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Abstract

Elmore delay has been widely used to estimate the interconnect delays in the performance-driven
synthesis and layout of VLSI routing topologies. For typical RLC interconnections, Elmore
delay can deviate signi�cantly (by up to 33% or more) from SPICE-computed delay, since it is
independent of inductance. Here, we develop an analytical delay model based on �rst and second
moments to incorporate inductance e�ects into the delay estimate for interconnection lines. Delay
estimates using our analytical model are within 10% of SPICE-computed delay across a wide range
of interconnect parameter values. We also extend our delay model for estimation of source-sink
delays in arbitrary interconnect trees. Even for the small tree topology considered, we observe
signi�cant improvement of at least 20% in the accuracy of delay estimates when compared to
the Elmore model, even though our estimates are as easy to compute as Elmore delay. The
speedup of delay estimation via our analytical model is several orders of magnitude compared to
simulation methodology such as SPICE.

1 Introduction

Accurate calculation of propagation delay in VLSI interconnects is critical to the design of high

speed systems. With the evolution of VLSI technology, transmission line e�ects now play an

important role in determining interconnect delays and system performance. Various techniques

have been proposed for the delay analysis of interconnects. These techniques are based on either

simulation techniques or (closed-form) analytical formulas. Simulation tools such as SPICE give

the most accurate insight into arbitrary interconnect structures, but are computationally expen-

sive. Transient simulation of lossy interconnects based on convolution techniques is presented in

[8, 13]. Faster techniques based on moment computations are proposed in [11, 12, 17, 19]. Since

these methods are too expensive to be used during iterative layout optimization, the Elmore delay

[2] approximation (which represents the �rst moment of the transfer function) is the most widely
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used delay model in the performance-driven design of clock distribution and Steiner global routing

topologies. However, Elmore delay cannot accurately estimate the delay for RLC interconnect

lines, i.e., the representation for interconnects whose inductive impedance1 cannot be neglected

[4]. To see the e�ect of inductance impedance on the response, consider a 2-port model for an

interconnect driven by a step input with �nite source impedance. Figure 1 compares the RC and

RLC line responses computed by SPICE3e: 90% threshold delay is 288 ps for the RLC model,

but is 358 ps for the RC model. Elmore delay, which does not depend on line inductance, will

yield the same delay estimate of 386 ps for both the RC and the RLC cases. More generally, the

Elmore delay formula gives good estimates if the interconnect lines are RC or overdamped, but

gives overestimates for RLC or underdamped interconnects. This inaccuracy can be harmful for

current performance-driven routing methods which try to optimize interconnect segment lengths

and widths (as well as drivers and bu�ers).

RC Model

RLC Model

Figure 1: Comparison of SPICE3e responses at the end of an interconnect line driven by a
step input and terminated with a capacitive load using both RC and RLC 2-port models.
The 90% threshold delay for the RLC model is 288 ps, and for the RC model the delay is
358 ps. The driver resistance is 10:0 
 and the load capacitance at the end of the line is 2:0
pF . The interconnect line parameters are R = 0:075 
=�m, L = 0:123 pH=�m, C = 8:8
fF=�m; the length of the line is 400 �m.

This paper gives a new and accurate analytical delay estimate for distributed RLC inter-

connects which considers the e�ect of inductance. Previous moment-based approaches (e.g.,

1Inductive impedance is 2�fL, where f is the frequency of operation.
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[9, 11, 8]) can compute a delay estimate only from a simulated response but not from an an-

alytical formula. To experimentally validate our analysis and delay formula, we model VLSI

interconnect lines having various combinations of source and load parameters, and obtain delay

estimates from SPICE, Elmore delay and the proposed analytical delay model. The delay esti-

mate using SPICE is extracted from a computed response at the desired node, whereas the other

two models are analytical (closed-form) expressions. Over our range of test cases, Elmore delay

estimates can be as much as 50% from the SPICE-computed delays, while our analytical delay

model estimates are within 15% of SPICE delays. We also extend our delay model to estimate

source-sink delays in arbitrary interconnect trees. For the small tree topology considered, delay

estimates using our analytical model are within 15% of SPICE-computed delays. While Elmore

delay estimates vary by as much as 35% from the SPICE-computed delays. Since our analytical

model has the same time complexity as the Elmore model, we believe that it can be useful in

present-day performance-driven routing methodologies.

The organization of our paper is as follows. In Section 2 we discuss previous analytical delay

models for distributed interconnect lines. Section 3 presents a new analytical delay model model

for a distributed RLC line, and �nally Section 4 extends our delay model for interconnection

trees.

2 Previous Analytic Delay Models

The transfer function of an RLC interconnect line with source and load impedance (Figure 2)

can be obtained using the ABCD parameters [1] as

H(s) =
V2(s)

V0(s)
=

1h
cosh(�h) + ZS

Z0

sinh(�h)
i
+ 1

ZT
[Z0 sinh(�h) + ZS cosh(�h)]

(1)

where � =
p
(r + sl)sc is the propagation constant and Z0 =

q
R+sL
sC

is the characteristic

impedance; r = R
h
; l = L

h
; c = C

h
are resistance, inductance, and capacitance per unit length

and h is the length of the line. To compute the RLC line response from the transfer function, the

method of Pad�e approximation has been used by, e.g., [9, 10]. The output transfer function is

expanded into a Maclaurin series of s around s = 0, and the series is truncated to desired order.2

2The work of [8] used a recursive convolution based approach and expanded the admittance and the propagation
coe�cient term around s =1.
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In general, analytical computation of the exact voltage response is very tedious and is usually in

the form of an in�nite series.

ZTi  (t) v  (t)
2 2

Z

v   (t) i   (t)

Distributed RLC line

v  (t) i  (t)

S

0 0 1 1

Figure 2: 2-port model of a distributed RLC line with source impedance ZS and load
impedance ZT .

E�cient delay estimates for RC lines are typically derived by considering a single interconnect

line with resistive source and capacitive load impedances; delay formulas for an interconnect tree

entail recursive application of the formula for a single line. The analytical Elmore delay [2]

estimate, Sakurai's heuristical delay formula [15, 16] and single pole delay estimates of [3] have

been widely used.

� Elmore delay is de�ned to be the �rst moment of the system impulse response, i.e., the

coe�cient of s or the �rst moment in the system transfer function H(s). Applying this

de�nition to H(s) in Equation (1) and considering a source resistance RS and a capacitive

load CT , the Elmore delay for a distributed RC or RLC line model is

TED = RS(C + CT ) + R(
C

2
+ CT ) (2)

By considering only one pole in the transfer function, i.e, approximating the denominator

polynomial to only �rst moment, the single pole response can be obtained as in [3]. The

single pole of the transfer function is equal to the inverse of the Elmore delay TED. Hence,

the delay at arbitrary thresholds of the single pole response can be directly related to Elmore

delay (Elmore delay actually corresponds to the 63:2% threshold voltage of the single pole

response). For example, delay at 90% threshold voltage is

T0:9 = 2:3 � TED = 1:15RC + 2:3 (RS(C + CT ) +RCT ) (3)

� Sakurai [15] also gave response and delay calculations for the distributed RC line. He cal-

culates the time-domain response from the transfer function using the Heaviside expansion
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over poles of the transfer function. Then, he approximates the response using a single pole

and observes the variation of delay with respect to source and load parameters; a 90%

threshold delay estimate is heuristically obtained as

T0:9(h) = 1:02RC + 2:3 (RS(C + CT ) +RCT )

Note that Sakurai's heuristic delay formula is almost identical to the Elmore delay equation (3).

In this paper, to compute the 90% threshold delay according to the Elmore model we apply

Equation (3). Since these single pole delay estimates cannot accurately estimate delay for RLC

interconnects, Zhou et al. [19] proposed a two-pole approximation for the transfer function to

compute the response at the load for RLC interconnection trees. However, this technique is

based on response computation and does not provide any analytical expression for delay; it is too

time-consuming to be used in iterative optimization of layout. Recently, [7] proposed to improve

the Elmore delay model by using higher-order moments; this work gave a heuristic net delay

model equal to the sum of the �rst moment (M1) and its standard deviation.3

3 A New Analytical Delay Model

We now develop a simple closed-form delay estimate, based on �rst and second moments, which

considers the e�ect of inductance. To our knowledge, this is the �rst analytical delay model

which handles arbitrary threshold voltages and inductance e�ects for a distributed line. We give

experimental con�rmation via 90% threshold delay estimates4 which we compare against SPICE

output.5

We model an arbitrary interconnect line as follows: (i) the source is modeled as a resistive

and inductive impedance (ZS = RS + sLs), and (ii) the load at the end of the interconnect line

is modeled using capacitive impedance. Thus, the transfer function for the interconnect line of

3Standard deviation is equal to � =
p
jM2

1
�M2j. In the early drafts of our paper [6] we also considered exactly

the same model; however, it turns out that this model is not accurate for various source and load parameters, as
discussed in detail by [6]. The full version of our paper [6] studies various combinations of �rst and second moments,
of which the analytical model described here performs best.

4Our analytical model extends to any threshold delays; we simply give the derivation for 90% delay threshold.
5SPICE simulation results are obtained using SPICE3 and the built-in LTRA (lossy transmission line) model,

which is based on convolution techniques [13].
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Figure 3: 2-port model of a distributed RLC line with resistive and inductive source
impedance, and capacitive load impedance.

Figure 3 is

H(s) =
1

cosh(�h)
�
1 + ZS

ZT

�
+ sinh(�h)

�
ZS
Z0

+ Z0

ZT

�

where ZT = 1
sCT

, ZS = RS + sLS , Z0 =
q

R+sL
sC

and �h =
p
(R+ sL)sC. We truncate this

transfer function by expanding the hyperbolic functions around s = 0; expansion around s = 1
is not necessary since we consider only the �rst few coe�cients of the transfer function. I.e.,

expanding cosh and sinh as in�nite series and collecting terms up to the coe�cient of s2 in the

denominator, we obtain the truncated transfer function

H(s) � 1

1 + sb1 + s2b2

with coe�cients

b1 = RSC + RICT +
RC

2
+ RCT

b2 =
RSRC

2

6
+
RSRCCT

2
+
(RC)2

24
+
R2CCT

6
+ LSC + LSCT +

LC

2
+ LCT (4)

Note that the �rst and second moments of the transfer function can be obtained from the coef-

�cients b1 and b2, i.e., M1 = b1 and M2 = b21 � b2. We use the coe�cient notation b1; b2 and the

moment notation M1;M2 interchangeably according to the simplicity of the expression. Depend-

ing on the sign of b21 � 4b2, the poles of the transfer function can be either real or complex. We

separately derive our delay model from the two-pole response for each of these cases.

Real Poles:

The two-pole methodology [6, 19] yields the following response for the case of real poles:

v(t) = V0(1� s2
s2 � s1

es1t +
s1

s2 � s1
es2t)
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Source Load Delay from Analytical Delay
Response Models

RS LS CT SPICE Elmore New Model

 pH pF ps ps ps

50 2.46 0.176 22.33 22.93 22.21
100 2.46 0.176 45.30 45.20 45.70
500 2.46 0.176 224.50 223.50 228.95
1000 2.46 0.176 446.20 446.4 457.46

25 2.46 1.76 107.10 108.40 108.65
50 2.46 1.76 210.10 210.80 214.74
100 2.46 1.76 415.20 415.40 425.10
500 2.46 1.76 2052.60 2053.0 2103.68
1000 2.46 1.76 4099.50 4100.0 4101.30

Table 1: 90% threshold voltage delay estimates for combinations of source and load parame-
ters for which the poles of the response are real (i.e., overdamped response). The interconnect
line parameters are R = 0:015 
=�m, L = 0:246 pH=�m and C = 0:176 fF=�m and the
length of the interconnect is 100 �m.

where

s1;2 =
2

�M1 �
q
4M2 � 3M2

1

=
�b1 �

q
b21 � 4b2

2b2

The condition for the poles to be real is (4M2�3M2
1 ) = (b21�4b2) � 0. Since s2�s1 = �

p
b2
1
�4b2
b2

is negative, the coe�cients s2
s2�s1

and s1
s2�s1

are positive. Also, since the magnitude js2j is greater
than js1j, the second term in the time-domain response decreases rapidly compared to the �rst

term. Hence, the two-pole response can be approximated (lower-bounded) as

v(t) � V0(1� s2
s2 � s1

es1t)

Since the voltage is lower-bounded, the delay obtained is an upper bound on the actual delay. The

delay �r (the subscript indicates the case of real poles) at threshold voltage vth can be obtained

via

s1�r = ln

�
(s2 � s1)(1� vth)

s2

�
= � ln

0
@ 1

2(1� vth)
[1 +

b1q
b21 � 4b2

]

1
A

Letting Kr = ln

�
1

2(1�vth)
[1 + b1p

b2
1
�4b2

]

�
, we have

�r =
Kr

js1j = Kr

M1 +
q
4M2 � 3M2

1

2
= Kr

2b2

b1 �
q
b21 � 4b2
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i.e., Kr is a function of the coe�cients b1 and b2. For the wide range of source, load and

interconnect parameter values considered in our simulations (see Table 1), we �nd that Kr is

actually almost a constant: the plot on the left side of Figure 4 shows the linear regression used

to �nd the value Kr = 2:36 which gives a very strong �t between SPICE delay values and 1
js1 j

.

The variation of Kr with the quantity X = b2
b2
1

is further discussed in [6]. Thus, we use

�r = 2:36 � 2b2

b1 �
q
b21 � 4b2

= 2:36 �
(M1 +

q
4M2 � 3M2

1 )

2
; (5)

the resulting delay estimates are compared against those of various other methods in Table 1.

We see that our analytical delay model gives estimates close to those obtained from SPICE, but

as expected Elmore delay also gives good estimates for this case where the interconnect response

is overdamped.
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Figure 4: The plot on the left shows the strong linear �t between SPICE delay and 1
js1j

for
real poles with Kr = 2:36. The plot on the right shows the strong linear �t between SPICE
delay and 1

�
for complex poles with Kc = 1:66.

Complex Poles

The condition for complex poles is (4M2� 3M2
1 ) = (b21� 4b2) � 0. The time-domain response

for complex poles is given by

v(t) = V0

 
1�

p
�2 + �2

�
e��t � sin(�t + �)

!

where � = M1

2(M2

1
�M2)

� =

p
3M2

1
�4M2

2(M2

1
�M2)

and � = tan�1(�
�
). Using the above equation and threshold
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voltage vth, we get

e��t � sin(� � t+ �) =
1� vthq
1 + (�

�
)2

(6)

The delay at a given threshold voltage can be computed by solving for time in Equation (6)

recursively. One way to solve the recursive Equation (6) is to approximate the time variable in

the exponential term by Elmore delay, i.e., substitute TED for time t. Expanding sine as a Taylor

series and considering only the �rst term yields

e���TED � sin(� � �c + �) � e���TED � (� � �c + �) =
1� vthq
1 + (�

�
)2

Therefore,

�c =
Kc

�

where Kc =

�
(1�vth)e

��TEDp
1+(�

�
)2

� �

�
. Substituting for � and using M1 = b1 and M2 = b21 � b2, our

delay estimate is given by

�c =
Kc

�
= Kc � 2b2q

4b2 � b21

Even though Kc is function of b1 and b2, for a wide range of interconnect, source, and load

parameters it too is almost a constant. We determined the constant value Kc = 1:66 again by

�nding a good �t between SPICE delay values and 1
�
, as shown on the right side of Figure 4.

Therefore, the 90% threshold delay estimate for complex poles is

�c = 1:66 � 2b2q
4b2 � b21

= 1:66 � 2(M2
1 �M2)q

3M2
1 � 4M2

: (7)

Table 2 shows delay values for various combinations of source, load and interconnect param-

eters assuming the value of Kc obtained by this regression analysis. The delay estimates using

our analytical model are within 10% of SPICE-computed delay estimates, while Elmore delay

estimates vary by as much as 33% from SPICE-computed delays. Hence, for the case of complex

poles (i.e., underdamped response), the Elmore model is no longer acceptably accurate. Last, we

consider the special case in which poles are equal, i.e., a double pole con�guration.

Double Poles

The condition for a double pole is (b21 � 4b2) = 0. The double-pole response is

V (s) =
V0
s

1

1 + b1s + b2s2
=

V0
s

1

b2(s � s1)2
= V0

�
1

s
� 1

s� s1
� 2

b1

1

(s� s1)2

�
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Source Load Delay from Analytical Delay
Response Models (% error)

RS LS CT SPICE Elmore New Model

 pH pF ps ps ps

10 0.0246 0.0176 1.22 0.90 (26%) 1.30 (6%)
15 0.0246 0.0176 1.33 1.31 ( 2%) 1.38 ( 4%)
20 0.0246 0.0176 1.47 1.71 ( 16%) 1.51 ( 3%)
25 0.0246 0.0176 1.60 2.12 ( 33%) 1.64 ( 3%)

10 0.0246 0.176 4.50 5.12 ( 14%) 4.25 ( 6%)
15 0.0246 0.176 5.85 7.32 ( 25%) 5.31 ( 9%)
20� 0.0246 0.176 7.90 9.55 (21 %) 8.60 ( 7%)

10 2.46 0.0176 1.31 0.90 ( 31%) 1.40 ( %)
15 2.46 0.0176 1.40 1.31 ( 7%) 1.49 ( 7%)
20 2.46 0.0176 1.55 1.71 ( 10%) 1.59 ( 2%)
25 2.46 0.0176 1.63 2.12 ( 30%) 1.69 ( 4%)

10 2.46 0.176 4.65 5.10 ( 10%) 4.30 ( 8%)
15 2.46 0.176 5.85 7.33 ( 25%) 5.30 ( 9%)
20 2.46 0.176 7.98 9.55 ( 19%) 8.70 ( 9%)

10 24.6 0.0176 1.80 0.90 ( 50%) 1.96 ( 9%)
15 24.6 0.0176 1.89 1.31 ( 31%) 2.06 ( 9%)
20 24.6 0.0176 2.00 1.71 ( 15%) 2.15 ( 7%)
25 24.6 0.0176 2.19 2.11 ( 4%) 2.21 ( 1%)

10 24.6 0.176 5.65 5.10 ( 10%) 5.44 ( 4%)
15 24.6 0.176 6.50 7.33 ( 13%) 5.95 ( 8%)
20 24.6 0.176 7.66 9.55 ( 25%) 6.97 ( 9%)
25 24.6 0.176 9.47 11.78 ( 24%) 9.26 ( 2%)

Table 2: 90% threshold voltage delay estimates for the combinations of source and load pa-
rameters for which the poles of the response are complex (i.e., underdamped con�gurations).
The interconnect line parameters are R = 0:015 
=�m, L = 0:246 pH=�m and C = 0:176
fF=�m and the length of the interconnect is 100 �m. The percentage error of each delay
model with respect to SPICE is also given.

where s1 = � b1
2b2

, and the time-domain response is given by v(t) = V0
�
1� ets1 � 2t

b1
ets1

�
. The

delay at 90% threshold is

�0:9 =
2b2
b1

ln

�
10(1 +

2T0:9
b1

)

�
= Kd

2b2
b1

= Kd

b1
2

which gives a recursive equation for Kd, i.e.,

Kd = ln

�
10(1 +

2T0:9
b1

�
= ln (10(1 +Kd))
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from which Kd � 3:9. Thus, in the case of a double pole the 90% threshold delay is estimated as

�0:9 = Kd � b1
2
= 1:95b1 (8)

which is independent of the inductance value and di�erent from the Elmore delay expression.

N1 N2

N3

N4

N5

N6

N7

N8

N9

I1

I2

I3

I4

I5

I7

I8

I6

Figure 5: A simple interconnection tree consisting of distributed RLC lines. The lengths
of the various interconnects are given in Table 3.

4 Interconnection Trees

Finally, we now describe the extension of our analytical model to estimate delays in arbitrary

interconnect trees. An RLC network is called an RLC tree if it does not contain a closed path

of resistors and inductors, i.e., all resistors and inductors are 
oating with respect to ground and

all capacitors are connected to ground. Consider an RLC interconnect tree with root (or source)

S and set of sinks (or leafs) L = fL1; L2; : : : ; Lng. The unique path from root S to the sink node

i is denoted by p(i) and is referred as the main path. The edges/nodes not on the main path are

referred as the o�-path edges/nodes. We model each edge on the main path of the tree using a

lumped RLC segment, e.g., an L, T, or� model. We replace the o�-path subtree rooted at node

k with the total subtree capacitance at node k. (Figure 6 shows an example of a main path where

each branch in the tree is replaced by RLC segments, and the o�-path subtrees are replaced by

their respective subtree capacitances.) Hence, at any node k the total capacitance is given by

11
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Interconnect Length

�m

I1 50

I2 100

I3 50

I4 200

I5 100

I6 50

I7 100

I8 200

Table 3: The length of various interconnects in the tree of Figure 5.

C0
k

= Ck if no o�-path subtree at node k
= Ck + CT (k) if node K has o�-path subtree T (k)

where Ck is the capacitance at the node and CT (k) is the o�-path subtree capacitance at node

k. The kth coe�cient bk of the transfer function for the general RLC circuit of Figure 6 can be

expressed using the following recursive equation [5]:

bN+1
k = RN

NX
j=1

C0
j � bjk�1 + LN

NX
j=1

C0
j � bjk�2 + bNk (9)

where bNK refers to the coe�cient of sk in the transfer function between node k and node 1. Note

that bj0 = 1, bj�1 = 0 for all j and b1k = 0 for all k. Using the above recursive equation the

expressions for the �rst and second coe�cients of the transfer function can be derived as

bN+1
1 = RN

NX
j=1

C0
j + bN1 =

NX
i=1

Ri

iX
j=1

C0
j

bN+1
2 = RN

NX
j=1

C0
jb
j
1 + LN

NX
j=1

C0
j + bN2

=
NX
j=2

C0
j

NX
l=j

Rl

j�1X
i=1

C0
j

j�1X
d=i

Rd +
NX
j=1

C0
j

NX
l=j

Ll (10)

For any given source and sink pair the coe�cients b1 and b2 can be computed in linear time

by traversing the main path and using the above recursive equation. Using the analytical delay

model developed in the previous section, we can obtain a analytical delay estimate for RLC
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Figure 6: Representation of the main path in the tree, where each distributed line is modeled
using RLC segments.

interconnect trees using the �rst and second coe�cients. Thus, the 90% threshold delay at a

given sink i, depending on the value of (4M2 � 3M2
1 ), is

TND(i)

= Kr � (M1+
p

4M2�3M
2

1
)

2 for Real poles

= Kc � 2(M2

1
�M2)p

3M2

1
�4M2

for Complex poles

= Kd � M1

2 for Double poles

(11)

where the �rst and second moments are expressed as M1 = b1 and M2 = b21� b2. The coe�cients

of the transfer function are obtained from Equation (10). By contrast, the Elmore delay at

the sink is equal to the �rst moment, or the �rst coe�cient b1 of the transfer function of the

source-sink main path [14]. The 90% threshold delay using the �rst moment is simply

TED(i) = 2:3 �M1 (12)

which we emphasize can be inaccurate despite its wide use, since it ignores inductance of the

interconnect line.

We evaluate the e�ect of our analytical model by considering a simple interconnection tree

shown in Figure 5. We consider the sink node N4 for delay estimation. Each edge on the main

path between the root and node N4 is replaced by a two L segment model.6 We then apply

the above described recursive coe�cient (or moment) computation for the resultant RLC circuit

of the main path. The 90% threshold delays according to both the Elmore model and our new

analytical model are computed using Equations (11) and (12). We also compute the delay at

the given sink node using SPICE3e, where each edge of the tree is modeled using the LTRA

6Our model is not limited to traditional segment models, and indeed we believe the accuracy of our results
would improve if we use non-uniform segment models [5, 18] designed to perfectly match the low-order moments
of the distributed RLC line.
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Interconnect Driver Load SPICE Elmore New Model

parameters res. cap. Delay Delay Delay
/�m 
 pF ps ps ps

R = 0:015 

C = 0:176 fF 10 0.02 5.7 6.6 5.0
L = 0:246 pH

R = 0:0015 

C = 0:176 fF 10 0.2 37 26 31
L = 2:46 pH

R = 0:015 

C = 0:176 fF 10 0.2 39 29 32
L = 2:46 pH

R = 0:0015 

C = 0:176 fF 10 2.0 179 238 205
L = 2:46 pH

R = 0:0015 

C = 0:176 fF 10 2.0 231 238 232
L = 0:246 pH

R = 0:015 

C = 0:176 fF 10 2.0 199 270 230
L = 2:46 pH

R = 0:015 

C = 0:176 fF 100 2.0 2419 2361 2367
L = 2:46 pH

Table 4: 90% threshold delay values for a wide range of interconnect parameters at Node
4 of the tree in Figure 5. We compare SPICE LTRA, and the Elmore model, against our
analytical delay model.

(Lossy Transmission Line) model (with SPICE, we �rst compute the response at the sink node

and then obtain the delay for 90% threshold voltage). Table 4 presents delay estimates for a

range of interconnect parameters, driver resistance values, and sink load capacitance values. The

Elmore delay varies by as much as 35% from the SPICE-computed delay. However, our new

model is within 15% of the SPICE delay for all examples. Another advantages of our model

is due to simulation complexity. Our delay estimates also require three orders of magnitude

less computation than SPICE, since they have the same time complexity as the Elmore delay

estimate.
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5 Conclusions

Fast delay estimation methods, as opposed to simulation techniques, are needed for incremental

performance-driven layout synthesis. Elmore delay based estimation methods, although e�cient,

cannot accurately estimate the delay for RLC interconnect lines. We have obtained an analytical

delay model, based on �rst and second moments of RLC interconnection lines, which considers

the e�ect of inductance. Resulting delay estimates are signi�cantly more accurate than Elmore

delay. We also extend our delay model to estimate source-sink delays in arbitrary interconnect

trees. Even for the small tree topology considered, we observe signi�cant improvement of at least

20% in the accuracy of our delay estimates, compared to the Elmore model. Since our model has

the same time complexity as the Elmore model, we believe it can be valuable in modern iterative

layout synthesis methodologies. Our ongoing work applies our analytical model to delay-driven

routing tree construction, zero-skew routing, and delay estimation in nets spanning multiple

routing layers (i.e., with modeling of vias).
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