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Abstract

Given an undirected graph G = (V;E) with positive edge weights (lengths) w : E ! <+, a set of termi-

nals (sinks) N � V , and a unique root node r 2 N , a shortest-path Steiner arborescence (simply called an

arborescence in the following) is a Steiner tree rooted at r spanning all terminals in N such that every source-

to-sink path is a shortest path in G. Given a triple (G;N; r), the MinimumShortest-Path Steiner Arborescence

(MSPSA) problem seeks an arborescence with minimum weight. The MSPSA problem has various appli-

cations in the areas of VLSI physical design, multicast network communication, and supercomputer message

routing; various cases have been studied in the literature. In this paper, we propose several heuristics and exact

algorithms for the MSPSA problem with applications to VLSI physical design. Experiments indicate that our

heuristics generate near-optimal results and achieve speedups of orders of magnitude over existing algorithms.



1 Introduction

Given an undirected graph G = (V;E) with positive edge weights (lengths) w : E ! <+, a set of termi-

nals (sinks) N � V , and a unique root node r 2 N , a shortest-path Steiner arborescence (simply called an

arborescence in the following) is a Steiner tree rooted at r spanning all terminals in N such that every source-

to-sink path is a shortest path in G. Given a triple (G;N; r), the MinimumShortest-Path Steiner Arborescence

(MSPSA) problem seeks an arborescence with minimumweight.

The MSPSA problem is a special case of the Minimum Steiner Arborescence (MSA) problem, which has

been well studied in the literature (for example, [12, 9]). Given a triple (G;N; r) wherein G is a directed graph,

the MSA problem seeks a minimum-weight Steiner tree spanning all nodes in N with all edges directed away

from r. If G0 is the shortest-path directed acyclic graph of G (de�ned in the next section), it is easy to see that

an MSA of G0 is an MSPSA of G. Both the MSA and the MSPSA problems are NP-hard [12, 2].

The rectilinear version of the MSPSA problem is called the Minimum Rectilinear Steiner Arborescence

(MRSA) problem. Given a set of terminals N (including the root r located at the origin), let GH(N) =

(VH(N); EH(N)) be the induced Hanan grid graph [10] of N . It can be shown that an MSPSA of (GH(N); N; r)

is anMRSA of N . Exact methods for theMRSA problem can be classi�ed into (1) dynamic programming, (2)

integer programming, and (3) branch-and-bound/enumeration techniques. The DP-based approach was �rst

used in the work of Ladeira de Matos [15], and more recently in the RSA/DP algorithm by Leung and Cong

[17]. Nastansky et al. [19] formulated the MRSA problem (and its D-dimensional generalization) as an integer

program, and solved it with implicit enumeration techniques. Cong and Leung presented the Atree/BnB [4] and

RSA/BnB [17] algorithms, both of which employ branch-and-bound techniques to e�ectively prune the search

space. Finally, Ho et al. [11] gave two exhaustive enumeration algorithms with O(jN j3k) (k is the number of

\dominating" layers) and O(jN j23jNj) runtime complexities, respectively.

Rao et al. [20] presented the RSA algorithm, which was the �rst known heuristic for the MRSA problem;

the RSA output has length no more than twice optimal, with runtime being O(jN j log jN j) if all terminals

are located in the �rst quadrant, and O(jN j3 log jN j) in the general case. Runtime for the general case was

improved to O(jN j log jN j) by C�ordova and Lee [7]. In [5], Cong et al. presented the Atree algorithm, based

on making \safe moves". T�ellez and Sarrafzadeh [22] gave the pRDPT algorithm, which is based on optimally

solving a restricted version of the MRSA problem. More recently, Kahng and Robins gave a simple adaptation

of their Iterated 1-Steiner algorithm to the MRSA problem [14], and Leung and Cong presented the k-IDeA

algorithm whose performance is very close to optimal in practice [18].

The hypercube version of the MSPSA problem, also called the Optimal Communication Tree or Optimal

Multicast Tree problem in the literature, has been studied by Choi et al. [3, 2], Lan et al. [16], and Sheu and

Su [21]. The problem is NP-hard [2], and heuristics include the LEN heuristic [16], the COVER heuristic [2],

and the more recent ShSu heuristic [21].

There has been relatively little research on the general MSPSA problem. In [1], Alexander and Robins
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presented the Path Folding (PFA) algorithm, an adaptation of the RSA heuristic, and the IDOM algorithm,

which iteratively adds the best Steiner node as a terminal (analogous to the Iterated 1-Steiner algorithm).

They further showed that the MSPSA problem cannot be approximated within a factor of �(log jN j) times

optimal unless deterministic polylog space coincides with non-deterministic polylog space.

The MSPSA and the MRSA problems have applications to performance-driven VLSI physical design.

Cong et al. showed that rectilinear Steiner arborescences outperform traditional heuristic Steiner minimum

trees for delay optimization in submicron process technology [5]. Alexander and Robins applied the PFA and

IDOM algorithms to route timing-critical nets in FPGAs [1]. Cong and Madden [6] proposed a multi-source

routing algorithm based on constructing minimum-cost minimum-diameter arborescences.

In this paper we propose three heuristics and two exact algorithms for theMSPSA problem in the following

order (2 = exponential-time exact algorithm,4 = polynomial-time heuristic):

� (4) RSA/G (Section 3) { an e�cient adaptation of the greedy RSA heuristic in [20].

� (2) RSA/BnB/G (Section 4) { an optimal exponential-time branch-and-bound variant of RSA/G (analo-

gous to the RSA/BnB algorithm in [17]).

� (2) RSA/DP/G (Section 5) { a fast implementation of RSA/BnB/G based on dynamic programming

(analogous to the RSA/DP algorithm [17]).

� (4) k-IDeA/G (Section 6) { a \scaled-down" near-optimal version of RSA/BnB/G.

� (4) k-IA/G (Section 7) { a natural dual of k-IDeA/G that implements the IDOM heuristic [1] e�ciently.

Experiments indicate that our heuristics generate near-optimal results and achieve speedups of orders of

magnitude over existing arborescence algorithms.

2 Preliminaries

Given G = (V;E), we de�ne the distance label of v 2 V , denoted �(v), to be the shortest-path distance of v from

r in G. The shortest-path directed acyclic subgraph (SPDAG) of G is denoted G0 = (V 0; E0), with V 0 = V and

the directed edge (v; v0) 2 E0 if and only if (v; v0) 2 E and �(v0)��(v) = w(v; v0). Clearly, any arborescence

of G is a subgraph of G0, hence we focus on solving theMSPSA problem on SPDAGs (with proper orientation

of the edges)1. Given a general graph G, its SPDAG G0 can be constructed in O(jEj+ jV j log jV j) time using

Dijkstra's algorithm with a Fibonacci heap [8]. We rank the nodes of V in order of increasing distance labels,

and we use vi, 1 � i � jV j, to denote the ith-ranked node, where v1 is the root, and vjV j is the farthest node

from the root (Dijkstra's algorithm can be modi�ed to output this ranking without increasing runtime or space

complexity). The following discussion assumes that the input graph G is already an SPDAG, and we do not

1Actually, any arborescence is a subgraph of G00 = (V 00; E00), where v 2 V 00 � V 0 if and only if v is on a shortest path from r

to some t 2 N , and (v; v0) 2 E00 � E0 if and only if v; v0 2 V 00, and (v; v0) 2 E0. In other words, G00 is the union of all the shortest
paths from the root to the sinks. Although G00 can be substantially smaller than G0, to simplify the discussion we focus on G and
G0.
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distinguish between G and G0 unless otherwise noted. For simplicity, we further assume that vjV j is a terminal

(otherwise, we can �nd the maximum i such that vi 2 N and remove nodes vi+1; � � � ; vjV j and their incident

edges from G, since none of them are in any source-to-sink shortest path).

Given (v; v0) 2 E, v is called a parent of v0, and v0 a child of v. We use Ci to denote the set of children of vi

in G. That is, Ci = fv j (vi; v) 2 Eg. Given two nodes v; v0 2 V , we say v0 is reachable from v, denoted v � v0,

if and only if there exists a (directed) path in G from v to v0, and v � v0 if and only if v � v0 and v 6= v0. If

v � v0, then v ; v0 denotes a shortest path from v to v0 in G (v0 is called a child of v in the arborescence).

Unless otherwise noted, in the following we assume v; v0; v00 2 V and 1 � i; j; k � jV j.

3 The RSA/G Algorithm

We begin by reviewing the Minimum Rectilinear Steiner Arborescence (MRSA) problem. Recall that a rec-

tilinear Steiner arborescence is a Steiner tree in the Manhattan plane spanning all terminals in N , such that

each source-to-sink path is a rectilinear shortest path. In [20], Rao et al. presented the RSA heuristic which

constructs an arborescence in a bottom-up fashion, starting with jN j subtrees each consisting of a terminal in

N . RSA iteratively merges a pair of subtree roots v and v0 such that hv; v0i is as far from the source as possible,

where hv; v0i is the point on the bounding box of v and v0 that is closest to r. The algorithm terminates when

only one subtree remains.

A straightforward generalization of RSA to the MSPSA problem is as follows. Let P be the set of active

root nodes (initially P = N ). Then, iteratively �nd a node v 2 V such that (1) there exist v0; v00 2 P (v0 6= v00)

with v � v0 and v � v00, and (2) �(v) is maximized among all such nodes satisfying (1). Then, for each v0 2 P

with v � v0, construct a shortest path v ; v0 and remove v0 from P . Finally, insert v into P . This process is

repeated until P = frg. Alexander and Robins gave a straightforward implementation of this approach, called

the Path Folding Algorithm (PFA) [1]. Because the PFA algorithm requires frequent computation of the least

common ancestor of pairs of nodes in the SPDAG (up to O(jV jjN j2) times), its overall time complexity is

O(jN jjEj+ jV jjN j2 log jV j).

We adopt a slightly di�erent approach, visiting the nodes in V in decreasing rank order (i.e., starting from

vjV j), and maintaining a peer set consisting of all the subtree roots whose ranks are higher than the rank of the

current node. We use Pi and Ai to respectively indicate the peer set and the partially constructed arborescence

after visiting vi (and before visiting vi�1). Let Xi = fv j vi � v and v 2 Pi+1g be the subset of P reachable

from vi, just before vi is visited). There are three possible scenarios:

� Terminal Merger Opportunity (TMO): vi 2 N

� Steiner Merger Opportunity (SMO): vi 62 N and jXij > 1

� Otherwise: vi 62 N and jXij � 1

If either TMO or SMO applies, we merge all the nodes in Xi (if any) into vi, and update the peer set and
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the arborescence respectively, i.e. Pi = Pi+1 � fXig + fvig and Ai = Ai+1 + fvi ; v j v 2 Xig. Otherwise,

Pi = Pi+1 and Ai = Ai+1 (neither the peer set nor the arborescence is changed). The algorithm starts with

AjV j+1 = ; and PjV j+1 = ;, and terminates once P1 and A1 are computed; A1 is returned. An example is

shown in Figure 3. The time complexity depends on how fast Xi is computed, and the following three theorems

show that this can be done e�ciently.
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Figure 1: An example run of the RSA/G algorithm. The upper left �gure shows a SPDAG with 9 nodes and 3
terminals (one of which is the root r), wherein each node is labeled with its distance from r. The upper right
�gure shows the ranking of the nodes (based on the distances), and RSA/G will visit the nodes in decreasing
rank order. We label the node vi with the unique element (if any) of the set Yi after vi is visited. The execution
is: v8; v7 (TMO), v6; v5; v4 (no action), v3 (SMO, v3 ; v7 and v3 ; v8), v2 (no action), v1 (TMO, v1 ; v3).
The Pi's are as follows: P9 = ;;P8 = fv8g;P7 = P6 = P5 = P4 = fv7; v8g;P3 = P2 = fv3g;P1 = fv1g. The
Ai's are as follows: A9 = A8 = A7 = A6 = A5 = A4 = ;;A3 = A2 = fv3 ; v7; v3 ; v8g;A1 = fv1 ; v3; v3 ;
v7; v3 ; v8g.

Theorem 1 Given i; j with j � i, vi 2 Pj ) vi 2 Pk for any j � k � i.

Proof: For any node vi, 1 < i � jV j, either (1) there does not exist any k such that vi 2 Pk, or (2) there

exists i0 < i such that vi 2 Pk for all i0 � k � i, and vi 62 Pk for all k < i0 or k > i. Therefore, if there

exists j � i such that vi 2 Pj, it is necessary that case (2) applies, and so vi 2 Pk for any k such that

i0 � j � k � i, where i0 � j. 2

Theorem 2 Let Yi = fv j vi � v and v 2 Pig be the subset of P reachable from vi immediately after vi is

visited. Then, Xi = ([vj2CiYj) \ Pi+1.

Proof : v 2 Xi , vi � v and v 2 Pi+1

, 9 vj 2 Ci s:t: vj � v and v 2 Pi+1

, 9 vj 2 Ci s:t: vj � v; v 2 Pj and v 2 Pi+1 (?)
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, 9 vj 2 Ci s:t: v 2 Yj and v 2 Pi+1

, v 2 [vj2CiYj and v 2 Pi+1

, v 2 ([vj2CiYj) \ Pi+1

where (?) denotes the application of Theorem 1 (note that i + 1 � j) in the \)" direction. 2

Theorem 3 jYij � 1 for 1 � i � jV j.

Proof: We prove this inductively. The theorem holds for i = jV j since YjV j = fvjV jg. Assume that jYi+1j � 1

for some i; we will show that this implies jYij � 1. According to the algorithm, in the case of TMO

or SMO (where vi 2 N or jXij > 1), we have Pi = Pi+1 � Xi + fvig and therefore jYij = jfvigj = 1.

Otherwise, vi 62 N and jXij � 1, and so we have Pi = Pi+1 and jYij = jYi+1j � 1. 2

These theorems lead to a very e�cient scheme to determine Xi. First, Theorem 3 indicates that Yi has

either zero or one element. Therefore, we can use constant per-node memory to store the set Yi at the node

vi after visiting vi. Second, Theorem 2 implies that Xi can be computed by �rst taking the union of Yj for

each child vj of vi, and then intersecting with Pi+1. We can perform the union and intersection operations

in time linear in the number of children2, and so the time complexity of visiting vi is O(jCij). The overall

time complexity is
Pi=jV j

i=1 O(jCij) = O(jEj), or O(jEj + jV j log jV j) including Dijkstra's algorithm, which is

signi�cantly better than the O(jN jjEj+ jV jjN j2 log jV j) complexity of the PFA algorithm [1]. Our algorithm,

called RSA/G, is summarized in Table 1. Note that we describe a more general version of RSA/G which allows

some Steiner nodes to be marked as permanently deleted (discussed in the next section). The algorithm will

not perform any Steiner merger at such locations. The default version of RSA/G simply sets deleted[i] = false

for all i.

4 The RSA/BnB/G Algorithm

Recently, Leung and Cong presented an exponential-time branch-and-bound algorithm called RSA/BnB that

solves theMRSA problem optimally [17]. They observed that the RSA heuristic is suboptimal precisely because

Steiner mergers are greedy and (sometimes) suboptimal. To obtain an optimal solution, they suggested trying

out both merging and skipping at SMOs. The algorithm, called RSA/BnB, essentially enumerates all sequence

of choices between merging and skipping at each SMO, and [17] showed that this method enumerates at least

one optimal arborescence.

Like RSA, RSA/BnB can also be generalized to theMSPSA problem. Like RSA/G, RSA/BnB/G visits nodes

in decreasing rank order, and performs merger if the current node v is an TMO. If v is an SMO, however,

RSA/BnB/G tries out both merging and skipping, and return the better solution.

2This is achieved by properly indexing the sinks and Steiner nodes. Note that this is possible despite the fact that there can
be many more nodes in the peer set than jCij.
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Function RSA=G(G;N; deleted)
Given an SPDAG G = (V;E) with ranked nodes, a set of terminals N 2 V ,
and the array marking permanently deleted nodes, return the arborescence
according to the RSA/G algorithm.
Globals: Y

i jV j+ 1;
P  ;;
A ;;
while i > 1 do

i i � 1;
X  ([vj2CiYj) \ P ;
if vi 2 N or (jXj > 1 and deleted[i] = false) then

(a) Yi  fvig;
P  P �X + fvig;
A A + fvi ; v j v 2 Xg;

else

(b) Yi  X;
return A;

Table 1: The RSA/G Algorithms. (a) TMO or SMO; (b) Otherwise.

Unfortunately, the generalization is not as trivial as before. This is because Theorem 3 no longer holds:

after an SMO is skipped at vi (meaning there exist v; v0 2 Pi+1 with vi � v and vi � v0, but they are not

merged at vi), jYij � jfv; v0gj = 2.

Given two nodes v; v0 2 V , v00 2 V is called a merging point (MP) of v and v0 if and only if v00 � v and

v00 � v0. Furthermore, v00 is called a maximal merging point (MMP) of v and v0 if and only if v00 is an MP of v

and v0, and no descendant of v00 is an MP of v and v0. Note that any pair of nodes in G has at least one MP.

Theorem 4 Given an arborescence A, if there exists some Steiner node v with two or more children and v is

not an MMP of every pair of children of v, there exists A0 which has a lower cost than A.

Proof: Assume the contrary that A is optimal but a Steiner node v with two or more children is not anMMP

of some children v0; v00. Then there exists a node ~v such that v � ~v and ~v � v0 and ~v � v00. The new

arborescence A0 = A � fv ; v0; v ; v00g + fv ; ~v; ~v ; v0; ~v ; v00g, with jA0j = jAj � jv ; ~vj < jAj,

yields a reduction in total tree length. A contradiction.

Therefore, it su�ces to consider Steiner mergers at MMPs only. Let Zi be Yi if jYij = 1, and ; otherwise,

then we have the following theorem:

Theorem 5 jZij � 1 for 1 � i � jV j. 2

We can simply use X0
i = ([vj2CiZj)\Pi+1 (which also takes O(jCij) time to compute), instead of Xi in the

algorithm. The RSA/BnB/G algorithm is summarized in Table 2, and its optimality is proven in Appendix I.

An example is shown in Figure 4. The set of skipped nodes resulting in the lowest tree length is marked as

permanently deleted, and �nally RSA/G() is called (with the set of deleted nodes) to return the arborescence.
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Function RSA=BnB=G=aux(i; P )
Globals (set by RSA/BnB/G()): G;N;Z; deleted

X  ([vj2CiZj) \ P ;
if i = 1 then

return (;;
P

v2X jvi ; vj);
else if vi 2 N then

(a) Zi  fvig;
(D;C) RSA=BnB=G=aux(i� 1; P �X + fvig);
return (D;C +

P
v2X jvi ; vj);

else if jXj > 1 then
(b) Zi  fvig;

(Dm; Cm) RSA=BnB=G=aux(i� 1; P �X + fvig);
Cm  Cm +

P
v2X jvi ; vj;

Zi  ;;
(Ds; Cs) RSA=BnB=G=aux(i� 1; P );
Ds  Ds [ fvig;
return jCmj < jCsj ? (Dm; Cm) : (Ds; Cs);

else

(c) Zi  X;
return RSA=BnB=G=aux(i� 1; P );

Function RSA=BnB=G(G;N; k)
Given an SPDAG G = (V;E) with ranked nodes and a set of terminals N 2 V
return the arborescence according to the RSA/BnB/G algorithm.

(D;C) RSA=BnB=G=aux(jV j; ;);
foreach vi 2 V do deleted[i] (vi 2 D) ? true : false;
return RSA=G(P;N; deleted);

Table 2: The RSA/BnB/G Algorithm. (a) TMO; (b) SMO; (c) Otherwise

5 The RSA/DP/G Algorithm

Leung and Cong [18] showed that each subproblem in the recursive call to the RSA/BnB algorithm can be

completely characterized by a triple (P;K;C), which can be de�ned and solved recursively. As a result, hashing-

based dynamic programming technique can be applied to avoid computing any given subproblem more than

once. The algorithm, called RSA/DP, is signi�cantly faster than RSA/BnB and capable of solving a 250-terminal

MRSA problems optimally in one hour. The reader may refer to [18] for more details.

This result can be generalized to the MSPSA problem, as each subproblem in the recursive call to

RSA/BnB/G/aux can also be completely characterized by a triple (P; vi; C), where vi is the node to be visited,

P is the current peer set (i.e. P = Pi+1), and C is the cost of the partially-constructed arborescence so far.

We also call i the rank of the triple. In addition to the characterization, we need to be able to (1) determine

the set Xi (the subset of P reachable from vi) given an arbitrary triple (P; vi; C), and (2) determine whether

vi is an MMP. To solve (1), we �rst completely characterize the \�" relation, which requires jV j2 bits and

O(jV j2+ jV jjEj) preprocessing time (quite reasonable for exact algorithm); Let Wi;j = fv j vi � v and v 2 Pjg,

then Xi is simply Wi;i+1. To solve (2), it su�ces to look at each Wj;i+1 such that vj 2 Ci. Then, vi is an

MMP if and only if none of the Wj;i+1's have more than one element.
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Figure 2: An example run of the RSA/BnB/G algorithm, based on the previous example. Like RSA/G,
RSA/BnB/G visits the nodes in decreasing rank order. We label the node vi with the unique element (if
any) of the set Zi after vi is visited. Two branches are created at v3, since it is an SMO, one corresponding to
skipping and one to merging. Both branches are executed, and the branch with the lowest total weight is the
optimal arborescence (the merging branch in this example). For the merging branch, the Pi's and Ai's are as
follows: P3 = P2 = fv3g;P1 = fv1g:A3 = A2 = fv3 ; v7; v3 ; v8g;A1 = fv1 ; v3; v3 ; v7; v3 ; v8g. For the
skipping branch: P3 = P2 = fv7; v8g;P1 = fv1g: A3 = A2 = ;;A1 = fv1 ; v7; v1; v8g.

The algorithm, called RSA/DP/G, is summarized in Table 5. Our implementation of RSA/DP/G character-

izes each subproblem with a tuple (P; vi; C; S), where S is the set of nodes at which Steiner mergers occur3.

RSA/DP/G visits nodes in decreasing rank order in the fashion of RSA/G. If the current node is an SMO,

the branching and merging subproblems are characterized as two tuples, which are then conditionally inserted

into the hash table (denoted \�" in the algorithm) to be solved later. To be more precise, given a new tuple

T = (P; vi; C; S), it is inserted into the hash table if either (1) a tuple of the form T 0 = (P; vi; C
0; S0) already

exists in the hash table, and C0 > C (in such case, the tuple T 0 will be replaced by T ), or (2) no such tuple T 0

exists. Note that conditional insertion guarantees that at most one tuple of the form (P; vi;�;�) exists in the

hash table at any given time.

If the expansion of a tuple T leads to the creation of a tuple T 0, it is necessary that T 0 has a lower rank than

T since nodes are visited in decreasing rank order. By expanding tuples in decreasing rank order, we guarantee

that RSA/DP/G will expand at most one tuple of the form (P; vi;�;�) for each pair (P; vi)4. In other words,

no subproblem is solved more than once.

3Strictly speaking, only P and i are needed to characterize the subproblem to be solved. C is used for pruning purpose, and S

for re-generating the optimal solution once determined.
4This is because no other tuple of the same form exists in the hash table (1) at the time of expansion of the tuple (a property

of conditional insertion), and (2) in subsequent execution (all tuples generated later will have a lower rank).
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Function RSA=DP=G(G;N )
Given an SPDAG G = (V;E) with ranked nodes and a set of terminals N 2 V
return the arborescence according to the RSA/DP/G algorithm.

compute the \�" relation;
H  f(fvjV jg; jV j; 0; ;)g;
i jV j;
while i 6= 0 do

(?) �nd T = (P; i; C; S) 2 H such that i is maximized;
H  H � fTg;
X  ;;
foreach vj 2 Ci do

W  fv j vj � v and v 2 Pg;
if jW j > 1 then goto (?);
X  X +W ;

repeat

if vi 2 N then

(a) P  P �X + fvig;
C  C +

P
v2X jvi ; vj;

i i � 1;
else if jXj > 1 then

(b) H  H � f(P; i� 1; C; Sg;
H  H � f(P �X + fvig; i� 1; C +

P
v2X jvi ; vj; S [ fvig)g;

goto (?);
else

(c) i i � 1;
(P; i; C; S) the only element left in H;
foreach vi 2 V do deleted[i] (vi 2 S) ? false : true;
return RSA=G(P;N; deleted);

Table 3: The RSA/DP/G Algorithm. (a) TMO; (b) SMO; (c) Otherwise.

6 The k-IDeA/G Algorithm

Since RSA/BnB/G tries out both skipping and merging at every SMO, it requires exponential runtime in the

worst case. We now describe a simple heuristic variant of RSA/BnB/G which allows up to k SMOs to be

skipped along any path in the branch-and-bound diagram. The best set of skipped nodes are then marked as

permanently deleted and the algorithm is repeated until there is no further improvement. The heuristic, called

k-IDeA/G (which stands for Iterated k-Deletion for Arborescence) is described in Table 4. At the end of each

iteration, the set of � k skipped nodes resulting in the lowest tree length is marked as permanently deleted (a

deleted node remains deleted throughout, and the � k SMOs skipped in the current iteration do not include

previously deleted nodes). The process is repeated until no further improvement is obtained. Finally, RSA/G()

is called (with the set of permanently deleted nodes) to return the arborescence.

We can show that the function IDeA/G/aux() (one iteration of the k-IDeA/G algorithm) has O(jEjjN jk) time

complexity, where k is the number of allowed deletions (the complexity analysis is detailed in Appendix II).

Experimental result (see Section 8) shows that in practice, k-IDeA/G almost always terminates after only a few

iterations. Hence, the average case time complexity of k-IDeA/G is also O(jEjjN jk).
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Function IDeA=G=aux(i; P; k)
Globals (set by IDeA/G()): G;N;Z; deleted

X  ([vj2CiZj) \ P ;
if i = 1 then

return (;;
P

v2X jvi ; vj);
else if vi 2 N then

(a) Zi  fvig;
(D;C) IDeA=G=aux(i� 1; P �X + fvig; k);
return (D;C +

P
v2X jvi ; vj);

else if jXj > 1 then
if deleted[i] = true then

(b) Zi  ;;
return IDeA=G=aux(i� 1; P; k);

else if k > 0 then
(c) Zi  fvig;

(Dm; Cm) IDeA=G=aux(i� 1; P �X + fvig; k);
Cm  Cm +

P
v2X jvi ; vj;

Zi  ;;
(Ds; Cs) IDeA=G=aux(i� 1; P; k� 1);
Ds  Ds [ fvig;
return jCmj < jCsj ? (Dm; Cm) : (Ds; Cs);

else

(d) Zi  fvig;
(D;C) IDeA=G=aux(i� 1; P �X + fvig; k);
return (D;C +

P
v2X jvi ; vj);

else

(e) Zi  X;
return IDeA=G=aux(i� 1; P; k);

Function IDeA=G(G;N; k)
Given an SPDAG G = (V;E) with ranked nodes, a set of terminals N 2 V ,
and the maximum number of nodes k to be deleted, return the arborescence
according to the k-IDeA/G algorithm.

Cbest 1;
foreach 1 � i � jV j do deleted[i] false;
repeat

(D;C) IDeA=G=aux(jV j; ;; k);
if C < Cbest then

Cbest C;
foreach vi 2 D do deleted[i] true;

else

return RSA=G(P;N; deleted);

Table 4: The k-IDeA/G Algorithm. (a) TMO; (b) SMO, node deleted; (c) SMO, skipping allowed; (d) SMO,
skipping exhausted; (e) Otherwise.

7 The k-IA/G Algorithm

The IDOM heuristic of Alexander and Robins [1] iteratively �nds a node v 2 V �N maximizing jMSpA(G;N; r)j�

jMSpA(G;N [ fvg; r)j, where jMSpA(G;N; r)j is the length of the minimum spanning arborescence of N in G

rooted at r. N is then replaced by N [fvg in the next iteration, until no further improvement is possible. The

algorithm is a straightforward adaptation of the Iterated 1-Steiner approach [13] to the graph arborescence

10



problem, and the time complexity is O(jN jjEj+ jV jjN j3).

Function IA=G=0(i; P )
Globals (set by IA/G()): G;N; dmin

C  0;
foreach v 2 P do C  C + dmin(v);
foreach vj 2 N; 1 < j � i do C  C + dmin(vj);
return (;; C);

Function IA=G=aux(i; P; k)
Globals (set by IA/G()): G;N;R

X  Ri \ P ;
if k = 0 then

return IA=G=0(i; P );
else if i = 1 then

return (;;
P

v2X jvi ; vj);
else if vi 2 N then

(a) (S;C) IA=G=aux(i� 1; P �X + fvig; k);
return (S;C +

P
v2X jvi ; vj);

else if jk > 0j then
(b) (Sm; Cm) IA=G=aux(i� 1; P �X + fvig; k� 1);

(Sm; Cm) (Sm [ fvig; Cm +
P

v2X jvi ; vj);
(Ss; Cs) IA=G=aux(i� 1; P; k);
return jCmj < jCsj ? (Sm; Cm) : (Ss; Cs);

else

(c,d) return IA=G=aux(i� 1; P; k);

Function IA=G(G;N; k)
Given an SPDAG G = (V;E) with ranked nodes, a set of terminals N 2 V ,
a root r 2 N , and the maximum number of Steiner merger k, return the
arborescence according to the k-IA/G algorithm (with the side e�ect that N
also contains the Steiner nodes at the end).

compute R; dmin;
Cbest  1;
repeat

(S;C) IA=G=aux(jV j; fvjNjg; k);
if C < Cbest then

Cbest  C;
foreach v 2 S do N  N [ fvg;
update R; dmin;

else

foreach vi 2 V do deleted[i] (vi 2 N ) ? false : true;
return RSA=G(G;N; deleted);

Table 5: The k-IA/G Algorithm. (a) TMO; (b) SMO, merging allowed; (c) SMO, merging exhausted; (e)
Otherwise.

We now propose a heuristic inspired by the above approach, with a strategy similar to k-IDeA/G. Recall

that k-IDeA/G can be viewed as a restricted version of the RSA/BnB/G algorithm in which at most k Steiner

mergers are skipped. Our proposed algorithm, called k-IA/G, (which stands for Iterated k-Arborescence) is a

symmetrical restricted version of RSA/BnB/G in which at most k Steiner mergers are allowed. More precisely,

k-IA/G also visits the nodes in decreasing rank order. If the current node v is a TMO, the terminal merger is

11



always performed. If v is an SMO, both merging and skipping are tried unless k Steiner mergers have already

been performed along the path, in which case the SMO is skipped.

Like the RSA/G and the k-IDeA/G heuristics, k-IA/G �rst computes Xi when node vi is visited, then takes

appropriate action based on Xi. With RSA/G and k-IDeA/G, the bounds on jYij and jZij respectively shown in

Theorems 3 and 5 allow Xi to be computed e�ciently in O(jCij) time using O(jV j) space. Unfortunately, for

k-IA/G no similar theorem applies. Instead, for each vi 2 V , let us use Ri to denote the subset of sinks in N

interested in merging into vi if vi is a Steiner node. Given a node v 2 N , let dmin(v) = minv02N;v0�v jv0 ; vj.

Then, Ri = fv j v 2 N; vi � v; and jvi ; vj < dmin(v)g. In other words, a terminal v is interested in merging

into a \downstream" potential Steiner node vi (such that vi � v) if vi is closer to v than any of v's potential

parents in N . The dmin's and Ri's can be computed and maintained in O(jEjjN j) time and O(jV jjN j) space;

a given Xi can then be computed by taking the intersection of Ri and Pi+1, which requires O(jP j) time.

The complete k-IA/G algorithm is described in Table 5. k-IA/G calls the function IA/G/aux() to �nd the

best (maximum reduction in tree length) set of � k Steiner nodes, and adds them to the terminal set N .

When k = 0, the function IA/G/0() is called instead of IA/G/aux(); this function simply computes the sum of

the distances between each remaining terminal or Steiner node and the closest \downstream" terminal. Note

that IA=G=0(i; P ) can be implemented to run in O(d) time (we consider all the remaining sinks to be deleted

after returning from IA/G/0()). IA/G() calls IA/G/aux() repeatedly until no further reduction in tree length is

obtained. Finally, RSA/G() is called to return the arborescence; at this point, N includes all the Steiner nodes.

We can show that the IA/G/aux() function (one iteration of the k-IA/G algorithm) has O(jV jkjN j) time com-

plexity, where k is the number of allowed Steiner mergers (the complexity analysis is detailed in Appendix III).

As a result, the overall complexity of the k-IA/G algorithm is O(jEjjN j + ijV jkjN j), where i is the number

of iterations. The extra O(jEjjN j) complexity is due to the one-time computation of dmin and R and the

subsequent updates. Since i = O(jN j) in the worst case (the average case is also O(jN j) as shown in the next

section), we have an overall time complexity of O(jEjjN j+ jV jkjN j2). This compares favorably with the IDOM

algorithm of Alexander and Robins, which has a complexity of O(jEjjV j+ jV jjN j3).

8 Experimental Results

8.1 Comparison I

We implemented all algorithms and heuristics proposed in this paper using GNU C++ in the SUN UNIX

environment, and compared against the PFA and IDOM algorithms of Alexander and Robins [1]. All experiments

were performed on a Sparc-5 and allCPU times are for this machine. We performed experiments in the style of

[1], whose goal was to compare the runtime and solution quality of di�erent Steiner and arborescence algorithms

on a typical FPGA routing instance with various levels of congestions. Routing was done on a 20 � 20 grid

graph, wherein edge weights model the congestion induced by previously routed nets. Three di�erent levels of

congestion were modeled: (a) no congestion (no pre-routed nets), (b) low congestion (10 pre-routed nets), and
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(c) medium congestion (20 pre-routed nets); see [1] for more details. For each net size (6 to 12), 50 random

nets were generated and routed on the weighted graph that modeled the given congestion (congestions were

newly generated for each net). We compared the IKMB Steiner algorithm (one of the best-performing graph

Steiner algorithm in the literature) with several arborescence algorithms including PFA and IDOM from [1], our

optimal algorithms RSA/BnB/G and RSA/DP/G, and our heuristics RSA/G, 1-IDeA/G, and 1-IA/G. For each

net, we normalized the tree length produced by each heuristic to that of IKMB, and the maximumsource-to-sink

pathlength of each heuristic was normalized to optimal.
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Figure 3: Comparison I { (a) The average wirelength of various arborescence algorithms (PFA, IDOM, RSA/G, 1-
IDeA/G, 1-IA/G, and RSA/BnB/G) as a % above the IKMB wirelength under the conditions of (1) no congestion,
(2) low congestion, and (3) medium congestion. (b) The average radius (maximum source-to-sink pathlength)
of IKMB-constructed Steiner as a % above optimal.

Figure 3(a) gives the average tree length of various arborescence algorithms (as % above that of IKMB)

under various congestion levels, and Figure 3(b) gives the average radius (maximum source-to-sink pathlength)

of IKMB-constructed Steiner as a % above the maxiumumManhattan source-to-sink distance. When there is

little or no congestion, arborescences and Steiner trees have very similar total tree length. However, as the

congestion level increases, arborescences tend to have longer tree length but shorter radius when compared to

Steiner topologies. All of the six arborescence heuristics we tested (PFA, IDOM, RSA/G, 1-IDeA/G, and 1-IA/G)

gave similar solution quality, and this is the reason why we did not distinguish the tree lengths among di�erent

algorithms in Figure 3(a). Moreover, the comparison with the optimal solutions shows that all of the heuristics

are near-optimal for this application.

8.2 Comparison II

We also \stress tested" our algorithms and heuristics by running them on a grid that is four times larger

(40 � 40), with a medium congestion level (20 pre-routed nets). The size of the nets tested ranges from 3

to 150, and for each net size, 50 random nets were generated and routed by PFA, IDOM, RSA/BnB/G and

RSA/DP/G, RSA/G, 1-IA/G, 1-IDeA/G, and 2-IDeA/G. This comparison highlights runtime and solution quality

when the problem size is large (note that the data for PFA, IDOM, RSA/BnB/G, and RSA/DP/Gwere incomplete
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Figure 4: Comparison II { (a) The % of trials when each heuristic is a winner. (b) The average runtime in
CPU seconds.

because they exceeded the runtime limit).

For a given routing instance, a heuristic is called a winner if it generates a solution with the lowest tree

length among all heuristics tested (note that RSA/BnB/G and RSA/DP/G are not included). Figure 4(a) shows

the percentage of trials when each heuristic is a winner; 1-IDeA/G and 2-IDeA/G are consistently as good as or

better than the other heuristics. Runtimes are shown in Figure 4(b). Average CPU times for both 1-IDeA/G

and 1-IA/G were less than one second, and for 2-IDeA/G were less than four seconds, even for the largest test

cases. Moreover, our heuristics are orders of magnitude faster than PFA and IDOM even on instances of modest

size (for example, on 15-sink instances 1-IDeA/G averages 53X faster than PFA and 291X faster than IDOM,

respectively). Thus, substantial runtime improvement over existing PFA- and IDOM-based FPGA routing

algorithms is expected with our new heuristics.

We also observe that 1-IDeA/G is superior to 1-IA/G in both quality and runtime. Figure 5 shows that on

average 1-IDeA/G requires signi�cantly fewer iterations than 1-IA/G; 1-IDeA/G �nished in six iterations or less

(practically constant) on all our test cases, while 1-IA/G requires a nearly linear number of iterations. This

is not surprising since the number of iterations of 1-IA/G is one plus the number of (degree three or higher)

Steiner nodes in the arborescence, which is a linear or near-linear function of jN j. Hence, the e�ective runtime

complexities of 1-IDeA/G and 1-IA/G are O(jEjjN j) and O(jEjjN j+ jV jjN j2), respectively.

From these experiments we conclude that RSA/G and 1-IDeA/G are the two best arborescence algorithms

to use in terms of runtime and solution quality.

8.3 Comparison III

Finally, we also studied graph-based routing in a regime that models the presence of obstacles. In a layout

region of size 4000� 4000, we randomly generate a set of n terminals N , and a set of 2n rectangles R (length

and width are both within [400; 600]). We then construct the Hanan grid graph GN;R induced by the points

and the corners of the rectangles, then construct a new graph G by deleting any edges of GH;R that lie within
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Figure 5: Comparison II { (a) The average number of iterations for 1-IDeA/G, 2-IDeA/G, and 1-IA/G. (b) The
average as % of the number of terminals.

4

6

8

10

12

14

16

18

3 4 5 6 7 8 9 10

%
 a

bo
ve

 IK
M

B

# terminals

RSA/G
1-IA/G

1-IDeA/G

0.001

0.01

0.1

1

10

100

3 4 5 6 7 8 9 10

A
ve

ra
ge

 r
un

tim
e 

(C
P

U
 s

ec
on

ds
)

# terminals

IKMB
RSA/G
1-IA/G

1-IDeA/G
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rectangles in R. For each n, 3 � n � 10, 10 random examples with all terminals reachable from each other were

generated and routed using IKMB, RSA/G, 1-IDeA/G, and 1-IA/G. Figure 6 shows the average tree length as a

percentage above that of IKMB, along with the runtime (in CPU seconds) for each of the four heuristics. The

arborescences are on average 6% to 17% longer than the Steiner trees constructed by IKMB, but have much

smaller maximumsource-to-sink pathlengths; runtimes are orders of magnitude smaller. Finally, Figure 7 shows

a 30-terminal, 30-rectangle example and the solution generated by 1-IDeA/G in 0.49 CPU seconds.

9 Conclusion

We have presented several e�cient heuristics and exact algorithms for the MSPSA problem, improving upon

previous work in both runtime and solution quality. We have also presented detailed complexity analyses as

well as extensive experimental results that suggest our algorithms are more e�ective in practice than other

arborescence algorithms. We believe that applications to performance-driven global routing, FPGA routing
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Figure 7: An 30-terminal 30-rectangle example and the 1-IDeA/G solution.

and non-VLSI domains such as multicast routing are all promising.
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Appendix I { Optimality of RSA/BnB/G

We shall prove the optimality of RSA/BnB/G in the fashion of [17]. Let B denote a generic node in the branch-

and-bound (BNB) diagram, and vB , iB , AB be the node to be visited, the rank of the node, and the partial

arborescence constructed immediately after visiting vB , respectively (note that vB = viB and AB = AiB�1).

If vB is a TMO, BT denotes the child node of B in the BNB diagram (note that iBT = iB � 1). If vB is an

SMO, BM and BS denote the two child nodes of B corresponding to merging and skipping respectively (note

that iBS = iBT = iB � 1). We say B is optimal if and only if there exists an optimal arborescence A�B which

satis�es the following two optimality criteria:

� [OC1(B)] AB � A�B , and

� [OC2(B)] 6 9 i such that i � iB and vi ; vj 2 A
�
B �AB .

These two criteria guarantee that (1) the current partial arborescence is optimal, and (2) it is possible to

generate an optimal arborescence even though only nodes with a lower rank than iB will be visited in the

remaining execution.

Lemma 1 If B is optimal and vB is a TMO, BT is optimal and A�B satis�es both OC1(BT ) and OC2(BT ).

Proof: First of all, we shall show that ABT = AB + fvBT ; v j v 2 XiBT
g � A�B . Assume the contrary that

this is not the case. Then there must exist vi ; v 2 A�B such that v 2 XiBT
and i < iBT . We can construct

an arborescence A0B = A�B � fvi ; vg + fvB ; vg, and we have jA0Bj = jA
�
Bj +�(vi) ��(vB) < jA�Bj,

contradicting the assumption that A�B is optimal. Therefore, ABT � A
�
B, and A

�
B satis�es OC1(BT ).

Second, we shall show that 6 9 vi ; vj 2 A�B � ABT such that i � iBT . Assume the contrary that such

vi ; vj exists. Note that the optimality of A�B implies that i < iB . Therefore, iBT � i < iB ) iBT � i <

iBT +1) i = iBT ) vi = vBT . However, this is impossible since no nodes in the peer set dominates vBT

after the terminal merger at vBT As a result, no such path vi ; vj exists, and A�B satis�es OC2(BT ). 2

Lemma 2 If B is optimal and vB is a Steiner merging point, either (1) BM is optimal and A�B satis�es both

OC1(BM ) and OC2(BM ), or (2) BS is optimal and A�B satis�es both OC1(BS) and OC2(BS).

Proof: If vB 2 A�B, then using an argument similar to the previous proof, we can prove that A�B satis�es both

OC1(BT ) and OC2(BT ), and so BT is optimal.

If vB 62 A�B, A
�
B satis�es OC1(BS ) since ABS = AB � A�B. To show that A�B satis�es OC2(BS), we

assume the contrary that 9 vi ; vj 2 A�B �ABS such that i � iBS . Using the same argument as before,

we have iBS � i < iB ) vi = vBS . However, this is contradictory since vB 62 A
�
B . 2

Theorem 6 There exists at least one leaf node in the BNB diagram in the RSA/BnB/G algorithm that is

optimal in tree length.
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Proof: It follows from the facts that the root node of the BNB diagram is optimal (PjV j+1 = ; andAjV j+1 = ;),

and that each optimal node has at least one child node that is optimal. 2

Appendix II { Complexity of k-IDeA/G

Consider the recursive function IDeA/G/aux() which does the majority of the work, and whose time complexity

is a function of the triple (i; d; k), where i is the rank of the current node, d is the number of nodes removed

from the peer set in the subsequent execution (recursion), and k is the number of SMOs that can be skipped

in the subsequent execution. Let fG;N (i; d; k) denote its time complexity. The execution of IDeA/G/aux(),

excluding the recursion, is dominated by the computation of Xi, which takes O(jCij) time. In the following, we

simply say that it takes Ci time without loss of precision. Table 6 gives the recursive de�nition of fG;N (i; d; k)

according to the di�erent possible scenarios, for i � 1, d � 0, and k � 0. The base case of the algorithm is

fG;N (1; d; k) = jCij. Note that all of these complexities are directly inferred from the algorithm. The following

theorem bounds the complexity of fG;N (i; d; k).

Description vi 2 N? deleted[i]? jXij > 1? k > 0?
(a) TMO true | | |
(b) SMO, node deleted false true | |
(c) SMO, skipping allowed false false true true
(d) SMO, skipping exhausted false false true false
(e) Otherwise false false false |

Description fG;N (i; d; k) =
(a) TMO jCij+ fG;N (i � 1; d� jXj; k)
(b) SMO, node deleted jCij+ fG;N (i � 1; d; k)
(c) SMO, skipping allowed jCij+ fG;N (i � 1; d� jXj; k) + fG;N (i � 1; d; k� 1)
(d) SMO, skipping exhausted jCij+ fG;N (i � 1; d� jXj; k)
(e) Otherwise jCij+ fG;N (i � 1; d; k)

Table 6: The complexity of the IDeA/G/aux function for any i � 1, d � 0, and k � 0 (\|" denotes Don't
Care).

Theorem 7 For any i � 1, d � 0, and k � 0, fG;N (i; d; k) � �i(
d+2
2 )k, where �i =

P
1�j�i jCjj.

Proof: We use induction on i. For i = 1, fG;N (i; d; k) = jCij � jCij(
d+2
2 )k for any d � 0, k � 0. Assume that

fG;N (i; d; k) � �i(
d+2
2 )k for i = m � 1 � 1; we shall prove that fG;N (m; d; k) � �m(

d+2
2 )k holds for all

of the scenarios described in Table 6. Note that it su�ces to prove the result for scenarios (b) and (c),

since the proofs for (a), (d), and (e) are subsumed by that for (b).

In case (b), we have

fGT
(m; d; k) = jCmj+ fG;N (m � 1; d; k)

� jCmj+ �m�1(
d+ 2

2
)k � (jCmj+ �m�1)(

d+ 2

2
)k = �m(

d+ 2

2
)k
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In case (c), we have

fG;N (m; d; k) = jCmj+ fG;N (m � 1; d� jXj; k) + fG;N (m� 1; d; k� 1)

� jCmj+ �m�1(
d� jXj+ 2

2
)k + �m�1(

d+ 2

2
)k�1

� jCmj+ �m�1(
d� 2 + 2

2
)k + �m�1(

d+ 2

2
)k�1

� jCmj+ �m�1(
d

2
)(
d+ 2

2
)k�1 + �m�1(

d+ 2

2
)k�1

= jCmj+ �m�1(
d

2
+ 1)(

d+ 2

2
)k�1

= jCmj+ �m�1(
d+ 2

2
)k � (jCmj+ �m�1)(

d+ 2

2
)k = �m(

d+ 2

2
)k

Therefore, the induction step holds for i = m for each of the scenarios (a) to (e). 2

Theorem 8 The IDeA/G/aux() function (one iteration of the k-IDeA/G algorithm) has complexityO(jEjjN jk),

where k is the number of allowed deletions.

Proof: Note that any arborescence has at most jN j�1 Steiner nodes, and therefore at most jN j+ jN j�1�1 =

2jN j�2 nodes are removed from the peer set (only r remains in P at the end). Therefore, the complexity

of the function is at most fG;N (jV j; 2jN j � 2; k) � �jV j(
(2jNj�2)+2

2
)k = O(jEjjN jk). 2

Appendix III { Complexity of k-IA/G

We use an analysis scheme similar to that presented for k-IDeA/G. The complexity of the function IA/G/aux()

can be expressed as a function of the triple (i; d; k), where i is the rank of the current node, d is the number of

nodes removed from the peer set in the subsequent execution (recursion), and k is the number of Steiner mergers

allowed in the subsequent execution. In what follows, let gG;N (i; d; k) be the complexity of calling IA/G/aux().

The time complexity of executing IA/G/aux() at node vi, excluding the recursive calls, is O(jPi+1j). However,

we know that jPi+1j � d+1 since all nodes in the peer set (except r, which is added to the peer set at the end)

will have been deleted when the recursion terminates. As before, we simply say that IDeA/G/aux(), excluding

the recursive calls, takes d+ 1 time. Table 7 gives the (recursive) de�nitions of gG;N (i; d; k) according to the

di�erent possible scenarios, for i � 1, d � 1, and k � 0. The base cases of the algorithm is gG;N (1; d; k) = d+1

and gG;N (i; d; 0) = d+ 1. The following theorem bounds the complexity of gG;N (i; d; k).

Theorem 9 For any i � 1, d � 0, and k � 0, gG;N (i; d; k) � ik(2d+ 1).

Proof: We use induction on i. Note that it su�ces to prove the result for scenarios (a), (b), and (c), since

(d) is subsumed by (c). The theorem holds for i = 1 since gG;N (1; d; k) = d + 1 � ik(2d + 1) for any

d � 0; k � 0, It also holds for k = 0 since gG;N (i; d; 0) = d+ 1 � ik(2d+ 1) for any i � 1; d � 0. Assume

that gG;N (i; d; k) � ik(2d+ 1) for any i; d, and k with 1 � i < m (d � 0; k � 1).
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Description vi 2 N? jXij > 1? k > 0?
(a) TMO true | |
(b) SMO, merging allowed false true true
(c) SMO, merging exhausted false true false
(d) Otherwise false false |

Description gG;N (i; d; k) =
(a) TMO (d+ 1) + gG;N (i � 1; d� jXj; k)
(b) SMO, merging allowed (d+ 1) + gG;N (i � 1; d� jXj; k� 1) + gG;N (i � 1; d; k)
(c) SMO, merging exhausted (d+ 1) + gG;N (i � 1; d; k)
(d) Otherwise (d+ 1) + gG;N (i � 1; d; k)

Table 7: Time complexity of the IDeA/G/aux function for any i � 1, d � 1, and k � 0.

In case (a) we have

gG;N (m; d; k) = (d+ 1) + gG;N (m � 1; d� jXj; k)

� (d+ 1) + (m � 1)k(2(d� jXj) + 1)

� (2d+ 1) + (m � 1)k(2d+ 1) = (1 + (m� 1)k)(2d+ 1) � mk(2d+ 1)

In case (b) we have, if k > 1,

gG;N (m; d; k) = (d+ 1) + gG;N (m � 1; d� jXj; k � 1) + gG;N (m� 1; d; k)

� (d+ 1) + (m � 1)k�1(2(d� jXj) + 1) + (m � 1)k(2d+ 1)

� (d+ 1) + (m � 1)k�1(2d� 4 + 1) + (m � 1)k(2d+ 1)

� (m � 1)k�1(d+ 1 + 2d� 3 + (m � 1)(2d+ 1))

� (m � 1)k�1(m + 1)(2d+ 1)

= (m � 1)k�2(m � 1)(m+ 1)(2d+ 1)

� (m � 1)k�2(m2)(2d+ 1) � mk(2d+ 1)

If k = 1 instead, then

gG;N (m; d; k) = (d+ 1) + gG;N (m � 1; d� jXj; k � 1) + gG;N (m� 1; d; k)

� (d+ 1) + (d� jXj) + 1 + (m � 1)(2d+ 1)

� (d+ 1) + (d� 2) + 1 + (m � 1)(2d+ 1)

= 2md+m� 1 < 2md+m = m(2d+ 1) = mk(2d+ 1)

In case (c) we have

gG;N (m; d; k) = (d+ 1) + gG;N (m � 1; d; k)

� (2d+ 1) + (m � 1)k(2d+ 1) � (1 + (m� 1)k)(2d+ 1) � mk(2d+ 1)

Therefore, the induction step holds for i = m for each of the scenarios (a) to (d). 2
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Theorem 10 The IA/G/aux() function (one iteration of the k-IA/G algorithm) has complexity O(jV jkjN j),

where k is the number of allowed Steiner mergers.

Proof: Since there are at most 2jN j � 1 nodes removed from the peer set (all terminals and Steiner nodes),

the complexity of the algorithm is equal to gG;N (jV j; 2jN j � 1 + 1; k) = jV jk(2(2jN j) + 1) = O(jV jkjN j).

2
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