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1. INTRODUCTION

In layout synthesis of high-performance systems, it has become increas-
ingly important to control signal delay, for example, for clock skew minimi-
zation or the timing-driven routing of large global nets. At the same time, a
routing solution should have low wiring area to reduce the die size and the
capacitive effect on both performance and power dissipation. Thus, the
“zero-skew” clock tree and performance-driven routing literatures have
seen rapid growth over the past several years; see Kahng and Robins [1994]
for a detailed review. Recent works have accomplished exact zero skew
under the Elmore delay model [Chao et al. 1992b; Edahiro 1993a; Tsay
1993]. The Deferred-Merge Embedding (DME) algorithm by Chao et al.
[1992b] and Edahiro [1992] can be either applied to a given clock topology
or combined with a clock topology generation algorithm to achieve zero
skew with a smaller wirelength [Edahiro 1993a]. Recent works have also
given new methods for single-layer (planar) clock routing [Kahng and Tsao
1996; Zhu and Dai 1996]. Over the past two years, a number of authors
have applied wiresizing optimizations and/or buffer optimizations to mini-
mize phase (insertion) delay [Zhu et al. 1993; Edahiro 1993b; Pullela et al.
1996], skew sensitivity to process variation [Chung and Cheng 1994; Lin
and Wong 1994; Xi and Dai 1995; Pullela et al. 1996], and/or power
dissipation [Vittal and Marek-Sadowska 1995; Pullela et al. 1996]. (See
also the many works in the clock buffer placement and sizing literature, as
surveyed in [Friedman 1995].) A comprehensive survey of these optimiza-
tion techniques can be found in Cong et al. [1996a].

“Exact zero skew” is typically obtained at the expense of increased wiring
area and higher power dissipation. In practice, circuits still operate cor-
rectly within some non-zero skew bound, and so the actual design require-
ment is for a bounded-skew routing tree (BST) [Kahng and Robins 1994]. In
addition, works such as those in Zhu et al. [1993] and Pullela et al. [1996]
use initial non-zero skew routing solutions which are then wiresized to
satisfy a given skew bound; construction of an initial minimum-cost BST is
a key underlying optimization. Thus, in this paper we study the BST
problem under both the pathlength (linear) and Elmore delay models
[Elmore 1948]. We propose the new BST/DME algorithm which, similar to
the DME construction of a zero-skew tree, computes a routing tree for a
prescribed topology using two bottom-up and top-down phases. The en-
abling concept is a merging region, which generalizes the merging segment
concept [Edahiro 1991; Boese and Kahng 1992; Chao et al. 1992a] for
zero-skew clock trees.

Figure 1 highlights the difference between the DME algorithm for
zero-skew routing and our proposed BST/DME algorithm for bounded-skew
routing. In contrast to constructing merging segments in the zero-skew
DME algorithm, the bottom-up process of our BST algorithms constructs a
tree of merging regions, each containing possible locations of the corre-
sponding internal node in the given topology. The top-down process then
determines the exact locations of all internal nodes. Similar to the Greedy-

342 • Cong et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.



DME algorithm [Edahiro 1992, 1993a, 1994], we combine merging region
computation with clock topology generation to achieve bounded-skew with
a smaller wirelength. We refer to the new algorithm as the Greedy-BST/
DME algorithm. A key distinction is that our Greedy-BST/DME algorithm
allows merging at non-root nodes, whereas Greedy-DME always merges
two subtrees at their roots.

In this paper we propose two approaches to constructing the merging
regions: (i) the Boundary Merging and Embedding (BME) method and (ii)
the Interior Merging and Embedding (IME) method. The BME method uses
merging points that are restricted to the boundaries of merging regions;
each internal node has a merging region which is constructed from two
segments on the boundaries of its child merging regions. We refer to a
segment used for construction of the parent merging region as a joining
segment. The IME method employs a sampling strategy and dynamic
programming to consider merging points that are interior to, as well as on
boundary segments of, the merging regions. The key difference is that the
IME method uses a set of joining segments (possibly interior to the merging
regions) from each child merging region, instead of only one joining
segment. Merging two regions generates a set of merging regions for a
parent node from the two child sets of joining segments. A key step in the
IME method uses a dynamic programming-based selection technique to
choose a set of “best” merging regions among the generated merging regions
for the parent node.

We show several interesting properties of the merging region under
bounded-skew routing. For the pathlength delay model, we prove that the
merging region is bounded by well-behaved segments which are Manhattan
arcs (645° lines) and rectilinear line segments (horizontal or vertical line
segments). The skew value along a boundary Manhattan arc is constant,
and the skew values along boundary rectilinear line segments are linearly
decreasing, then constant, then linearly increasing. We also prove that the
merging region is a convex polygon with at most 8 boundary segments;
hence, a merging region can be constructed in constant time. Under Elmore
delay, the well-behaved property generalizes such that the merging region

Fig. 1. Comparison of DME zero-skew routing in (b) and BST/DME bounded-skew routing in
(c) for the prescribed topology G in (a). BST/DME lowers the routing cost by allowing non-zero
skew bound. Note that in (b) the merging segments are depicted by dashed lines, and in (c) the
merging regions are depicted by shaded polygons.
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is bounded by segments (with arbitrary slopes) on which the skew values
are piecewise-linear decreasing, then constant, then piecewise-linear in-
creasing. The merging region is a convex polygon with at most 2n 1 4
boundary segments, where n is the number of leaf nodes in the tree
topology; a given merging region can be constructed in O(n) time. One
minor caveat is that the “merging region” that we construct is not a
complete generalization of the DME merging segment: when so-called
detour wiring is needed or when sibling merging regions overlap, our
construction may not return a merging region containing all the minimum-
cost merging points.

In practice, bounding pathlength skew does not provide reliable control of
actual delay skew. Figure 2(a) plots HSPICE delay skew against path-
length delay skew for routing trees generated by our BST/DME algorithm
under pathlength delay on MCNC benchmark r3 [Tsay 1993]. Not only is
the correlation poor, but the pathlength-based BST solutions simply cannot
meet a tight skew bound (of 100ps or less). On the other hand, Figure 2(b)
demonstrates the accuracy and fidelity of Elmore delay skew to actual
skew; see also Boese et al. [1995]. Nevertheless, the BST problem under the
pathlength delay model is theoretically interesting. Moreover, the path-
length delay formulation provides a better platform to present our BST
algorithms due to the simplicity of the well-behaved property and the
regularity of the merging regions under pathlength delay. Thus, we present
the basic approaches of our work (both BME and IME) under the path-
length delay formulation, but only the experimental results obtained by the
Elmore-based BST solutions.

The rest of the paper is organized as follows: In Section 2, we give several
basic definitions and formulate the bounded-skew routing tree problem. We
also review previous DME-based methods for zero-skew routing. In Section
3, we develop our results on the merging region construction and present
the Boundary Merging and Embedding method under the pathlength and
Elmore delay models. In Section 4, we present the Interior Merging and
Embedding method which can also be applied to both pathlength and
Elmore delay models. The BST/DME algorithms presented in Sections 3

Fig. 2. Plots of (a) pathlength skew and (b) Elmore delay skew versus actual (HSPICE
simulation) delay skew for routing solutions obtained by our BST/DME algorithm under
pathlength delay and Elmore delay for benchmark r3.
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and 4 assume a prescribed clock tree topology. In Section 5, we present a
Greedy-BST/DME algorithm which computes merging region and con-
structs the clock tree topology concurrently in the bottom-up phase. The
proposed topology construction algorithm is a generalization of the Greedy-
DME algorithm by Edahiro [1992]. Section 6 summarizes experimental
results and Section 7 concludes with directions for future work. All proofs
of lemmas and theorems are presented in the Appendix. Early partial
results from this work were presented in Cong and Koh [1995], Cong et al.
[1995a], and Huang et al. [1995].

2. PRELIMINARIES

Assume that we are given a set S 5 {s1, s2, . . . , sn} , R2 of clock sink
locations in the Manhattan plane. A clock source location s0 may also be
given. A routing topology G is a rooted binary tree with n leaf nodes
corresponding to the sinks in S. A clock tree TG(S) is an embedding of
routing topology G, that is, each internal node v [ G is mapped to a
location l(v) in the Manhattan plane. (If G and/or S are understood, we
may simply use T(S) or T to denote the clock tree.) In the rooted topology,
each node v is connected to its parent by edge ev, and the cost of edge ev is
its wirelength, denoted by uevu. The cost of a routing tree T, denoted
cost(T), is the sum of its edge costs. If t(u, v) denotes the signal delay
between nodes u and v, then the skew of clock tree T is given by

skew~T! 5 max
si,sj[S

ut~s0, si! 2 t~s0, sj! u.

Minimum-Cost Bounded Skew Routing Tree (BST) Problem: Given a set
S 5 {s1, . . . , sn} , R2 of sink locations and a skew bound B, find a
routing topology G and a minimum-cost clock tree TG(S) that satisfies
skew(TG(S)) # B.

We will consider both this formulation and the BST variant where a fixed
topology G has been specified. We do not include clock source location s0 in
our formulation since our methods can transparently accommodate any
prescribed s0. Note that when the skew is unbounded, the problem becomes
the classic rectilinear Steiner minimum tree problem.

Our work addresses the BST problem under the pathlength delay and the
Elmore delay models. For any nodes u, v [ G with u an ancestor of v, let
Path(u, v) denote the unique path from u to v in G. Under the pathlength
delay model, the delay from u to v is the sum of edgelengths in the unique
u-v path, that is,

t~u, v! 5 O
ew[Path~u,v!

uewu.

The Elmore delay model is defined as follows: Let r and c denote the unit
length wire resistance and capacitance, respectively. Then the wire resis-
tance and capacitance of edge ev are uevu z r and uevu z c, respectively. For
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any node v in G, we use Tv to denote the subtree of T that is rooted at v,
and we use Cap(v) to denote the total capacitance of Tv. Then, under the
Elmore model, the signal delay t(u, v) is given by

t~u, v! 5 O
ew[Path~u,v!

uewu z r z S uewu z c

2
1 Cap~w!D ,

which can be computed in linear time recursively [Tsay 1993].

2.1 The DME Approach

The Deferred-Merge Embedding (DME) algorithm was proposed indepen-
dently in Boese and Kahng [1992], Chao et al. [1992a], and Edahiro [1991].
It achieves exact zero skew given any delay model for which sink delays are
monotone in the length of each edge of the clock tree (e.g., pathlength delay
and Elmore delay). For pathlength delay, DME returns the optimal solu-
tion, that is, a tree with minimum cost and minimum source-sink path-
length for any input sink set S and topology G.

Since the BME and IME methods we propose below are generalizations of
DME, we now review the original DME method, following notations of Chao
et al. [1992b]. We use d(s, t) to denote the Manhattan distance between
points s and t; the distance between two pointsets P and Q is d(P, Q) 5
min{d( p, q) up [ P, q [ Q}.

I. The DME Algorithm. Given a set of sinks S and a topology G, DME
embeds internal nodes of G via (i) a bottom-up phase that constructs a tree
of merging segments which represent loci of possible placements of internal
nodes in a zero-skew tree (ZST) T; and (ii) a top-down embedding phase
that determines exact locations for the internal nodes in T (Fig. 3).

In the bottom-up phase, each node v [ G is associated with a merging
segment, denoted ms(v), which represents a set of possible placements of v
in a minimum-cost ZST. The segment ms(v) will always be a Manhattan
arc, that is, a segment with possibly zero length that has slope 11 or 21.
Let a and b be the children of node v, and let TSa and TSb denote the
subtrees of merging segments rooted at a and b. The construction of ms(v)
depends on ms(a) and ms(b), and hence the bottom-up processing order.
We seek placements of v which allow TSa and TSb to be merged with
minimum added wire ueau 1 uebu while preserving zero skew in Tv. The
construction of mr(v) is detailed in Chao et al. [1992b]. Detour wiring
occurs when ueau 1 uebu . d(ms(a), ms(b)).

Given the tree of merging segments, the top-down phase embeds each
internal node v of G as follows: (i) if v is the root node, then DME selects
any point in ms(v) to be l(v); or (ii) if v is an internal node other than the
root, DME chooses l(v) to be any point on ms(v) that is at distance uevu or
less from the embedding location of v ’s parent. Details of the embedding
rules are also given in Chao et al. [1992b].

Figure 1(b) gives an example of the DME algorithm for a clock source s0
and sinks s1-s4 with a topology shown in Figure 1(a). Merging segments
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ms( x), ms( y), and ms(s0) are constructed in bottom-up order; then each
node is embedded at a point on its merging segment that is closest to its
parent. Figure 1(b) gives the zero-skew clock tree with a total wirelength of
17 units after the top-down embedding.

II. Greedy-DME: DME with Topology Construction. Note that DME
requires an input topology. Several works [Boese and Kahng 1992; Chao et
al. 1992a; Edahiro 1992] have thus studied topology constructions that lead
to low-cost routing solutions when DME is applied; the most successful is
the Greedy-DME method of Edahiro [1992], which determines the topology
of the merging tree in a greedy bottom-up fashion. Let F denote a set of
merging segments which initially consists of all the sink locations, that is,
F 5 {ms(si)}. Greedy-DME iteratively finds the pair of nearest neighbors in
F, that is, ms(a) and ms(b) such that d(ms(a), ms(b)) is minimum. A
merging segment ms(v) is computed for parent node v from a zero-skew
merge of ms(a) and ms(b); F is updated by adding ms(v) and deleting
both ms(a) and ms(b). Note that F contains only merging segments of
subtree roots. After n 2 1 iterations, F contains the merging segment for
the root of the topology.

In Edahiro [1993a], O(n log n) time complexity was achieved by finding
several nearest-neighbor pairs at once; that is, the algorithm first con-
structs a “nearest-neighbor graph” H over F. Node v in H corresponds to
merging segment ms(v) in F, with nodes u and v in H connected by edge
Euv if ms(u) is the nearest neighbor of ms(v) or ms(v) is the nearest
neighbor of ms(u). The weight of edge Euv, denoted uEuvu, is simply the
distance between ms(u) and ms(v). Via zero-skew merges, uF u/f nearest-

Fig. 3. The DME algorithm.
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neighbor pairs (edges) are taken from the graph in non-decreasing order of
edge weight, where f is a constant typically between 2 and 4. The solution
is improved by a post-processing local search that adjusts the resulting
topology (see also “CL1I6” in Edahiro [1993a]). Greedy-DME achieves 20%
reduction in wiring cost compared with the methods of Chao et al. [1992b].

3. THE BOUNDARY MERGING AND EMBEDDING METHOD

We now propose the BST/DME algorithm which, similar to the DME
algorithm for zero-skew routing, computes a bounded-skew routing tree for
a prescribed topology using two bottom-up and top-down phases, as shown
in Figure 4. The key difference is that instead of constructing merging
segments as in the DME algorithm, for each node v [ G with children a
and b we construct a merging region of v, denoted mr(v), which is the set of
all locations where the child merging regions mr(a) and mr(b) can be
merged with minimum wiring cost while still maintaining the skew bound
B. To compute merging regions efficiently, we propose the Boundary
Merging and Embedding (BME) method, which considers only the merging
points lying on the nearest boundary segments of mr(a) and mr(b). We
first present the BME method under pathlength delay, and then extend it
to handle the Elmore delay model.

3.1 Notations and Definitions

In the following, a rectilinear line segment is a horizontal or vertical line
segment. An octilinear polygon is a convex polygon with boundaries defined

Fig. 4. The BST/DME algorithm for the prescribed topology.
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by only Manhattan arcs and rectilinear line segments. Such a polygon,
along with its interior, defines an octilinear region, which has at most 8
boundary line segments. To construct a merging region with minimum
merging cost, we define the following terms.

Shortest Distance Region/Segment. For any two convex polygonal re-
gions P and Q with boundaries (P) and (Q), the shortest distance region
between P and Q, denoted SDR(P, Q), is the set of points that have
minimum sum of Manhattan distances to the boundaries of P and Q, that
is, SDR(P, Q) 5 { p ud( p, (P)) 1 d( p, (Q)) 5 d((P), (Q))}. We
always construct a merging region within the corresponding shortest
distance region. When (P) ù (Q) 5 À, then SDR(P, Q) must be a
polygonal region. However, if (P) ù (Q) Þ À the region SDR(P, Q) may
consist of multiple line segments or points, each of which is also a convex
polygonal region (e.g., SDR(C, D) in Fig. 5). In such a case, we take, for
simplicity, the longest of these segments to be SDR(P, Q).1 The shortest
distance segments between P and Q are defined as SDSQ(P) 5 (P) ù
SDR(P, Q), and SDSP(Q) 5 (Q) ù SDR(P, Q).

Joining Segment. Let node v be an internal node with children a and b,
which have merging regions P 5 mr(a) and Q 5 mr(b), respectively. The
segments of P and Q that are used to construct the merging region mr(v)
are the joining segments, denoted JSQ(P) and JSP(Q). Since the goal of
the BME method is to construct min-cost merging regions from the bound-

1We can treat each of these line segments or points as a (convex polygonal) shortest distance
region, within which a merging region will be constructed. Then there will be multiple
merging regions for nodes in the given topology. We can apply the IME method in Section 4 to
deal with this case.

Fig. 5. Examples of Shortest Distance Segments (shown as thick dashed lines or solid dots)
and Shortest Distance Regions (shown as dotted regions). Note that the boundaries of
polygons C and D overlap at the two points p1 and p2 and at the line segment l. For
simplicity, the BME method sets SDR(C, D) 5 l.
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aries of P and Q, BME uses shortest distance segments as the joining
segments, that is, JSQ(P) 5 SDSQ(P) and JSP(Q) 5 SDSP(Q). We
distinguish the joining segment and shortest distance segment concepts
because any pair of line segments interior to or on the boundaries of the
merging regions P and Q can actually be used to construct merging region
mr(v). The IME method in Section 4 considers joining segments that are
interior to the merging regions.

Merging Region. Given a routing topology G, the merging region of each
internal node v [ G, denoted mr(v), is defined recursively as follows:

—If v is a sink si, then mr(si) 5 sink location {l(si)}.
—If v is an internal node with children a and b, then let La and Lb be the

joining segments of mr(a) and mr(b). The merging region mr(v) is the
set of possible locations of v such that
(i). mr(v) # SDR(La, Lb),
(ii). the difference in (pathlength) delays from v to any two of sinks in Tv
is within the skew bound, and
(iii). the merging cost ueau 1 uebu is minimum, subject to the constraint
that point p [ La can merge with point q [ Lb only if d( p, q) 5 d(La,
Lb).

Ideally, the min-cost merging region of a node v should be defined as the
set of possible locations of v without condition (i) and without the con-
straint in (iii). However, under this ideal definition the merging region is
very difficult to compute since it involves the merging of points interior to
merging regions, whose difficulty will be discussed in Section 4. Our
definition enables an efficient construction of merging regions with a set of
simple rules under both the pathlength delay and Elmore delay models
(Sections 3.2 and 3.4 below). Although a “merging region” constructed by
the BME method does not necessarily contain all feasible merging points
having minimum merging cost ueau 1 uebu, in practice, the merging region
that we construct for each internal node of a “good topology” is precisely the
“ideal” min-cost merging region.

Delay and Skew Functions. Let max_t( p) and min_t( p) denote the
maximum and minimum delay values (max-delay and min-delay, for short)
from point p to all leaf nodes in the subtree rooted at p. The skew of point
p, denoted skew( p), is max_t( p) 2 min_t( p). (If all points of a pointset P
have identical max-delay and min-delay, and hence identical skew, we
similarly use the terms max_t(P), min_t(P), and skew(P).) As p moves
along any line segment, the values of max_t( p) and min_t( p), together
with skew( p), respectively define the delay and skew functions over the
segment. A point p with skew( p) # B is a feasible merging point. For any
region R, the feasible merging region FMR(R) consists of all feasible
merging points in R. Let min_skew(R) denote the minimum skew within a
region R; then the minimum skew region MSR(R) is the set of points p [
R with skew( p) 5 min_skew(R).
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Well-Behaved Pathlength Delay Property. Figure 6 illustrates the path-
length delays of points in shortest-distance region SDR(La, Lb) of Figure
1(c), where joining segments La has max-delay and min-delay of 3 units
and Lb has constant max-delay of 2 units and zero min-delay. To compute
the merging region with minimum merging cost, each point p [ SDR(La,
Lb) is connected to La and Lb with the minimum wirelength ueau 5 d( p,
La) 5 x and uebu 5 d( p, Lb) 5 d(La, Lb) 2 ueau 5 6 2 x, respectively. So,
the delay functions of p are

max_t~ p! 5 max$3 1 ueau, 2 1 uebu% 5 max$ x 1 3, 2x 1 8%, (1)

min_t~ p! 5 min$3 1 ueau, 0 1 uebu% 5 min$ x 1 3, 2x 1 6%, (2)

where x 5 d( p, La), as shown in Figure 6. We observe the following
interesting delay properties for a line segment l # SDR(La, Lb). First, for
any Manhattan arc l # SDR(La, Lb) parallel to La and Lb, all points of l
have the same max-delay, min-delay, and skew. Second, from Equations (1)
and (2), points p on any vertical or horizontal segment l # SDR(La, Lb)
have skew( p) 5 max{2x 2 3, 22x 1 5, 2}, which is a piecewise-linear
function of x, as shown in Figure 6(b). In light of these observations, we call
these Manhattan arcs and rectilinear segments well-behaved.

Formally, a line segment l 5 ab is well-behaved if the max-delay and
min-delay functions of point p on l are either (i) both constants or (ii) of the

Fig. 6. (a) Merging mr(a) with mr(b) using joining segments La and Lb, respectively. The
max-delay and min-delay of La and Lb are expressed as coordinate pairs. (b) Properties of
pathlength delays and skew over the boundary segments l 5 ap 1 pb of SDR(La, Lb). The
first and second coordinate pairs associated with points a and b represent (max-delay,
min-delay) before and after merging, respectively.
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forms

max_t~ p! 5 max$ x 1 a, 2x 1 b%, (3)

min_t~ p! 5 min$ x 1 a9, 2x 1 b9%, (4)

where x 5 d( p, a) or d( p, b). In other words, max_t( p) and min_t( p) are
both piecewise linear (with slope 11 or 21) functions of the position of p on
l, and max_t( p) (min_t( p)) is a convex (concave) function whose value is
minimum (maximum) at some point on l, and then increases (decreases)
toward both endpoints of l. By the definition of skew,

skew~ p! 5 max$2x 1 ã, 22x 1 b̃, g%,

where x 5 d( p, a), ã 5 a 2 b9, b̃ 5 b 2 a9, and g 5 max{a 2 a9, b 2 b9}
are all constants; that is, skew( p) defined over a well-behaved rectilinear
line segment l is a piecewise linear convex function with up to three linear
pieces. Define a turning point on l as a point where the slope of a piecewise
linear function defined over l changes. Then from Figure 6(b) we can see
that the max-delay and min-delay turning points each determine a skew
turning point. Furthermore, the skew turning points divide l into three
contiguous intervals (one or two of which may be empty), skew_decr(l ),
skew_const(l ), and skew_incr(l ). In these intervals of l, the skew changes
with slopes 22, 0, and 12, respectively. Note that skew_const(l ) is between
two skew turning points, and may degenerate to a single point if the two
skew turning points coincide. Obviously, FMR(l ) and MSR(l ) are each a
single contiguous portion of l and can be computed in constant time.

Well-Behaved Region. Finally, a well-behaved region R is an octilinear
region bounded by (i) well-behaved rectilinear segments and (ii) Manhattan
arcs with constant max-delay and min-delay values.

3.2 Construction of the Merging Region

The following BME construction rules BM1–BM5 assume that for each
internal node v with children a and b, merging regions P 5 mr(a) and
Q 5 mr(b) are well-behaved. Since both P and Q are octilinear polygons,
the joining segments JSQ(P) 5 SDSQ(P) and JSP(Q) 5 SDSP(Q) must
be either (i) a pair of parallel Manhattan arcs (with constant min-delays
and max-delays), or (ii) a pair of parallel (well-behaved) rectilinear line
segments (Fig. 7). To simplify notation in what follows, we let La 5
JSQ(P), and Lb 5 JSP(Q). Note that before merging P and Q we are given
two delay functions defined over La and Lb, which will change after P and
Q are merged. To avoid any confusion, we refer to the original delay
functions defined for point p as max_t#( p) and min_t#( p), and refer to the
new delay functions defined over l after merging as max_t( p) and
min_t( p). Rules BM2–BM5 will use only the new delay functions defined
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over the segment l [ SDR(La, Lb) when computing FMR(l ), MSR(l ),
and skew turning points on l.

BM1. Compute joining segments La 5 SDSQ(P) and Lb 5 SDSP(Q).
BM2. Based on the given delay functions max_t#( p) and min_t#( p) defined

for points p on La and Lb (before merging), for each boundary
segment l of SDR(La, Lb) (including La and Lb), compute the new
delay functions; then compute the new skew functions, FMR ’s, and
skew turning points for segment l.

BM3. If La and Lb are parallel vertical (horizontal) segments, compute
FMR(l ) for each horizontal (vertical) line segment l 5 pq such that

Fig. 7. Construction of merging region mr(v), shown as shaded, given the merging regions
for v ’s children a and b. The skew turning points of joining segments La and Lb (thick dotted
lines) are shown as hollow points in (b) and (d). The first and second coordinate pairs
associated with points on La and Lb represent (max-delay, min-delay) before and after
merging, respectively. In (a) and (b), mr(v) 5 FMR(R) Þ À divides R into two regions M and
M9 (dotted areas) where delays and skew values change monotonically as we traverse from the
boundaries of FMR(R) horizontally to La or Lb. In (c) and (d), FMR(R) 5 À, so the delays and
skew values change monotonically in the horizontal direction in the whole region R. In this
case, we set mr(v) 5 MSR(Lb). Arrows indicate the directions of increasing skew/max-delay
and decreasing min-delay. Note that in (a) and (c), delays and skew values also change
monotonically along any shortest path from La to Lb.
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p [ La, q [ Lb, and either p or q is a skew turning point of La or Lb
(Fig. 7(b)).

BM4. Let F be the set of FMRs computed via rules BM2 and BM3. If F Þ
À, then mr(v) is equal to the smallest convex polygonal region
containing F.

BM5. If F 5 À, then mr(v) 5 MSR(La) if skew(MSR(La)) # skew(M-
SR(Lb)), and mr(v) 5 MSR(Lb) otherwise (Fig. 7(c) and (d)). Since
skew(mr(v)) . B, detour wiring is needed to meet skew bound
constraint as follows. Let x 5 d(La, Lb) 1 skew(mr(v)) 2 B. If
skew(MSR(La)) # skew(MSR(Lb)), ueau 5 0 and uebu 5 x. Other-
wise, uebu 5 0 and ueau 5 x. In either case, the new delay functions at
points p [ mr(v) are computed as min_t( p) 5 max_t#( p) 2 B and
max_t( p) 5 max_t#( p) (so that skew(mr(v)) 5 B).

Since the BME construction rules compute FMR(l ) and MSR(l ) only for
a finite number of well-behaved segments l, and since each FMR(l ) or
MSR(l ) can be computed in constant time, we have the following observa-
tion.

Fact 1. It requires constant time to compute a merging region by using
the BME construction rules.

The construction of merging regions is illustrated in Figure 7. Apart from
the merging region construction rules, there are two main differences
between BST/DME (Fig. 4) and DME (Fig. 3). First, when two merging
regions, mr(a) and mr(b), cannot be merged with minimum merging cost
d(mr(a), mr(b)), then the edge lengths ueau and uebu will be determined by
construction rule BM5 in the bottom-up phase of BST/DME. Otherwise, the
edge lengths will be determined in the top-down phase. Second, each node v
can be embedded only at the location in joining segment JSQ(mr(v)) that is
closest to the location of its parent p, even if uevu . d( JSQ(mr(v)), l( p)),
where Q is the merging region of v ’s sibling node.

3.3 Correctness of BME Construction Rules

Let v [ G have children a and b with merging regions P 5 mr(a) and Q 5
mr(b), respectively. Again, for convenience we let La 5 JSQ(P) and Lb 5
JSP(Q), and use R to indicate SDR(La, Lb). If P and Q are both
well-behaved, then we can prove the following properties of R 5 SDR(La,
Lb) after merging La and Lb.

Fact 2. If joining segments La and Lb are parallel Manhattan arcs with
constant max-delay and min-delay, then any Manhattan arc parallel to La
(and Lb) has constant max-delay and min-delay (and thus constant skew).

LEMMA 1. Any rectilinear line segment l # SDR(La, Lb) after merging
La and Lb is well-behaved.

Fact 2 follows directly from the discussion of the well-behaved pathlength
delay property. Similarly, Lemma 1 follows directly if we restrict La and Lb
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to be Manhattan arcs with constant max-delays and min-delays. Proofs of
Lemma 1 (for the case when La and Lb are rectilinear line segments) and
subsequent Lemmas are presented in Appendix A.1. Fact 2 and Lemma 1
are used to prove the correctness of BME construction rules for the case
where the joining segments La and Lb are parallel Manhattan arcs, while
Lemmas 2 to 5 below are used for the case where the joining segments La
and Lb are parallel rectilinear segments. Without loss of generality, we
assume that all the rectilinear joining segments La and Lb are vertical.

LEMMA 2. Suppose La and Lb are vertical, and l 5 pq # SDR(La, Lb) is
a horizontal line segment connecting p [ La and q [ Lb (Fig. 7(b)). If
skew_const(l ) Þ À, then skew_const(l ) # FMR(l ).

LEMMA 3. Suppose La and Lb are vertical. Let R 5 SDR(La, Lb). (i) If
FMR(R) Þ À, then the max-delay, min-delay, and skew values increase at
constant rates 11, 21, and 12, respectively, as we traverse from the
boundaries of FMR(R) horizontally to La or Lb (Fig. 7(b)). (ii) If FMR(R) 5
À, then MSR(R) 5 MSR(La) if skew(MSR(La)) , skew(MSR(Lb)), and
MSR(R) 5 MSR(Lb) otherwise (Fig. 7(d)).

LEMMA 4. If FMR(R) 5 À, then mr(v) constructed by the BME construc-
tion rules (i) is MSR(R), and (ii) is a well-behaved octilinear region
(segment) with merging cost ueau 1 uebu 5 d(La, Lb) 1 min_skew(R) 2 B,
which is minimum, subject to the constraint that p [ La can merge with
q [ Lb only if d( p, q) 5 d(La, Lb).

LEMMA 5. If FMR(R) Þ À, then mr(v) constructed by the BME construc-
tion rules (i) is equal to FMR(R), and (ii) is a well-behaved octilinear region
with minimum merging cost 5 d(La, Lb).

The merging region of each sink node v is the sink location l(v), and is
thus well-behaved. Therefore, from the above Facts and Lemmas we have
the following theorem.

THEOREM 1. Under the pathlength delay model, for any node v [ G the
merging region mr(v) computed by the BME construction rules (i) is
consistent with the merging region definition, (ii) is a well-behaved octilin-
ear region, and (iii) is computed in constant time.

3.4 Extension to the Elmore Delay Model

We now extend the BME construction rules from pathlength to Elmore
delay. Consider the points in SDR(La, Lb) in Figure 6(a) under Elmore
delay. First, it is easy to see that under Elmore delay any segment l [
SDR(La, Lb) that is parallel to La and Lb still has a constant max-delay,
min-delay, and skew. Second, if l is a shortest path between La and Lb,
then the skew over l is still a piecewise-linear function (but with different
slopes), as shown in Figure 8. To see this, consider again the boundary
segments l 5 ap 1 pb in Figure 6(a). Again, to avoid confusion, the original
max-delay and min-delay of points a and b are denoted as max_t#(a), min_t#(a),
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max_t#(b), and min_t#(b), respectively. The max-delay and min-delay values
from point p via a to sinks in subtree Ta can be written as functions of x 5
d(p, a), that is, as

t1~ x! 5 Kx2 1 a1x 1 max_t#~a!

t2~ x! 5 Kx2 1 a1x 1 min_t#~a!

in Figure 8, where K 5 rc/ 2 and a1 5 r z Cap(a). (Again r and c are
resistance and capacitance per unit wirelength, and Cap(a) is the total
capacitance of the subtree Ta rooted at node a.) Similarly, we can write the
max-delay and min-delay from point p via b to sinks in Tb as functions

t3~ x! 5 Kx2 1 a2x 1 b1

t4~ x! 5 Kx2 1 a2x 1 b2

also shown in Figure 8. Here, h 5 d(a, b) and a2 5 2r(hc 1 Cap(b)),
b1 5 K z h2 1 r z h z Cap(b) 1 max_t#(b), and b2 5 K z h2 1 r z h z Cap(b)
1 min_t#(b). We thus have

max_t~ p! 5 max$t1~ x!, t3~ x!% 5 max$a1x 1 max_t#~a!, a2x 1 b1% 1 K z x2

min_t~ p! 5 min$t2~ x!, t4~ x!% 5 min$a1x 1 min_t#~a!, a2x 1 b2% 1 K z x2.

Since max_t( p) and min_t( p) are each the sum of a piecewise-linear
function of x and the same quadratic term K z x2, skew( p) over segment ab
is also a piecewise-linear function of x that divides ab into (at most) three
contiguous intervals: skew_decr(l ), skew_const(l ), and skew_incr(l ), where

Fig. 8. Properties of Elmore delays and skew over boundary segments l 5 ap 1 pb, which is
shown in Fig. 6.
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the skew changing rates are, respectively, a2 2 a1 5 2r z (Cap(a) 1
Cap(b) 1 h z c), 0, and a1 2 a2 5 r z (Cap(a) 1 Cap(b) 1 h z c).

Well-Behaved Elmore Delay Property. We now formalize this delay/skew
property as follows. Given functions f1( x) 5 maxi51, . . . , n1{a i z x 1 bi}
and f2(x) 5 mini51, . . . , n2{a9i z x 1 b9i}, a line segment l 5 ab is well- behaved
if the max-delay and min-delay functions of point p on l are of the forms

max_t~ p! 5 f1~ x! 1 K z x2, (5)

min_t~ p! 5 f2~ x! 1 K z x2, (6)

where again x 5 d(a, p). We say that f1( x) ( f2( x)) is an n1-piecewise-
linear convex (n2-piecewise-linear concave) function since f1( x) ( f2( x)) has
n1 (n2) linear regions with slopes strictly increasing (decreasing) from one
endpoint of l to the other one, that is, from a to b or vice versa (Fig. 9).
Lemma 6 in Appendix A.2 shows that skew( p) defined over l will be an
n-piecewise-linear convex function; that is,

skew~ p! 5 max
i51, . . . , n

$ã i z x 1 b̃ i%

such that (i) n # n1 1 n2 2 1, and (ii) each skew turning point of l
corresponds to a max-delay or min-delay turning point. Similar to the
situation under the pathlength delay model, for any well-behaved line
segment l, FMR(l ) and MSR(l ) are each single contiguous portions of l
that can be computed in time linear in the number of skew turning points
of l.

Fig. 9. (a) Delay and (b) skew functions for a well-behaved line segment. Skew turning points
are indicated by the hollow circles on ab.
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Well-Behaved Region. Under Elmore delay, a convex polygonal region R
is well-behaved if its boundary and interior segments are all well-behaved.
Note that any boundary segment of a well-behaved region R which is a
Manhattan arc does not necessarily have constant delays and skew. Also
note that the delays of each boundary segment of R may have different
quadratic terms.

3.5 Construction of the Merging Regions under Elmore Delay

The rules for constructing merging regions under Elmore delay are similar
to those presented in Section 3. Assume that for each internal node v with
children a and b, merging regions P 5 mr(a) and Q 5 mr(b) are
well-behaved. Therefore, the shortest distance segments La 5 SDSQ(P)
and Lb 5 SDSP(Q) must be well-behaved segments. However, SDR(La,
Lb) (and thus mr(v)) will not be well-behaved if either

Case I. La and Lb are parallel Manhattan arcs with non-constant delay
functions, or

Case II. The delay functions on La and Lb have different quadratic
terms.

In Case I, the delay value defined for a point in SDR(La, Lb) will not be
unique since the delays of each point in SDR(La, Lb) can be defined by
many pairs of points ( p, q) with p [ La and q [ Lb, as long as d( p, q) 5
d(La, Lb). For Case II, Lemma 7 in Appendix A.2 shows that the line
segments within SDR(La, Lb) will not be well-behaved. To guarantee
well-behaved regions under Elmore delay, the computation of the joining
segments JSQ(P) and JSP(Q) (rule BM1) is modified as follows:

BM1. Compute JSQ(P) 5 SDSQ(P) and JSP(Q) 5 SDSP(Q). If either
Case I or Case II holds, then JSQ(P) and JSP(Q) are chosen to be
(arbitrary) single points on SDSQ(P) and SDSP(Q), respectively.

Since the joining segments can be parallel segments with any slope, (i.e.,
other than Manhattan arcs and rectilinear line segments; see Fig. 10), rule
BM3 is modified as follows.

BM3. If La and Lb are parallel segments with slope , 21 or . 11
(between 11 and 21), compute FMR(l ) for each horizontal (verti-
cal) line segment l 5 pq such that p [ La, q [ Lb, and either p
or q is a skew turning point of La or Lb (Fig. 10).

Finally, the calculation of detour wiring (rule BM5) must be modified
under Elmore delay as follows:

BM5. If F 5 À, then the computation of mr(v) is the same as before, but
the computation of minimum detour wiring is modified as follows.
Let l1 5 MSR(La) and l2 5 MSR(Lb). If skew(l1) # skew(l2),
then we set ueau 5 0 and uebu 5 x, where x satisfies the equation
rx(cx/ 2 1 Cap(b)) 1 min_t#( p2) 5 max_t#( p1) 2 B, with (i) p1 [
l1, (ii) p2 [ l2, (iii) p1p2 is horizontal (vertical) if La and Lb are
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vertical (horizontal), and (iv) again min_t# and max_t# are the
original delays of l1 and l2 before mr(a) and mr(b) are merged.
Similarly, if skew(l1) . skew(l2), we set ueau 5 x and uebu 5 0,
where x satisfies the equation rx(cx/ 2 1 Cap(a)) 1 min_t#( p1) 5
max_t#( p2) 2 B. The new delays of points p [ mr(v) are
computed as min_t( p) 5 max_t#( p) 2 B and max_t( p) 5
max_t#( p).

Similar to the proof of Theorem 1, we can show that the merging region
mr(v) computed by the revised BME construction rules (i) satisfies the
merging region definition, and (ii) is a well-behaved region. Lemma 9 in
Appendix A.2 shows that there can be up to n skew turning points on each
of La or Lb, where n is the number of leaf nodes in the subtree Tv rooted at
v. Each skew turning point corresponds to a possible vertex of mr(v), from
which it easily follows that (iii) mr(v) has at most 2n 1 4 sides and can be
computed in O(n) time. We thus have the following theorem, whose
detailed proof is given in Appendix A.2.

THEOREM 2. For any node v [ G, the merging region mr(v) computed by
the BME construction rules under Elmore delay (i) is consistent with the
merging region definition, (ii) is a well-behaved region with at most 2n 1 4
sides, and (iii) can be computed in O(n) time where n is the number of leaf
nodes in Tv.

Note that in Figure 10(a), the number of skew turning points on the
boundaries of the merging region of v ’s ancestor nodes will continuously
increase only if (i) mr(v) has a boundary segment l such that l # La or l #
Lb, and (ii) l is used as the joining segment in consecutive merging steps.
However, such conditions will hardly ever hold for a few consecutive
merging steps. Since each skew turning point on the joining segments
corresponds to at most one vertex of the resulting merging region, in

Fig. 10. Example of merging region construction when the joining segments of children
merging regions are parallel segments which (a) are vertical or (b) have slopes , 21 or . 11.
(a) presents an example with n 5 4 sinks s1, . . . , s4, where there can be up to n skew turning
points on each of La and Lb. Note that each turning point corresponds to a possible vertex of
mr(v).
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practice each merging region still has a constant number of boundary
segments and can be computed in constant time. Indeed, in all our
experiments, no merging region has ever had more than 9 sides. It is
unlikely that the boundary segments of the merging region are parallel,
unless they are rectilinear segments or Manhattan arcs. So, in practice, the
case in Figure 10(b) rarely happens.

3.6 Optimality of BST/DME

Note that when merging regions P and Q overlap (e.g., the pair of polygons
C and D (or E) in Fig. 5), or when either La 5 JSQ(P) Þ SDSQ(P) or Lb 5
JSP(Q) Þ SDSP(Q), then SDR(La, Lb) is not equal to the set of points
which has minimum sum of distances to P and Q. Thus, mr(v) will not
contain all points that have minimum merging cost. Also, when FMR(S-
DR(La, Lb)) 5 À (i.e., detour wiring is needed), then the merging cost of
mr(v) is not necessarily the minimum. An example is given in our technical
report [Cong et al. 1995b]. Therefore, for node v [ G with children a and b
that have merging regions P 5 mr(a) and Q 5 mr(b), respectively, if (i) P
and Q do not overlap, (ii) JSQ(P) 5 SDSQ(P) and JSP(Q) 5 SDSP(Q),
and (iii) no detour wiring is needed, then mr(v) will contain all points
having minimum merging cost. In all our experiments, the above condition
holds for most nodes in a good routing topology (see the discussions in
Section 6). In particular, in the zero-skew case (ii) is always true, and the
other two conditions hold for most nodes in a good routing topology. So the
performance of BST/DME for zero-skew bound will be very close to that of
DME for the given topology.

Even if all the merging regions are equal to the full set of minimum-cost
merging points, our method is still not optimal for the given topology. A
four-sink counterexample is given in Figure 11, and finding an optimal BST
solution for a prescribed topology is still open. Nevertheless, when com-
bined with the topology-generation method described in Section 5, BST/
DME not only closely matches the best known heuristics for both the
zero-skew and infinite-skew limiting cases, but also provides a smooth
skew-cost tradeoff over all intermediate values of B.

4. THE INTERIOR MERGING AND EMBEDDING METHOD

As outlined in the previous section, the construction of a merging region is
based on the nearest boundary segments of its children’s merging regions:
no interior point of the child merging regions is used to construct the
parent merging region. However, such an approach produces a sub-optimal
merging cost when detour occurs. Furthermore, even if no detour is
required, it is not always advisable to use only boundary segments for
merging. We observe that for any merging region constructed by BME, a
point along the boundary is likely to have skew very close to B. In other
words, by merging nearest boundary segments, the BME method tends to
fully utilize the available skew resource at the bottom level of the routing
tree, as in Figure 11(b), and this may result in a smaller merging region at
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a higher level. Instead, we can conserve the skew resource by merging
interior points, which may result in a larger merging region at a parent
node and possibly reduce the total merging cost (Fig. 11(c)). Note that
merging region mr( y) in Figure 11(c) overlaps with mr( x), has a larger
area, and is closer to s4 when compared to mr( y) in Figure 11(b).

Given the above considerations, the merging of interior points of the
merging regions has strong potential to reduce total wirelength. However,
merging interior points may cause ambiguity in the delay functions for a
point p in the new merging region: p may correspond to the merging of
infinitely many pairs of interior points from its child merging regions, and
may therefore have different max-delay and min-delay values. Since max-
delay and min-delay information is required to construct merging regions
at a higher level, this ambiguity (which is avoided when only nearest
boundary segments are considered, as in the BME method) causes difficulty
in the merging process. To overcome ambiguity and yet exploit the interiors
of merging regions, we propose the Interior Merging and Embedding (IME)
algorithm, which employs a sampling strategy and a dynamic program-
ming-based selection technique to consider merging points that are interior
to, rather than on the boundary of, the merging region.

4.1 Overview of IME Method

As the BME method, the IME method is concerned with the constructing of
merging regions. In other words, the template for the BST/DME algorithm
given in Figure 4(a) still applies, except that we replace the BME construc-
tion rules by the IME construction rules (to be given below) in the
statement “Calculate mr(v) by BME construction rules.” The key difference

Fig. 11. An example of routing 4 sinks (filled squares) with a skew bound of 4 units. Each
internal node (filled circle) is embedded in its merging region (shaded region). Each pair of
coordinates associated with a point or a segment represents its max-delay and min-delay. For
a fixed topology in (a), (b) the routing cost is 27.5 units if only boundary segments are
considered for merging, and (c) we can reduce merging cost by merging interior points (dashed
line in mr( x)).
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between the two methods is that in IME, each node v in the topology G is
associated with a set Rv 5 {R1

v , R2
v , . . . , Rk

v} of merging regions (if v is
understood, we simply use R and Ri), whereas a node in BME is associated
with only one merging region. The interior points in two sets of merging
regions can be used to construct merging regions of their parent node, via
the use of sampling. Each merging region Ri is sampled by a set of
well-behaved line segments (or sampling segments, denoted ss) in Ri. For
example, under the pathlength delay model, we use only Manhattan arcs
with constant min-delays and max-delays, and rectilinear line segments as
sampling segments since these segments are well-behaved (Fact 2 and
Lemma 1). On the other hand, any line segment in a well-behaved region
under Elmore delay is well-behaved (Lemma 7) and can be used as a
sampling segment. We denote the set of sampling segments (or sampling
set) of Ri by SS(Ri). The sampling set of R, denoted SS(R), is øi51

k SS(Ri).
Consider the merging of two nodes a and b in G. Let Ra and Rb be the

set of merging regions associated with a and b, respectively. The parent,
say v, of a and b in G has as many as uSS(Ra) u 3 uSS(Rb) u possible
merging regions due to the merging of each sampling segment ssa in
SS(Ra) with each sampling segment ssb in SS(Rb). Given two sampling
segments ssa and ssb, we apply the BME construction rules BM1–BM5 (as
outlined above) to construct a merging region. Note that all points on ssa

and ssb are feasible embedding points for nodes a and b, respectively.
Therefore, we can treat ssa and ssb as a “merging region” of a and b,
respectively, and apply the BME construction rules to construct a merging
region of v, since all sampling segments chosen are well-behaved. Consid-
ering the same example given in Figure 11, we sample mr( x) by three
sampling segments {ss1

x , ss2
x , ss3

x}, as shown in Figure 12. We then merge
each sampling segment with sink s3 and construct three merging regions

Fig. 12. Interior merging using Manhattan arcs. For the example given in Fig. 11, (a) the
merging region mr( x) is sampled by three Manhattan arcs {ss1

x , ss2
x , ss3

x}. The pair
coordinates for each sampling segment denote the max-delay and min-delay of the sampling
segment. (b) Merging these sampling segments with sink s3 produces three merging regions
where Ri is produced by merging s3 with ssi

x.
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{R1, R2, R3} for internal node y where Ri is the result of merging ssi
x with

s3.
This example also illustrates the difficulty of merging interior points, as

mentioned in the beginning of this section. Region R1 is contained within
R2 and R3. If we pick any point in R1, then this point is also contained in
R2 and R3 and therefore has different max-delay and min-delay functions
and, hence, different skew functions. If we consider all interior points of
mr( x) for merging with s3, then any point in R1 has infinitely many
different delay and skew functions. Generally speaking, given a merging
region, there is an infinite number of choices of sampling segments.
Furthermore, even if we select only a constant number of sampling seg-
ments for each region, the size of the overall number of merging regions
may grow exponentially during our bottom-up construction of merging
regions. In particular, even if each region is sampled by no more than s
sampling segments, the number of merging regions at the root of the
routing topology is O(sn), where n is the total number of sinks. To achieve
an efficient implementation, we limit the number of merging regions of an
internal node by a constant, say k. Each region is, in turn, sampled by
exactly s sampling segments when the region is being merged with other
regions of the sibling node. When we merge two sampling segment sets,
each with # k z s sampling segments, k2s2 merging regions are generated
for the parent node. A key step in the IME method lies in selecting the
“best” k merging regions for the new parent node. A simple greedy selection
strategy is to choose k merging regions with the smallest total capacitances
[Cong et al. 1996a]. We also present a dynamic programming-based selec-
tion method to compute the k “best” possible merging regions for the new
node.

Before we present the dynamic programming-based selection method, we
describe the IME Construction Rules for the IME method. In the following,
we assume that the sets of merging regions Ra and Rb of children a and b,
respectively, are given, and we want to compute the merging regions Rv for
the parent internal v. The IME construction rules are as follows:

IM1. Compute the sampling segment set of node a, denoted SS(Ra), by
sampling each Ri

a in Ra using s well-behaved line segments in Ri
a.

Similarly, compute SS(Rb) of node b.
IM2. For each sampling segment ssa from SS(Ra) and each sampling

segment ssb from SS(Rb), apply BME construction rules BM1–
BM5 to construct a new merging region mr(v) of v from ssa and ssb

and put mr(v) in Rv.
IM3. Select from Rv k merging regions using either the greedy selection

technique or the dynamic programming-based selection technique
(to be described in detail in the next subsection).

Note that in rule IM2, we treat ssa and ssb as “merging regions” of a and
b, respectively. To apply the BME construction rules, we first find joining
segments of ssa and ssb and then perform merging of JS(ssa) with
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JS(ssb). The only procedure of the IME construction rules left to be
explained is the dynamic programming-based selection technique.

4.2 Dynamic Programming-Based Selection Technique

In what follows, we require the following terminology. A merging region R
is associated with three values: (i) Cap(R), the total capacitance rooted at
region R,2 (ii) min_skew(R), and (iii) max_skew(R), the maximum skew
possible within the merging region. Recall that merging regions in IME are
still constructed by the BME construction rules. Consider the merging of
children a and b of node v. We construct a merging region of v by merging
two sampling segments, say La and Lb, of mr(a) and mr(b), respectively,
with a merging cost of ueau 1 uebu. From the result in the previous section,
we note that the resultant merging region of v, denoted mr(v), has a
capacitance of Cap(mr(v)) 5 Cap(mr(a)) 1 Cap(mr(b)) 1 ( ueau 1 uebu) z c,
which is constant for all points in mr(v). Also note that max_skew(R) is
kept within the skew bound B by the BME construction rules. If we plot a
graph with the horizontal axis representing the skew and the vertical axis
representing the capacitance, then each merging region Ri of node v is a
horizontal line segment with y-coordinate Cap(Ri) and x-coordinates min_
skew(Ri) and max_skew(Ri) for the left and right endpoints, respectively.
Points within the merging region Ri are mapped many-to-one to the
horizontal line segment representing Ri.

Consider a node v in G associated with a set of more than k merging
regions after merging its two children. Then a merging region R of v is
“redundant” if and only if there exists another merging region R9 of v such
that min_skew(R9) , min_skew(R) and Cap(R9) , Cap(R) (Fig. 13(a)). Let
IMR(v) 5 {R1, R2, . . . , Rm} denote the set of irredundant merging
regions of v with Ri’s arranged in descending order of Cap(Ri); then for all
i with 1 # i , m, min_skew(Ri) , min_skew(Ri11).

The set of irredundant merging regions forms a staircase with m 2 1
steps, as shown in Figure 13. By creating a step from a height of Cap(Ri) to
Cap(Ri21) at a x-coordinate of min_skew(Ri) and then from min_skew(Ri)
to min_skew(Ri21) at a y-coordinate of Cap(Ri21) for all i with 1 , 1 # m,
we have a m 2 1 step staircase starting at min_skew(Rm), as shown in
Figure 13(c). Note that the pair of coordinates (min_skew(Ri), Cap(Ri21))
may fall outside the range of the horizontal line segment representing
Ri21. In other words, some horizontal line segments in the staircase might
not correspond to physical points in the m merging regions of v. For
example, the dashed-line horizontal line segment in Figure 13(b) corre-
sponds to non-physical merging points.

The area of the staircase of a set of merging regions of node v, denoted
area(v), is defined to be the area under the staircase between the skews

2We use Cap(v) to denote the total capacitance rooted at node v in the previous section. The
slight change in the notation is due to the fact in IME, we have multiple merging regions for a
node.
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min_skew(R1) and min_skew(Rk):

area~v! 5 O
i51

m21

$min_skew~Ri11! 2 min_skew~Ri!% 3 Cap~Ri!

If we remove one of the intermediate steps, say Ri (1 , i , m), we
obtain a (m 2 2)-step staircase which approximates the original staircase
with an error of (min_skew(Ri11) 2 min_skew(Ri)) 3 (Cap(Ri21) 2
Cap(Ri)) (Fig. 13(d)). Therefore, in order to retain a good spectrum of no
more than k merging regions at each step, we propose to solve the following
problem:

The Optimal (m, k)-Sampling Problem. Given a set of m irredundant
merging regions, IMR 5 {R1, . . . , Rm}, find a subset of k (2 # k # m)
merging regions such that after removing each of the m 2 k intermediate
merging regions, the total error of the resulting staircase IMR9 5 {Rp(1) 5
R1, Rp(2), . . . , Rp(k21), Rp(k) 5 Rm} , IMR is minimum (or equivalently,
area(IMR9) 2 area(IMR) is minimal), where p;{1 . . . k} 3 {1 . . . m} is a
strictly monotonically increasing function.

Note that both R1 and Rm are retained in IMR9 where R1 is the merging
region with the smallest min-skew and Rm is the merging region with the
smallest total capacitance. The motivation for retaining R1 and Rm in
IMR9 is that when considered for merging at the next level, R1 tends to
produce larger parent merging regions whereas Rm tends to produce
lower-cost parent merging regions.

Fig. 13. (a) Set of merging regions. (b) Set of irredundant merging regions form a staircase.
(c) Removing an intermediate step results in a new staircase with an error depicted by the
shaded region.

Bounded Skew Clock • 365

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.



4.3 Optimal Solution to the (m, k)-Sampling Problem

We developed an optimal algorithm to the (m, k)-sampling problem based
on a dynamic programming approach similar to the algorithm used in
Wang and Wong [1992] for floorplan construction. Effectively, we compute
an optimal (m9, k9)-sampling solution Si[m9, k9] for each 2 # m9 # m,
2 # k9 # k and 1 # i # m 2 m9 1 1 by choosing the best k9-sampling
from m9 merging regions {Ri, Ri11, . . . , Ri1m921} under the condition
that Ri and Ri1m921 are in the k9-sampling. Let erri[m9, k9] be the
minimum error for the optimal (m9, k9)-sampling solution Si[m9, k9]. We
can show the following:

THEOREM 3. For each 2 # m9 # m, 2 # k9 # k # m and 1 # i # m 2
m9 1 1, the minimum error erri[m9, k9] for the optimal (m9, k9)-sampling
solution is

erri@m9, k9# 5 5
0 if m9 5 k9

$~min_skew~Ri1m921! 2 min_skew~Ri1m922!!

if m9 . k9

3 ~Cap~Ri! 2 Cap~Ri1m922!!% 1 erri@m9 2 1, k9#

and k9 5 2
mini,i9#m92k91i11$erri@i9 2 i 1 1, 2#

if m9 . k9

1 erri9@m9 2 i9 1 i, k9 2 1#

and k9 . 2

(7)

A straightforward implementation of the above computation gives an O(k z
m3)-time optimal (m, k)-sampling algorithm. After careful pruning of the
solution space, we can achieve a better time complexity. First, note that for
case (i) and (ii) of Equation (7), the solution is straightforward and we can
compute all Si[m9, k9] and erri[m9, k9] where 1 # i # m 2 m9 1 1, and
m9 and k9 satisfy the conditions stated in cases (i) and (ii) of Equation (7) in
O(m2)-time.

In the following, we assume m . k . 2. We are interested in obtaining
the optimal solution S1[m, k]. To determine the index of the region after
R1 in the optimal solution, we compute err1[m, k] with err1[i, 2] and
erri[m 2 i 1 1, k 2 1] for 1 , i # m 2 k 1 2. Assuming that k 2 1 .
2, we again apply case (iii) of Equation (7) to solve for erri[m 2 i 1 1, k 2
1] using erri[i9 2 i 1 1, 2] and erri9[m 2 i9 1 1, k 2 2] for i , i9 # m 2
k 1 2. Continuing this recursion, we observe a pattern shared by the
errors err1[m, k], erri[m 2 i 1 1, k 2 1], erri9[m 2 i9 1 1, k 2 2], and
so on. If we denote these errors generically by erri[m9, k9], then we
observe that m9 5 m 2 i 1 1 for all cases. Therefore, we do not have to
compute erri[m9, k9] for every valid combination of i, m9 and k9, each in
its respective range (2 # m9 # m, 2 # k9 # k and 1 # i # m 2 m9 1 1).
Instead, only errors erri[m9, k9] with m9 5 m 2 i 1 1 are required.
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The Optimal (m, k)-Sampling Algorithm is given in Figure 14. In the
algorithm, the matrix nexti[m9, k9] records the index of the merging region
immediately after Ri in the optimal subset (of size k9) of the set {Ri, Ri11,
. . . , Ri1m921}. We first initialize erri[m9, k9] and nexti[m9, k9] for the
first two cases of Equation (7). Then, for each k9 and i such that 2 , k9 #
k and k 2 k9 1 1 # i # m 2 k9 1 1, we apply case (iii) of Equation (7) to
compute the minimum error erri[m 2 i 1 1, k9]. Therefore, we have the
following result:

THEOREM 4. The time complexity of the optimal (m, k)-Sampling Algo-
rithm is O(k z m2).

We can observe that the most expensive operation in the merging process is
due to the optimal (m, k)-sampling algorithm which is polynomial in terms
of m # k2 z s2. Since m is a constant, the merging process can be
performed in constant time and the time complexities of BME and IME are
still in the same order. In our experiments, the number of irredundant
regions m is much lower than k2 z s2. So the run-time ratios of IME over
BME can be only dominated by the number of total regions generated
during merging, that is, k2 z s2.

To summarize, if we apply the dynamic programming-based selection
technique in the IME construction, we replace the IME construction rule
IM3 by the following rules:

Fig. 14. The optimal (m, k)-Sampling Algorithm. Note that m $ k.
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IM3.a. Sort merging regions of v in Rv in descending order of their
capacitance and scan the sorted Rv to remove “redundant” merg-
ing regions.

IM3.b. Apply Optimal (m, k)-Sampling Algorithm on the set of irredun-
dant merging regions of v if necessary.

5. TOPOLOGY GENERATION FOR BOUNDED-SKEW ROUTING

We now consider the variant BST formulation where the topology is not
fixed and can be determined dynamically. Our topology generation method
for bounded-skew routing is an extension of Edahiro [1992, 1993a] that
exploits flexibility stemming from allowed skew during the topology con-
struction. With this new topology generation method, our BST/DME algo-
rithm can not only provide a smooth cost-skew tradeoff, but also very
closely match the performance of the best-known heuristics for both the
zero-skew [Edahiro 1993a, 1994] and infinite-skew limiting cases [Kahng
and Robins 1992; Borah et al. 1994]. Note the latter case corresponds to the
Steiner minimal tree problem.

Recall that in DME, two merging subtrees are always merged at their
roots so as to maintain zero skew. However, the shortest connection
between two trees may not be between their roots. Indeed, subtrees may be
merged at non-root nodes as long as the resulting skew is # B. This
flexibility allows reduced merging cost and is the key merit of the Greedy-
BST/DME approach.

Consider the example in Figure 15, where the eight sinks are equally
spaced on a horizontal line. When B is near zero, the minimum tree cost
can be obtained by merging subtrees Ta and Tb at their roots a and b.
However, this topology is bad when B is large, even if the costs of the two
subtrees can be minimum. When the skew bound is large, ideally one
should adjust the subtree topology so that the roots of subtrees become
closer while the subtree costs remain the same or increase slightly. Sup-
pose the skew bound B is large enough such that the least cost BST
connecting the eight sinks is the straight line from sink 1 to sink 8.
Although subtrees Ta and Tb in Figure 15 can be optimally embedded, Tr
obtained by merging Ta and Tb is not optimal since the smallest distance
between Ta and Tb is the distance between sinks 4 and 5. However, if we
reposition a on edge e4 and b on edge e5 to obtain new topologies T9a and
T9b, respectively, then subtree roots a and b become closer, while the

Fig. 15. An example showing that given skew bound B .. 0, changing the subtree topology
before merging will reduce the merging cost.
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minimum routing costs of T9a and T9b are the same as that of Ta and Tb. We
can obtain the least cost BST Tr by merging T9a and T9b.

Figure 16 illustrates in more detail how we adjust the tree topology Tr.
First, the root r is moved down to some tree edge, say eu 5 uu9, so that the
root becomes the parent of nodes u and u9. Then the tree topology is
adjusted accordingly by adding edges eb, eu, and eu9, deleting edges ea, eb,
and eu, and redirecting all the edges on the unique path from node u9 to
node a in the original tree Tr. Note that when we shift the root of the tree
in this way, only a few tree edges will be removed or added so that the basic
structure of the subtrees remains the same. In practice, the costs of the two
subtrees will have little increase when the topologies are changed this way.
We refer to the new tree topology as Tr(eu). Under this definition, Tr 5
Tr(ea) 5 Tr(eb) where a and b are children of r. Let uTru denote the
number of nodes in Tr. Then there are uTru 2 1 edges in Tr and, therefore,
uTru 2 2 alternative locations of r (since Tr 5 Tr(ea) 5 Tr(eb)) if we allow
r to be placed at any level. In our Greedy-BST/DME algorithm, we consider
alternative locations of tree roots when two subtrees are merged. To exploit
this flexibility due to non-zero skew bound, we extend the idea of nearest
neighbor graph of the Greedy-DME algorithm by considering the reposi-
tioning of tree roots.

The Greedy-BST/DME algorithm follows the Greedy-DME structure, as
shown in Figure 17. One key difference between Greedy-BST/DME and
Greedy-DME is in the construction of the nearest-neighbor graph H. Recall
that in Greedy-DME, each node v in H corresponds to merging segment
ms(v) of a root node v of a subtree; and each edge Euv of H represents the
merging of two subtrees, Tu and Tv, which are rooted at u and v. The
weight of edge Euv, denoted uEuvu, represents the merging cost of Tu and
Tv. In our Greedy-BST/DME algorithm, we still have a forest of subtrees, F.
Each node v in H corresponds to a node in F (which is not necessarily the
tree root as in the Greedy-DME algorithm). Therefore, the number of nodes
in H is equal to the number of nodes in F, which is between the number of
sinks n and 2n.

Consider two nodes u and v in H. Let Tr be the subtree in F containing u,
and Ts be the subtree containing v. Note that u could be the root r and v
could be the root s. Then each edge Euv of H represents the merging of two
subtrees Tr(eu) and Ts(ev), and uEuvu represents the wirelength increase by

Fig. 16. Repositioning the root in changing the topology.
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merging Tr(eu) and Ts(ev). We define uEuvu as follows. If nodes u and v are
in the same tree, then uEuvu 5 ` (same trees cannot be merged). Otherwise,
we first construct the new subtrees Tr(eu) and Ts(ev), and then merge
Tr(eu) and Ts(ev) into a new tree, say Tt. Then uEuvu 5 cost(Tt) 2 cost(Tr) 2
cost(Ts).

By maintaining two more variables mr9(w) and cost9(w) for each node
w [ H, we can still compute uEuvu in constant time. The definitions of
mr9(v) and cost9(v) for node v [ H are as follows. Again, let Ts be the
subtree containing v and Ts(ev) be the resulting adjusted tree after the root
is relocated to edge ev. Then mr9(v) is the merging region of tree root s of
Ts(ev) and cost9(v) 5 cost(Ts(ev)). Thus, for any edge Euv, we can compute
uEuvu in constant time if mr9(u), mr9(v), cost9(u), and cost9(v) are known
(i.e., uEuvu 5 cost(T) 2 cost(Tr) 2 cost(Ts) 5 ueru 1 uesu 1 cost9(u) 1
cost9(v) 2 cost(Tr) 2 cost(Ts)). After Tr(eu) and Ts(ev) are merged into a
new tree Tt, we have to update mr9(w) and cost9(w) for each node w [ T.
By a depth-first traversal of the tree, mr9(w) and cost9(w) of all nodes w [
T can be computed in ( uT u) time; the resulting time complexity is domi-
nated by the construction of H.

Since the number of nodes in H is O(n), straightforward computation of
all edge weights takes O(n2) time. The nearest-neighbor graph will be
constructed and used to merge the remaining subtrees O(log n) times, if
the parameter f is a constant (see also the discussion of Greedy-DME in
Section 2). Thus, the time complexity of Greedy-BST/DME is O(n2 log n).
By using the bucket decomposition method of Edahiro [1994], the nearest-

Fig. 17. The Greedy-BST/DME algorithm.
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neighbor graph can be constructed in linear time, so that the total time
complexity becomes O(n log n).

Note that when the root is repositioned at a tree edge at the lower level,
the tree will become very unbalanced. Thus, when the skew bound B is
small, significant detour wiring will be required to maintain it. Thus, in our
implementation we compute the possible root positions by examining each
tree edge in the top-down manner. When it is found that the detour wiring
is required when the tree root is repositioned at edge ev, then we ignore all
the edges in the subtree Tv. Thus, when B 5 0, Greedy-BST/DME almost
merges each pair of two subtrees at their roots, and has the same linear
time complexity as Greedy-DME.

6. EXPERIMENTAL RESULTS

We have implemented the BST/DME and Greedy-BST/DME algorithms in
ANSI C on Sun SPARC-20 machines. Recall that Greedy-BST/DME consid-
ers merging region construction with topology generation, whereas BST/
DME considers only merging region construction for a given topology. To
avoid cumbersome notation, we would simply use BME (or IME) to refer to
the BST/DME algorithm, as well as to the Greedy-BST/DME algorithm,
then employ the BME (or IME) method to construct merging region. The
context in which BME or IME is used should differentiate between BST/
DME and Greedy-BST/DME clearly. Moreover, we use IME-GS to refer to
the IME method with greedy selection of merging regions, and IME-DPS to
refer to the version that employs a dynamic programming-based selection
technique. If no distinction is required, we simply refer to both IME-GS and
IME-DPS as IME.

The benchmark test cases r1–r5 [Tsay 1993] were used to evaluate our
Greedy-BST/DME algorithms for skew bounds in the range of 0–10ns.
Table I compares the various bounded-skew routing costs obtained by our
algorithms with (i) the best reported zero-skew clock routing costs of the
best known algorithm (CL1I6 from Edahiro [1993a]) and (ii) the Steiner
tree routing costs of one of the best known heuristics, the BOI Steiner
algorithm [Borah et al. 1994]. Also included in Table I are the CPU times
for BME, IME-GS, and IME-DPS.

In this experiment, the IME algorithms keep at most k 5 5 merging
regions for each internal node, and slice each merging region to s 5 7
Manhattan arcs for merging with other nodes. For instances where IME-
DPS performs better than IME-GS, the average wirelength is 5.8% less. On
the other hand, when IME-GS performs better, the average wirelength is
3% less. In terms of overall wirelength, IME-DPS is slightly better than
IME-GS by an arithmetic mean of 1.5% less wirelength.3 Moreover, we note
that the run-times of IME-DPS and IME-GS are comparable, although the

3To obtain the arithmetic mean, we first normalized the IME-DPS wirelengths with respect to
the corresponding IME-GS wirelengths. The arithmetic mean is the average of the normalized
wirelengths. We also computed the geometric mean of the normalized wirelengths, and found
that the arithmetic mean and the geometric mean obtained in this manner match very closely.
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Table I. The Cost-Skew Tradeoff and Runtimes of the BME and IME Algorithms for
Benchmark Circuits r1–5 [Tsay 1993]. We mark the cases where IME-GS and IME-DPS

outperform BME by † and *, respectively.
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dynamic programming selection method has a higher complexity than the
greedy selection method. This is due to the fact that the bottleneck in the
Greedy-BST/DME algorithm is the computation of nearest-neighbor graph
(see Sections 2.1 and 5), but not merging region construction. In general,
the run-time of IME due to the nearest-neighbor graph computation is no
more than k2s2 times that of BME. Therefore, in subsequent experiments,
we will consider only IME-DPS solutions.

We also observe that BME and IME have comparable results, with IME
solutions having marginally less wirelength than BME solutions by an
arithmetic mean of 1%. It appears that IME produces better results for
larger circuits r3–5, but at the expense of longer run-times. In particular,
IME performs very well for circuit r3, achieving an average of 6% wire-
length reduction compared to BME solutions. On the other hand, BME in
general performs better for smaller circuits. More importantly, we see a
decrease in total wirelength for solutions constructed by both BME and
IME as the skew bound increases. On average, a 42% wirelength reduction
is observed when varying the skew bound from 0 to `.

When the skew bound B 5 0, our routing costs are on average 5.4%
higher than that of Edahiro [1993a]. We believe that this is due to the fact
that the CL1I6 algorithm performs local optimization using exhaustive
search and calculates an optimum sequence, which we did not implement
in our algorithm. The other reason is that Edahiro [1993a] uses the best
result from eight different values of the f parameter, ranging from 2 to 4
(recall the discussion of the Greedy-DME algorithm in Section 2.1), while
we use only f 5 1. When B 5 `, the Steiner trees constructed by BME
average only 1.47% higher cost than those constructed by the BOI algo-
rithm [Borah et al. 1994]. Note that BME and IME produce identical
routing solutions when B 5 0. If IME also considers rectilinear sampling
segments, then BME and IME produce identical routing solutions when
B 5 `.

To make a fairer comparison between the performance of BME and IME,
we ran both (BST/DME) algorithms on the topologies generated by the
Greedy-BST/DME algorithms in the previous experiment. In this case, IME
uses both Manhattan arcs and rectilinear segments to sample each region.
The results are shown in Tables II and III. Since the run-times in both
tables are similar, we show only the run-times of the algorithms in Table
II. Table II shows a better IME performance than Table I, where only
Manhattan arcs are considered as sampling segments. The IME solutions
in Table II have an average of 2% less wirelength than the IME solutions in
Table I. Also, both Tables II and III show that IME outperforms BME in
most cases, but with longer CPU times. Note that, however, the gain by
IME is again marginal.

Based on the results in Tables I through III, we also try to compare the
quality of the topologies generated by Greedy-BST/DME with BME and

Therefore, we report only the arithmetic mean, that is, the average, in this and subsequent
comparisons.
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Greedy-BST/DME with IME, respectively. Comparing the solutions ob-
tained by BME embedding in Table I (topologies generated by Greedy-BST/
DME with BME) with those in Table II (topologies generated by Greedy-
BST/DME with IME), we found that IME-generated topologies have an
average of 2% less wirelength. Similarly, if we compare the solutions
obtained by IME embedding in Table III (BME-generated topologies) with
those in Table II (IME-generated topologies), we find that IME-generated

Table II. The Performance Comparison between BME and IME Using the Topologies
Generated by Greedy-BST/DME with IME. We mark the cases where IME outperforms BME

by *.

Table III. The Performance Comparison between BME and IME Using the Same Topologies
Generated by Greedy-BST/DME with BME. The total wirelengths of BME for different skew
bounds are given in Table I. The table shows only the wirelengths of IME routing solutions.

We mark the cases where IME outperforms BME by *.
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topologies have an average of 2.3% less wirelength after embedding. It
seems to be the case that IME-generated topologies are better than
BME-generated topologies.

When BME is run on the topologies given in Tables II and III, we find
that (i) there is at most one internal node that child nodes have overlapped,
merging regions, (ii) fewer than 2% of internal nodes need detour wiring
when their children are merged, and (iii) all joining segments are equal to
the shortest distance segments.4 Therefore, the merging regions con-
structed by BME are equal to the min-cost merging regions in most cases.

A more detailed experiment using Greedy-BST/DME on all benchmark
circuits was conducted to investigate the tradeoff between total wirelength
and skew, and the tradeoff between power dissipation and skew for
realistic skew bounds in the range of 0–150ps. We used HSPICE simula-
tions to measure the power dissipation for benchmarks r1–3 at 50 MHz,
and r4–5 at 5 MHz (due to the rise/fall time constraints). Due to space
limitation, we only show the result of IME for the benchmark circuits r3 in
Figure 18.

When the skew bound was relaxed from zero to 150ps, we achieved an
average power reduction of up to 18.4%. We also achieved 26.6% average
wirelength reduction compared to the best reported zero-skew solutions (by
the CL1I6 algorithm in Edahiro [1993a]).

To further justify the superiority of Greedy-BST/DME over Greedy-DME
in terms of topology generation, we also ran BME to embed the topologies
generated by Greedy-DME for the benchmark circuit r1 under different
skew bounds. As we can see from Figure 19, only up to 16% wirelength
reduction is achieved by using the method of topology generation by
Greedy-DME followed by BME embedding. On the other hand, Greedy-
BST/DME with BME achieves up to 40% wirelength reduction while the
run-times only increase to at most 4 times that of Greedy-DME. (Greedy-
BST/DME with IME has wirelength similar to Greedy-BST/DME with

4In these experiments, all pairs of joining segments are either rectilinear segments with the
same quadratic terms (rc/ 2) z x or Manhattan arcs with constant delays. So Cases I and II in
Section 3.5 never happen.

Fig. 18. Tradeoff between (a) total wirelength and skew bound, and (b) power dissipation and
skew bound for benchmark r3.
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BME, but its run-time is longer). Another comparison between topologies
by Greedy-BST/DME and Greedy-DME can be seen in Huang et al. [1995];
and Cong and Koh [1995]. Finally, we give the layout of BME routing
solutions generated by Greedy-BST/DME for benchmark r1 with skew
bound B 5 1ps, 10ps, and ` in Figure 20.

7. CONCLUSION AND FUTURE WORK

We have presented new bounded-skew routing tree approaches under the
pathlength and Elmore delay models. We prove several key properties of
the merging regions under the two delay models. We propose two ap-
proaches to constructing merging regions for internal nodes of the topology
tree. Our first approach, called BME, utilizes merging points that are
restricted to the boundaries of merging regions. A second approach, called
IME, employs a sampling strategy and dynamic programming to consider
merging points that are interior to the merging regions. We also propose a
new algorithm that dynamically constructs the routing tree topology as we
compute the merging regions.

Our current implementation of IME uses only simple sampling segments
like Manhattan arcs and rectilinear segments. We are studying to discover
if well-behaved sampling segments with other orientations will improve the
results. We are also studying better sampling strategies for a speed-up of
the IME method. One way to speed up IME is to sample regions according
to a variable-size sampling set; we can use fewer sampling segments for
smaller merging regions. Another possible speed-up technique is to avoid
the generation of redundant regions, instead of eliminating redundant
regions after they are generated. In our experiments, we use k 5 5 and s 5
7, so that merging two nodes could produce more than k2s2 . 1000
merging regions. However, the number of irredundant regions is never
larger than 50.

Our final goal is to extend our BST/DME method to (i) incorporate our
recent work on optimal sizing of interconnects and drivers/buffers [Cong

Fig. 19. Comparisons of (a) total wirelength and (b) runtimes between topologies produced by
Greedy-BST/DME and Greedy-DME for various skew bounds from 1 ps to 100 ns.
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and Koh 1994; Cong and Leung 1995; Cong et al. 1996b], and (ii) consider
practical clock routing issues such as the various layer parasitics, macro
cell blockages, and the hierarchy of clock buffer design [Kahng and Tsao
1997a, 1997b].

APPENDIX A. PROOFS OF LEMMAS AND THEOREMS

A.1 Proofs of Lemmas for Theorem 1

In the following, we give the proofs of the lemmas that are used to prove
Theorem 1. Lemma 1, along with Fact 2 (in Section 3.3), is used to prove
the correctness of BME construction rules for the case where the joining
segments La and Lb are parallel Manhattan arcs, while Lemmas 2 to 5 are
used for the case where the joining segments La and Lb are parallel
rectilinear segments.

Let a and b be the children of node v [ G, and assume that they are
associated with well-behaved merging regions P 5 mr(a) and Q 5 mr(b),
respectively. Also let La 5 JSQ(P), Lb 5 JSP(Q), and R 5 SDR(La, Lb).
Without loss of generality, if La and Lb are rectilinear, we assume that
they are vertical in the following proofs.

LEMMA 1. Any rectilinear line segment l # SDR(La, Lb) after merging
La and Lb is well-behaved.

PROOF. First, recall that we refer to the original delay functions defined
for points u [ l as max_t#(u) and min_t#(u), and refer to the new delay
functions defined over l after merging as max_t(u) and min_t(u).

Consider the case where the joining segments La and Lb are parallel
Manhattan arcs with constant max-delays and min-delays, as in Figure
21(a). Let the max-delays of La and Lb be max_t#(La) and max_t#(Lb),
respectively. It is obvious that the minimum pathlength from point u [ l to
La is ueau 5 d(u, La) 5 d(u, p) 1 d( p, La) 5 x 1 d( p, La) and that the
minimum pathlength from u to Lb is uebu 5 d 2 ueau 5 d 2 x 2 d(p, La) 5

Fig. 20. Layout of BME solutions for benchmark r1 with skew bounds B 5 1, 10, and ` ps.
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2x 1 d(p, Lb), where x 5 d(u, p) and d 5 d(La, Lb). Therefore, the max-delay
function of point u [ l is

max_t~u! 5 max$max_t#~La! 1 ueau, max_t#~Lb! 1 uebu%

5 max$ x 1 max_t#~La! 1 d~ p, La!, 2x 1 max_t#~Lb!

1 d~ p, Lb!%. (8)

Therefore, the max-delay function of l conforms to the form given in
Equation (3). We say that l is well-behaved with respect to (w.r.t.) the
max-delay. By replacing max_t, max_t, and max in Equation (8) by min_t,
min_t# , and min, respectively, we can easily verify that l is well-behaved
w.r.t. the min-delay, too. Therefore, l is well-behaved. In the rest of the
proof, we will only prove that l is well-behaved w.r.t. the max-delay. The
proof for the well-behaved property w.r.t. the min-delay can be derived in a
similar fashion.

Next, consider the case where La and Lb are vertical joining segments, as
shown in Figure 21(b). If lh 5 pq # SDR(La, Lb) is a horizontal segment
with p [ La and q [ Lb, then for any point u [ lh, we have

max_t~u! 5 max$ x 1 max_t#~ p!, d 2 x 1 max_t#~q!% (9)

where x 5 d( p, u). So lh is well-behaved w.r.t. the max-delay.
Finally, we prove that any vertical line segment lv 5 pq # SDR(La, Lb)

is well-behaved, as shown in Figure 21(c). Since La and Lb are well-
behaved, we can assume that for any point p1 5 (0, y) [ La,

max_t#~ p1! 5 max$ y 1 a1, 2y 1 b1%.

Similarly, we can assume that for any point p2 5 (d, y) [ Lb,

max_t#~ p2! 5 max$ y 1 a2, 2y 1 b2%.

Fig. 21. Given vertical well-behaved segment La and Lb, any vertical or horizontal segment
in SDR(La, Lb) is also well-behaved.
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Let d1 5 d(lv, La) and d2 5 d(lv, Lb). Then for point u 5 (d1, y) [ lv and
points p1 [ La and p2 [ Lb, which have the same y-coordinates as u,

max_t~u! 5 max$max_t#~ p1! 1 d1, max_t#~ p2! 1 d2%

5 max$ y 1 a1 1 d1, 2y 1 b1 1 d1, y 1 a2 1 d2, 2y 1 b2 1 d2%

5 max$ y 1 max$a1 1 d1, a2 1 d2%, 2y 1 max$b1 1 d1, b21d2%%

Note that y 5 d(u, q). Since max{a1 1 d1, a2 1 d2} and max{b1 1 d1, b2
1 d2} are constants, lv is well-behaved w.r.t. the max-delay. e

LEMMA 2. Suppose La and Lb are vertical, and l 5 pq # SDR(La, Lb) is
a horizontal line segment connecting p [ La and q [ Lb (Fig. 7(b)). If
skew_const(l ) Þ À, then skew_const(l ) # FMR(l ).

PROOF. Let skew( p) and skew(q) denote the original skew of points p
and q. Since p [ La # mr(a) and q [ Lb # mr(b), so p and q are feasible
merging points before mr(a) and mr(b) are merged, that is, skew( p) #
B and skew(q) # B. Let d 5 d( p, q) and lc 5 skew_const(l ). One of the
endpoints of lc, say u, will be either the max-delay or min-delay turning
point. Suppose u is the max-delay turning point, then by Equation (9) in
the proof of Lemma 1,

max_t~u! 5 x 1 max_t#~ p! 5 d 2 x 1 max_t#~q!,

where x 5 d( p, u). Similarly, if u is the min-delay turning point, then

min_t~u! 5 x 1 min_t#~ p! 5 d 2 x 1 min_t#~q!

In either case, we can easily prove that

skew~u! 5 max_t~u! 2 min_t~u!

# max$max_t#~ p! 2 min_t#~ p!, max_t#~q! 2 min_t#~q!%

5 max$skew# ~ p!, skew# ~q!% # B

Since skew(lc) 5 skew(u), we have lc # FMR(l ). Note that this lemma
holds under any monotone delay model. e

LEMMA 3. Suppose La and Lb are vertical. Let R 5 SDR(La, Lb). (i) If
FMR(R) Þ À, then the max-delay, min-delay, and skew values change
monotonically at constant rates 11, 21, and 12, respectively, as we
traverse from the boundaries of FMR(R) horizontally to La or Lb (Fig. 7(b)).
(ii) If FMR(R) 5 À, then MSR(R) 5 MSR(La) if skew(MSR(La)) ,
skew(MSR(Lb)), and MSR(R) 5 MSR(Lb) otherwise (Fig. 7(d)).

PROOF. Let l be a horizontal line segment in R. By Lemma 1, l is
well-behaved. If FMR(R) Þ À, then by Lemma 2 skew_const(l ) # FMR(l )
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# FMR(R). That is, there is no skew turning point on l in the region R 2
FMR(R). Therefore, the max-delay, min-delay, and skew values increase at
constant rates 11, 21, and 12, respectively, along l from the boundaries of
FMR(R) toward La or Lb.

On the other hand, if FMR(R) 5 À, we must have skew_const(l ) 5 À
(i.e., no skew turning points on l ). Thus, either l 5 skew_incr(l ) or l 5
skew_decr(l ); that is, the skew values change monotonically along l.
Therefore, MSR(R) 5 MSR(La) if skew values increase along l, and
MSR(R) 5 MSR(Lb) otherwise. In other words, MSR(R) 5 MSR(La) if
skew(MSR(La)) , skew(MSR(Lb)), and MSR(R) 5 MSR(Lb) otherwise.

e

LEMMA 4. If FMR(R) 5 À, then mr(v) constructed by the BME construc-
tion rules (i) is MSR(R), and (ii) is a well-behaved octilinear region
(segment) with merging cost ueau 1 uebu 5 d(La, Lb) 1 min_skew(R) 2 B,
which is minimum subject to the constraint that p [ La can merge with q [
Lb only if d( p, q) 5 d(La, Lb).

PROOF. Without losing generality, let us consider the case where La and
Lb are vertical, as shown in Figure 7(d). Let u be a point on a horizontal
line segment l 5 pq with p [ La and q [ Lb, and let ueau, uebu be the
lengths of the edges from u to p and q. Then,

max_t~u! 5 max$max_t#~ p! 1 ueau, max_t#~q! 1 uebu%

min_t~u! 5 min$min_t#~ p! 1 ueau, min_t#~q! 1 uebu%.

Now consider the case where both ea and eb have no detour wiring. Then,
ueau 5 d( p, u), and uebu 5 d( p, q) 2 ueau. Let x 5 d( p, u). We claim that
only one of the following sets of inequalities holds:

max_t#~ p! 1 x . max_t#~q! 1 d~ p, q! 2 x,

min_t#~ p! 1 x . min_t#~q! 1 d~ p, q! 2 x, (10)

max_t#~ p! 1 x , max_t#~q! 1 d~ p, q! 2 x,

min_t#~ p! 1 x , min_t#~q! 1 d~ p, q! 2 x. (11)

Otherwise, one can easily verify that skew(u) 5 skew( p) or skew(q) # B,
contradicting the assumption that FMR(R) 5 À. For the case where
Equation (10) holds, skew(u) 5 max_t#( p) 2 min_t#(q) 2 d( p, q) 1 2x .
B. To make u feasible with minimum merging cost ueau 1 uebu, we add
detour wiring of max_t#( p) 2 min_t#(q) 2 d( p, q) 1 2x 2 B to eb such that
uebu 5 max_t#( p) 2 min_t#(q) 1 x 2 B. After adding the detour wiring, the
skew of u is exactly B, and the total merging cost is ueau 1 uebu 5 max_t#( p)
2 min_t#(q) 1 2x 2 B. Therefore, to minimize the merging cost of p and q,
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one should make x 5 0, that is, u 5 p, ueau 5 0, and uebu 5 max_t#( p) 2
min_t#(q) 2 B 5 skew( p) 1 d(La, Lb) 2 B. Hence, to minimize the
merging cost of La and Lb, p [ La should be chosen such that skew( p) 5
min_skew(R), that is, p [ MSR(R). Since ueau 5 0, u 5 p [ MSR(R) and
thus mr(v) 5 MSR(R) 5 MSR(La) (Lemma 3). Similarly, we can prove
the lemma for the case where Equation (11) holds, or equivalently, MSR(R) 5
MSR(Lb). Therefore, mr(v) constructed by the BME construction rules is
a line segment (or point) MSR(R) with skew 5 B, and the merging cost
ueau 1 uebu is minimum. e

LEMMA 5. If FMR(R) Þ À, then mr(v) constructed by the BME construc-
tion rules (i) is equal to FMR(R), and (ii) is a well-behaved octilinear region
with minimum merging cost 5 d(La, Lb).

PROOF. If La and Lb are parallel Manhattan arcs (with constant delay
values), as shown in Figure 7(a), then by Fact 2 and Lemma 1, it is easy to
see that (i) FMR(R) is a well-behaved convex region with at most 6
boundary segments; and (ii) mr(v) constructed by the BME construction
rules is equal to FMR(R).

We next consider the case where, without loss of generality, La and Lb
are parallel vertical segments, as in Figure 22. Based on (1) skew(l ) 5 B
where l is a boundary segment of FMR(R) and l is not a boundary segment
of R; and (2) the delay and skew values change at constant rates (61 and
62) along La, Lb, and the horizontal lines between FMR(R) and La (or Lb)
(Lemmas 3 and Lemma 1); we prove informally in the following that (I)
FMR(R) must be an octilinear polygon with at most 8 sides, and (II) the
vertices of FMR(R) lie either on the boundary segments of R or opposite
the skew turning points of La or Lb.

Now consider lc 5 skew_const(Lb) in Figure 22. If skew(lc) # B,
FMR(R) has a rectilinear boundary segment on Lb (Fig. 22(a)). Otherwise,
by moving lc to the left by (skew(lc) 2 B)/ 2 units, we obtain a boundary
segment of FMR(R) which is parallel to skew_const(Lb) (Fig. 22(b)). Since
FMR(R) # SDR(La, Lb), by Lemma 1, any rectilinear boundary segment
of FMR(R) is well-behaved.

Now consider another three points in region M in Figure 22.

—q1 5 ( x, y) [ Lb which has skew(q1) $ B and is above q. Note that q
and q1 may coincide (Fig. 22(b)).

—q2 5 ( x 2 d, y 1 d), where d $ 0.
—q3 5 ( x, y 1 d).

Then, by Lemma 1, we can compute max_t(q3) 5 max_t(q1) 1 d, and by
Lemma 3, max_t(q2) 5 max_t(q3) 2 d 5 max_t(q1). Therefore, all the
points on Manhattan arc q1q2 have a constant max-delay. Similarly, we
can show that q1q2 has a constant min-delay, and therefore constant skew
(5 skew(q1).) Therefore, we can easily see that (I) and (II) are correct.

Thus, FMR(R) is a well-behaved region and the merging region mr(v)
constructed by the BME construction rules is actually FMR(R). Clearly,
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each point in FMR(R) has minimum merging cost 5 d(La, Lb). So mr(v) 5
FMR(R) has minimum merging cost. e

A.2 Proofs of Theorem 2

The proofs of Theorem 2 will be based on the following Lemmas, some of
which are simply the extension of their counterparts under pathlength
delay. First, we have the following fact from the discussion of the example
in Figure 8.

Fact 3. Let line segment l # SDR(La, Lb) be (i) either horizontal or
vertical when La and Lb are parallel Manhattan arcs with constant delays
or (ii) horizontal (vertical) when La and Lb are parallel segments with
slopes . 1 or , 21 (between 1 and 21). Then line segment l can be divided
into at most three consecutive linear regions (from left to right), denoted
skew_decr(l ), skew_const(l ), and skew_incr(l ), in which the skew changing
rates are respectively 2r(Cap(a) 1 Cap(b) 1 hc), 0, and 1r(Cap(a) 1
Cap(b) 1 hc), where h 5 d(La, Lb) and again Cap(a) and Cap(b) are the
total capacitance of the subtrees rooted at nodes a and b.

LEMMA 6. Let f1( x) and f2( x) be m1-piecewise-linear and m2-piecewise-
linear functions, respectively. (i) If both f1( x) and f2( x) are convex, then
max{ f1( x), f2( x)} is an n-piecewise-linear convex function, where n # m1 1
m2 2 1. (ii) If both f1( x) and f2( x) are concave, then min{ f1( x), f2( x)} is an
n-piecewise-linear concave function, where n # m1 1 m2 2 1. (iii) If f1( x)
is convex and f2( x) is concave, then f1( x) 2 f2( x) is an n-piecewise-linear
convex function, where n # m1 1 m2 2 1.

PROOF. It is easy to see that (i) and (ii) hold. In case (iii), f1( x) and f2( x)
have m1 2 1 and m2 2 1 turning points, respectively, so f1( x) 2 f2( x) will
have at most m1 1 m2 2 2 turning points. Since the slopes of f1( x)
increase and the slopes of f2( x) decrease as x increases, the slopes of f1( x)
2 f2( x) will be an increasing function of x. Thus f1( x) 2 f2( x) is an
n-piecewise-linear convex function, where n # m1 1 m2 2 1. e

Fig. 22. Proof of the correctness of the BME construction rules for the case where joining
segments La and Lb are vertical, and FMR(R) Þ À, where R 5 SDR(La, Lb). Arrows indicate
the directions of increasing skew/max-delay and decreasing min-delay.
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LEMMA 7. Let La and Lb be two parallel well-behaved joining segments
which are not Manhattan arcs with constant delays. Also let R 5 SDR(La,
Lb). Then any line segment l [ R is well-behaved if the given delay
functions defined over La and Lb (before merging) have the same quadratic
term.

PROOF. Assume that La and Lb are two horizontal line segments, as
shown in Figure 23(a). The same arguments of the well-behaved property of
line segment ab in Figure 8 show that any vertical line segment l [ R
is well-behaved and that the delay functions defined over l will have the
quadratic term K z y2. So in the following we will prove only that any
non-vertical line segment l 5 pq [ R is well-behaved. As shown in Figure
23(a), line segment l is described by the equation y 5 mx 1 d where m Þ
`, 0 # x # dh, and d is a constant. Also, for any u 5 ( x, y) [ l let p1 5
( x, 0) [ La and p2 5 ( x, dv) [ Lb, where dv 5 d(La, Lb). Then we define
A( x, y) to be the max-delay from u via p1 to sinks in the subtree rooted at
node a. Similarly, let B( x, y) be the max-delay from u via p2 to sinks in the
subtree rooted at node b.

Since La and Lb are well-behaved and the delay functions defined over
La and Lb have the same quadratic term, we can assume that max_t#( p1) 5
maxi51, . . . ,s1

{mix 1 di} 1 K z x2 for point p1 5 ( x, 0) [ La, and
max_t#( p2) 5 maxi51, . . . , s2

{nix 1 ei} 1 K z x2 for point p2 5 ( x, dv) [
Lb. Let a1 5 r z Cap(a), a2 5 2r(cdv 1 Cap(b)), and g 5 K z (dv)2 1 r z
dv z Cap(b). Then, for point u 5 ( x, y) [ l, we have max_t(u) 5
max{A( x, y), B( x, y)} with

A~ x, y! 5 K z y2 1 a1y 1 max_t#~ p1!

5 K z ~mx 1 d!2 1 a1~mx 1 d! 1 max
i51, . . . , s1

$mix 1 di% 1 K z x2

Fig. 23. Any line segment l # SDR(La, Lb) (the dotted region) is well-behaved if La and Lb

are well-behaved segments and the delay functions defined over La and Lb have the same
quadratic term.
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B~ x, y! 5 K z y2 1 a2 y 1 g 1 max_t#~ p2!

5 K z ~mx 1 d!2 1 a2~mx 1 d! 1 g 1 max
i51, . . . , s2

$nix 1 ei% 1 K z x2

Let K9 5 (1 1 m2) K, m9 5 2mdK 1 a1m, d9 5 K z d2 1 a1d, n9 5
2mdK 1 a2m, and e9 5 K z d2 1 a2d 1 g. Then, we can write A( x, y)
and B( x, y) as

A~ x, y! 5 max
i51, . . . , s1

$~m9 1 mi! x 1 ~d9 1 di!% 1 K9 z x2

B~ x, y! 5 max
i51, . . . , s2

$~n9 1 ni! x 1 ~e9 1 ei!% 1 K9 z x2

Let f1( x) 5 maxi51, . . . , s1
{(m9 1 mi) x 1 (d9 1 di)} and f2( x) 5

maxi51, . . . , s2
{(n9 1 ni) x 1 (e9 1 ei}, which are s1- and s2-piecewise-

linear convex functions, respectively. Let f3( x) 5 max{ f1( x), f2( x)}, which
by Lemma 6 is an s-piecewise-linear convex function of x with s # s1 1 s2
2 1. Therefore, max_t(u) 5 f3( x) 1 K9 z x2. Let z 5 d(u, p) 5 (1 1 m) x.
We then have max_t(u) 5 f3( z/(1 1 m)) 1 K9 z ( z/(1 1 m))2 5 f93( z) 1
(1 1 m2/(1 1 m)2) z K z z2 5 f93( z) 1 K0 z z2, where K0 5 (1 1 m2/(1 1
m)2) z K and f93( z) is still a piecewise-linear convex function. Similarly, we
can prove that min_t(u) consists of a piecewise-linear concave function of z
and the same quadratic term K0 z z2. Therefore, l is a well-behaved
segment.

The above arguments can be generalized to show that if La and Lb are
well-behaved with slope 21 , m1 , 1 (Fig. 23(b)) and if the delay
functions defined over La and Lb are functions of x with the same quadratic
term K z x2, then any line segment l [ R will be well-behaved. In this case,
the skew function defined over l will have quadratic term (i) (rc/ 2) y2 if l is
vertical, where r and c are per unit resistance and capacitance, or (ii) K z x2

if l is parallel to La, or (iii) (1 1 (m1 2 m2)2/(1 1 m1 2 m2)2) z K z x2 if
l is not vertical and has slope m2 Þ m1.

By symmetry, we can have the same conclusion for the case where La and
Lb have slopes . 11 or , 21. e

Lemmas 8 and 9 and Theorem 2 refer to Figure 10, where joining
segments La and Lb have slopes .1 and Lc and Ld are the other two
boundary segments of region R 5 SDR(La, Lb).

LEMMA 8. Let R 5 SDR(La, Lb). (i) If FMR(R) 5 À, then MSR(R) 5
MSR(La) if skew (MSR((La)) , skew(MSR((Lb)), and MSR(R) 5
MSR(Lb) otherwise. (ii) If FMR(R) Þ À, then the skew changing rate is
1r(Cap(a) 1 Cap(b) 1 hc) as we traverse from the boundaries of mr(v)
horizontally to La or Lb.

PROOF. Note that Lemma 2 holds under any monotone delay model,
including Elmore and pathlength delay model. Then the lemma can be
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proved in a similar fashion as in Lemma 3, except that by Fact 3, the skew
changing rate in regions R 2 FMR(R) is 1r(Cap(a) 1 Cap(b) 1 hc)
(instead of 12 under pathlength delay) as we traverse from the boundaries
of mr(v) horizontally to La or Lb. e

LEMMA 9. Let l be a boundary segment of mr(v) in Figure 10(a). Then
there are at most n skew turning points on La or Lb, where n is the number
of leaf nodes in the subtree Tv rooted at v.

PROOF. We first prove that the linear term of the max-delay function of
l is an s-piecewise-linear function with s # n/ 2 1 1.

If v is an internal node whose children are sinks, then there can be at
most 1 delay turning point on l. So, s # n/ 2 1 1 5 2. Otherwise, we
assume that for any internal node v with children a and b the linear term
of the max-delay functions on any boundary segments of mr(a) and mr(b)
are s1-piecewise-linear and s2-piecewise-linear functions, where s1 # n1/
2 1 1, s2 # n2/ 2 1 1, and n1 and n2 are the numbers of leaf nodes in the
subtree rooted at nodes a and b, respectively. Since mr(v) [ SDR(La, Lb),
by Lemma 6, the linear term of the max-delay function defined over any
boundary segment of mr(v) will be an s-piecewise-linear function with s #
s1 1 s2 2 1 # n1/ 2 1 1 1 n2/ 2 1 1 2 1 5 n/ 2 1 1, where n 5 n1 1 n2
is the number of leaf nodes in the subtree Tv rooted at v.

Similarly, we can prove that the linear term of the min-delay function on
any boundary segment of mr(v) will be an s-piecewise-linear function with
s # n/ 2 1 1.

Thus, Lemma 6 implies that skew( p) defined over La and Lb after
merging nodes a and b will be an s-piecewise-linear function, where s #
n 1 1. So there can be up to n skew turning points on each of La or Lb. e

THEOREM 2. For a node v [ G, the merging region mr(v) computed by
the BME construction rules under Elmore delay (i) is consistent with the
definition of merging region, (ii) is a well-behaved region with at most 2n 1
4 sides, and (iii) can be computed in O(n) time, where n is the number of
leaf nodes in Tv.

PROOF. With Fact 3 and Lemmas 6 through 9, we can obtain a proof
similar to that of Theorem 1, except that there are two differences when the
joining segments are not parallel Manhattan arcs with constant delays.

—Because the skew and delay changing rates defined over the line seg-
ments in SDR(La, Lb) are not limited to 11, 0, and 21, the boundary
segments of mr(v) can have arbitrary slopes. Moreover, the boundary
segment of mr(v) which is a Manhattan arc does not necessarily have
constant delays and skew.

—By Lemma 9, on La and Lb there will be totally at most 2n skew turning
points, each of which corresponds to a possible vertex of the merging
region. Also, there are at most 4 vertices on the other two boundary
segments Lc and Ld (Fig. 10). So mr(v) will have at most 2n 1 4 vertices
(sides). Since construction rule BM3 computes FMR(l ) for at most 2n
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horizontal line segments l passing through skew turning points, mr(v) is
computed in O(n) time. e

A.3 Proofs of Theorem 3

THEOREM 3. For each 2 # m9 # m, 2 # k9 # k # m and 1 # i # m 2
m9 1 1, the minimum error erri[m9, k9] for the optimal (m9, k9)-sampling
solution is:

erri@m9, k9# 5 5
0 if m9 5 k9

$~min_skew~Ri1m921! 2 min_skew~Ri1m922!!

if m9 . k9

3 ~Cap~Ri! 2 Cap~Ri1m922!! 1 erri@m9 2 1, k9#

and k9 5 2
mini,i9#m92k91i11$erri@i9 2 i 1 1, 2#

if m9 . k9

1 erri9@m9 2 i9 1 i, k9 2 1#

and k9 . 2

(7)

PROOF. For each 1 # i # m 2 m9 1 1:

Case (i). If m9 5 k9, we can select all m9 merging regions and therefore
erri[m9, k9] 5 0.

Case (ii). If m9 . k9 and k9 5 2, we are forced to retain the region Ri
and Ri1m921. Therefore, the optimal error is the error of the optimal
solution Si[m9 2 1, k9 5 2] where only Ri and Ri1m922 are retained, plus
the error incurred for removing Ri1m922 from {Ri, Ri1m922, Ri1m921} (Fig. 24).

Case (iii). If m9 . k9 and k9 . 2, we have to choose another k9 2 2
regions from {Ri11, . . . , Ri1m922} besides the two mandatory regions Ri

Fig. 24. The lightly shaded region is the area error erri[m9 2 1, k9 5 2] for the optimal
solution Si[m9 2 1, k9 5 2], i.e., the error incurred when all intermediate regions between Ri

and Ri1m922 are removed. The darker region is the additional error incurred when region
Ri1m922 is also removed. It is the skew-capacitance product term in case ii of Equation 7.
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and Ri1m921. Suppose i9 is the index of the region after i in the optimal
solution Si[m9, k9], then the error of the new staircase between the skews
min_skew(Ri) and min_skew(Ri9) is given by erri[i9 2 i 1 1, 2] which is
computed in Case (ii). Now we have to select the optimal solution Si9[m9 2
i9 1 i, k9 2 1] from the regions {Ri9, . . . , Ri1m921} (Fig. 25). Note that Ri9
is retained in both sub-solutions Si[i9 2 i 1 1, 2] and Si9[m9 2 i9 1 i,
k9 2 1], and i , i9 # m9 2 k9 1 i 1 1. Therefore, we iterate i9 from i 1
1 to m9 2 k9 1 i 1 1 and compute the optimal error erri[m9, k9] to be
smallest among all the sums of erri[i9 2 i 1 1, 2] and erri9[m9 2 i9 1 i,
k9 2 1]. e
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