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Short Papers

An Analytical Delay Model for RLC Interconnects source impedance. Fig. 1 compares It and RLC line responses
computed by SPICE3e: 90% threshold delay is 288 ps fotRhe"
Andrew B. Kahng and Sudhakar Muddu model but is 358 ps for th&C model. Elmore delay, which does not

depend on line inductance, will yield the same delay estimate of 386
Abstract—Elmore delay has been widely used to estimate interconnect ps for both theRC and theRLC Case§. More generally, the Elmore
delays in the performance-driven synthesis and layout of very-large-scale- delay formula gives gQOd eSt'mate_s if the interconnect linesrre
integration (VLSI) routing topologies. For typical RLC interconnections, Of overdamped but gives overestimates foL.C' or underdamped
however, Elmore delay can deviate significantly from SPICE-computed interconnects.
delay, since it is independent of inductance of the interconnect and rise  This paper gives new analytical delay models for distribudal’

time of the input signal. Here, we develop an analytical delay model based . . . - .
on first and second moments to incorporate inductance effects into the interconnects under step input to incorporate inductance effects into

delay estimate for interconnection lines under step input. Delay estimates the delay estimate. Though we consider step input in deriving the
using our analytical model are within 15% of SPICE-computed delay delay models, a similar approach can be applied to develop delay

across a wide range of interconnect parameter values. We also extend our models under ramp input. The proposed delay model is based on both
delay model for estimation of source-sink delays in arbitrary interconnect e first and second moments of the interconnect transfer function.
trees. We observe significant improvement in the accuracy of delay . . .
estimates for interconnect trees when compared to the Elmore model, yet 10 €xperimentally validate our analysis and delay formula, we model
our estimates are as easy to compute as Elmore delay. Evaluation of our VLSI interconnect lines having various combinations of source and
analytical models is several orders of magnitude faster than simulation load parameters and obtain delay estimates from SPICE, Elmore
using SPICE. We also illustrate the applicati_on qf our model in controlling delay, and the proposed analytical delay model. The delay estimate
rcisnps?rn;ﬁts nodnertf]zoﬁqﬂoon\geeﬁg?m and reducing interconnect delay through using SPICE is extracted from a computed response at the desired
node, whereas the other two models are analytical (closed-form)

expressions. Over our range of test cases, ElImore delay estimates
can be as much as 50% from the SPICE-computed delays, while our

Accurate calculation of propagation delay in very-large-scal@malytical delay model estimates are within 15% of SPICE delays.
integration (VLSI) interconnects is critical to the design of high-speafle also extend our delay model to estimate source-sink delays in
systems. With the evolution of VLSI technology, transmission-lingrbitrary interconnect trees. For the small tree topology considered,
effects now play an important role in determining interconnect delag@lay estimates using our analytical model are within 15% of SPICE-
and system performance. Various techniques have been proposed#®fiputed delays. Elmore delay estimates vary by as much as 100%
the delay analysis of interconnects. These techniques are basedré the SPICE-computed delays. Since our analytical model has the
either simulation techniquesr (closed-form)analytical formulas same time complexity as the Elmore model, we believe that it can be
Simulation tools such as SPICE give the most accurate insight inigeful in present-day performance-driven routing methodologies.
arbitrary interconnect structures but are computationally expensiveQur paper is organized as follows. In Section Il, we discuss previ-
Transient simulation of lossy interconnects based on convolutigis analytical delay models for distributed interconnect lines. Section
techniques is presented in [10] and [15]. Faster techniques based|ppresents a new analytical delay model for a distribufeBC' line.
moment computations are proposed in [13], [14], [19], and [22]. Singg Section IV, we extend our delay model for interconnection trees.
these methods are too expensive to be used during iterative laypgsét, Section V explains minimization of delay by allowing small
optimization, the Elmore delay [2] approximation (which representgging.
the first moment of the transfer function) is the most widely used
delay model in the performance-driven design of clock distribution
and Steiner global routing topologies. However, EImore delay cannot
accurately estimate the delay f@tLC interconnect lines, i.e., the The transfer function of af¥ LC interconnect line with source and
representation for interconnects whose inductive impedance cante@d impedance (Fig. 2) can be obtained using the ABCD parameters
be neglected [4]; this inaccuracy is harmful to current performanck] (as shown in (1) found at the bottom of the next page) wiere
driven routing methods, which try to optimize interconnect segmenft(r + sl)sc is the propagation constant atld = /(£ + sL)/sC
lengths and widths (as well as driver and buffer sizes). Previoissthe characteristic impedance= R/h,l1 = L/h, andc = C/h are
moment-based approaches (e.g., [10], [11], and [13]) compute ti@sistance, inductance, and capacitance per unit length, respectively,
delay estimates only from a simulated response but not from and’ is the length of the line. To compute tHeLC' line response
analytical formula. from the transfer function, the method of Radpproximation has

To see the effect of inductance impedance on the response, consiggin used by, e.g., [11] and [12]. The output transfer function is
a two-port model for an interconnect driven by a step input with finitexpanded into a Maclaurin series ofarounds = 0, and the series
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Fig. 1. Comparison of SPICE3e responses at the end of an interconnect line driven by a step input and terminated with a capacitive load using both
RC and RLC two-port models. The 90% threshold delay for tBRd.C' model is 288 ps, and for th&C model the delay is 358 ps. The driver
resistance is 10.02 and the load capacitance at the end of the line is 2.0 pF. The interconnect line paramet&rs=a@075 /um, L = 0.123

pH/um, C = 8.8 fF/um; the length of the line is 40Q:m.

voltage is
o— Z4 c Distributed RLC line
Too =2.3-Tap = 1.15RC + 2.3(Rs(C + Cr) + RCr).
_“.’ - o 3
VO(I) lo(l) Y ® ll(t) 12(1) Vz(!)
e Sakurai [17] also gave response and delay calculations for the
o ¢ distributed RC' line. He calculates the time-domain response

Fig. 2. Two-port model of a distribute®LC' line with source impedance from the transfer functlor.1 using the HeaVISIQe expansion over
Z< and load impedancér. poles of the transfer function. He then approximates the response

using a single pole and observes the variation of delay with
respect to source and load parameters; a 90% threshold delay
capacitive load impedances; delay formulas for an interconnect estimate isheuristically obtained as
tree entail recursive application of the formula for a single line.
The analytical Elmore delay [2] estimate, Sakurai's heuristic delay To.o = 1.O2RC 4+ 2.3(Rs(C + Cr) + RCT).

formula [17], [18], and single-pole delay estimates of [3] have beqflyte that Sakurai's heuristic delay formula is almost identical to

widely used. the Elmore delay equation (3). In this paper, to compute the 90%
« Elmore delay is defined to be the first moment of the systefAreshold delay according to the Elmore model, we apply (3).
impulse response, i.e., the coefficientsobr the first moment since these single-pole delay estimates cannot accurately estimate
in the system transfer functiof (s). Applying this definition delay for RLC interconnects, Zhotet al. [22] proposed a two-
to H(s) in (1) and considering a source resistarfée and a pole approximation for the transfer function to compute rgponse
capacitive loadC'r, the Elmore delay for a distributeBC' or  at the load forRLC interconnection trees. However, the response

RLC' line model is computation does not provide any analytical expression for delay; it
C is also too time consuming to be used in iterative optimization of
Tep = Rs(C +Cr) + R<5 + CT)- (2)  layout. Recently, [9] proposed to improve the Elmore delay model

by using higher order moments; this work gave a heuristic net delay
By considering only one pole in the transfer function, i.emodel equal to the sum of the first momedt{) and its standard
approximating the denominator polynomial to only first momentjeviation?
the single-pole response can be obtained as in [3]. The single
pole of the transfer function is equal to the inverse of the Elmore >Standard deviation is equal to= /| M} — My|. In the early drafts of
delayTin. Hence, the delay at arbitrary thresholds of the singleyy BERG  0C Boe o0 o valous source and load paramelers as
pole response can be directly related to Elmore delay (Elmog cussed in detail by [6]. The full version of our paper [6] studies varioué
delay actually corresponds to the 63.2% threshold voltage @mbinations of first and second moments, of which the analytical model
the single-pole response). For example, delay at 90% threshdkscribed here performs best.

_Vals) _ 1
H(s) = Vo(s) [cosh(fh)+ %ﬁ—sinh(@h)]—i— ﬁ[Zosinh(ﬁh)—I—chosh(ﬂh)] @)
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Fig. 3. Two-port model of a distribute® LC' line with resistive and inductive source impedance and capacitive load impedance.

. A NEw ANALYTICAL DELAY MODEL where
We now develop a simple closed-form delay estimate, based on 2 —by £ /D% — 4by
first and second moments, which considers the effect of inductance. 1,2 — M, £ \/AM, — 30M? 2bs

To our knowledge, this is the first analytical delay model that handles
arbitrary threshold voltages and inductance effects for a distribut@tie condition for the poles to be real (M. — 3M7) = (b —
line. We give experimental confirmation via 90% threshold delajb,) > 0. Since
es\t;vn;a::fa\;vlh;cnh ;/:Sit(r::rmpare against S_PICE outﬁut.. i
y interconnect line as follows: 1) the source sp— s =1 72
is modeled as a resistive and inductive impeddifte = Rs+sLs) b2
and 2) the load at the end of the interconnect line is modeled usiggnegative, the coefficientss/(sa — s;) and s,/(s2 — 51) are
capacitive impedance. Thus, the transfer function for the interconngeisitive. Also, since the magnitude:| is greater than/s,|, the

line of Fig. 3 is second term in the time-domain response decreases rapidly compared
H(s) 1 to the first term. Hence, the two-pole response can be approximated
s) = .
cosh(6h) (1 + Z5) + sinh(6h) (55 + 22) (lower-bounded) as
~ o) = Vo1 - 2t
whereZy = 1/(sCr), Zs = Rs + sLs, Zo = /(R+ sL)/(sC), v(t) ~ Vol 1 - 52— 51 ’

and #h = /(R4 sL)sC. We truncate this transfer function by . . .
expanding the hyperbolic functions around= 0; expansion around Since the voltage is lower-bounded, the delay obtained is an upper

s = oo Is not necessary since we consider only the first felound on the actual delay. The delay (the subscript _indica?es the
coefficients of the transfer function. Expandingsh and sinh as CaSe Of real poles) at threshold voltage can be obtained via

infinite series and collecting terms up to the coefficientdfn the _ (82 —s1)(1 — ven)
denominator, we obtain the truncated transfer function 81T = 1

1
H(s)m ——————— =—In L 1+ .
14 sby + 52Dy 2(1 — ven) N

52

with coefficients

Letting
by = RsC + RsCy + —— 4+ RCy L .
2 "2 2 1 Ko=ln| |1+
6 2 24 6
LC we have
+LsC+ LsCy + — + LCy. (4)
2 _ Ko _ o M4 VM, 30 2b,
Note that the first and second moments of the transfer function can™” — Isi] — b 2 N x’"b1 — /b2 — 4b,

be obtained from the coefficients and b, i.e., M, = b, and o ) o )

M, = b? —b,. We use the coefficient notatidn, b» and the moment -€- K, is a function of the coefficients; and b,. For the wide
notation M;, M> interchangeably according to the simplicity of the@ngé Of source, load, and interconnect para.meter’va}lues considered
expression. Depending on the sign idf — 4b», the poles of the iN our simulations (see Tables | and Il), we find tHat is actually
transfer function can be either real or complex. We separately derfA810st & constant: the plot on the left side of Fig. 4 shows the linear

our delay model from the two-pole response for each of these cad€gression used to find the value. = 2.36, which gives a very
strong fit between SPICE delay values anf|s:|). The variation

o X = (b /(b2) i .
A Real Poles of K. with the quantityX = (b2)/(b7) is further discussed in [6].
Thus, we use

The two-pole methodology [6], [22] yields the following response

for the case of real poles: o _ 2by _ ' (M + \/4M; — 3M})
=236 —— " =2.36 5 :
- 52 syt $1 sot bl_vb1_462
v(t)=Vo[1l- et e’ ®)
82 — 84 59 — 84

30ur analytical model extends to any threshold delays; we simply give tl‘i’he resulting delay estimates are compared against those of various
derivation for 90% delay threshold. ' ther methods in Tables | and II. We see that our analytical delay

4SPICE simulation results are obtained using SPICE3 and the built-in |o£{9de' gives estimates close FO those obta_lned from S_PICE’ but as
transmission line (LTRA) model, which is based on convolution techniqué&Xpected, Elmore delay also gives good estimates for this case where
[15]. the interconnect response is overdamped.
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500 . : : . y . . r . TABLE |
90% THRESHOLD VOLTAGE DELAY ESTIMATES FORCOMBINATIONS
450 | OF SOURCE AND LOAD PARAMETERS FORWHICH THE POLES OF THE
| RESPONSEARE REAL (1.E., OVERDAMPED RESPONSE. THE INTERCONNECT
400 LINE PARAMETERS ARE R = 0.015 Q/um, L = 0.246 pH/zm, AND
2350 C = 0.176 fF/pm, AND THE LENGTH OF THE INTERCONNECTIS 100 pzm
: 00 [ Source Load | Delay from Analytical Delay
g Response Models
m 250 Rs Ls Cr SPICE Elmore | New Model
E | Q pH pF ps ps ps
%200
50 | 2.46 | 0.176 22.33 22.93 22.21
150 100 | 2.46 | 0.176 45.30 45.20 45.70
100 500 | 2.46 | 0.176 224.50 223.50 228.95
1000 | 2.46 | 0.176 446.20 446.4 457.46
50 25 | 2.46 1.76 107.10 108.40 108.65
0 A . . . R . . . \ 50 | 2.46 1.76 210.10 210.80 214.74
0 20 40 60 80 100 120 140 160 180 200 100 | 2.46 1.76 415.20 415.40 425.10
1y 500 | 2.46 1.76 2052.60 2053.0 2103.68
1000 | 2.46 1.76 4099.50 4100.0 4101.30
(@)
10 s TABLE I
9 1 THE LENGTH OF THE INTERCONNECTLINE IN THESE EXPERIMENTS IS ALWAYS
8| h = 2000 pgzm. THE DELAY ESTIMATES REFER TO50% THRESHOLD VOLTAGE
+
2 * Interc. Driver Load SPICE Elmore | New Model
‘;" T . 1 para. Res. Cap. Delay Delay
g 6 . i l‘,l,C R‘S CT 0.693b1
@ [pmn Q »f ps ps ps
257 - 1 0.0015 ©2
9, | 0.176 ff 100 0.01 83 25 83
0.246 ph
3 1 ? 500 0.01 178 126 178
? 1000 0.01 302 251 302
2 ) ? 100 0.1 90 32 90
1t ] ? 500 0.1 209 157 209
? 1000 0.1 364 314 365
0 ' ' : : : » 100 1 150 96 149
Y 1 2 3 4 5 6 > 500 1 522 471 522
g ? 1000 1 989 939 990
(b)

Fig. 4. The plot on the left shows the strong linear fit between SPICE de@éries and considering only the first term vields
and1/(|s1]) for real poles withK, = 2.36. The plot on the right shows g only y

the strong linear fit between SPICE delay ant? for complex poles with

K. = 1.66. e~ TED . sin(f-7c+p) = e~ TeD . (B-7c+p)

1— v
o 2 ’
1+(5)
B. Complex Poles
The condition for complex poles (¢ M2 —3M7) = (b1 —4b2) <0.  Therefore

The time-domain response for complex poles is given by K.
Te = 3
v(t) =V <1 - #ffﬂt -sin(5t + p)) where
K. = (L= v TE0 P
wnerea = oty = ORI andy = (2. Usig e

the above equation and threshold voltage, we get _ ) . 5
Substituting forg and usingd; = b; and M. = b7 — b2, our delay

estimate is given by

= (6)
1+ (%)2 Te = K. K 2bs

Ca . 1 — ven
e t~51n(ﬁ-t+p): U

— =K, —.
3 Vb, — b2

The delay at a given threshold voltage can be computed by solviBgen thoughXK’. is a function ofb; and b-, for a wide range of
for time in (6) recursively. One way to solve the recursive (6) isiterconnect, source, and load parameters, it too is almost a constant.
to approximate the time variable in the exponential term by EImok&'e determined the constant valdé. = 1.66 again by finding a
delay, i.e., substitutdp for time ¢. Expandingsine as a Taylor good fit between SPICE delay values aht{3), as shown on the



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 12, DECEMBER 1997 1511

TABLE 1lI TABLE IV
90% THRESHOLD VOLTAGE DELAY ESTIMATES OF THE COMBINATIONS OF THE LENGTHS OF VARIOUS INTERCONNECTS IN THETREE OF FIG. 5
SOURCE AND LOAD PARAMETERS FORWHICH THE POLES OF THE RESPONSE
ARE COMPLEX (1.E., UNDERDAMPED CONFIGURATIONS). THE INTERCONNECTLINE Interconnect | Length
PARAMETERS ARE R = 0.015 Q/um, L = 0.246 pH/um, AnD C' = 0.176 um
fF/im, AND THE LENGTH OF THE INTERCONNECTIS 100 zm. THE PERCENTAGE I
ERROR OFEACH DeLAY MODEL WITH ReESPECT TOSPICE E ALso GIVEN L 50
12 100
Source Load | Delay from Analytical Delay 13 50
Response Models (% error) 7 200
Rs Ls Cr SPICE Elmore New Model =
15 100
Q pH pF ps ps ps 6 %0
10 | 0.0246 | 0.0176 1.22 0.90 (26%) 1.30 (6%) I7 100
15 | 0.0246 | 0.0176 1.33 1.31 ( 2%) 1.38 ( 4%) -
20 | 0.0246 | 0.0176 147 171 ( 16%) | 151 (3%) 18 200
25 | 0.0246 | 0.0176 1.60 2.12 ( 33%) 1.64 ( 3%)
10 | 0.0246 | 0.176 4.50 5.12 ( 14%) 4.25 ( 6%) ) ) ) ] o
15 | 0.0246 | 0.176 5.85 7.32 (25%) 5.31 (9%) which gives a recursive equation fdf,, i.e.,
20" | 0.0246 | 0.176 7.90 9.55 (21 %) 8.60 ( 7%) ) 2Ty o o
10 | 2.46 | 0.0176 131 090 (31%) | 140 (%) Kq=ln <1U <1 3, )) =In(10(1+ Kq))
15 2.46 | 0.0176 1.40 1.31 (7%) 1.49 ( 7%) ) . )
20 546 | 0.0176 155 L.71 ( 10%) 159 ( 2%) from which K; =~ 3.9. Thus, in the case of a double pole, the 90%
256 | 2.46 | 0.0176 1.63 2.12 ( 30%) 1.69 (4%) threshold delay is estimated as
10 | 2.46 | 0.176 4.65 5.10 { 10%) | 4.30 ( 8%) o
To.9 = I{q - — = 1.95b (8)
15 2.46 0.176 5.85 7.33 ( 25%) 5.30 ( 9%) 0.9 d 2 : 1
20 2.46 0.176 7.98 9.55 ( 19% 8.70 ( 9% o . .
(19%) (9%) which is independent of the inductance value and different from the
10 | 246 | 0.0176 1.80 0.90 ( 50%) 1.96 ( 9%) Elmore delav exoression
15 | 246 | 0.0176 189 131 (31%) | 2.06 ( 9%) >y exp : .
50 546 1 0.0176 200 171 ( 15%) 215 (7%) In practice, the double-pole case should be applied when the mag-
5% | 246 | 0.0176 319 211 (1%) 221 (1%) nitude ofb7 — 4b- is within some threshold. We have experimentally
0 246 | 0176 =66 5.10 ( 10%) 5.44 ( 4%) studied a range of interconnect topologies and different driver/load
15 | 246 | 0.176 6.50 7.33 ( 13%) 5.95 ( 8%) parameters. We observed that for both the real and complex pole
20 246 | 0.176 7.66 9.55 ( 25%) 6.97 ( 9%) cases [(5) and (7)], the value bf — 4b, should be of the same order
25 24.6 | 0.176 9.47 11.78 ( 24%) 9.26 ( 2%) as the value ob,. Thus, we have added a threshold criterion, such

that if b2 — 4b, is more than an order of magnitude smaller tthan
we apply (8). [However, we find that the valueidf— 4b, is almost

right side of Fig. 4. Therefore, the 90% threshold delay estimate fgver close to zero (i.e., is clearly greater or less than zero), and (8)
complex poles is is almost never invoked.]

2by 2(M7 — My) IV. |INTERCONNECTION TREES
Te =166 —— = 1.66 - ——=~. @ . . . .
3M?2 — 4M> Last, we describe the extension of our analytical model to estimate

delays in arbitrary interconnect trees. AnLC' network is called

Table 1l shows delay values for various combinations of sourc8N LC' tree if it does not contain a closed path of resistors and
load, and interconnect parameters assuming the valié afbtained inductors, i.e., all resistors and inductors are floating with respect
by this regression analysis. The delay estimates using our analyti%hground and all capacitors are connected to ground. Consider an
model are within 10% of SPICE-computed delay estimates, while ERLC interconnect tree with root (or sourcé)and set of sinks (or
more delay estimates vary by as much as 33% from SPICE-comput@@fs) L = {L1. La,---, L, }. The unique path from roof to the
delays. Hence, for the case of complex poles (i.e., underdampdgk node: is denoted by(i) and is referred to as themain path
response), the Elmore model is no longer acceptably accurate. LA&e €dges/nodes not on the main path are referred to asfftpath

we consider the special case in which poles are equal, i.e., a doulidges/nodes. We model each edge on the main path of the tree using
pole configuration. a lumpedRLC segment, e.g., ah, T, or IT model. We replace the

off-path subtree rooted at nodewith the total subtree capacitance at
nodew. (Fig. 6 shows an example of a main path where each branch
B R in the tree is replaced bR LC' segments and the off-path subtrees
The condition for a double pole {$; —4b2) = 0. The double-pole 56 replaced by their respective subtree capacitances.) Hence, at any

C. Double Poles

response is nodew, the total capacitance is given by
Vis) = Vo 1 _ = \0) 1 . o= =C, if no off-path subtree at node
' s 1+bis+bos? s ba(s — s1)? = Cy+ Cr¢y if nodewv has off-path subtre# (v)
=V <1 L 2 1 2) whereC,, is the capacitance at the node afid,, is the off-path
s s=s1 bi(s—s1) subtree capacitance at nodeThe kth coefficientd, of the transfer

where s; = bbl and the time-domain response is given byunctlon for the generaR LC circuit of Fig. 6 can be expressed using
~%p5
o(t) = Vo(1 — pter_ Zz ¢'*1). The delay at 90% threshold is the following recursive equation [5]:

N

. . N41 _
70.9:%1n<10<1+m_9>)_Ide)_Adb; by RAZC booi+Ln > Cibl,+b0  (9)

1 by b 2 j=1 G=1
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Fig. 5. A simple interconnection tree consisting of distribufe8C' lines. The lengths of the various interconnects are given in Table IV.
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Fig. 6. Representation of the main path in the tree, where each distributed line is modeledziigihgegments.

where by’ refers to the coefficient 08" in the transfer function first moment, or the first coefficiett of the transfer function of the
between the given node and notleNote thaty) = 1, ¥, = 0 source-sink main path [16]. The 90% threshold delay using the first
for all j andb, = 0 for all k. Using the above recursive equationmoment is simply

the expressions for the first and second coefficients of the transfer

function can be derived as Tep(i) = 2.3 M (12)
N N i . . . . . . . .
PN — Ry ZCJI' LN = ZRi ZCJI WhICh we emphasize can t_)e inaccurate _desplte its wide use, since it
= s S ignores inductance of the interconnect line.
N N We evaluate the effect of our analytical model by considering a
pY = Ry ZOJ"ZJ{ Y Lx ZCJ" T+ simple interconnection tree shown in Fig. 5. We consider the sink
= = node N4 for delay estimation. Each edge on the main path between
N N =1 =1 N N the root and nodeV4 is replaced by a twd- segment modél.We
= ZOJ' ZR‘ ZC«J'Y ZRd + ZOJ" ZL,_ (10) then apply the above-described recursive coefficient (or moment)
= 1= =1 d=i =1 = computation for the resultadt LC circuit of the main path. The 90%

F . d sink pair. th Hicigntandb b threshold delays according to both the Elmore model and our new
or any given source and sink pair, the coefficiéntandb. can be analytical model are computed using (11) and (12). We also compute

computed in linear time by traversing the main path and using IB? delay at the given sink node using SPICE3e, where each edge

above recursive equation. Using the analytical delay model developoefahe tree is modeled using the LTRA model (with SPICE, we first
in the previous section, we can obtain an analytical delay estim%tg '

. . ) . mpute the response at the sink node and then obtain the delay
for RLC interconnect trees using the first and second coefflmen}gr 90% threshold voltage). Table V presents delay estimates for a

N . X .
Thus, the 90% threshold delay at a given sipkdepending on the range of interconnect parameters, driver resistance values, and sink

I, — 3M2) i . .
value of (40 — 3My), is load capacitance values. The Elmore delay varies by as much as 35%
=, . WtV MY for Real poles from the SPICE-computed delay. However, our new model is within

Tyoli)= K 2(M2 _ﬁz) for C | | (11) 15% of the SPICE delay for all examples. Another advantage of our
NV = Re A or Lomplex poles model is due to simulation complexity. Our delay estimates require
=Ky " for Double poles

5 ) o " )
where the first and second moments are expresseéd,as b; and Our model is not limited to traditional segment models, and indeed

2 - " ~we believe the accuracy of our results would improve if we were to use
M = b1 — b2. The coefficients of the transfer function are obtaineflonuniform segment models [5], [21] designed to perfectly match the low-

from (10). By contrast, the Elmore delay at the sink is equal to theeder moments of the distribute®dLC' line.
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TABLE V
90% THRESHOLD DELAY VALUES FOR A WIDE RANGE OF INTERCONNECT
PARAMETERS AT NODE 4 OF THE TREE IN FIG. 5. WE ComPARE SPICE LTRA
AND THE ELMORE MODEL AGAINST OUR ANALYTICAL DELAY MODEL

for undershoots. The first undershoot occurs at time= 27 /3, and
the value of the undershoot is

2
s =Voe T [1 4 <%> sin(ATh + p) = Voe L.

Interconnect | Driver | Load | SPICE | Elmore | New Model
parameters | res. cap. | Delay | Delay Delay The constraint for a given percentage undershgotan be obtained
[um Q pF ps ps ps
as
R =0.015Q .
_ . .o o

C =0.176 fF 10 0.02 5.7 6.6 5.0 2 = —Jlu(vw)l.
L =0.246 pH 8 27
R =10.0015 Q ; 0 _ EV
C = 0176 fF 10 0.9 4 2% 31 For example, with 5% undershoot, we havg, = 0.05V; and
I =946 pH ’ ’ ) a/B = 0.48. We can express and 3 in terms of coefficients of

— == i e — b1
R=10.0150 the transfer function, i.e; T Therefore
C =0.176 fF 10 0.2 39 29 32
L =246 pH i a)\2

6 13 2 4(/_7’)

R =0.0015Q by = . b
C=0176fF | 10 2.0 179 238 205 (5) -1
L = 2.46 pH ) ) ‘
R =0.0015 Q With 5% undershoot, the above equation reduces?te= 0.74bs,
C =0.176 fF 10 2.0 231 238 232 and a 90% threshold delay estimate for this case can be obtained
L =0.246 pH (see [6]) as
R=0.015Q "
C =0.176 fF 10 2.0 199 270 230 Too = 1.66————— = 2.13b,.
L =246 pH 4by — b3
R =10.0159Q o ) o )
C =0176 fF 100 9.0 9419 2461 9367 Similarly, for 5% overshoot, the relation between the coefficients is
L =246 pll b? = 1.91h, and a corresponding delay estimateTis, = 1.205;.

As expected, the delay increases for a strong undershoot requirement,
and in general, the delay increases if ringing in the response is
three orders of magnitude less computation than SPICE, since ti¢{ppressed [20]. The above constraint betweeand 5 to reduce

have the same time complexity as the Elmore delay estimate. ~ the undershoot in the response could be applied with the delay model
in (7) to perform delay-driven routing tree synthesis.

V. CONSTRAINT ON MOMENTS FOR
CONTROL OF UNDERSHOOTOVERSHOOT VI.

In this section, we illustrate how our simple threshold delay model Fast delay estimation methods, as opposed to simulation tech-
can vyield simple analytical constraints for interconnect synthesi@gues, are needed for incremental performance-driven layout syn-
Specifically, we address the question of finding interconnect a#fesis. Elmore delay-based estimation methods, although efficient,
driver parameters for optimum delay with controlled ringing. Corfannot accurately estimate the delay foEC' interconnect lines. We
sider a simpleRLC line driven by a gate, witZs being the driver have obtained an analytical delay model, based on first and second
impedance and’;, being the load impedance at the end of the linanoments of RLC' interconnection lines, that considers the effect of
The characteristic impedance of the line is given by inductance. Resulting delay estimates are significantly more accurate

than Elmore delay. We also extend our delay model to estimate
/ R+ “”L. source-sink delays in arbitrary interconnect trees. Even for the small
sC tree topology considered, we observe significant improvement in the
Ideally, the driver and line parameters are adjusted such Apat accuracy of our delay estimates, compared to the Elmore model.
matchesZ, and the voltage response at the end of the line is criticalfyince our model has the same time complexity as the EImore model,
damped. However, if the driver impedane is just smaller than we believe it can be valuable in modern iterative layout synthesis
the characteristic impedance of the line, the voltage response wilethodologies. Even though we consider step input for deriving
have a small amount of ringing: this can be advantageous in that the delay models, a similar approach can be applied to develop
threshold delay will decrease [20]. The problem with ringing is thatelay models under ramp input. We have also discussed a delay
it can cause false switching if the voltage response drops back belgwimization approach that uses controlled small ringing in the
the threshold; hence, the advantages of ringing can be exploited origponse wave form.
if the maximum oscillation (overshoot or undershoot) is bounded such
that false switching does not occur. We now develop an analytical

equation that achieves this control in terms of coefficients of the

. - - . 1] L. N. Dworsky, Modern Transmission Line Theory and Applications
F;a?;fer function. Additional context for our discussion may be founo[ New York: Wiley, 1979.
i .

S [2] W. C. Elmore, “The transient response of damped linear networks with
The voltage response for ringing is given by particular regard to wideband amplifiers]” Appl. Phys. vol. 19, pp.
55-63, Jan. 1948.

CONCLUSION
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