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Short Papers

An Analytical Delay Model for Interconnects

Andrew B. Kahng and Sudhakar Muddu

Abstract—Elmore delay has been widely used to estimate interconnect
delays in the performance-driven synthesis and layout of very-large-scale-
integration (VLSI) routing topologies. For typical RLCRLCRLC interconnections,
however, Elmore delay can deviate significantly from SPICE-computed
delay, since it is independent of inductance of the interconnect and rise
time of the input signal. Here, we develop an analytical delay model based
on first and second moments to incorporate inductance effects into the
delay estimate for interconnection lines under step input. Delay estimates
using our analytical model are within 15% of SPICE-computed delay
across a wide range of interconnect parameter values. We also extend our
delay model for estimation of source-sink delays in arbitrary interconnect
trees. We observe significant improvement in the accuracy of delay
estimates for interconnect trees when compared to the Elmore model, yet
our estimates are as easy to compute as Elmore delay. Evaluation of our
analytical models is several orders of magnitude faster than simulation
using SPICE. We also illustrate the application of our model in controlling
response undershoot/overshoot and reducing interconnect delay through
constraints on the moments.

I. INTRODUCTION

Accurate calculation of propagation delay in very-large-scale-
integration (VLSI) interconnects is critical to the design of high-speed
systems. With the evolution of VLSI technology, transmission-line
effects now play an important role in determining interconnect delays
and system performance. Various techniques have been proposed for
the delay analysis of interconnects. These techniques are based on
either simulation techniquesor (closed-form)analytical formulas.
Simulation tools such as SPICE give the most accurate insight into
arbitrary interconnect structures but are computationally expensive.
Transient simulation of lossy interconnects based on convolution
techniques is presented in [10] and [15]. Faster techniques based on
moment computations are proposed in [13], [14], [19], and [22]. Since
these methods are too expensive to be used during iterative layout
optimization, the Elmore delay [2] approximation (which represents
the first moment of the transfer function) is the most widely used
delay model in the performance-driven design of clock distribution
and Steiner global routing topologies. However, Elmore delay cannot
accurately estimate the delay forRLC interconnect lines, i.e., the
representation for interconnects whose inductive impedance cannot
be neglected [4]; this inaccuracy is harmful to current performance-
driven routing methods, which try to optimize interconnect segment
lengths and widths (as well as driver and buffer sizes). Previous
moment-based approaches (e.g., [10], [11], and [13]) compute the
delay estimates only from a simulated response but not from an
analytical formula.

To see the effect of inductance impedance on the response, consider
a two-port model for an interconnect driven by a step input with finite
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source impedance. Fig. 1 compares theRC andRLC line responses
computed by SPICE3e: 90% threshold delay is 288 ps for theRLC

model but is 358 ps for theRC model. Elmore delay, which does not
depend on line inductance, will yield the same delay estimate of 386
ps for both theRC and theRLC cases. More generally, the Elmore
delay formula gives good estimates if the interconnect lines areRC

or overdamped but gives overestimates forRLC or underdamped
interconnects.

This paper gives new analytical delay models for distributedRLC

interconnects under step input to incorporate inductance effects into
the delay estimate. Though we consider step input in deriving the
delay models, a similar approach can be applied to develop delay
models under ramp input. The proposed delay model is based on both
the first and second moments of the interconnect transfer function.
To experimentally validate our analysis and delay formula, we model
VLSI interconnect lines having various combinations of source and
load parameters and obtain delay estimates from SPICE, Elmore
delay, and the proposed analytical delay model. The delay estimate
using SPICE is extracted from a computed response at the desired
node, whereas the other two models are analytical (closed-form)
expressions. Over our range of test cases, Elmore delay estimates
can be as much as 50% from the SPICE-computed delays, while our
analytical delay model estimates are within 15% of SPICE delays.
We also extend our delay model to estimate source-sink delays in
arbitrary interconnect trees. For the small tree topology considered,
delay estimates using our analytical model are within 15% of SPICE-
computed delays. Elmore delay estimates vary by as much as 100%
from the SPICE-computed delays. Since our analytical model has the
same time complexity as the Elmore model, we believe that it can be
useful in present-day performance-driven routing methodologies.

Our paper is organized as follows. In Section II, we discuss previ-
ous analytical delay models for distributed interconnect lines. Section
III presents a new analytical delay model for a distributedRLC line.
In Section IV, we extend our delay model for interconnection trees.
Last, Section V explains minimization of delay by allowing small
ringing.

II. PREVIOUS ANALYTICAL DELAY MODELS

The transfer function of anRLC interconnect line with source and
load impedance (Fig. 2) can be obtained using the ABCD parameters
[1] (as shown in (1) found at the bottom of the next page) where� =

(r + sl)sc is the propagation constant andZ0 = (R+ sL)=sC

is the characteristic impedance.r = R=h; l = L=h; andc = C=h are
resistance, inductance, and capacitance per unit length, respectively,
andh is the length of the line. To compute theRLC line response
from the transfer function, the method of Padé approximation has
been used by, e.g., [11] and [12]. The output transfer function is
expanded into a Maclaurin series ofs arounds = 0, and the series
is truncated to desired order.1 In general, analytical computation of
the exact voltage response is very tedious and is usually in the form
of an infinite series.

Efficient delay estimates forRC lines are typically derived by
considering a single interconnect line with resistive source and

1The work of [10] used a recursive convolution-based approach and
expanded the admittance and the propagation coefficient term arounds =1.
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Fig. 1. Comparison of SPICE3e responses at the end of an interconnect line driven by a step input and terminated with a capacitive load using both
RC and RLC two-port models. The 90% threshold delay for theRLC model is 288 ps, and for theRC model the delay is 358 ps. The driver
resistance is 10.0
 and the load capacitance at the end of the line is 2.0 pF. The interconnect line parameters areR = 0:075 
/�m, L = 0:123

pH/�m, C = 8:8 fF/�m; the length of the line is 400�m.

Fig. 2. Two-port model of a distributedRLC line with source impedance
ZS and load impedanceZT .

capacitive load impedances; delay formulas for an interconnect
tree entail recursive application of the formula for a single line.
The analytical Elmore delay [2] estimate, Sakurai’s heuristic delay
formula [17], [18], and single-pole delay estimates of [3] have been
widely used.

• Elmore delay is defined to be the first moment of the system
impulse response, i.e., the coefficient ofs or the first moment
in the system transfer functionH(s). Applying this definition
to H(s) in (1) and considering a source resistanceRS and a
capacitive loadCT , the Elmore delay for a distributedRC or
RLC line model is

TED = RS(C + CT ) +R
C

2
+ CT : (2)

By considering only one pole in the transfer function, i.e.,
approximating the denominator polynomial to only first moment,
the single-pole response can be obtained as in [3]. The single
pole of the transfer function is equal to the inverse of the Elmore
delayTED. Hence, the delay at arbitrary thresholds of the single-
pole response can be directly related to Elmore delay (Elmore
delay actually corresponds to the 63.2% threshold voltage of
the single-pole response). For example, delay at 90% threshold

voltage is

T0:9 = 2:3 � TED = 1:15RC + 2:3(RS(C + CT ) +RCT ):

(3)

• Sakurai [17] also gave response and delay calculations for the
distributedRC line. He calculates the time-domain response
from the transfer function using the Heaviside expansion over
poles of the transfer function. He then approximates the response
using a single pole and observes the variation of delay with
respect to source and load parameters; a 90% threshold delay
estimate isheuristically obtained as

T0:9 = 1:02RC + 2:3(RS(C + CT ) +RCT ):

Note that Sakurai’s heuristic delay formula is almost identical to
the Elmore delay equation (3). In this paper, to compute the 90%
threshold delay according to the Elmore model, we apply (3).
Since these single-pole delay estimates cannot accurately estimate
delay for RLC interconnects, Zhouet al. [22] proposed a two-
pole approximation for the transfer function to compute theresponse
at the load forRLC interconnection trees. However, the response
computation does not provide any analytical expression for delay; it
is also too time consuming to be used in iterative optimization of
layout. Recently, [9] proposed to improve the Elmore delay model
by using higher order moments; this work gave a heuristic net delay
model equal to the sum of the first moment (M1) and its standard
deviation.2

2Standard deviation is equal to� = jM2
1
�M2j. In the early drafts of

our paper [6], we also considered exactly the same model; however, it turns
out that this model is not accurate for various source and load parameters, as
discussed in detail by [6]. The full version of our paper [6] studies various
combinations of first and second moments, of which the analytical model
described here performs best.

H(s) =
V2(s)

V0(s)
=

1

cosh(�h)+ Z

Z
sinh(�h) + 1

Z
[Z0sinh(�h)+ZScosh(�h)]

(1)
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Fig. 3. Two-port model of a distributedRLC line with resistive and inductive source impedance and capacitive load impedance.

III. A N EW ANALYTICAL DELAY MODEL

We now develop a simple closed-form delay estimate, based on
first and second moments, which considers the effect of inductance.
To our knowledge, this is the first analytical delay model that handles
arbitrary threshold voltages and inductance effects for a distributed
line. We give experimental confirmation via 90% threshold delay
estimates,3 which we compare against SPICE output.4

We model an arbitrary interconnect line as follows: 1) the source
is modeled as a resistive and inductive impedance(ZS = RS+sLS)
and 2) the load at the end of the interconnect line is modeled using
capacitive impedance. Thus, the transfer function for the interconnect
line of Fig. 3 is

H(s) =
1

cosh(�h) 1 + Z

Z
+ sinh(�h) Z

Z
+ Z

Z

whereZT = 1=(sCT ), ZS = RS + sLS, Z0 = (R+ sL)=(sC),
and �h = (R+ sL)sC. We truncate this transfer function by
expanding the hyperbolic functions arounds = 0; expansion around
s = 1 is not necessary since we consider only the first few
coefficients of the transfer function. Expandingcosh and sinh as
infinite series and collecting terms up to the coefficient ofs2 in the
denominator, we obtain the truncated transfer function

H(s) �
1

1 + sb1 + s2b2

with coefficients

b1 = RSC +RSCT +
RC

2
+RCT

b2 =
RSRC

2

6
+
RSRCCT

2
+

(RC)2

24
+
R2CCT

6

+ LSC + LSCT +
LC

2
+ LCT : (4)

Note that the first and second moments of the transfer function can
be obtained from the coefficientsb1 and b2, i.e., M1 = b1 and
M2 = b21�b2. We use the coefficient notationb1; b2 and the moment
notationM1;M2 interchangeably according to the simplicity of the
expression. Depending on the sign ofb21 � 4b2, the poles of the
transfer function can be either real or complex. We separately derive
our delay model from the two-pole response for each of these cases.

A. Real Poles

The two-pole methodology [6], [22] yields the following response
for the case of real poles:

v(t) = V0 1�
s2

s2 � s1
e
s t +

s1

s2 � s1
e
s t

3Our analytical model extends to any threshold delays; we simply give the
derivation for 90% delay threshold.

4SPICE simulation results are obtained using SPICE3 and the built-in lossy
transmission line (LTRA) model, which is based on convolution techniques
[15].

where

s1;2 =
2

�M1 � 4M2 � 3M2

1

=
�b1 � b2

1
� 4b2

2b2
:

The condition for the poles to be real is(4M2 � 3M2

1 ) = (b21 �
4b2) � 0. Since

s2 � s1 = �
b2
1
� 4b2

b2

is negative, the coefficientss2=(s2 � s1) and s1=(s2 � s1) are
positive. Also, since the magnitudejs2j is greater thanjs1j, the
second term in the time-domain response decreases rapidly compared
to the first term. Hence, the two-pole response can be approximated
(lower-bounded) as

v(t) � V0 1�
s2

s2 � s1
e
s t

:

Since the voltage is lower-bounded, the delay obtained is an upper
bound on the actual delay. The delay�r (the subscript indicates the
case of real poles) at threshold voltagevth can be obtained via

s1�r = ln
(s2 � s1)(1� vth)

s2

= � ln
1

2(1� vth)
1 +

b1

b2
1
� 4b2

:

Letting

Kr = ln
1

2(1� vth)
1 +

b1

b2
1
� 4b2

we have

�r =
Kr

js1j
= Kr

M1 + 4M2 � 3M2

1

2
= Kr

2b2

b1 � b2
1
� 4b2

i.e., Kr is a function of the coefficientsb1 and b2. For the wide
range of source, load, and interconnect parameter values considered
in our simulations (see Tables I and II), we find thatKr is actually
almost a constant: the plot on the left side of Fig. 4 shows the linear
regression used to find the valueKr = 2:36, which gives a very
strong fit between SPICE delay values and1=(js1j). The variation
of Kr with the quantityX = (b2)=(b

2

1) is further discussed in [6].
Thus, we use

�r = 2:36 �
2b2

b1 � b2
1
� 4b2

= 2:36 �
M1 + 4M2 � 3M2

1

2
:

(5)

The resulting delay estimates are compared against those of various
other methods in Tables I and II. We see that our analytical delay
model gives estimates close to those obtained from SPICE, but as
expected, Elmore delay also gives good estimates for this case where
the interconnect response is overdamped.
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(a)

(b)

Fig. 4. The plot on the left shows the strong linear fit between SPICE delay
and 1=(js1j) for real poles withKr = 2:36. The plot on the right shows
the strong linear fit between SPICE delay and1=� for complex poles with
Kc = 1:66.

B. Complex Poles

The condition for complex poles is(4M2�3M2
1 ) = (b21�4b2) �0.

The time-domain response for complex poles is given by

v(t) = V0 1� �2 + �2

�
e
��t � sin(�t+ �)

where� = M

2(M �M )
�;=

p
3M �4M

2(M �M )
and� = tan�1(�

�
). Using

the above equation and threshold voltagevth, we get

e
��t � sin(� � t+ �) =

1� vth

1 + �

�

2
: (6)

The delay at a given threshold voltage can be computed by solving
for time in (6) recursively. One way to solve the recursive (6) is
to approximate the time variable in the exponential term by Elmore
delay, i.e., substituteTED for time t. Expandingsine as a Taylor

TABLE I
90% THRESHOLD VOLTAGE DELAY ESTIMATES FORCOMBINATIONS

OF SOURCE AND LOAD PARAMETERS FORWHICH THE POLES OF THE

RESPONSEARE REAL (I.E., OVERDAMPED RESPONSE). THE INTERCONNECT

LINE PARAMETERS ARER = 0:015 
=�m, L = 0:246 pH/�m, AND

C = 0:176 fF/�m, AND THE LENGTH OF THE INTERCONNECTIS 100�m

TABLE II
THE LENGTH OF THE INTERCONNECTLINE IN THESE EXPERIMENTS IS ALWAYS

h = 2000 �m. THE DELAY ESTIMATES REFER TO50% THRESHOLD VOLTAGE

series and considering only the first term yields

e
���T � sin(� � �c + �) � e

���T � (� � �c + �)

=
1� vth

1 + �

�

2
:

Therefore

�c =
Kc

�

where

Kc =
(1� vth)e

��T

1 + (�
�
)2

� � :

Substituting for� and usingM1 = b1 andM2 = b21 � b2, our delay
estimate is given by

�c =
Kc

�
= Kc �

2b2

4b2 � b21
:

Even thoughKc is a function ofb1 and b2, for a wide range of
interconnect, source, and load parameters, it too is almost a constant.
We determined the constant valueKc = 1:66 again by finding a
good fit between SPICE delay values and1=(�), as shown on the
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TABLE III
90% THRESHOLD VOLTAGE DELAY ESTIMATES OF THE COMBINATIONS OF

SOURCE AND LOAD PARAMETERS FORWHICH THE POLES OF THERESPONSE

ARE COMPLEX (I.E., UNDERDAMPED CONFIGURATIONS). THE INTERCONNECTLINE

PARAMETERS ARER = 0:015 
=�m, L = 0:246 pH/�m, AND C = 0:176
fF/�m, AND THE LENGTH OF THE INTERCONNECTIS 100�m. THE PERCENTAGE

ERROR OFEACH DELAY MODEL WITH RESPECT TOSPICE IS ALSO GIVEN

right side of Fig. 4. Therefore, the 90% threshold delay estimate for
complex poles is

�c = 1:66 �
2b2

4b2 � b2
1

= 1:66 �
2 M2

1 �M2

3M2

1
� 4M2

: (7)

Table III shows delay values for various combinations of source,
load, and interconnect parameters assuming the value ofKc obtained
by this regression analysis. The delay estimates using our analytical
model are within 10% of SPICE-computed delay estimates, while El-
more delay estimates vary by as much as 33% from SPICE-computed
delays. Hence, for the case of complex poles (i.e., underdamped
response), the Elmore model is no longer acceptably accurate. Last,
we consider the special case in which poles are equal, i.e., a double-
pole configuration.

C. Double Poles

The condition for a double pole is(b21�4b2) = 0. The double-pole
response is

V (s) =
V0

s

1

1 + b1s+ b2s2
=

V0

s

1

b2(s� s1)2

= V0
1

s
�

1

s� s1
�

2

b1

1

(s� s1)2

where s1 = �
b

2b
, and the time-domain response is given by

v(t) = V0(1� ets �
2t

b
ets ). The delay at 90% threshold is

�0:9 =
2b2

b1
ln 10 1 +

2T0:9

b1
= Kd

2b2

b1
= Kd

b1

2

TABLE IV
THE LENGTHS OFVARIOUS INTERCONNECTS IN THETREE OF FIG. 5

which gives a recursive equation forKd, i.e.,

Kd = ln 10 1 +
2T0:9

b1
= ln(10(1+Kd))

from whichKd � 3:9. Thus, in the case of a double pole, the 90%
threshold delay is estimated as

�0:9 = Kd �
b1

2
= 1:95b1 (8)

which is independent of the inductance value and different from the
Elmore delay expression.

In practice, the double-pole case should be applied when the mag-
nitude ofb21� 4b2 is within some threshold. We have experimentally
studied a range of interconnect topologies and different driver/load
parameters. We observed that for both the real and complex pole
cases [(5) and (7)], the value ofb21�4b2 should be of the same order
as the value ofb1. Thus, we have added a threshold criterion, such
that if b21 � 4b2 is more than an order of magnitude smaller thanb1,
we apply (8). [However, we find that the value ofb21� 4b2 is almost
never close to zero (i.e., is clearly greater or less than zero), and (8)
is almost never invoked.]

IV. I NTERCONNECTION TREES

Last, we describe the extension of our analytical model to estimate
delays in arbitrary interconnect trees. AnRLC network is called
an RLC tree if it does not contain a closed path of resistors and
inductors, i.e., all resistors and inductors are floating with respect
to ground and all capacitors are connected to ground. Consider an
RLC interconnect tree with root (or source)S and set of sinks (or
leafs)L = fL1; L2; � � � ; Lng. The unique path from rootS to the
sink nodei is denoted byp(i) and is referred to as themain path.
The edges/nodes not on the main path are referred to as theoff-path
edges/nodes. We model each edge on the main path of the tree using
a lumpedRLC segment, e.g., anL, T, or� model. We replace the
off-path subtree rooted at nodev with the total subtree capacitance at
nodev. (Fig. 6 shows an example of a main path where each branch
in the tree is replaced byRLC segments and the off-path subtrees
are replaced by their respective subtree capacitances.) Hence, at any
nodev, the total capacitance is given by

C
0

v

= Cv if no off-path subtree at nodev
= Cv + CT (v) if node v has off-path subtreeT (v)

whereCv is the capacitance at the node andCT (v) is the off-path
subtree capacitance at nodev. Thekth coefficientbk of the transfer
function for the generalRLC circuit of Fig. 6 can be expressed using
the following recursive equation [5]:

b
N+1

k = RN

N

j=1

C
0

j � b
j

k�1 + LN

N

j=1

C
0

j � b
j

k�2 + b
N
k (9)
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Fig. 5. A simple interconnection tree consisting of distributedRLC lines. The lengths of the various interconnects are given in Table IV.

Fig. 6. Representation of the main path in the tree, where each distributed line is modeled usingRLC segments.

where bNk refers to the coefficient ofsk in the transfer function
between the given node and node1. Note thatbj0 = 1, bj

�1 = 0

for all j and b1k = 0 for all k. Using the above recursive equation,
the expressions for the first and second coefficients of the transfer
function can be derived as

b
N+1
1 = RN

N

j=1

C
0

j + b
N
1 =

N

i=1

Ri

i

j=1

C
0

j

b
N+1
2 = RN

N

j=1

C
0

jb
j
1 + LN

N

j=1

C
0

j + b
N
2

=

N

j=2

C
0

j

N

l=j

Rl

j�1

i=1

C
0

j

j�1

d=i

Rd +

N

j=1

C
0

j

N

l=j

Ll: (10)

For any given source and sink pair, the coefficientsb1 andb2 can be
computed in linear time by traversing the main path and using the
above recursive equation. Using the analytical delay model developed
in the previous section, we can obtain an analytical delay estimate
for RLC interconnect trees using the first and second coefficients.
Thus, the 90% threshold delay at a given sinki, depending on the
value of (4M2 � 3M2

1 ), is

TND(i)

= Kr �
(M +

p
4M � 3M )

2
for Real poles

= Kc �
2(M �M )p
3M � 4M

for Complex poles

= Kd � M2 for Double poles

(11)

where the first and second moments are expressed asM1 = b1 and
M2 = b21 � b2. The coefficients of the transfer function are obtained
from (10). By contrast, the Elmore delay at the sink is equal to the

first moment, or the first coefficientb1 of the transfer function of the
source-sink main path [16]. The 90% threshold delay using the first
moment is simply

TED(i) = 2:3 �M1 (12)

which we emphasize can be inaccurate despite its wide use, since it
ignores inductance of the interconnect line.

We evaluate the effect of our analytical model by considering a
simple interconnection tree shown in Fig. 5. We consider the sink
nodeN4 for delay estimation. Each edge on the main path between
the root and nodeN4 is replaced by a two-L segment model.5 We
then apply the above-described recursive coefficient (or moment)
computation for the resultantRLC circuit of the main path. The 90%
threshold delays according to both the Elmore model and our new
analytical model are computed using (11) and (12). We also compute
the delay at the given sink node using SPICE3e, where each edge
of the tree is modeled using the LTRA model (with SPICE, we first
compute the response at the sink node and then obtain the delay
for 90% threshold voltage). Table V presents delay estimates for a
range of interconnect parameters, driver resistance values, and sink
load capacitance values. The Elmore delay varies by as much as 35%
from the SPICE-computed delay. However, our new model is within
15% of the SPICE delay for all examples. Another advantage of our
model is due to simulation complexity. Our delay estimates require

5Our model is not limited to traditional segment models, and indeed
we believe the accuracy of our results would improve if we were to use
nonuniform segment models [5], [21] designed to perfectly match the low-
order moments of the distributedRLC line.
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TABLE V
90% THRESHOLD DELAY VALUES FOR A WIDE RANGE OF INTERCONNECT

PARAMETERS AT NODE 4 OF THE TREE IN FIG. 5. WE COMPARE SPICE LTRA
AND THE ELMORE MODEL AGAINST OUR ANALYTICAL DELAY MODEL

three orders of magnitude less computation than SPICE, since they
have the same time complexity as the Elmore delay estimate.

V. CONSTRAINT ON MOMENTS FOR

CONTROL OF UNDERSHOOT/OVERSHOOT

In this section, we illustrate how our simple threshold delay model
can yield simple analytical constraints for interconnect synthesis.
Specifically, we address the question of finding interconnect and
driver parameters for optimum delay with controlled ringing. Con-
sider a simpleRLC line driven by a gate, withZS being the driver
impedance andCL being the load impedance at the end of the line.
The characteristic impedance of the line is given by

Z0 =
R+ sL

sC
:

Ideally, the driver and line parameters are adjusted such thatZS

matchesZ0 and the voltage response at the end of the line is critically
damped. However, if the driver impedanceZS is just smaller than
the characteristic impedance of the line, the voltage response will
have a small amount of ringing: this can be advantageous in that the
threshold delay will decrease [20]. The problem with ringing is that
it can cause false switching if the voltage response drops back below
the threshold; hence, the advantages of ringing can be exploited only
if the maximum oscillation (overshoot or undershoot) is bounded such
that false switching does not occur. We now develop an analytical
equation that achieves this control in terms of coefficients of the
transfer function. Additional context for our discussion may be found
in [6].

The voltage response for ringing is given by

vout(t) = V0 1�
�2 + �2

�
e
��t

sin(�t+ �)

where� = tan
�1

(
�

�
). To find the peaks of overshoot and undershoot

in the response, we set the derivativev0out(t) to zero, yielding
�t = n�, with n = 1; 3; 5; . . . for overshoots andn = 2; 4; 6; . . .

for undershoots. The first undershoot occurs at timeT1 = 2�=�, and
the value of the undershoot is

�v = V0e
��T

1 +
�

�

2

sin(�T1 + �) = V0e
��T

:

The constraint for a given percentage undershootvus can be obtained
as

�

�
=

1

2�
j ln(vus)j:

For example, with 5% undershoot, we havevus = 0:05V0 and
�=� = 0:48. We can express� and � in terms of coefficients of
the transfer function, i.e.,�

�
=

bp
4b �b

. Therefore

b
2

1 =
4 �

�

2

�

�

2 � 1
b2:

With 5% undershoot, the above equation reduces tob21 = 0:74b2,
and a 90% threshold delay estimate for this case can be obtained
(see [6]) as

T0:9 = 1:66
2b2

4b2 � b2
1

= 2:13b1:

Similarly, for 5% overshoot, the relation between the coefficients is
b21 = 1:91b2, and a corresponding delay estimate isT0:9 = 1:20b1.
As expected, the delay increases for a strong undershoot requirement,
and in general, the delay increases if ringing in the response is
suppressed [20]. The above constraint between� and � to reduce
the undershoot in the response could be applied with the delay model
in (7) to perform delay-driven routing tree synthesis.

VI. CONCLUSION

Fast delay estimation methods, as opposed to simulation tech-
niques, are needed for incremental performance-driven layout syn-
thesis. Elmore delay-based estimation methods, although efficient,
cannot accurately estimate the delay forRLC interconnect lines. We
have obtained an analytical delay model, based on first and second
moments ofRLC interconnection lines, that considers the effect of
inductance. Resulting delay estimates are significantly more accurate
than Elmore delay. We also extend our delay model to estimate
source-sink delays in arbitrary interconnect trees. Even for the small
tree topology considered, we observe significant improvement in the
accuracy of our delay estimates, compared to the Elmore model.
Since our model has the same time complexity as the Elmore model,
we believe it can be valuable in modern iterative layout synthesis
methodologies. Even though we consider step input for deriving
the delay models, a similar approach can be applied to develop
delay models under ramp input. We have also discussed a delay
minimization approach that uses controlled small ringing in the
response wave form.
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Synthesis of Asynchronous Circuits for Stuck-At
and Robust Path Delay Fault Testability

Steven M. Nowick, Niraj K. Jha, and Fu-Chiung Cheng

Abstract—In this paper, we present methods for synthesizing multilevel
asynchronous circuits to be both hazard free and completely testable.
Making an asynchronous two-level circuit hazard free usually requires
the introduction of either redundant or nonprime cubes or both. This
adversely affects the circuit’s testability. However, using extra inputs,
which is seldom necessary, and a synthesis-for-testability method, we
convert the two-level circuit into a multilevel circuit that is completely
testable. To avoid the addition of extra inputs as much as possible, we
intro
duce new exact minimization algorithms for hazard-free two-level logic
where we first minimize the number of redundant cubes and then
minimize the number of nonprime cubes. We target both the stuck-at
and robust path delay fault models using similar methods. However, the
area overhead for the latter may be slightly higher than for the former.

I. INTRODUCTION

Achieving complete testability of asynchronous circuits has long
been recognized to be a difficult problem since these circuits must be
hazard free [15]. Hazard-free synthesis methods frequently introduce
redundant or nonprime product terms, resulting in circuits that are
not fully testable. Thus, ensuring hazard-free behavior and at the
same time achieving complete testability seem to be contradictory
requirements. Our aim in this paper, however, is to show that hazard-
free, completely testable, asynchronous multilevel circuits can be
easily synthesized, in some rare cases requiring some extra control
inputs.

To ensure high reliability of a circuit, one must test both its logical
and temporal behavior for correctness. Physical defects may increase
the propagation delays along different paths, giving rise todelay faults
[19]. Delay faults can be categorized according to two models:gate
delay faultsandpath delay faults. The former models excessive delay
limited to just one gate, whereas the latter models excessive delays
along a whole path from an input to an output. Therefore, the path
delay fault model is more comprehensive; however, it may require
more time for test generation because the number of paths is usually
much larger than the number of gates.

Delay faults are generally tested by two-pattern tests. For path
delay faults, these tests launch a0 ! 1 or a 1 ! 0 transition
at the input of the path to see if the desired transition reaches the
output of the path within the specified time. A two-pattern test
is called robust if arbitrary delays elsewhere in the circuit cannot
invalidate it [19]. A robust test can be further categorized into a
hazard-freeor nonhazard-freetest. For a hazard-free robust test,
no hazards can occur on the tested path irrespective of the delay
values elsewhere in the circuit. This is the most stringent fault model.
Hazard-free robust path delay fault testability of a circuit also implies
testability under other fault models, such as stuck open [17]. Since
it is known that robust testability of general circuits is usually quite
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