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ABSTRACT

Many previous works [3] [7] [17] [33] [40] in partition-
ing have used some underlying clustering algorithm to im-
prove performance. As problem sizes reach new levels of
complexity, a single application of a clustering algorithm
is insufficient to produce excellent solutions. Recent work
[1] [10] [21] [22] [27] [28] has illustrated the promise of mul-
tilevel approaches. A multilevel partitioning algorithm re-
cursively clusters the instance until its size is smaller than
a given threshold, then unclusters the instance while ap-
plying a partitioning refinement algorithm. In this paper,
we propose a new multilevel partitioning algorithm that
exploits some of the latest innovations [19] [14] of classi-
cal iterative partitioning approaches [15] [29]. Our method
also uses a new technique to control the number of levels
in our matching-based clustering algorithm. Experimental
results show that our heuristic outperforms numerous ex-
isting bipartitioning heuristics with improvements ranging
from 6.9% to 27.9% for 100 runs and 3.0% to 20.6% for just
10 runs (while also using less CPU time). Further, our algo-
rithm generated solutions better than the best-known min-
cut bipartitionings for 7 of the ACM/SIGDA benchmark
circuits, including golem3 which has over 100,000 cells. We
also present results for quadrisection which compare favor-
ably to the partitionings obtained by the GORDIAN cell
placement tool [30] [41]. Our work in multilevel quadrisec-
tion has been used as the basis for an effective cell place-
ment package[24].

I. INTRODUCTION

A netlist hypergraph H(V,E) has n modules V =
{v1,ve,...v,}; a net e € E is defined to be a subset of V
with size greater than one. A bipartitioning P = {X,Y'} is
a pair of disjoint clusters (i.e., subsets of V) X and ¥ such
that X UY = V. The cut of a bipartitioning P = {X, Y}
is the number of nets which contain modules in both X
and Y, ie., cut(P) = [{e | enNX # B enY # B}]. Let
A(v) denote the area of v € V and let A(S) =) ¢ A(v)
denote the area of a subset S C V. Given a balance
tolerance r, the min-cut bipartitioning problem seeks a
solution P = {X,Y} that minimizes cut(P) subject to
A Vzl—r S A(X),A(Y) S A V21+7' )

The standard bipartitioning approach is iterative im-
provement based on the Kernighan-Lin (KL) [29] algo-
rithm, which was later improved by Fiduccia-Mattheyses
(FM) [15]. The FM algorithm begins with some initial so-
lution {X,Y} and proceeds in a series of passes. During
a pass, modules are successively moved between X and Y
until each module has been moved exactly once. Given a
current solution {X”’ Y}, the previously unmoved module

v € X' (or Y') with highest gain (= cut({X' — v, Y’ +
v}) — cut({X,Y})) is moved from X' to Y’'. After each
pass, the best solution {X' Y’} observed during the pass
becomes the initial solution for a new pass, and the passes
terminate when a pass does not improve upon the most
recent solution. FM has been widely adopted by the phys-
ical design community due to its short runtimes and ease
of implementation.

Iterative approaches dominate both the VLSI CAD lit-
erature and industry practice for several reasons. They are
generally intuitive (the obvious way to improve a given so-
lution is to repeatedly make it better via small changes),
easy to describe and implement, and relatively fast. Hence,
much work has sought to improve upon the basic FM algo-
rithm by introducing module tie-breaking schemes [19] [31],
by modifying the modules locking and unlocking mecha-
nism [11] [23], or by using different formulas for computing
the gain [13] [14]. Other works attempt to use iterative
improvement inside other algorithmic approaches such as
genetic algorithms [9], tabu search [5], large-scale Markov
chains [16], two-phase clustering [7] [17] [33] [40] or multi-
level clustering [3] [10] [22] [21] [27].

This paper proposes a new multilevel circuit partitioning
algorithm. Our work is motivated by the multilevel par-
titioners of Hendrickson and Leland [22] and Karypis and
Kumar [27] which have been very successful in the scien-
tific computing community for partitioning finite-element
graphs. In addition to the implementation differences
between graphs and netlist hypergraphs, we have added
two key ingredients to the functionality of our partitioner,
which significantly improves performance:

o We utilize a LIFO bucket scheme for storing module

gains [19] and the CLIP algorithm of [14] within our
FM implementation.

o We cluster based on the matching algorithms of [7]
[22] [27]. However, instead of constructing % clusters
from a set of n modules, we stop the clustering pre-
maturely so that more than 3 clusters are generated.
This causes the multilevel coarsening to proceed more
slowly, which allows the partitioner to explore more
levels of the partitioning hierarachy.

The rest of our paper is as follows. Section 2 surveys the
latest innovations in iterative partitioning and discusses our
adoption of the CLIP and LIFO improvements within our
algorithm. Section 3 describes our multilevel algorithm,
and Section 4 describes the matching-based clustering used
within the multilevel algorithm. We present extensive ex-
perimental results in Section 5 that show that our algo-
rithm outperforms numerous other circuit bipartitioning
algorithms. Section 6 concludes with directions for future
work.



II. INNOVATIONS IN ITERATIVE PARTITIONING

We now extensively survey selected works in iterative
partitioning which have provided new innovation (see the
survey of Alpert and Kahng [2] for a broader view of pre-
vious work in partitioning). In our discussion of the algo-
rithms below, we include some comparisons of these meth-
ods (using our implementations) for 23 of the standard
benchmarks from the CAD Benchmarking Laboratory (ftp
to ftp.cbl.ncsu.edu). Table T shows the size characteristics
for these test cases, and we assume unit cell area for all
test cases. Our experiments were all run on a Sun Sparc 5
(85 Mhz), and all runtimes reported are for this machine
(in seconds).

Test Case | # Modules | # Nets | # Pins
balu 801 735 2697
bml 882 903 2910

primary 1 833 902 2908
test04 1515 1658 5975
test03 1607 1618 5807
test02 1663 1720 6134
test06 1752 1541 6638
struct 1952 1920 5471
test05 2595 2750 10076
19ks 2844 3282 10547

primary?2 3014 3029 11219
$9234 5866 5844 14065

biomed 6514 5742 21040
s13207 8772 8651 20606
s15850 10470 10383 24712

industry2 12637 13419 48404

industry3 15406 21923 65792

§35932 18148 17828 48145

s38584 20995 20717 55203

avgsmall 21918 22124 76231

s38417 23849 23843 57613

avqlarge 25178 25384 82751

golem3 103048 144949 | 338419
TABLE I

BENCHMARK CIRCUIT CHARACTERISTICS.

A. Tie-Breaking Strategies

One potential problem with the FM algorithm is that
many modules in the top bucket may potentially have the
same gain, hence various tie-breaking strategies have been
proposed to choose among alternate moves that have the
same gain. Krishnamurthy [31] proposed using lookahead
gain vectors, and Sanchis [39] extended this approach to
multi-way partitioning. Even when gain vectors are used,
ties may still occur in the 1*'- through r‘"-level gains.
Thus, it 1s the implementation of the gain bucket data
structure that determines which module is selected. The
original FM algorithm uses a linked list for each bucket,
we may infer that modules are probably removed and in-

serted at the head of the list, 1.e., that the bucket orga-
nization corresponds to a Last-In-First-Out (LIFO) stack.
The authors of [15] do not specifically mention a LIFO or-
ganization; one can speculate that LIFO was an “obvious”
choice. However, a First-In-First-Out (FIFO) organization
which supports the same update efficiency could have been
implemented just as easily. One might even use a random
organization, possibly at the cost of increased runtimes or
a more complex bucket structure. The authors of [19] ob-
serve that Sanchis [39], and most likely Krishnamurthy [31],
used random bucket selection schemes.

In experiments with both the FM and Krishnamurthy
algorithms, the authors of [19] found that the LIFO bucket
organization is distinctly superior to FIFO and random
bucket organizations. [19] ascribes the success of LIFO
to its enforcement of “locality” in the choice of modules to
move, 1.e., modules that are naturally clustered together
will tend to move sequentially. Hagen et al. [19] use this
idea of locality to propose an alternative formula for higher-
level gains which also improves performance. That LIFO
outperforms FIFO was also observed by Dutt and Deng
[14], who like [19] noted that lookahead tie-breaking does
not improve the performance of FM when LIFO buckets are
used (in other words, using LIFO instead of FIFO negates
the advantage of lookahead tie-breaking).

Table Il presents our own comparisons of LIFO with
random (RND) and FIFO bucket schemes, allowing 10%
deviation from exact bisection. Qur implementations ac-
tually significantly outperform those of [19], perhaps be-
cause their implementations were adapted from Sanchis’
original partitioning code (and also because they perform
exact bisection). For each of the test cases in the table,
we ran FM 100 times for all three bucket schemes; we re-
port the minimum cut, average cut, and standard deviation
observed. Like [19] [14], the Table shows that LIFO signifi-
cantly outperforms FIFO. However, we do not observe any
improvement of LIFO over random selection (it appears
that random selection may even be the best scheme of the
three). In our work below, we use a LIFO scheme since it
is much faster than a random scheme within the context
of our implementation. Clearly, the discrepancy between
these results and those of [19] are a source of concern and
need to be further explored.

Recently, Dutt and Deng [13] proposed a different kind
of tie-breaking approach, based on probabilistic techniques.
Instead of using a gain value that reflects only the immedi-
ate change in cut from moving a single vertex, their PROP
algorithm uses a more global gain computation. Each ver-
tex has an associated probability for the event that the
vertex will actually be moved to the other cluster. PROP
begins by assigning each vertex an initial probability of
0.95, and then gains are recomputed based on a function
of the current solution and the vertex probabilities. As
vertices are moved, probabilities and gains are updated
for neighboring vertices. Experiments in [13] show that
this gain computation significantly outperforms classic FM.
However, since its gain values are non-discrete, PROP can-
not exploit the FM bucket structure; runtimes thus increase



Test MIN AVG STD
Case LIFO | FIFO | RND [ LIFO | FIFO [ RND [ LIFO | FIFO | RND
balu 27 75 27 39 107 39 10 15 10
bml 47 64 51 76 107 76 14 17 13
primary 1 49 57 47 74 111 76 13 18 13
test04 71 139 66 138 208 135 27 26 25
test03 64 112 69 109 184 118 22 32 26
test02 109 185 122 172 169 243 28 18 23
test06 66 146 60 90 196 90 12 19 14
struct 38 131 42 54 184 42 9 16 6
test05 104 251 93 175 335 175 33 29 37
19ks 121 261 120 175 332 180 27 33 28
primary?2 215 310 177 285 428 278 44 44 38
89234 50 246 49 95 335 90 27 28 26
biomed 83 392 83 134 445 130 50 25 42
s13207 87 278 88 129 340 125 20 32 20
s15850 108 416 98 184 506 177 31 32 35
industry2 319 667 304 623 1192 603 171 262 196
industry3 241 408 259 497 2225 491 205 806 187
835932 113 719 103 230 953 230 61 78 61
s38584 59 1474 54 251 1641 258 106 111 109
avgsmall 319 1415 295 597 1667 624 129 85 122
838417 167 1120 132 383 1194 381 95 39 102
avqlarge 262 1839 345 787 2024 772 163 78 151
TABLE II

MINIMUM CUT, AVERAGE CUT, AND STANDARD DEVIATION
FOR 100 RUNS oF FM usiNGg THE LIFO, ranpDoM (RND),
AND FIFO TIE-BREAKING SCHEMES.

by a factor of four to eight. The heuristic is nevertheless
still fairly efficient, and future work on probabilistic gain
computations is certainly promising.

B. Modifying the Basic FM Structure

Saab [38] observes that in an iterative improvement algo-
rithm, when a vertex is moved it tends to “drag” with it its
adjacent vertices. His algorithm first performs a sequence
of consecutive moves from X to Y and then clusters the first
k vertices moved, reasoning that vertices that are dragged
across the cut line together should belong to the same clus-
ter. Like the LIFO bucket scheme, this strategy recognizes
that adjacent vertices should be moved sequentially. Saab
uses clusters identified in this manner to coarsen the graph,
then runs a two-phase FM variant (see the two-phase FM
discussion below).

The CLIP algorithm of Dutt and Deng [14] builds upon
this idea further by tie-breaking based on the adjacency to
the most recently moved modules. For example, suppose
that moving module v; increases the gain of v; by one.
Instead of increasing the gain by just one, it could be in-
creased by two, five, ten, etc., which would greatly increase
the chance that v; is moved next. Instead of increasing the
gain by some constant factor, the authors of [14] actually
propose to increase the gain by an infinite factor. Since
the magnitude of the bucket indices in FM are bounded

by a constant, a different implementation is required: (i)
the FM buckets are rearranged immediately after the ini-
tial gains are computed to start a pass, and (ii) all of the
buckets in each bucket structure are concatenated into a
single linked list starting with the bucket with the largest
index. This entire list is then inserted into the bucket with
index zero and all other buckets are made empty. This sin-
gle preprocessing step has the effect of multiplying the gain
change of the most recently moved modules by an infinite
factor. The only other modification required is that the
range of bucket indices must double.

Experiments in [14] show that CLIP averages 18% im-
provement over FM (both using a LIFO bucket scheme).
We have implemented the CLIP algorithm and made the
same comparisons of CLIP versus FM for bipartitioning
with balance tolerance » = 0.1. Table III reports the mini-
mum cut, average cut, standard deviation of cut, and total
CPU time (Sun Sparc 5) for 100 runs of CLIP and FM on
the suite of test cases. We also report significant improve-
ment for CLIP, especially for some of the larger test cases.
Interestingly, the runtimes for CLIP are not much higher
than those of FM, except one drastic increase for the very
large circuit golem3. The runtimes actually decrease for
some of the larger test cases for which CLIP requires fewer
passes to converge.

Many other works have proposed modifications to the



Test MIN AVG STD CPU
Case FM | CLIP || FM | CLIP || FM [ CLIP FM | CLIP
balu 27 27 39 35 10 10 26 26
bml 47 47 76 63 14 9 27 29
primary 1 49 47 74 62 13 8 27 30
test04 71 55 38 80 27 12 45 63
test03 64 57 109 74 22 14 61 67
test02 109 88 172 112 28 15 49 73
test06 66 60 90 72 12 6 61 65
struct 38 34 54 46 9 7 55 55
test05 104 72 175 72 33 10 92 116
19ks 121 110 175 151 27 18 134 144
primary2 || 215 143 285 215 44 31 142 168
89234 50 45 95 74 27 23 273 237
biomed 83 84 134 109 50 26 326 267
s13207 87 78 129 125 20 20 423 370
s15850 108 79 184 143 31 29 435 505
industry2 || 319 203 623 342 171 89 838 991
industry3 || 241 242 497 406 205 | 142 974 1199
835932 113 45 230 118 61 30 1075 935
s38584 59 48 251 101 106 57 1523 1363
avgsmall 319 204 597 340 129 83 1447 1538
838417 167 72 383 140 95 33 1595 1423
avqlarge 262 224 787 352 163 79 1662 1896
golem3 2847 | 2276 || 3500 | 3403 || 296 | 510 38028 | 146301
TABLE III

MINIMUM CUT, AVERAGE CUT, STANDARD DEVIATION, AND
CPU TIMES FOR 100 RUNS OF THE FM anD CLIP
ALGORITHMS.

basic FM structure. Observing that each module can be
locked only once during a pass, Hoffman [23] proposed
an unlocking mechanism that allows modules to move if
they have been locked in the “wrong” cluster. Dasdan and
Aykanat [11] have proposed a multi-way variant of FM that
allows a small constant number (e.g., three or four) of mod-
ule moves per pass. In a similar spirit, Dutt and Deng
[14] also propose a promising method called CDIP which
allows the iterative improvement algorithm to reverse a se-
quence of bad moves and then try some different sequence.
Backing up in this manner prevents continuing an entire
pass in which positive gain is unlikely to be realized. Yeh
et al. [44] proposed an extension of Sanchis’ multi-way
partitioning algorithm that alternates “primal” passes of
module moves with “dual” passes of net moves; however,
runtimes for dual passes are a factor of 9-10 higher than for
a primal pass. In their study on circuit partitioning algo-
rithms, the authors of [21] conclude that dual passes “are
not worthwhile”. Park and Park [34] propose to integrate
size constraints into the cut objective and Shin and Kim
[40] propose to gradually tighten size constraints between
FM passes.

These are just some of the many proposed modifications
to the basic FM structure. We chose to adopt only CLIP
and LIFO within our algorithm because neither of these

modifications increase runtime significantly, while both en-
hance solution quality. Whether the runtime sacrifices for
dual passes, CDIP, or lookahead are worthwhile remains an
open direction for future work.

C. Using an Iterative Improvement Engine

As problem sizes grow larger, the performance of it-
erative improvement approaches such as FM tend to de-
grade [20]. Hence, many heuristics have utilized iterative
improvement within a different paradigm. For example,
the genetic partitioning algorithm of Bui and Moon [9]
uses FM as a post-processing step to each crossover op-
eration. (A similar approach was proposed by [25].) FM
post-processing has also been utilized within tabu search
based approaches [4] [5]. Fukunaga et al. [16] proposed a
Large-Step Markov Chain (LSMC) algorithm which gener-
ates new solutions by making big “jumps” from low-cost
local minima. These solutions are then used as starting
solutions in FM to generate new local minima (also see
Isomoto et al. [26]). Liu et al. [32] proposed a Gradient
Fiduccia-Mattheyses algorithm (GFM) that alternates FM
refinements with gradient descents. They also propose a
variant (GFM;) which uses the two-phase FM technique
described below.

Another technique typically used to handle increasing



problem sizes is clustering or equivalently, coarsening. The
modules of the circuit are grouped into many small clusters,
and these clusters form the new nodes of a smaller coarser
netlist. Tterative improvement is then run on (some of) the
clustered netlists. Since our multilevel approach is based
on this concept, we now give some formal definitions.

Definition 1: A clustering® P* = {C1,Cy,...,Cx} of H;
induces the coarser netlist H;p1(Vig1, Eiy1) with Vigp =
{C4y,Cs,...,Cy}. Foreverye € E;, the net e* is a member
of Eip1 where e* = {Ch, | eNCh # 0}, unless |e*| =1, i.e.,
e* spans the set of clusters containing modules of e.

Definition 2: Suppose that H;y1 was induced from H;
by the clustering P* = {C1,Cs,...,Cr}. The projec-
tion of the bipartitioning solution Piy1 = {X;11, Yig1}
of H;y1 onto H; is the solution P; {X;,Y;} where
X; ={ve V|30, € PPov € Cp,Cp € Xip1} and
Y; ={veV; | 3AC, € P v € Cy,Cy € Yiy1}. The process
of projecting P11 to F; is called uncoarsening.

Clustering has been commonly applied within a “two-
phase” methodology. First a clustering P¥ of Hy is gen-
erated, then this clustering is used to induce the coarser
netlist Hy from Hy. FM is then run once on H; to yield
the bipartitioning P, and this solution P is projected to a
new bipartitioning Py of Hy. Finally, FM is run a second
time on Hy using Py as its initial solution. This second FM
run can be classified as a refinement step, which refers to
when an initially good solution is improved via local moves
and swaps. The primary differences among two-phase algo-
rithms is the clustering method used to generate P*¥. Some
common clustering approaches which have been applied to
two-phase FM include spectral [3], random walks [17], ran-
dom matching [7], and bottom-up connectivity-based [33]
[40] (see [2] for a survey of circuit clustering techniques).

The “two-phase” approach can be extended to a multi-
level approach by allowing as many phases as are desired.
Figure 1 illustrates the multilevel partitioning paradigm
with five phases or levels (as in [27]). In a multilevel al-
gorithm, a clustering of Hy is used to induce the coarser
netlist Hy, then a clustering of H; induces Ho, etc. until
the most coarsened netlist H,, is constructed (m = 4 in
the figure). A bipartitioning solution Py, = { X, Yy} is
found for H,, (e.g., via FM) and this solution is then pro-
jected to Ppo1 = {Xm—1,Ym-1}. Pmn—1 is then refined,
e.g., by FM post-processing (in the figure, the projected
and refined solutions are respectively denoted by dotted
and solid lines). The uncoarsening process continues until
a refined partitioning of Hy is obtained.

Multilevel partitioning offers several advantages over
pure iterative partitioning two-phase FM:

o In two-phase FM, coarsening occurs in a single step
which may mean that H; is too coarse a representa-
tion of Hy. Multilevel partitioning allows coarsening
to proceed more slowly which gives the iterative engine
more opportunities for refinement.

VA k-way clustering P* of the netlist H(V,E) is a set of disjoint
subsets C71...,Cy% of V such that C; UCy U ... UC, = 0. Since a
clustering and a partitioning are actually equivalent, we use the super-
script k to distinguish between a clustering P¥ and a bipartitioning

P.

Mul tilevel Bipartitioning

HO

refined
\ sol ution
@ |-l1
\ )pr oj ected
sol ution
H,
Coar seni ng Uncoar seni ng
\@ %@
s/

Initial Partitioning

Fig. 1. The multilevel bipartitioning paradigm.

o If a fast clustering and refinement strategy is used, the
approach can be extremely efficient. One can afford to
perform a careful partitioning on H,, since this netlist
will have very few modules.

o Refinement progresses with progressively larger
netlists which implies that number of modules moved
during an FM “move” become progressively smaller.
This permits the refinement algorithm to avoid bad
local minima via big steps at high levels, but at the
same time find a good final solution via refinement at
the low levels.

Multilevel partitioning approaches have been especially
prominent in the scientific computing literature. Barnard
and Simon [6] have used multilevel techniques not directly
for partitioning, but rather to compute the Fiedler vector
for spectral bisection. Inspired by this work, Hendrickson
and Leland [22] developed a very efficient multilevel parti-
tioning algorithm which is included in the Chaco partition-
ing package (email to bahendr@sandia.gov). The coarsen-
ing step finds a random maximal matching as in [7] [§]
and merges pairs of modules to reduce the instance size
by a factor of 2. The refinement step uses multi-way FM
with a LIFO bucket scheme, but with several modifications
to improve runtimes: (i) the algorithm can terminate be-
fore a pass is completed if further improvement appears
unlikely; (ii) gains are saved after a pass is completed so
that only moved modules and their neighbors need to have
their gains recomputed before the next pass; and (iii) an
efficient boundary refinement scheme is used wherein only
vertices incident to cut edges are inserted into the data
structure, with gains for other vertices computed only on
an “as needed” basis. The authors of [35] also proposed a
multilevel algorithm but without refinement, 1.e., the coars-
est graph is uncoarsened in one step to form the final solu-
tion.

Karypis [27] [28] recently developed
the Metis multilevel graph partitioning package (URL:
http://www-users.cs.umn.edu/ karypis). Like [22], they

and Kumar



use boundary schemes and early pass termination. They
also allow the user to set options for the clustering scheme,
the initial partitioning algorithm, and the refinement
scheme. One of their coarsening schemes uses a greedy
weighted matching algorithm, upon which our coarsening
scheme is based. The work of [1] adapted Metis to partition
netlist hypergraphs while integrating the genetic approach
of [20] to obtain more stable solution quality.

Cong and Smith [10] proposed applying their clique find-
ing clustering algorithm as the coarsening step in a multi-
level circuit bipartitioning algorithm. More recently, Hauck
and Borriello [21] performed a detailed study of multilevel
FPGA partitioning. They studied many variations of the
basic paradigm, including (i) partitioning before and af-
ter technology mapping; (ii) clustering via shortest-paths,
pairwise connectivity, random matching, etc.; (iii) parti-
tioning of the coarsest graph via searches, spectral and it-
erative techniques; and (iv) uncoarsening in one or multiple
steps. Their final algorithm uses simple connectivity-based
clustering and iterative improvement with two or three lev-

els of lookahead.

III. A NEw MULTILEVEL ALGORITHM

Motivated by the high-solution quality and fast runtimes
of the Chaco and Metis multilevel partitioners and some of
the new improvements in FM [14], we have implemented
our own multilevel partitioner for netlist hypergraphs.?
One main difference between our multilevel algorithm and
previous multilevel partitioners [10] [21] [22] [27] is that a
mechanism is provided to control the speed of coarsening,
and hence the total number of levels in the netlist hierarchy.
We can obtain more levels in the hierarchy than previous
approaches by allowing coarsening to proceed more slowly.
The advantage is that more levels allows more opportuni-
ties to refine the current solution at the various levels. The
result is an efficient partitioner that produces the lowest-
cost solutions in the literature.

Figure 2 describes ML, our new multilevel algorithm
(which follows the same structure as [22]) for partitioning
netlist hypergraphs. The algorithm accepts a netlist Hy as
input along with two user parameters 7" and R. T specifies
that coarsening should proceed as long as the number of
modules in the current netlist H; i1s greater than 7', and
R is a parameter used by our Match coarsening algorithm
explained below. The variable m denotes the number of
levels used during coarsening, and the variables P¥ and P;
denote intermediate clustering and bipartitioning solutions
respectively.

The first five steps in Figure 2 form the coarsening phase.
As long as the number of modules in H; is more than T,
Match is used to form a clustering P* of H;. Procedure
Induce takes a netlist H; and a clustering P* and con-
structs the new netlist H;41 induced by P*. Note that
module areas are preserved, e.g., if P* contains a cluster

?Note that the approach of [3] has to transform the netlist hyper-
graph to a weighted graph before calling the Metis algorithm [27].
Our implementation coarsens and partitions the hypergraph directly
as in [21].

ML Multilevel Algorithm
Input: Hy(Vo, Eo) = Netlist hypergraph
T = Coarsening threshold
R = Matching ratio
Variables: m = Number of levels
PF = Interim clusterings
FP;, 1 < i < m = Interim bipartitionings
Py = {Xo, Yy} = Final bipartitioning

Output:
1. i=0. 2. while |V;| > T do

3 P* = Match(H;, R).

4 Hit1(Vig1, Eiy1) = Induce(H;, P¥).

5 Seti=14¢+1.

6. Let m =i. Py, = FM Partition(Hy,, NULL).
7

8

9

1

. for 1 = m-1 downto 0 do
P; = Project(Hiy1, Piy1).
P; = FM Partition(H;, P;).
0. return Fy.

Fig. 2. The ML Multilevel Algorithm.

with two modules with areas 4 and 7, the module corre-
sponding to this cluster in V;y; will have area 11. The
functionality of Induce exactly follows Definition 1. Step 5
constructs a bipartitioning of H,, using the F M Partition
procedure, which takes a netlist and an initial solution as
input and returns a refined bipartitioning. If no initial so-
lution is specified, the parameter NULL is passed which
causes F'M Partition to start with a random initial solu-
tion. Steps 7-9 form the uncoarsening phase. The Project
procedure takes a netlist H; 41 as input and a bipartitioning
P41 of Hiyq1, then constructs the projection of P; of Piyq
onto P; of H; (following Definition 2). The projected so-
lution is then refined via F'M Partition, and uncoarsening
proceeds until a refined partitioning Py of Hy is obtained;
this solution is returned in Step 10. The procedures M atch
and F'M Partition are now discussed in more detail.

A. The Match Coarsening Algorithm

The Chaco [22] and Metis [27] and multilevel algorithms
respectively use linear time “random” and “heavy-edge”
matching algorithms to construct a clustering. The parti-
tioning study of [21] explored numerous coarsening schemes
with varying complexity, yet the authors chose a simple
connectivity-based scheme for their multilevel algorithm.
Based on the intuitions afforded by of these works, we
have also chosen to coarsen via a matching algorithm which
loosely follows the heavy-edge matching algorithm used in
Metis. In addition, a matching-based approach allows us
to control the total number of levels in the netlist hierarchy
(as opposed to other approaches, e.g., random-walks [17],
shortest-path clustering [43] and clique-compression [10],
which automatically determine the number of clusters).

The Match algorithm starts by randomly permuting the
module indices and then visits each module in turn. A
permutation of [1..n] is a one-to-one mapping 7 : [1..n] —
[1..n]. For a given module v = vg(;y, Match tries to find
the unmatched module w (i.e., a module that has not yet



been assigned to a cluster) with highest connectivity to v,
where the connectivity between v and w is defined as

1 1
conn(v,w) = m Z T

e€{e|lvee,wee}

The term =

[e]
the term m gives preference to matching modules

emphasizes nets with fewer modules, and

with smaller areas to help prevent cluster sizes from be-
coming unbalanced. If such a w can be found then v and
w are matched together to form a new cluster {v,w}. If
no unmatched w exists (i.e., all of the neighbors of v are
matched), then the singleton cluster {v} is created. When
computing the conn function, nets with more than ten
modules are ignored to reduce runtimes.

The matching algorithms of [22] [27] both seek maxi-
mal matchings which will generally force the ratio of |V}|
to |Vig1] to be 1. For example, if the parameter 7' is set
to 100, then a netlist with 3000 modules will likely gen-
erate five coarser netlists during partitioning. We believe
that reducing the problem instance by a factor of 2 may
result in an insufficient number of levels, i.e., the coarsen-
ing proceeds too quickly. A slower coarsening that results
in more levels can give the refinement algorithm more op-
portunities to find solutions, and in addition will reduce
the differences between successively coarser netlists H; and
H;11. To control the speed of coarsening, Mateh takes a
parameter 0 < R < 1, called the matching ratio, that indi-
cates the fraction of modules that should be matched. For
example, when R = 1 a maximal matching is sought, but
when R = 0.5 the matching continues only until half of the
modules are matched (each remaining unmatched module
is assigned to its own cluster).

Figure 3 shows the Match coarsening procedure. Step 1
initializes the permutation m and the variables nMatch, k
and j. The while loop in Step 2 continues as long as the
ratio of matched modules to the total number of modules
is less than R or until all the modules have been examined.
Step 3 checks if the current module is unassigned vy (;),
and if so Step 4 adds it to the current cluster. Step 6 also
adds the module w to the cluster if a matching module
w can be found for vy(;y in Step 5. Step 7 increments j
to consider the next module in the permutation. When
Step 8 is reached, matching is complete; each remaining
unmatched module is assigned to its own cluster in Steps
8-10. The final clustering obtained is returned in Step 11.

The best module w in Step 5 is found by using an array
Conn indexed over the modules and a set .S which stores
the neighbors of vy ;). First, each net e incident to v;y is
considered, and every module w € e is then visited. If w
is unmatched, then conn(vg(;), w) is computed for the net
e; this value is added to Connf[w], and w is added to S.
After all neighboring modules of v, ;) have been visited,
each module in S is considered in turn and its connectivity
is looked up in the C'onn array. The module w that maxi-
mizes Connfw] is returned, and all the entries in the Conn
array are then reset to zero. This reinitialization can be
done efficiently by resetting entries indexed by modules in

Procedure Match

Input: H;(V;, E;) = Netlist hypergraph
R = Matching ratio
7 = Permutation of V;
Variables: k& = Number of clusters
nMatch = Number of matched modules
j = Current module index
w = Matched module
Output:  P* = Clustering of H;

1. Construct random permutation 7 of [1..n].
Set nMatch =0,k=0,j=1.
while 2002t < R and j < |V;] do
if vy (;y is unmatched then
Set k =k + 1. Add vg(;y to cluster C.
Find unmatched w € V; that maximizes
conn(vg(jy, w).
6. if such a w exists then
add w to cluster C) and
set nMatch = nMatch + 2.
Set j=j5+1.
. while j < |V;| do
if vy (;y is unmatched then
Set k =k + 1. Assign v, ;) to cluster Cy.
10, Setj=j+1.
11. return P* = {C},Cs, ..., Cy.

Fig. 3. The Match Procedure.
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S. Assuming constant degree bounds on the modules and
that nets with more than 10 modules are ignored, Match
has linear time complexity.

B. The FM Partition Refinement Algorithm

Our refinement algorithm F'M Partition takes a netlist
H; and an initial partitioning solution FP; as input, and
returns a refined partitioning of F;. If the initial parti-
tioning passed in is NULL, as in Step b of Figure 2, then
a random starting solution is generated. Our partitioner
uses FM with a LIFO bucket scheme and may also use
CLIP [14] if desired. Since large nets can significantly slow
down an iterative partitioner, F'M Partition ignores nets
with more than 200 modules; of course, these nets are re-
inserted when measuring solution quality.

Cluster size bounds can be set via the parameter
r, 1.e., the areas of X; and Y; are bounded below
by ﬂ;—’l — max (A(v*),r - A(V;) and above by ﬂ;—’l +
max (A(v*),r - A(V;). where v* is the module in V; with
largest area. The solution F;41 may satisfy the balance
constraints for H;yi, but the projected solution P; may
not satisfy the constraints for H; (since A(v*) may de-
crease during uncoarsening). In this case, the solution is
rebalanced by randomly moving modules from the larger
cluster to the smaller one.

C. Other Implementation Details

Our code was written in C+4 and compiled with g++
(v. 2.4) on a Unix platform. We utilize LEDA abstract



data types (anonymous ftp to ftp.cs.uni-sb.de) for sets,
queues, and doubly-linked lists. We have also implemented
a database which can perform numerous netlist and cluster-
ing functions and which handles the memory management
of the primary data structures. The database also contains
implementations for the Project and Induce subroutines.

We have also extended our multilevel code to gquadri-
section, 1.e., 4-way partitioning. We use the quadrisec-
tion algorithm of Sanchis [39] but without lookahead. We
have implemented the sum of cluster degrees, net cut, and
generic gain computations [24]; our quadrisection results
are reported for the sum of degrees gain computation. To
utilize our quadrisection algorithm within a placement tool,
the user can pre-assign some modules (e.g., I/O pads) to
clusters. In addition, the user has flexibility in defining ter-
minal propagation models to partition sub-regions of the
layout.

IV. EXPERIMENTAL RESULTS

We ran our experiments on the 23 circuit benchmarks
listed in Table I and all CPU times are reported for a Sun
Sparc 5 (85 Mhz) unless indicated otherwise. We report
bipartitioning results for unit module areas, allowing clus-
ter sizes to vary 10% from exact bisection (so r = 0.1).
The FM- and CLIP-based implementations for our ML al-
gorithm are denoted by MLp and ML¢ respectively. For
all experiments, the coarsening threshold was set to 7" = 35
modules. We performed the following studies:

¢ We compare ML to CLIP, which is a superior iterative
improvement engine to FM (as seen in Table IIT).

o We study the effects of modifying the matching ratio
parameter R, and find that slower coarsening yields
more stable solution quality.

o We show that ML yields solutions with smaller cut
sizes than any existing 2-way partitioner.

o Finally, we show that ML yields excellent results for
quadrisection, illustrating its ability to serve as the
core of a top-down placement tool.

A. Comparisons with CLIP Bipartitioning

Our first set of experiments compares both the FM and
CLIP variants of ML with the CLIP iterative algorithm
[14]. We set the matching parameter R to 1, which forces
ML to find a complete matching in the coarsening phase.
Table IV reports the minimum cut, average cut, and total
CPU time obtained from 100 runs of each algorithm on
each test case. The results are similar for the smaller test
cases in terms of the min-cuts, but both implementations
of ML are significantly better for circuits with more than
6000 modules. In terms of average cut sizes obtained, the
results are clearer: ML¢ easily obtains the lowest averages,
followed by MLp and CLIP. Indeed, for seven of the test
cases, the average cut for ML 18 better than the minimum
cut obtained by CLIP. A low average cut is attractive for
users who may wish to run an algorithm only a few times.
The runtimes are higher for both versions of ML than for
CLIP, with ML¢ using slightly more time than MLg. Note

that as instance sizes increase, the ratios of ML runtimes
to CLIP runtimes decrease.

B. The Matching Ratio Parameter R

Our next set of experiments varied the matching ratio
parameter R: we ran ML 100 times for each test case with
R values 1.0, 0.5 and 0.33. Recall that the number of lev-
els of coarsening increases as R decreases. Tables V and
VI respectively show how the solution quality varies as a
function of R for MLg and ML¢.

We observe that in both tables, the minimum cuts do
not vary much as R changes, except with the larger bench-
marks. In both tables, the minimum cuts are signifi-
cantly smaller for the largest four benchmarks (particu-
larly golem3) for R = 0.5 and R = 0.33. Slower coarsening
also reduces the average cut value, albeit with a noticeable
runtime penalty. The cuts for R = 0.5 and R = 0.33 ap-
pear virtually indistinguishable, but the slower coarsening
for R = 0.33 may start paying off for very large test cases
(e.g., the averages for golem3 are 1421 for MLy and 1413
for ML¢ as compared to 1462 and 1465 for R = 0.5). This
small gain does not seem to be worth the extra runtime,
however.

Observe that for small values of R, the differences be-
tween MLy and ML¢ are not nearly as pronounced as for
R = 1. This may be because that extra levels allow an in-
ferior iterative improvement engine extra opportunities to
find a better solution. Although ML does not yield lower
minimum cuts than MLg, it more consistently produces
solutions with lower cuts.

In general, as R decreases towards zero, the quality of the
partitioning solution should improve. This phenomenon
may not necessarily hold due to randomness introduced by
matching-based clustering. Of course, as R decreases, both
memory and runtimes increase as well. Figure 4 illustrates
the tradeoff between R and solution quality. Results are
presented for the average cut obtained by 40 runs of ML«
on avgsmall and avqlarge.

C. Comparisons with Other Bipartitioning Algorithms

There are many works which present bipartitioning re-
sults for unit module areas and size constraints correspond-
ing to » = 0.1. Table VII compares the cuts obtained by
MLqs with R = 0.5 for 100 and 10 runs to nine of the
best and most recent algorithms in the literature. Many of
these nine algorithms outperform or subsume other older
algorithms, so we simply give pointers to these older works.

o GMet [1] combines an adaptation of the Metis mul-
tilevel partitioning algorithm of [27] to netlist hyper-
graphs with the genetic method of [20]. This algorithm
1s very fast since it exploits the efficiency of Metis, yet
its cut sizes are somewhat inferior since it was a graph
partitioning rather than a netlist hypergraph parti-
tioning engine.

o HB is the multilevel partitioning algorithm of Hauck
and Borriello [21]. They actually set the module area
to be equal to its degree (for FPGA applications) yet



Test MIN AVG CPU
Case CLIP | MLr | ML¢ || CLIP | MLr | ML¢ CLIP | MLr | ML¢
balu 27 27 27 35 35 33 26 100 110
bml 47 47 47 63 57 55 29 93 107
primary 1 47 47 47 62 56 55 30 93 106
test04 55 48 48 80 64 56 63 219 263
test03 57 56 57 74 64 61 67 258 294
test02 88 89 89 112 101 100 73 243 288
test06 60 60 60 72 77 71 65 309 354
struct 34 33 33 46 39 38 55 199 233
test05 72 75 71 72 91 83 116 386 459
19ks 110 104 106 151 114 114 144 447 510
primary?2 143 139 139 215 158 156 168 414 522
89234 45 40 41 74 50 48 237 542 582
biomed 84 86 83 109 103 92 267 909 1036
s13207 78 58 60 125 77 76 370 857 950
s15850 79 43 43 143 63 59 505 997 1126
industry2 203 168 174 342 213 197 991 2360 | 3015
industry3 242 243 248 406 275 274 1199 2932 | 3931
835932 45 41 40 118 46 46 935 2108 | 2351
s38584 48 49 48 101 7 58 1363 2574 | 3106
avgsmall 204 139 133 340 194 182 1538 3022 | 3811
838417 72 53 50 140 82 66 1423 2544 | 3032
avqglarge 224 144 140 352 200 183 1896 3338 | 4230
golem3 2276 | 1663 | 1661 || 3403 | 2026 | 2006 | 146301 | 48495 | 89800
TABLE IV

MINIMUM CUT, AVERAGE CUT AND TOTAL CPU TIME

OBTAINED FOR 100 RUNS OF THE CLIP, ML p AND ML~

ALGORITHMS.

their resulting bipartitionings still fall within the re-
quired size constraints even for unit areas. They report
results for 10 runs of HB and show that it outperforms
the flow-based algorithm of Yang and Wong [42] and
spectral bipartitioning [18].

+ The PARABOLI (PB) algorithm of Riess et al. [36]
was widely considered to be the state-of-the-art parti-
tioner in 1994 and has been the subject of numerous
comparisons since [21] [42] [32] [14] [13]. The authors
of [36] report cuts that are 50% better than spectral
bipartitioning.

The GFM results are for 80 runs of the Gradient
Fiduccia-Mattheyses algorithm of [32], and the GFM,
results are for a single run of a “two-phase” variation
of GFM.

Dutt and Deng [14] show how CLIP and CDIP (see
above discussion) can be used within any partitioner.
We quote the best results for 20 runs of their three best
algorithms: CL-LA3; (CLIP with lookahead level 3),
CD-LA3; (CDIP with lookahead level 3) and CL-PR
(CLIP with PROP gain calculation). The f subscript
implies that standard FM was run as a refinement step
after the original algorithm terminated. CL-PR; sub-
sumes the results for PROP reported in [13].

o Finally, we compare to the LSMC algorithm of [16]
which we reimplemented. The results are reported for
100 descents, with the kick move performed on the best
partitioning solution observed so far (temperature = 0
in the LSMC algorithm).

The last two rows of the table respectively give the per-
cent improvements of ML with 100 runs, and ML with
10 runs, over the other algorithms. We observe that ML¢
with 100 runs averages between 7.8% and 27.9% improve-
ment in cut sizes, yielding the best cuts ever reported for
seven of the test cases. Even when limiting ML¢ to just 10
runs, we still obtain between 3.0% and 20.6% improvement
over the other algorithms. For 100 runs of MLg, we ob-
tained the best known results for the benchmarks test05,
89234, 813207, s15850, industry2, avgsmall, and golem3.
From Table VI we see that the average cut obtained for
golem3 was 1465, which is still significantly better than
the best known result.

Table VIII compares the CPU times for the algorithms.
We report the total time required for 10 runs of ML¢ on
a Sun Sparc 5. The runtimes for GMetis, CL-LA3;, CD-
LA3;, CL-PR; and LSMC are also given for this machine.
PB and GFM(GFM;) runtimes are reported for a Dec 3000
Model 500 AXP and a Sun Sparc 10, respectively. Al-

though runtimes across different platforms are not directly
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Test MIN AVG CPU
Case 1.0 1 05 1033 1.0 ] 05 1033 1.0 ] 05 ] 033
balu 27 27 27 35 32 30 100 166 234
bml 47 47 47 57 55 55 93 166 236
primary 1 47 47 47 56 54 54 93 171 231
test04 48 48 48 64 61 57 219 394 543
test03 56 58 58 64 61 61 258 543 625
test02 89 88 88 101 98 97 243 435 601
test06 60 60 60 77 68 66 309 534 732
struct 33 33 34 39 37 38 199 346 493
test05 75 72 71 91 80 79 386 696 946
19ks 104 | 105 | 105 114 | 118 | 116 447 783 1077
primary2 || 139 | 141 139 158 | 161 | 157 414 771 1089
89234 40 40 40 50 47 47 542 939 1386
biomed 86 83 83 103 96 94 909 1604 | 2199
s13207 58 55 58 7 72 71 857 1472 | 2150
s15850 43 43 42 63 58 59 997 1793 | 2596
industry2 || 168 | 171 169 213 | 207 | 207 2360 | 4232 | 588H
industry3 || 243 | 243 | 241 275 | 277 | 275 2932 | 5393 | 7859
835932 41 42 42 46 48 49 2108 | 3978 | 5586
s38584 49 48 47 77 56 57 2574 | 4530 | 6535
avgsmall 139 | 133 | 132 194 | 159 | 156 3022 | 5184 | 7476
838417 53 50 50 82 72 68 2544 | 4649 | 6536
avqglarge 144 | 130 | 131 200 | 163 | 157 3338 | B799 | 8407
golem3 1663 | 1348 | 1347 || 2026 | 1462 | 1421 || 48495 | 68154 | 99124
TABLE V

MINIMUM CUT, AVERAGE CUT AND TOTAL CPU TIME

OBTAINED FOR 100 RUNS OF MLy FOR DIFFERENT VALUES

OF THE MATCHING RATIO R.

comparable, we observe that 10 runs of ML« use less run-
time than any of the other algorithms except GMetis. It
seems that if a reasonably high quality result i1s desired in
only a few seconds, then GMetis is appropriate; however,
if a bit more CPU time can be afforded, ML¢ is the better
choice.

We conclude that for bipartitioning, our multilevel al-
gorithm with a CLIP engine provides excellent cut results
compared to previous algorithms while requiring a reason-
able amount of CPU resources.

D. Quadrisection Comparisons

Our final set of experiments compares ML for 4-way par-
titioning against the GORDIAN [30] standard cell place-
ment program. In GORDIAN, the I/O pads are initially
preplaced, then a system of equations is solved to find
the locations of the unfixed modules such that either a
squared wirelength [30] or a linear wirelength objective [41]
(GORDIAN-L) is optimized. The solution to this system
induces an ordering of the modules in the horizontal direc-
tion which is then split into a bipartitioning.® Then, an-

3GORDIAN finds a bipartitioning by finding the single split that
evenly divides the area into a left and right half. GORDIAN-L uses
a more complicated scheme whereby the ordering is split into five
clusters and the system of equations is resolved with new constraints.

other optimization induces a vertical ordering of the mod-
ules which 1is split to yield a 4-way partitioning. The algo-
rithm continues to perform optimization in order to spread
out the cells (i.e., prevent overlapping), but this initial 4-
way partitioning is preserved in the final solution.

We obtained GORDIAN-L placement solutions [37] for
some of the test cases in Table IX. For each placement so-
lution, we split the placement into four equal-sized clusters
and measured the total cut obtained. The best cut ob-
tained by either GORDIAN or GORDIAN-L is reported in
the table. We also compare to the best cut obtained for 100
runs for 4-way implementations of FM, CLIP and LSMC
with both FM and CLIP partitioning engines. The first
column contains min-cut results obtained by MLp (with
R = 1.0 and T = 100), with average cut sizes in paren-
theses. Here, ML outperforms ML¢ in terms of cuts and
runtimes; this may be due to CLIP being relatively inef-
fective at the top levels of the hierarchy. Table IX illus-
trates that both the minimum and average cuts obtained
by MLg are better than those obtained by GORDIAN.
Our multilevel-based quadrisection algorithm has recently
been integrated into a top-down hierarchical placement tool

The ordering induced by this second solution is then split into a
bipartitioning using the same technique as GORDIAN.
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Test MIN AVG CPU

Case 1.0 [ 05 1033 1.0 [ 05 1033 1.0 ] 05 | 033
balu 27 27 27 33 29 29 110 171 234
bml 47 47 47 55 55 54 107 177 248
primary 1 47 47 47 55 54 54 106 179 243
test04 48 48 48 66 56 55 263 414 561
test03 57 56 57 61 60 60 294 469 622
test02 89 89 88 100 98 97 288 452 619
test06 60 60 60 71 65 65 354 546 720
struct 33 33 33 38 37 37 333 351 506
test05 71 71 71 83 77 76 459 735 984

19ks 106 | 106 | 105 114 | 114 | 116 510 839 1137
primary2 || 139 | 139 | 139 156 | 156 | 156 522 900 1234
89234 41 40 40 48 45 45 582 968 1406
biomed 83 83 83 92 91 91 1036 1723 2300
s13207 60 55 58 76 71 68 950 1552 2183
s15850 43 44 43 59 56 57 1126 1894 2635
industry2 || 174 | 164 | 167 197 | 196 | 292 3016 5023 6893
industry3 || 248 | 243 | 244 274 | 276 | 276 3932 6670 9353
835932 40 41 42 46 45 46 2351 4266 5921
s38584 48 47 47 58 52 52 3106 4898 6814
avgsmall 133 | 128 | 128 182 | 147 | 148 3811 6031 8228
838417 50 49 49 66 56 56 3032 4960 6782
avqglarge 140 | 128 | 129 183 | 148 | 148 4230 6657 9276
golem3 1661 | 1346 | 1340 || 2006 | 1465 | 1413 || 89800 | 104828 | 141704

TABLE VI

MINIMUM CUT, AVERAGE CUT AND TOTAL CPU TIME

OBTAINED FOR 100 RUNS OF ML FOR DIFFERENT VALUES

OF THE MATCHING RATIO R.

[24]. The authors of [24] report an average of 14% and 11%
wirelength savings versus GORDIAN-L and GORDIAN-L
+ DOMINO, respectively.

V. CONCLUSIONS

We have presented a new multilevel circuit partitioner
based on the paradigm of [22]. The success of our algo-
rithm relies on exploiting new innovations in the iterative
improvement engine and our ability to control the number
of coarsening levels during clustering. We have obtained
excellent bipartitioning results as compared to numerous
other works in the literature while using less CPU time.
There are several improvements that we plan to make to
address the runtimes, performance and functionality of our
multilevel tool:

¢ We plan to implement a “boundary” version of FM

in which only modules incident to cut nets are ini-
tially inserted into the data structure [22]. This will
significantly reduce CPU time and may even enhance
solution quality.

¢ Runtimes may be further reduced via faster reinitial-

ization of the FM buckets at the beginning of a pass
[22]. If only a few modules were moved during a pass,
then only these modules and their neighbors need to
be updated for the new pass. Currently, before each

pass the entire bucket structure is reinitialized.

o At the top few levels, (coarser) netlists have fewer (e.g.,
< 500) modules so partitioning solutions can be ob-
tained very quickly. It may be worthwhile to spend
more CPU time partitioning at these levels, e.g., by
calling FM multiple times or using LSMC.

o Dutt and Deng [13] showed that lookahead schemes
[31] do not work very well with FM when using a LIFO
bucket scheme; however, their impact increases dra-
matically when using CLIP. We would like to explore
the use of lookahead in our iterative improvement en-
gine even though the increases in runtimes may be
significant.

o Finally, we have successfully integrated our quadrisec-
tion algorithm into a timing-driven placement package
[24]. Our ongoing work seeks to integrate additional
partitioning objectives that accommodate congestion,
density and routability considerations.
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biomed 172 95 711 1440 371 231 362 572 342
s13207 155 102 2060 1920 397 220 429 380 505
s15850 189 114 1731 2560 530 267 543 576 598
industry2 502 245 1367 4320 819 1129 1453 | 2127 944
industry3 667 299 761 4000 861 1419 1944 | 1920 1192
$35932 427 266 2627 | 10160 | 1088 463 964 | 1085 | 1191
s38584 490 397 6518 9680 3463 748 1339 | 1950 | 1586
avgsmall 603 328 4099 1260 | 2507 | 2082 | 1600
s38417 496 281 2042 | 11280 | 1062 811 1733 | 1690 | 1676
avqlarge 666 417 4135 1430 | 3145 | 2126 1742
golem3 10483 450 10823
TABLE VIII
CPU COMPARISONS OF ML WITH OTHER BIPARTITIONING
ALGORITHMS.
Test # Cut Nets
Case MLr | GORDIAN | FM | CLIP | LSMCy | LSMC¢
primaryl || 126 (153) 157 135 169 118 129
primary?2 346 (378) 502 591 535 495 428
biomed 311 (390) 479 933 697 859 567
s13207 472 (503) 590 653 819 337 359
s15850 547 (594) 678 774 958 487 392
industry2 || 398 (1369) 1179 2200 | 1505 1695 1246
industry3 || 830 (1049) 1965 3005 | 2223 1605 1572
avgsmall 408 (505) 646 2877 | 1728 2098 1324
avqlarge 481 (519) 661 3131 | 1890 2511 1435
TABLE IX

4-WAY PARTITIONING COMPARISONS.
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