaled very significantly (we believe that this 

scheme would be more successful for larger d). These results indicate that (at least 

for the MEL0 ordering construction) the best weighting strategy is to make H small 

in order to maximize scaling. 

Our second set of experiments explores the relationship between the quality of MEL0 

partitionings and the choice of d. Table 3 gives Scaled Cost values for the single eigen- 

vector ordering (1 ), i.e., the Fiedler vector, the MEL0 ordering that uses ten eigen- 

vectors (lo), and the best result obtained from the ten MEL0 orderings constructed 

with 1 dd 9 10 eigenvectors (l-10) for Scheme #2. We observe that running MEL0 

using 10 eigenvectors yields significantly better scaled costs than just using the Fiedler 

vector. Overall, the l-10 orderings averaged 32.6% improvement over the Fiedler or- 

dering but only 6.43% improvement over the d = 10 orderings. This illustrates that SB 

can be significantly improved by using more than one eigenvector to compute a linear 

ordering. In addition, the last two rows of Table 3 indicate that most improvement 

occurs for the smaller k values, suggesting that the 10 orderings are of high quality 

“from end to end”. In other words, for k =2, a good ordering is not necessarily re- 

quired as long as the ordering contains a single good splitting point; however, since 

k - 1 good splitting points are generally required, it would seem more difficult to derive 

consistently good partitionings from a poor ordering. 

We observe that there is some improvement by using l-10 eigenvectors as opposed 

to just 10 eigenvectors. This implies that using fewer than 10 eigenvectors can some- 

times yield a better result than using 10 eigenvectors. This could result from several 

reasons: (i) inaccuracies in the clique hypergraph-to-graph model, (ii) poor choice of 

H for scaling eigenvectors, (iii) inability of our heuristic to best utilize the available 

information (probably due to its greedy behavior), and (iv) measuring the quality of 

a solution by a single scaled cost value (other objectives may lead to different con- 

clusions). How to address these issues to better characterize the relationship between 

the number of eigenvectors used and the quality of the partitioning solution remains 

open. 

Table 4 reports results for our third set of experiments, which compare MEL0 to 

the multi-way partitioning algorithms RSB (recursive spectral bipartitioning) [26], 

KP [l I], and SFC [ 11. The codes for RSB and KP were obtained from Dr. Pak Chan; 

however, the results reported in Table 4 are considerably better than the values reported 
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Table 2 

Scaled cost (x 10d5) values for MEL0 orderings for four different weighting schemes. Scheme #l uses 

H = co; #2 uses H = 12 + 2,; #3 scales each eigenvector by dividing by its eigenvalue; and #4 adjusts H 
dynamically so that the sum of the unused eigenvector contributions is zero. The rightmost column gives 

the percentage improvements of scheme #2 versus the other schemes for each benchmark, and the bottom 

rows give the percent improvement as a function of k 

Test Scheme Number of clusters ~ k Avg% 
case 10 9 8 7 6 5 4 3 2 improv 

19ks #l 

#2 

#3 

#4 

bml #l 

#2 

#3 

#4 

prim1 #1 

#2 

#3 

#4 

prim2 #l 

#2 

#3 

##4 

test02 #l 

#2 

#3 

#4 

test03 #l 

#2 

#3 

#4 

test04 #l 

#2 

#3 

#4 

test05 #l 

#2 

#3 
#4 

test06 #l 

#2 

#3 

#4 

balu #2 
#3 

struct #2 

#3 

9.18 8.65 

9.85 9.10 

9.62 8.99 

9.17 8.62 

25.9 23.8 

25.5 23.4 

25.2 22.8 

26.2 24.1 

46.1 44.0 

44.6 41.9 

41.2 38.6 
46.4 43.1 

12.6 12.7 

13.7 12.7 

12.7 12.1 

12.4 11.9 

21.4 20.1 

21.1 19.9 

21.8 21.0 

21.4 20.3 

19.6 19.9 

19.0 17.6 

18.3 17.3 

19.9 18.6 

13.6 12.6 

13.2 12.3 

13.4 12.4 

13.6 12.7 

7.18 6.94 

7.42 7.03 

7.45 7.15 

7.77 7.00 

24.4 19.3 

21.3 20.2 

20.7 19.7 

22.2 20.9 

54.0 50.1 
53.2 49.1 

12.9 12.0 

12.9 12.0 

8.05 7.57 6.65 6.01 

8.31 7.87 6.84 6.14 

8.20 7.82 7.83 6.16 

8.01 7.44 6.52 5.87 

21.4 17.9 14.1 11.6 

21.8 18.6 16.0 12.5 

21.0 18.2 15.4 11.0 

21.8 18.3 14.6 12.5 

42.2 38.6 35.8 31.8 

39.7 37.0 34.0 29.4 

36.2 33.4 29.8 25.9 

41.5 38.6 34.6 27.9 

11.4 10.5 9.66 8.94 

12.0 11.2 10.1 9.18 

11.5 10.7 10.3 9.2 1 

11.2 10.3 9.39 8.75 

18.8 17.6 16.7 15.5 

18.5 17.0 15.4 13.9 

19.9 18.6 16.7 15.2 

19.0 17.2 16.3 15.4 

18.6 17.1 14.9 14.0 

16.7 15.3 14.6 13.7 

16.9 15.2 14.4 13.5 

16.9 16.1 14.7 13.8 

11.9 11.2 10.3 9.59 
11.5 10.8 9.97 9.32 

11.8 11.0 10.2 9.24 
11.9 11.2 10.3 9.59 

6.66 6.38 5.96 5.58 

6.53 6.11 5.79 5.50 

6.68 6.28 5.91 5.62 
6.74 6.39 5.91 5.60 

17.9 16.3 14.6 12.9 

18.5 16.7 14.7 13.5 
18.4 17.0 14.8 13.0 

19.3 17.7 15.9 14.5 

46.5 43.2 40.0 
44.2 42.4 40.0 

10.9 9.82 8.46 
10.9 9.87 8.94 

36.7 
36.7 

7.56 

7.86 

5.41 5.02 4.79 -2.37 

5.32 4.99 4.79 +o.oo 

5.28 4.97 4.79 +0.69 

5.40 5.02 4.79 -3.14 

9.01 6.61 5.53 -1.89 

8.63 6.61 5.53 f0.00 

9.02 6.61 5.53 -2.31 

9.01 6.61 5.53 -0.02 

27.4 20.5 13.4 +7.24 

22.5 17.1 13.4 +o.oo 

22.5 17.1 13.4 -6.48 

26.2 18.5 13.4 +3.84 

7.76 6.75 4.81 -2.96 

7.95 6.76 4.71 +o.oo 

8.3 1 6.82 4.72 -1.41 

7.76 6.75 4.8 1 -4.74 

14.1 11.2 8.23 +4.89 

12.4 10.7 8.07 +o.oo 

12.3 10.8 8.07 +4.50 

13.6 11.2 8.23 +4.18 

12.8 11.5 9.14 +4.37 

12.5 11.6 9.29 +O.OO 

12.2 11.2 9.29 -1.50 

12.7 11.6 9.29 +2.11 

8.89 7.57 5.78 +3.97 

8.21 6.83 5.78 +o.oo 

8.43 6.83 5.78 +1.18 

8.89 7.56 5.78 f4.04 

5.13 4.77 3.09 +2.23 

4.85 4.35 3.09 +o.oo 

5.14 4.77 3.09 +2.85 

4.85 4.35 3.09 +I.71 

11.6 9.96 8.80 +0.41 

11.3 9.54 8.80 +o.oo 

11.3 9.47 8.80 -0.87 

12.5 10.3 8.80 +5.40 

32.3 24.4 17.6 +o.oo 

32.3 24.8 17.6 -0.96 

6.53 5.54 4.25 f0.00 

6.90 5.83 4.62 +3.12 
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Table 2 (contd.) 

biomed #2 1.87 I .73 1.62 1.49 I .34 1.23 1.11 0.89 0.61 +O.OO 

#3 1.97 1.86 1.72 1.53 1.39 1.26 1.09 0.88 0.61 t2.61 

Average #1 +0.62 +1.14 + 1.04 +0.99 -0.08 +0.78 +5.71 +4.x3 +0.26 + I .70 

#2 “S #3 -1.32 -0.58 -0.30 -0.09 +1.35 -1.08 +I.37 +0.95 +0.69 to.01 
#4 +0.68 +0.91 +0x3 +0.86 -0.15 +0.79 +5.00 +3.28 f0.45 +1.41 

in [11].3 RSB constructs ratio cut bipartitionings by choosing the best of all splits of 

the Fiedler vector, and the algorithm is iteratively applied to the largest remaining clus- 

ter. The SFC and DP-RP codes were acquired from their authors [l]; experiments for 

SFC were done using the partitioning-specific net model. The results for all four algo- 

rithms are given in Table 4. MEL0 averaged 10.6%, 15.8% and 13.2% improvement 

over RSB, KP, and SFC, respectively. MEL0 performed very consistently, outper- 

forming the other algorithms in 32 of 39 head-to-head benchmark comparisons (see 

the rightmost column of the table) and over the entire range of k. 

Our final set of experiments used MEL0 orderings to construct bipartitionings by 

choosing the one with lowest ratio cut from all possible splits of the ordering, while en- 

suring that each cluster contains at least 45% of the modules. We quote the PARABOLI 

results of [39] as a source of comparison, and additionally compare against SB. 4 The 

MEL0 results reported are the best observed from splitting each of the ten orderings 

constructed for schemes #2, #3, and #4; we use three schemes since the best scheme 

for this application remains unclear (in fact, frequently one scheme performed best for 

one benchmark and worst for another). MEL0 ratio cuts average 42.0% and -2.93% 

improvement over SB and PARABOLI, respectively, (however, it is also the case 

that PARABOLI averages -6.23% improvement over MELO). Table 5 also reports 

the runtimes required for MEL0 to construct and split orderings using two and ten 

eigenvectors, after the eigenvectors have been computed. Despite MELO’s 0(&z2) com- 

plexity, the runtimes are quite reasonable because the algorithm is so simple (see [2] 

3 For the experiments performed in [l 11, nets with more than 99 pins were removed before the eigenvectors 

were computed using the Frankle clique model. For some of the circuit netlists (test03, test04, and test06), 

removing large nets disconnected the graph, forcing i2 =O. Since RSB uses p2 to determine its initial 

ordering, and since eigenvectors with 0 as an eigenvalue are degenerate, the RSB results were worsened 

significantly by removing the large nets. In addition, results for KP also suffered. Hence, we ran both RSB 

and KP using the Frankle and partitioning-specific net models for the seven benchmarks used in [I I] (prim1 - 
2, test02-6). We observed that: (i) for RSB, the partitioning-specific net model averaged 0.19% and 1 I. I % 
respective improvement over the Frankle net model and the results from [ 111; (ii) for KP, the Frankle model 

averaged 2.97% and 2.96% respective improvement over the partitioning-specific model and the results from 

[ 1 I]. Hence, in Table 4 results are given for the partitioning-specific model for RSB and the Frankle model 

for KP. Note that for MELO, only experiments with the partitioning-specific net model were performed. 
4 The circuits ~9234, ~13207, and ~15850 contain multiple connected components, so we ran MEL0 and SB 

on the largest component (between 97% and 99% of the total number of vertices) and added the remaining 
components to the smaller cluster, while ensuring that the 45% constraint was satisfied. Thus, the SB results 

differ from those reported in [39] for this reason and also because of net model differences. 
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Scaled cost values (x 10P5) for MEL0 orderings: d = 1 uses the ordering induced by sorting the entries of 

the Fiedler vector; d = 10 uses pz, ps, , p, , ; and d = 1 - 10 reports the best values from using between 1 

and 10 eigenvectors 

Test d Number of clusters ~ k Avg % 

case 10 9 8 7 6 5 4 3 2 improv 

19ks 

bml 

prim1 

prim2 

test02 

test03 

test04 

test05 

test06 

balu 

struct 

biomed 

I-10 9.85 9.10 

1 15.1 14.3 

10 9.85 9.23 

l-10 25.5 23.4 

1 29.6 26.2 

10 27.6 25.2 

I-10 44.6 41.9 

1 80.4 75.4 

IO 44.6 41.9 

I-10 13.7 12.7 

1 19.6 18.2 

10 13.7 13.1 

l-10 21.1 19.9 

I 24.4 31.9 

10 21.2 20.0 

I-10 19.0 17.6 

1 30.7 28.3 

10 19.0 17.6 

I-10 13.2 12.3 

1 37.9 34.3 

10 13.2 12.3 

l-10 7.42 7.03 

1 11.7 10.8 

10 8.30 7.84 

I-10 21.3 20.2 

1 31.7 29.5 

10 32.0 28.9 

I-IO 54.0 50.1 

1 95.3 91.3 

10 54.0 50.1 

I-10 12.9 12.0 

I 18.8 17.0 

10 12.9 12.0 

I-10 1.87 1.73 

1 4.82 4.43 

10 2.07 1.91 

Average vs 1 137.1 +38.6 

I-10 10 +5.15 +5.16 

8.31 7.87 

13.8 13.2 

8.45 8.25 

21.8 18.6 

23.9 20.8 

22.7 19.4 

39.7 37.0 

68.7 61.6 

39.7 37.1 

12.0 11.2 

16.8 15.4 

12.6 11.9 

18.5 17.0 

29.6 27.8 

18.7 17.2 

16.7 15.3 

25.4 23.1 

16.9 15.3 

11.5 10.8 

30.2 25.1 

11.5 10.9 

6.53 6.11 

9.60 8.78 

7.48 7.02 

18.5 16.7 

27.0 24.2 

25.0 22.2 

46.5 43.2 

86.1 79.3 

46.5 43.2 

10.9 9.82 

15.3 13.8 

10.9 9.82 

1.62 1.49 

4.02 3.52 

1.73 1.57 

t37.6 +36.8 

+4.81 +4.98 

6.84 

12.2 

7.33 

16.0 

16.7 

16.0 

34.0 

54.9 

34.0 

10.1 

13.5 

11.0 

6.14 

11.1 

6.82 

12.5 

12.5 

12.7 

29.4 

47.1 

30.3 

9.18 

11.2 

10.2 

15.4 13.9 

25.5 22.4 

15.5 13.9 

14.6 13.7 

21.5 19.3 

14.6 13.7 

9.97 9.32 

19.6 15.4 

10.2 9.37 

5.79 5.50 

7.96 7.04 

6.46 5.82 

14.7 13.5 

22.9 21.5 

21.1 18.7 

40.0 36.7 

70.2 62.2 

40.0 36.7 

8.46 7.56 

12.2 10.7 

8.46 7.56 

1.34 1.23 

2.96 2.33 

1.42 1.31 

t35.3 -I -32.0 $ 

+5.34 t5.37 

5.32 4.99 4.79 +o.oo 

9.5 1 7.49 6.25 f37.9 

6.14 5.86 5.20 f6.71 

8.63 6.61 5.53 +o.oo 

9.02 6.61 5.53 +5.82 

8.86 6.90 6.10 +4.51 

22.5 17.1 13.4 f0.00 

38.4 31.7 13.4 +37.1 

24.3 22.2 20.5 +7.58 

7.95 6.76 4.71 +o.oo 

9.45 7.18 5.55 +21.8 

8.87 7.23 4.71 +5.42 

12.4 10.7 8.07 +O.OO 

19.7 16.0 12.1 +34.3 

12.6 11.8 9.48 f3.29 

12.5 11.6 9.29 +O.OO 

16.5 14.9 11.8 +30.3 

12.5 11.6 9.45 +0.32 

8.21 6.83 5.78 f0.00 

11.6 8.45 5.78 +42.8 

8.21 6.83 5.93 +0.69 

4.85 4.35 3.09 +o.oo 

6.32 4.95 3.09 +24.3 

5.54 4.95 4.04 +12.3 

11.3 9.54 8.80 +o.oo 

19.2 15.6 14.3 t35.4 

16.9 14.9 13.8 +30.9 

32.3 24.4 17.6 f0.00 

60.9 55.7 47.8 +47.8 

32.3 24.9 17.8 +0.35 

6.53 5.54 4.25 +O.OO 

8.72 6.74 4.85 +26.0 

6.53 5.54 4.25 +O.OO 

1.11 0.89 0.61 +O.OO 

1.54 1.30 0.85 +47.7 

1.16 0.89 0.61 +5.18 

30.0 +26.4 +19.6 +32.6 

+7.10 +9.00 +11.0 +6.43 
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Scaled cost (x 10p5) comparisons for partitionings derived from MEL0 orderings versus RSB [26], KP 

[11], and SFC [1] algorithms 

Test Scheme Number of clusters - k Avg % 

case 10 9 8 7 6 5 4 3 2 improv 

19ks MEL0 9.85 9.10 8.31 7.87 

RSB 13.9 11.6 9.15 8.74 

KP 9.09 9.37 10.7 9.52 

SFC 15.1 14.3 13.8 13.2 

bml MEL0 25.5 23.4 21.8 18.6 

RSB 33.3 31.1 26.9 22.1 

KP 21.5 23.1 18.9 18.2 

SFC 24.8 22.8 20.7 18.0 

prim1 MEL0 44.6 41.9 39.7 37.0 

RSB 53.1 44.6 40.5 38.1 
KP 44.7 41.3 32.3 33.2 

SFC 38.9 36.7 35.2 31.7 

prim2 MEL0 13.7 12.7 12.0 11.2 

RSB 11.2 10.9 10.1 9.73 

KP 15.0 15.2 13.5 11.0 

SFC 13.7 13.3 12.8 12.1 

test02 MEL0 21.1 19.9 18.5 17.0 

RSB 31.3 31.4 20.2 29.8 

KP 24.4 22.6 22. I 19.1 

SFC 25.5 24.1 22.8 20.9 

test03 MEL0 19.0 17.6 16.7 15.3 

RSB 20.3 19.9 17.7 17.0 

KP 20.3 22.4 19.1 17.3 

SFC 22.6 21.1 19.2 17.1 

test04 MEL0 13.2 12.3 11.5 10.8 

RSB 14.3 12.5 11.8 11.1 

KP 18.3 16.3 15.0 12.2 

SFC 22.2 19.9 17.8 17.6 

test05 MEL0 1.42 7.03 6.53 6.11 

RSB 7.50 6.82 6.70 6.12 

KP 10.8 10.6 9.28 6.80 

SFC 9.88 8.66 8.06 7.84 

test06 MEL0 21.3 20.2 18.5 16.7 

RSB 17.8 17.3 16.0 15.6 

KP 21.0 20.9 19.7 18.5 

SFC 27.1 25.1 23.7 20.2 

balu MEL0 54.0 50.1 46.5 43.2 

RSB 12.2 76.6 81.8 91.3 
KP 45.1 58.6 56.8 47.9 

SFC 82.0 79.1 74.1 70.3 

struct MEL0 12.9 12.0 10.9 9.82 

RSB 9.52 9.15 8.72 7.96 

KP 14.9 15.7 13.8 14.4 

SFC 12.1 11.2 10.5 9.4 1 

6.84 6.14 5.32 4.99 4.79 +o.oo 

8.87 7.00 6.51 6.45 6.35 +18.9 

9.00 9.00 6.95 6.58 6.20 +17.8 

12.2 11.1 8.37 7.48 5.44 +35.7 

16.0 12.5 8.63 6.61 5.53 +o.oo 
17.0 11.3 8.63 6.61 5.53 +8.94 

12.5 10.7 8.67 6.61 5.53 -4.97 
14.4 11.5 8.89 6.61 5.53 -3.17 

34.0 29.4 22.5 17.1 13.4 f0.00 
32.4 28.1 23.9 17.0 13.4 +2.51 

31.3 29.9 21.2 14.7 13.5 -6.16 

28.8 26.0 21.8 14.6 13.4 -10.6 

10.1 9.18 7.95 6.76 4.71 +o.oo 

9.33 8.33 7.85 7.69 5.55 -5.33 

10.5 10.1 9.23 7.25 4.64 +7.38 

11.0 9.43 7.95 6.86 5.05 +4.14 

15.4 13.9 12.4 10.7 8.07 +O.OO 

28.6 28.8 18.4 18.2 12.4 f36.4 

19.3 18.7 17.4 12.0 9.26 +16.8 

18.5 16.1 13.4 10.9 8.07 1-12.4 

14.6 13.7 12.5 11.6 9.29 +O.OO 

16.7 17.6 16.0 14.3 11.9 +14.6 

18.4 22.8 19.9 14.7 9.45 fl9.2 

16.2 15.2 14.3 13.0 10.2 +12.0 

9.97 9.32 8.2 1 6.83 5.78 +O.OO 

10.2 10.3 9.08 8.65 5.85 +6.46 

13.7 12.5 8.98 12.0 6.74 +22.9 

16.5 15.1 11.6 8.19 5.78 +30.7 

5.19 5.50 4.85 4.35 3.09 +o.oo 

5.38 4.97 4.26 4.06 3.09 -3.85 

6.60 6.69 7.81 7.34 4.52 +27.2 

7.32 6.56 5.49 4.90 3.09 +16.1 

14.7 13.5 11.3 9.54 8.80 +o.oo 

16.2 17.3 19.9 15.6 14.3 +10.3 

19.1 19.1 18.0 18.2 28.6 +24.9 

18.4 16.5 13.7 11.3 9.21 +17.3 

40.0 36.7 32.3 24.4 17.6 +o.oo 

84.6 74.5 57.8 55.4 47.2 +46.9 

45.9 35.9 33.2 32.9 48.7 +14.2 

64.9 62.2 49.4 47.3 17.6 f34.3 

8.46 7.56 6.53 5.54 4.25 i-O.00 

8.03 6.60 6.15 5.68 4.85 -10.7 

11.4 9.32 7.91 7.51 6.60 +23.8 

8.65 7.93 7.05 6.42 4.85 +2.04 
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Table 4 (contd.) 

biomed MEL0 1.87 I .73 1.62 1.49 1.34 I .23 1.1 I 0.89 0.61 +O.OO 

RSB I .68 I .67 1.60 1.58 1.60 1.20 I .27 1.28 0.85 +8.29 

KP 3.22 3.03 2.65 1.75 I .63 1.36 1.83 1.16 0.84 +24.3 

SFC 1.84 I .69 1.59 I .47 1.51 1.48 I .25 1.15 0.85 +9.22 

Average RSB +4.39 +9.47 +2.64 +9.30 +I 1.8 +9.60 +13.9 +19.7 f20.0 110.6 

KP +10.2 f16.0 +l3.4 +9.35 +12.8 +15.8 +20.1 +21.1 +23.2 +15.8 

SFC +13.6 +13.5 +14.0 +14.0 +15.2 +15.4 +14.0 +13.2 f9.06 + 13.2 

Table 5 

Min.cut and ratio cut (X I OW’) comparisons for MEL0 derived bipartitionings versus PARABOLI [39] and 

SB [26]. PARABOLI results are quoted from [39]. All three algorithms require each cluster to contain at 

least 45% of the total modules, MEL0 runtimes are given for a Sun Spare 10 and reported in seconds 

Test 

case 

SB 

cuts RC 

PARABOLI 

cuts RC 

MEL0 

cuts RC 

Runtimes improv % improv % 

d=2 d=lO vs SB vs PARABOLI 

19ks 179 8.92 119 5.89 40 79 

bml 75 38.9 48 30.0 4 9 

prim 1 75 43.6 53 30.6 64 36.9 3 8 

prim2 254 11.3 146 6.47 169 7.48 26 89 

test02 196 28.4 106 15.4 9 29 

test03 85 13.2 60 9.29 9 27 

test04 207 36.2 61 10.6 8 24 

test05 167 9.93 102 6.07 20 67 

test06 295 38.5 90 11.7 10 31 

balu 110 69.2 41 25.8 28 17.6 3 7 

struct 49 5.16 40 4.20 38 4.00 12 38 

biomed 286 2.69 135 1.28 II5 1.08 132 496 

~9234 I66 1.95 74 0.86 79 0.92 108 516 

~13207 110 0.57 91 0.48 104 0.54 186 710 

~I5850 125 0.46 91 0.33 52 0.19 308 1197 

industry2 525 1.32 193 0.49 319 0.81 478 1855 

+34.0 

+22.9 

+15.4 -17.1 

+33.9 -13.6 

+46.6 

+29.7 

f70.8 

+39.0 

+69.7 

+74.6 +31.8 

+22.5 +4.77 

t59.9 +15.7 

+52.8 -6.53 

+5.27 -12.1 

+58.7 +42.4 

+38.6 -39.5 

for detailed runtimes for eigenvector computations). The results from Table 5 do not 

immediately imply that MEL0 is a superior bipartitioner; rather, the results show that 

multiple-eigenvector-based orderings can be used to yield high-quality balanced bi- 

partitionings. We hypothesize that addressing the vector bipartitioning problem more 

directly will allow these results to be improved. 

6. Conclusion and future work 

We have proposed a new vector partitioning formulation and shown how to trans- 

form a graph partitioning instance into a vector partitioning instance. When d = n, our 

formulation is exactly equivalent to graph partitioning. We have also proposed MELO, 
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a simple linear ordering algorithm that extends SB to multiple eigenvectors, and have 

found that MEL0 orderings lead to high-quality two-way and multi-way partitionings. 

We note many possible directions for future research: 

l Modify MEL0 to run in sub-O(n*) time. During each iteration, MEL0 considers 

adding every possible vector to S. Alternatively, after the first vector is chosen, we 

could rank all the other vectors by their magnitude when added to the first vector. 

Then, instead of considering all possible vectors during an iteration, consider only 

vectors in a candidate set T of fixed size (e.g., 50), where T is constructed from 

the highest ranked vectors. Each time a vector chosen from T is added to S, the 

next highly ranked vector not in S or T is added to T. The remaining vectors are 

re-ranked periodically (e.g., every 100 iterations) and T is updated. We believe that 

this speedup will not adversely affect MELO’s performance. 

l Apply vector partitioning to clustering. By Corollary 6, a subset of vectors of rela- 

tively large magnitude that point in the same direction will correspond to a cluster 

of vertices with small cut. Thus, it should be possible to identify such subsets of 

vectors and thereby construct high-quality clusterings. 

l Perform diagonal optimization. Cullum et al. [13] showed how to find a diagonal 

matrix D that minimizes the sum of the first d eigenvalues of A + D. Another 

possibility is to use the algorithm of Carter [lo] to construct D such that trace(D) 

is minimized. Many researchers, e.g., [9, 17, 18, 381, have applied various types of 

diagonal optimization both to improve the quality of lower bounds on the cost of 

a solution and to enhance the performance of their spectral partitioning heuristics. 

We believe that diagonal optimization would aid vector partitioning, because the 

d optimized eigenvectors would better approximate the exact n-dimensional vector 

partitioning instance than the d unoptimized vectors. 

l Find and apply lower bounds. Graph spectra have been very useful for constructing 

lower bounds on partitioning, e.g., iz is a lower bound on the cut of any bipartition- 

ing. We would like to answer such questions as, “Assume that we have constructed a 

d-dimensional vector partitioning instance, and that we have an optimal solution for 

this instance. Can we guarantee the quality of the corresponding graph partitioning 

solution in terms of d?” The answer should help us understand how large d needs to 

be, i.e., for a given graph partitioning instance is there some d such that the vector 

partitioning instance is “close enough” to be sufficient? 

l Finally, and most importantly, we would like to explore possible vector partitioning 

heuristics. The promising performance of MEL0 suggests that other vector parti- 

tioning heuristics might be successful. For example, an iterative local improvement 

method could be applied to 2-way vector partitioning. 
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