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Abstract-We propose a provably good performance-driven 
global routing algorithm for both cell-based and building-block 
design. The approach is based on a new bounded-radius mini- 
mum routing tree formulation. We first present several heuris- 
tics with good performance, based on a n  analog of Prim’s min- 
imum spanning tree construction. Next, we give a n  algorithm 
which simultaneously minimizes both routing cost and the long- 
est interconnection path, so that both a re  bounded by small 
constant factors away from optimal. This method is based on 
the following two results. First, for any given value of a param- 
eter E, we can construct a routing tree with longest intercon- 
nection path length a t  most (1 + E) . R, and with cost a t  most 
(1 + (2/e))  times the minimum spanning tree weight. More- 
over, for Steiner global routing in arbitrary weighted graphs, 
we achieve longest path length a t  most (1 + E)  R, with wiring 
cost within a factor 2 . (1 + (Z/e)) of the optimal Steiner tree 
cost. In  both cases, R is the minimum possible length from the 
source to the furthest sink. We also show that geometry helps 
in routing: in the Manhattan plane, the total wire length for 
Steiner routing improves to 3/2 . (1 + (l/t)) times the optimal 
Steiner tree cost, while in the Euclidean plane, the total cost is 
further reduced to (2/&) . (1 + ( l / t ) )  times optimal. Fur- 
thermore, our method generalizes to the case where varying 
wire length bounds a re  prescribed for different source-sink 
paths. Extensive simulations confirm that this approach works 
well, using a large set of examples which reflect both cell-based 
and building-block layout styles. 

I. INTRODUCTION 
TH progress in VLSI fabrication technology, in- w terconnection delay has become increasingly sig- 

nificant in determining circuit speed. Recently, it has been 
reported that interconnection delay contributes up to 50% 
to 70% of the clock cycle in the design of dense, high- 
performance circuits [5], [25] .  Thus, with submicron de- 
vice dimensions and up to a million transistors integrated 
on a single processor, on-chip and chip-to-chip intercon- 
nections play a major role in determining the performance 
of digital systems. 

Because of this trend, performance-driven layout de- 
sign has received increased attention in the past several 
years. Most of the work in this area has been on the tim- 
ing-driven placement problem, where a number of meth- 
ods have been developed for placing blocks or cells in 
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timing critical paths close together. The so-called zero- 
slack algorithm was proposed by Hauge, Nair, and Yoffa 
[9]; fictitious facilities and floating anchors methods were 
used by Marek-Sadowska and Lin [19], and a linear pro- 
gramming approach was used by Jackson, Srinivasan, and 
Kuh [ 131, [ 141. Several other approaches, including sim- 
ulated annealing, have also been studied [5], [ 181, 1251. 
Since no global routing solution is generally available at 
the placement step, most of these placement algorithms 
use the net bounding box semiperimeter to estimate the 
interconnection delay of a net. 

While such techniques have been developed for timing- 
driven placement, only limited progress has been reported 
for the timing-driven interconnection problem. In [6], net 
priorities are determined based on static timing analysis; 
nets with high priorities are processed earlier using fewer 
feedthroughs. In [15], a hierarchical approach to timing- 
driven routing was outlined. In [21], a timing-driven 
global router based on the A* heuristic search algorithm 
was proposed for building-block design. However, these 
results do not provide a general formulation of the timing- 
driven global routing problem. Moreover, these solutions 
are not flexible enough to provide a trade-of between in- 
terconnection delay and routing cost. 

In this paper, we begin by proposing a new model of 
timing-driven global routing for cell-based design, based 
on the idea of finding minimum spanning trees with 
bounded radius. Our method constructs a spanning tree 
with radius (1 + t) * R by using an analog of the classical 
Prim minimum spanning tree (MST) construction, where 
R is the minimum possible tree radius and E is a non- 
negative user-specified parameter. Such an approach of- 
fers a very natural, smooth trade-off between the tree ra- 
dius (maximum signal delay) and the tree cost (total in- 
terconnection length). This gives the circuit designer a 
great deal of algorithmic flexibility, as the parameter E can 
be varied depending on performance constraints. The 
method is easy to describe and implement, and empirical 
performance results are very good; e.g., we obtain an 
average of 25 % reduction in longest source-sink path for 
10-pin nets. However, the total wire cost using this 
method can be an unbounded factor worse than optimal. 

With this in mind, we also propose a second method 
for timing-driven global routing, which is based on a 
provably good algorithm that simultaneously minimizes 
both total wire length and maximum delay. More specif- 
ically, given a positive real parameter E and a set of ter- 
minals, our method produces a routing tree with radius at 
most (1 + E )  * R ,  and with total cost at most (1 + ( 2 / ~ ) )  
times the MST cost. In other words, both the total wire 

0278-0070/92$03.00 0 1992 IEEE 



~ 

740 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. I I .  NO. 6, JUNE 1992 

length and the maximum delay of the routing are simul- 
taneously bounded by constant factors away from their 
optimal values. The method applies to building-block lay- 
out styles in addition to the more geometric cell-based 
designs. In fact, our method generalizes to arbitrary 
weighted graphs, and also to Steiner routing formula- 
tions, where we achieve a wire length bound of 2 * ( 1  + 
( 2 / ~ ) )  times the optimal Steiner tree cost, while still ob- 
serving the (1 + E )  * R radius limit. 

We then show that geometry helps in routing: in the 
Manhattan plane, our wire length bound for Steiner rout- 
ing can be improved to ( 3 / 2 )  - (1 + ( 1 , ’ ~ ) )  times opti- 
mal, and in the Euclidean lane, the Steiner routing bound 
improves further to ( 2 /  J” 3 )  (1 + (1 / E ) )  times optimal. 
This series of results is especially surprising since con- 
struction of a minimum spanning tree with bounded di- 
ameter in a general graph is NP-complete [lo], as is the 
Steiner problem in graphs [ 121. 

Our construction can minimize either total wire length 
(a minimum spanning tree) or the longest source-sink path 
(a minimum delay, or minimum radius, tree), depending 
respectively on whether we set E = 03 or E = 0. Between 
these two extremes, the method offers a continuous, 
smooth trade-off. In practice, our algorithm exhibits very 
good empirical performance, which confirms this smooth 
trade-off between the competing requirements of mini- 
mum delay and minimum total wire length. 

Note that in VLSI circuit design, the timing is actually 
path-dependent, rather than net-dependent. In other 
words, the timing constraint is specified by the delay from 
primary inputs to primary outputs. Thus, we may wish to 
use varying wire length constraints on the different 
source-sink paths within a given signal net; for example, 
a source-sink connection on a timing-critical path will re- 
quire a small value of E ,  while a connection not on any 
critical path can allow large E .  We therefore extend our 
method to handle this case, and establish analogous con- 
stant-factor bounds on both wire length cost and the ra- 
dius of the routing solution. 

The remainder of this paper is organized as follows. In 
Section 11, we present the general formulation of the per- 
formance-driven global routing problem. In Section 111, 
we give a very natural heuristic construction (as well as 
several simple variants) with good empirical performance 
for computing bounded-radius routing trees. In Section 
IV, we present a second effective algorithm for computing 
bounded-radius routing trees, and show that the algorithm 
is provably good with constant-factor performance bounds 
with respect to both delay and routing cost. Section V 
generalizes our method to Steiner tree global routing. Sec- 
tion VI generalizes our approach to the case where differ- 
ent values of E are allowed within a given signal net, and 
experimental results are reported in Section VII. 

11. THE PROBLEM FORMULATION 
A signal net N is a set of terminals, with one terminal 

s E N a designated source and the remaining terminals 
sinks. Because terminals of a signal net can be embedded 

in the Manhattan plane (for standard-cell or sea-of-gates 
design) or within a channel intersection graph (for macro- 
cell or block design), the global routing problem can have 
two distinct flavors. In the former case, the cost of routing 
between two nodes is given by geometric distance, while 
in the second case the cost is the total edge cost of the 
shortest path between the nodes.’ With this in mind, we 
define the underlying routing graph to be a connected 
weighted graph G = ( V ,  E ) .  A net is a subset of the nodes 
in this graph. A routing solution of a net N is a tree in G, 
which we call the routing tree of the net, connecting all 
the terminalshodes in N .  

Since the routing tree may be treated as a distributed 
RC tree, we may use the first-order moment of the im- 
pulse response (also called Elmore’s delay) to approxi- 
mate interconnection delay [8], [ 2 3 ] .  A more accurate ap- 
proximation can be obtained using the upper and lower 
bounds on delay in an RC tree derived in [ 2 3 ] .  However, 
although both the formula for Elmore’s delay and those 
in [23] are very useful for simulation or timing verifica- 
tion, they involve sums of quadratic terms and are difficult 
to compute and optimize during the layout design process. 

Thus, a linear RC model (where interconnection delay 
between a source and a sink is proportional to the wire 
length between the two terminals) is often used to derive 
a simpler approximation for interconnection delay (e.g., 
[18], [ 2 2 ] ) .  In this paper, we shall also use wire length to 
approximate interconnection delay in the construction of 
routing solutions. In practice, a subsequent iterative im- 
provement step, based on a more accurate RC delay 
model, may be used to enhance the routing solutions. 

We say that the cost of a path in G is the sum of the 
edge weights in the path. A shortest path in G between 
two terminals x ,  y E N ,  denoted by minpathG(x, y), is a 
path connecting x and y with minimum cost. In a routing 
tree, T ,  minpath,(x, y) is simply the unique path between 
x and y. Note that in the geometric case, the cost of 
minpathG(x, y) is simply geometric distance, and we 
use the notation dist(x,  y )  for clarity. For a weighted 
graph G, we use dist,(x, y) to denote the cost of min- 

Definition: The radius R of a signal net is the cost of 
a shortest path in G from the source to the farthest sink, 
i.e., maxXeN distc(s,  x) :  

Definition: The radius of a routing tree T denoted by 
r ( T ) ,  is the cost of a (shortest) path in T from the source 
s to the furthest sink. Clearly, r ( T )  2 R for any routing 
tree T. 

According to the linear RC delay model, we minimize 
the interconnection delay of a net by minimizing the ra- 
dius of the routing tree, which measures the maximum 
interconnection delay between the source and any sink. 

pathb-(x, Y ) .  

‘For simplicity of presentation, our definition of the cost of an edge re- 
flects only the wire length. It is straightforward to extend the cost definition 
to be an increasing function of wire length, channel capacity, and current 
channel density. The results presented in the next four sections will still 
hold. 
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Fig. 1. An example where the cost of a shortest path tree (right) is Q(l N 1 )  
times larger than the cost of a minimum spanning tree (lefr). 

(4 (b) (4 
Fig. 2.  An example in the Manhattan plane of how increasing the value of 
E may result in decreased tree cost, but increased radius r ( T ) :  (a) E = 0, 
cost(T) = 17, n ( T )  = 6; (b) t = 1, cost(T) = 15, n ( T )  = 10; (c) e = 03, 
cost(T) = 14, r ( T )  = 14. 

On the other hand, we also want a routing tree with small 
total wire length. Without this latter consideration, we 
could simply use the shortest path free (SPT) of the net, 
i.e., the union of all the shortest source-sink paths com- 
puted by Dijkstra’s single-source shortest-path algorithm 
[20]. Although the SPT has the smallest possible radius 
r(SPT) of any routing tree, the SPT cost might be very 
high. Fig. 1 shows a case where the cost of the shortest 
path tree can be a(\ N 1 )  times greater than the cost of the 
minimum spanning tree. 

A routing tree with high cost may increase the overall 
routing area. Moreover, high cost also contributes to the 
interconnection delay, which is not captured in the linear 
RC model. Therefore, neither tree shown in Fig. 1 is par- 
ticularly desirable. In order to consider both the radius 
and the cost in the routing tree construction, we formulate 
the timing-driven global routing problem as follows: 

The Bounded Radius Minimum Routing Tree (BRMRT) 
Problem: Given a parameter E 1 0 and a signal net with 
radius R,  find a minimum-cost routing tree T with radius 
r ( T )  I (1 + E )  * R. 

The parameter E controls the trade-off between the ra- 
dius and the cost of the tree. When E = 0, we minimize 
the radius of the routing tree and thus obtain a shortest- 
path tree for the signal net; on the other hand, when E = 
00 we minimize the total cost of the tree and obtain a min- 
imum spanning tree. In general, as E grows, there is less 
restriction on the radius, allowing further reduction in tree 
cost. Fig. 2 shows an example where three distinct span- 
ning trees are obtained using different values of E :  Fig. 
2(a) shows the minimum radius spanning tree correspond- 
ing to the case E = 0, with maximum path length r ( T )  = 
6 ;  Fig. 2(b) shows a solution with r ( T )  = 10, correspond- 
ing to the case E = 1; and Fig. 2(c) shows the minimum 
spanning tree corresponding to the case E = 00, with 
r ( T )  = 14. 

Fig. 3. An example in the Manhattan plane where a SPICE simulation in- 
dicated that the routing produced by our algorithm (middle) outperform5 an  
MST routing (right) by 81 ps, and outperforms the SPT routing (left) by 
414 ps. The coordinates of the terminals are ((102. 98), (147. 153). (202, 
202). (153, 249). (53, 147). (253, 153), (153, 52). (100, 203), (200, 103)}, 
and t = 1.5. The SPICE simulation assumes a generic CMOS design: 
MOSIS 2.0 Fm CMOS technology, layout normalized to a 1 cm die, and 
0.3 pF gate loading capacitance. 

Because the circuit delay is determined by critical paths 
between primary inputs and primary outputs, Section VI 
below will generalize the BRMRT formulation to allow 
different E ;  parameter values to be associated with each 
sink xi E N in a given net. To validate the use of the linear 
delay model, SPICE simulations for a number of routing 
examples were examined, As an example, Fig. 3 shows 
how the optimal delay routing indeed embodies a trade- 
off between the shortest path tree routing and the mini- 
mum-weight spanning tree routing. 

111. A BOUNDED-RADIUS MINIMUM SPANNING 
TREE HEURISTIC 

In global routing for cell-based design, the distances 
between nodes are given by geometric distance, and the 
underlying routing graph is G = ( V ,  E )  with V = N .  For 
this case, many global routing methods are based on con- 
structing a spanning tree for each net (e.g., see [ 3 ] ) .  
Therefore, the BRMRT problem becomes the bounded 
radius minimum spanning tree (BRMST) problem. 

We now give a very natural and simple heuristic that 
finds a routing solution by growing a single component, 
following the general scheme of Prim’s classical mini- 
mum spanning tree construction. 

A .  The Basic Algorithm 
Our basic algorithm grows a tree T = ( V ’ ,  E ’ )  which 

initially contains only the source s. At each step, we 
choose x E I/’ and y E N - V ’  such that dist ( x ,  y) is min- 
imum. If adding (x, y )  to T would not violate the radius 
constraint, i.e., distT(s,  x)  + dist(x,  y) I (1 + E )  . R ,  
we include the edge ( x ,  y) in T. Otherwise, we “back- 
trace” along the path from x to s to find the first terminal 
x ’  such that (x ’ ,  y )  is appropriate (i.e.,  distT(s,  x ’ )  + 
dist(x‘,  y) I R ) ,  and add (x ’ ,  y) to the tree. In the worst 
case, the backtracing will terminate with x ’  = s, since the 
edge (s, y )  is always appropriate. 

Note that in backtracing we could choose x ’  such that 
dist,(s, x ’ )  + dist (x’ ,  y )  I (1 + E )  . R. However, our 
choice of appropriate edges leads to fewer backtracing op- 
erations, while guaranteeing that backtracing is still al- 
ways possible. In other words, we intentionally introduce 
some “slack” at y so that terminals within an ER neigh- 
borhood of y will not cause additional backtracing. Lim- 
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iting the amount of backtracing in this way will keep the 
cost of the resulting tree close to that of the minimum 
spanning tree. 

We call this algorithm the Bounded Prim (BPRIM) con- 
struction. The high-level description is given in Fig. 4. 
This algorithm has several advantages. First, we can show 
that the radius of the resulting tree is never greater than 
the radius of the MST whenever the MST is unique. 

Property 1: If the MST is unique, then r(TsPRIM) I 

Proof: If r ( T M S T )  I (1 + E) . R,  then r (TBPRIM) = 
r(TMsT) since the two trees will be identical. Otherwise, 
r(TsPR,M) I (1 + E )  . R < r (TMST)  by construction. 0 

If the MST is not unique, then the radius of different 
minimum spanning trees can vary by an unbounded 
amount, and r(TsPRIM) may be greater than r (TMST);  i.e., 
Property 1 will not hold for some choice of the MST. Fig. 
5 shows a point set where a Prim-like minimum spanning 
tree algorithm may choose a connection to point y I  instead 
of point xI  ; or y2  instead of x2, etc., so that the tree radius 
is much greater than optimum. In this way, for some MST 
it may be possible for an unfortunate sequence of choices 
by BPRIM to yield r(TsPRIM) > r(MST) even though the 
two trees have identical cost. However, r (TBPRIM) cannot 
be greater than the maximum possible MST radius. 

With regard to total tree cost, we note that the differ- 
ence between BPRIM and MST tree cost will depend on 
the parameter E .  In practice, most nets will have between 
two and four pins. Furthermore, it is unlikely that a single 
gate will be used to drive more than six gates in CMOS 
design. In this case, we can show that the cost of the re- 
sulting tree is within a small constant factor of the cost of 
the MST for nets of practical size. Table I gives the worst- 
case ratio of BPRIM cost over MST length for small val- 
ues of 1 N 1 ,  as a function of E .  

Property 2: Let B(E) be the worst-case ratio of the cost 
of BPRIM output to the MST cost. Then the bounds listed 
in Table I hold. 

Proof: These results are obtained by studying the 
number of backtracings that can occur. We show the proof 
for 1 N 1 = 5 .  Other cases are similar. 

Assume that the coordinates of the set of terminals have 
been scaled so that the set has unit radius, and let 
cost(MST) be the cost of a minimum spanning tree. If 
backtracing occurs, then cost(MST) 2 1 + E .  Suppose 
that there is only one backtracing. Let cost ( e )  be the cost 
of the edge which caused the backtracing. Then 

r ( T M S T ) .  

cost(MST) - cost(e) + 1 
cost (MST)  

B(E) I 

2 + E  1 1 
5 1 +  5 1 + - - -  

cost ( M S T )  I + €  l + E  
- 

If backtracing occurs twice, let cost@) and cost(y) be 
the costs of the edges which cause the backtracings. Then, 

while IV’I < (NI 
Select two terminals x E 1’’ and y E W - V‘ minimizing disl(x, y)  
if d i S t T ( 5 ,  r )  + dist(x, y) 5 (1 + c )  . R theii x‘ = r 
else find the first terminal r’ along the path in T from z to s 

such that dist~(s, x’) + disl(x’, y) 5 R 
V’ = V’ U {x’) 

Flg. 4. Algorithm BPRIM: computing a bounded-radius spanning tree, T ,  
for a given set of terminals, N ,  with source, s E N ,  and radius, R ,  using 
parameter e .  

clock 

Fig. 5 .  An example where the radius of the routing tree (MST) produced 
by a Prim-like construction (righr) is arbitrarily larger than a minimum- 
radius MST (lefr). 

TABLE 1 
ANALYSIS FOR SMALL NETS IN THE MANHATTAN PLANE 

Bound B(c) Net size 

IN1 = 2 

J N J  = 3 

JNI = 4 

IN1 = 5 

IN1 = 6 

1 

c = O  c = l  

cost(MST) - cost(x) - cost(y) + 2 
B(E) I 

cost (MST)  

2 3 + €  5 1 + - - -  - 2 
I 1 +  

cost (MST) 1 + €  l + € .  

If backtracing occurs three times, the tree produced by 
BPRIM is a star graph. Moreover, in this case, it is easy 
to see that cost(MST) 1 1 + 3 ~ .  Thus, 

4 
I- 

4 
B(E) I 

cost(MST) 1 + 3 E  
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T = (V’,E’) = ({s},@) 
while )V’) < (NI 

Select two terminals I E V’ and y E N - V‘, 
with d i s t ~ ( s , r )  + dist (z ,y)  5 (1 + E ) .  R 

V’ = V‘ U {x} -1 E ’ = E ’ U { ( z , y ) }  

Therefore, 

2 + E  3 + E  4 

3 f E  4 
= max - 1 + E ’ 1  ---) + 3 €  ( 0 

In fact, the experimental results of Section V show that 
B ( E )  is still bounded by a small constant even for very 
large nets (i.e., see the tables of Appendix 1). However, 
examples exist which show that the worst-case perfor- 
mance ratio of BPRIM is not bounded by any constant for 
any value of e .  

Theorem 1 :  For any E there exists a net for which 
BPRIM will have an arbitrarily large performance ratio. 

Proof: On the net shown in Fig. 6 ,  BPRIM will have 
an unbounded performance ratio. The optimal solution is 
shown on the left, where all source-leaf path lengths are 
equal to R .  Terminal y is situated so that the path length 
from the source to any leaf via y is slightly greater than 
(1 + E )  - R. This will cause the BPRIM construction to 
backtrace from all of the leaves back to the source, yield- 
ing an unbounded performance ratio. If E is large, y can 
be replaced by a long path of many closely spaced ter- 
minals so that BPRIM creates a long path between s and 
x ;  this yields the arbitrarily large performance ratio for 
any value of E .  0 

The time complexity of BPRIM is O(n2) ,  and there are 
instances where this bound is tight, since each new ter- 
minal can force examination of most of the terminals that 
have already been added to the tree. 

B. Extensions of BPRIM 

As it turns out, the bounded-radius construction can also 
be applied to minimum spanning tree methods other than 
Prim’s algorithm. A more general algorithm template is 
given in Fig. 7.  This general template gives rise to a num- 
ber of distinct variants, depending upon how the pair of 
terminals x and y are selected inside the inner loop. Sev- 
eral variants give significant performance improvements 
over the BPRIM algorithm: 

0 H1-Find x and y as in BPRIM, and select the ter- 
minal x along the path in T from x to s which yields 
a minimum-length appropriate edge (x’, y ) ;  add (x’, 
y )  to T. 

0 H2-Find a terminal y E N - V’ minimizing dist ( x ,  
y )  for any x E V ‘ ,  and select the terminal x ’  E V ’  
which yields a minimum-length appropriate edge (x ’, 
y )  ; add (x I ,  y) to T. 

0 H3-Find a pair of terminals x E V ’  and y E N - I” 
that yield a minimum-length appropriate edge (x, y); 
add (x, y) to T. 

Property 1 also holds for each of the variants H 1, H2, 
and H3. The time complexity of variants HI  and H2 is 
O(n2) ,  while variant H3 can be easily implemented within 

4 
I 0 I 
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clock 

, to clock source 
...................................... 

Fig. 6 .  Example where the performance ratio of the algorithm is not 
bounded by any constant for any e .  The optimal solution is shown on the 
left, while the BPRIM output is shown on the right. 

Fig. 7 .  A more general BPRIM template: computing a bounded-radius 
spanning tree T for a given set of terminals N with source s E N and radius 
R ,  using parameter t. 

time 0 ( n 3 ) .  Empirical results of the BPRIM method are 
very promising, as can be seen in Appendix I. However, Fig. 
6 shows that BPRIM will also have unbounded worst-case 
performance ratio. Thus, the next section develops a new, 
provably good approach to performance-driven global routing 
based on a combination of minimum spanning tree and shortest 
path tree constructions. 

IV. BOUNDED-RADIUS SPANNING TREE 
GLOBAL ROUTING 

The basic idea of our provably good bounded-radius 
minimum spanning tree algorithm is to construct a 
subgraph Q which spans N and has both small total cost 
and small radius. Then the shortest path tree of Q will 
also have small cost and radius, and will correspond to a 
good routing solution. We again use the routing graph G 
= ( V ,  E ) ,  with V = N .  Our algorithm is as follows. 

Compute the shortest path tree SPTG of G, and com- 
pute the minimum spanning tree MST, of G .  Also, 
initialize the graph Q to be equal to MSTG. 
Let L be the sequence of vertices corresponding to a 
depth-first tour of MST,, where each edge of MST, 
is traversed exactly twice (see Fig. 8). The total edge 
cost of this tour is twice that of MSTG. 
Traverse L while keeping a running total S of tra- 
versed edge costs. As this traversal reaches each node 
Li, check whether S is greater than E distG(s,  15;). 
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compute MSTG and SPTG 
Q = MSTG 
L = depth-first tour of MSTG 
s=o 
for i = 1 to ILI - 1 
s = s + cost(Li,Li+1) 
if S 2 E .  d i s t ~ ( s ,  Li+l) then 

Q = Q U m i n p ~ t h ~ ( s ,  Li+l) 
s=o 

T = shortest path tree of Q 

Fig. 9. Computing a bounded-radius spanning tree Tfor  G = ( V ,  E ) .  with 
source s E V and radius R ,  using parameter E .  Twill have radius at most ( 1  
+ t )  . R ,  and cost at most (1  + ( 2 / ~ ) )  . cosr(MST,). 

Fig. 8. A spanning tree and a depth-first tour. 

S 

If so, reset S to 0 and merge minpath,(s, L , )  into Q .  
Continue traversing L while repeating this process. 
Our final routing tree is SPTQ, the shortest path tree 
over Q. 

A formal description of the algorithm is given in Fig. 9. 
We now prove that for any fixed E this algorithm pro- 

duces a routing tree with radius and total cost each simul- 
taneously bounded by a constant times optimum: 

Theorem 2: For any weighted graph G and parameter 
E ,  the routing tree T constructed by our algorithm has ra- 
dius r ( T )  I (1 + E )  9 R. 

Proof: For any U E I/, let U ,  - I be the last node be- 
fore U on the MST traversal L for which we added 
minpathc(s, U ,  - I )  to Q in the algorithm, as shown in Fig. 
10. By the construction of the algorithm, we know that 
distL(ui- I, U )  I t * R.  We then have 

dist,(s, U )  I dist,(s, U , - , )  + d i S f , ( U , - l ,  U )  

I distc(s, U , -  I) + E . R 

I R + E + R = ( I  + € ) O R .  0 

Theorem 3: For any weighted graph G and parameter 
E ,  the routing tree T constructed by our algorithm has 
cost(T) I (1 + ( 2 / ~ ) )  * cost(MSTc). 

Proof: Let u l ,  u2, * - * , U ,  be the set of nodes to 
which the algorithm added shortest paths from the source 
node, and let u0 = s. We have 

m 

cost(T) I cost(MSTG) + ,E distG(s, v i ) .  
, = I  

since T is a subtree of the union of the MST with all of 
the added shortest paths. By the algorithm construction 
dist,(v,- I ,  U , )  2 E * distc(s, U , ) ,  and so we obtain 

“ 1  
cost(T) I cost(MSTG) + - . distL(ui - vi)  

, = I  E 

1 
I cost(MSTG) + - * cost(l). 

E 

V 

Fig. 10. Depiction of the bounded-radius construction. 

- Vi-1 

Since cost(L) I 2 . cost(MSTG), we have 

= (1 + t) cost(MSTG). 0 

Because our method yields a bounded-radius, bounded- 
cost routing tree, we call this the BRBC algorithm. 
Theorem 3 suggests that for E = 0, the ratio 
cost(T)/cost(MSTG) is not bounded by any constant; in- 
deed, this is true for the example of Fig. 1 above, where 
cost(T)/cost(MSTG) is Q ( l  N I ) .  A similar idea was re- 
cently used in the distributed computation literature by 
Awerbuch, Baratz, and Peleg [ I ]  for constructing span- 
ning trees with small diameter and small weight. How- 
ever, our algorithm treats the bounded-radius minimum 
spanning tree problem, while they treat the tree diameter 
instead. Moreover, our method involves a simpler con- 
struction with tighter performance bounds. 

V .  BOUNDED-RADIUS STEINER TREE GLOBAL ROUTING 

In the previous section, we treated the bounded-radius 
minimum spanning tree problem, where each net N is 
routed in an underlying routing graph G = ( V ,  E ) ,  with 
V = N .  As noted earlier, the spanning tree routing has 
proved useful in cell-based design. In this section we treat 
the more general version of the problem, where Steiner 
points are allowed. 
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A. An Algorithm fur  Arbitrary Weighted Graphs With 
Steiner Points 

For building-block design, the underlying routing graph 
is based on the channel intersection graph [4], and a net 
N is a subset of the vertices of G. In this case, the BRMRT 
problem is actually the bounded radius optimal Steiner 
tree (BROST) problem, and the channel intersection 
points (i.e.,  the nodes in V - N )  are potential Steiner 
points. The following is immediate: 

Lemma I :  The BROST problem in NP-complete. 
Proof: Setting E = 00 yields the graph Steiner prob- 

0 
Hence, in the BROST problem, even the construction 

of a “minimum spanning tree” for N in G is equivalent 
to the Steiner problem in graphs. This means that if we 
are to apply our graph version of the BPRIM algorithm to 
the BROST problem and still maintain polynomial com- 
plexity, we have to be satisfied with an approximation to 
the minimum-cost tree spanning N (i.e., a Steiner tree) 
within G.  

Recall that in applying the BRBC algorithm to general 
graphs, the only reason we use the MST is to obtain a 
reasonably short tour of the vertices. Toward this end, 
any tour of the vertices will suffice (e.g., traveling sales- 
man, Chinese postman). In constructing this tour we are 
not even restricted to visiting each node at most once, just 
as long as every node is visited at least once, and the total 
cost of the tour is still reasonably small. 

Our approximation algorithm for the bounded-radius 
optimal Steiner tree problem is similar to the algorithm 
presented in Section 1V. Note that given any approximate 
Steiner tree f, we can use the approach of Section IV tp 
construct a routing tree with radius within (1 + E )  r (  T )  
and cost within (1 + ( 2  / E ) )  * cost ( T ) .  Our algorithm uses 
a heuristic from Kou, Markovsky and Berman (KMB) 
[ 171, 1261 to build a Steiner tree f = TKMB in the under- 
lying routing graph, with TKMB having cost within a factor 
2 of 

We construct a depth-first tour of the heuristic Steiner 
tree TKMB. Next, we traverse the tour, adding to TKMB the 
shortest paths from the source to the appropriate vertices 
of the tour, as in Section IV. Finally, we compute the 
shortest path tree in the resulting graph and output the 
union of the shortest paths from the source to all terminals 
in N (which includes intermediate nonterminal nodes on 
the shortest paths as Steiner points). Note that the cost of 
the tour will be at most four times the optimal Steiner tree 
(T(,,,,) cost. Thus, the resulting routing tree cost is at most 
2 . (1 + ( 2 / ~ ) )  times optimal. 

lem, which is known to be NP-complete [ 121. 

’Given a graph G = ( V ,  E )  and a net of terminals N E V .  the method 
of Kou, Markovsky, and Berman is as follows. First, construct the com- 
plete graph over N with each edge weight equal to the cost of  the corre- 
sponding shortest path in G. Compute T,  the minimum spanning tree of 
this complete graph, and expand each edge of T into the corresponding 
shortest path, yielding a subgraph G’ that spans N .  Finally. compute the 
minimum spanning tree T‘ of G’, and delete edges from T‘ until all leaves 
are nodes of N .  Output the resulting tree. 

Theorem 4: For any weighted graph G = ( V ,  E ) ,  node 
subset N E V ,  and parameter E ,  the routing tree T con- 
structed by our algorithm has radius r ( T )  I (1 + E )  . R,  
and cost(T) I 2 . (1 + ( 2 / ~ ) )  . cost(T,,,). 

Proof: By our previous arguments, r ( T )  I (1 + E )  

R. In addition, cost(T) I (1 + ( 2 / ~ ) )  cost(TKMs), 
where TKMs is the approximate Steiner tree produced by 
the method of [ 171. Since cosr (TKMB) 5 2 . cost (T,,,), 
we have cost(T) 5 2 . (1 + ( 2 / ~ ) )  0 cost(T,,,). 

B. Geometry Helps in Routing 
If we are routing in a metric space and are allowed to 

introduce arbitrary Steiner points to reduce the routing 
coddiameter, we can slightly modify the basic algorithm 
(of Fig. 9) to introduce Steiner points on the tour L when- 
ever S = 26 - R. From each of these Steiner points we 
construct shortest paths to the source and add them to Q 
as in the original algorithm. Thus, each node in the tra- 
versal of L will be within E - R of a Steiner point, i.e., 
within (1 + E )  + R of the source. In this case, we can 
show that the same radius bound is maintained 

Theorem 2‘: In the geometric plane, for a given pa- 
rameter t the routing tree T constructed by our algorithm 
has radius r ( T )  I ( 1  + E )  - R. 17 
At the same time, we can show that the cost of the routing 
tree will be reduced to the following: 

Theorem 3’:  In the geometric plane, for a given pa- 
rameter E the routing tree T constructed by our algorithm 

0 
The proofs of these two results are similar to those of 
Theorems 2 and 3 .  

In addition, well-known results which bound the 
MST/Steiner ratio in various geometries can be used with 
Theorem 4 and the above scheme to yield even better 
bounds whenever the edge weights correspond to a metric 
(e.g., Manhattan or Euclidean). To illustrate how these 
observations can be combined to yield improved bounds 
for Steiner routing in metric spaces, we give two imme- 
diate examples. 

Corollary 1: Given a set of terminals N in the Man- 
hattan plane and a real parameter E ,  our algorithm will 
produce a routing tree T with r ( T )  bounded by ( 1  + E )  

times optimal and with cost bounded by ( 3 / 2 )  . (1 + 
(1 /E)) times optimal. 

Proof: By a result of Hwang [ I  I], the rectilinear 
minimum spanning tree gives a 3 / 2  approximation to the 
rectilinear optimal Steiner tree. We then apply arguments 
similar to those of Theorems 2 and 3 .  0 

Corollary 2: Given a set of terminals N in the Euclid- 
ean plane and a real parameter E ,  our algorithm will pro- 
duce a routing tree T with r (  T )  bounded by (1 + E )  times 
optimal and with cost bounded by (2/&) - (1 + (1 /E)) 
times optimal. 

has cost(T)  I 2 (1 + (1 / E ) )  . cost(T,,,). 

Proof: By a recent result of Du and 
Euclidean minimum spanning tree gives 
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imation to the Euclidean optimal Steiner tree. We again 
0 

Note that this result generalizes when we have in- 
creased flexibility in the wiring geometry, e.g., 30"-60"- 
90" wiring instead of rectilinear. By applying a recent re- 
sult [24] for X eometries (allowing angles i n / X ) ,  a cost 
bound of (2/&) cos (a /X)  . ( 1  + ( 1 / ~ ) )  may be estab- 
lished. When A approaches 00, this bound approaches the 
bound of the corollary above. 

apply the arguments of Theorems 2 and 3 .  

VI. GENERALIZATION TO NONUNIFORM VALUES OF E 

Often we may wish to use varying wire length con- 
straints on the different source-sink paths within a given 
signal net, since timing in VLSI circuits is actually path- 
dependent rather than net-dependent. For example, a 
source-sink connection on a timing-critical path will re- 
quire a small value of E ,  whereas for a connection not on 
any critical path, we may allow large E in order to reduce 
total wire length. This yields the following generalization 
of the BRMRT formulation: 

The Nonuniform Bounded Radius Minimum Routing 
Tree (NBRMRT) Problem: Given parameters E ;  L 0 as- 
sociated with each sink terminal ti of a signal net having 
source s and radius R,  find a minimum-cost routing tree 
T such that distr(s,  t i )  I ( 1  + E ; )  

In this section, we extend our method to handle this 
case, and establish constant-factor bounds on both wire 
length cost and radius of the routing solution. Although 
we restrict the discussion to spanning tree routing, exten- 
sions to (geometric) Steiner routing are straightforward, 
using the techniques of Sections IV and V. 

To handle a different path length constraint E ;  for each 
terminal ti in the net N ,  we modify the original algorithm 
of Fig. 9 by changing the conditional inside the loop from 
S 1 E distG(s,  L i + l )  to S 2 dist,(s, L j + l ) .  An 
argument identical to that in the proof of Theorem 2 yields 
the following bound on the pathlengths: 

Lemma 2: For an arbitrary weighted graph G with 
source s and radius R ,  and a set of terminal radius param- 
eters f l ,  f 2 ,  * , € 1  N I ,  our modified algorithm constructs 
a routing tree T such that distT(s,  t i )  I (1 + E ; )  R for 

Clearly, by arguments similar to those used earlier, our 
modified algorithm constructs a routing tree T with 
cost(T) I ( 1  + 2/min ( c l ,  c 2 ,  * - , € I N l ) )  . cost(MSTG). 
However, it is possible to improve this bound, as 
follows. Without loss of generality, we can assume that 
all of the ei's are sorted in nondecreasing order: c l  I 
c2 I * * I Let E = max]"i, E ; ,  and define k = 

R for each ti. 

each terminal t i .  0 

r 2  * cos t (MST, ) / ( ( l  + E )  * R ) 1 .  

Lemma 3: For any weighted graph G and a set of 
terminal radius parameters I c2  I * * I E ( , , ( ,  our 
modified algorithm constructs a routing tree T with 

L = MST tour 

--b 

Fig. 11. Tree construction using nonuniform values of t 

cost(T) I ( 1  + ( k / ( k  - 1)) . 2 / H M ( t I ,  c 2 ,  . * , E ~ ) )  
cost (MST,), where HM denotes harmonic mean. 

, u , ~  be the set of nodes to 
which the algorithm added shortest paths from the source 
node, as shown in Fig. 1 1 .  As usual, the routing tree pro- 
duced by our modified algorithm is a subtree of Q ,  the 
union of MST, and the added shortest paths. The routing 
tree cost is therefore bounded by cos t (Q)  = cost(MST) 
+ E:=, distc(s,  U , )  I cost(MST) + E:= I 1 / E ,  distL(u, - I ,  
U , ) .  Let I ,  denote distL(u, - u I ) .  By the construction, we 
have 1, L E,  distc(s,  U , ) .  Because no edge length is 
greater than R,  I ,  I ( 1  + E )  R ,  and 1, = 2 * 

cost(MSTG) I k (1 + E )  R .  Therefore, 

Proofi Let u 1 ,  u2, - 

" 1  l i  ( l + e ) . R  C - disrL(ui - l ,  v i )  = C - I C 
i = l  E ;  i = l  €; i = l  E ;  

since 1, 5 (1 + E )  * R,  E:= I 1, I k . ( 1  + E )  . R,  and the 
e l ' s  are in sorted order. Factoring out (1 + E )  and using 
the definition of k ,  we obtain 

k 1  
= ( 1 + ~ ) .  C - * R  

r = l  E ,  

1 2 * COSt(MSTG) k 

I ( 1  + E) . c - * 
r = l  E ,  (1 + E )  (k - 1 ) '  

Canceling ( 1  + E ) ,  multiplying by k / k ,  and regrouping, 
we get 

L l  v -  A k ; = I  E ;  
I-.-. 2 * cost (MSTG) 

k - 1  k 

These results are summarized as follows: 
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2sl 
Fig. 12. Example where BPRIM outperforms variants H2 and H3; here 6 

is a very small real number and = (2 - 36)/(2 + 36). 

SJ 1.2 
6 

1 

E =os0 

- - - E=2. 0 

5 8 10 15 25 50 5 8 10 15 25 50 
Net size Net size 

Fig. 13. These charts illustrate the smooth trade-off between total routing cost and maximum signal delay produced by the 
BPRIM algorithm. The parameter E determines the trade-off between the shortest path tree and the minimum spanning tree. 

Theorem 5: For any weighted graph, G ,  and a set of 
terminal radius parameters e l  5 c2 5 . 5 E ( , , ( ,  our 
modified algorithm constructs a routing tree T with each 
terminal ti having disrT(s, r i )  5 (1 + E;) R,  and with 

cost(MST,), where k = 12 . cost(MST,)/((l + E )  
cost(T) I (1 + ( k / ( k  - 1)) * 2 / H M ( € , ,  €2, * * . 7 f k ) )  ’ 

I?)] and HM denotes harmonic mean. 0 

VII. EXPERIMENTAL RESULTS 
The BPRIM algorithm and variants H1, H2, and H3, 

as well as the approximation algorithms for bounded-ra- 
dius minimum spanning tree routing and for bounded-ra- 
dius optimal Steiner tree routing, were implemented in 
ANSI C for the Sun-4, Macintosh, and IBM environ- 
ments; code is available from the authors upon request. 

The BPRIM algorithm and variants H1, H2, and H3 
were tested on a large number of random nets of up to 50 
terminals, generated from a uniform distribution in the 
1000 X 1000 grid. These are standard testbeds which cap- 
ture the statistical properties of signal nets in actual lay- 
outs. As noted in, e.g., [16], any set of approximation 

heuristics induces a meta-heuristic which returns the best 
solution found by any heuristic in the set and has asymp- 
totic complexity equal to that of the slowest heuristic; we 
implemented the meta-heuristic over BPRIM, H1, H2 and 
H3, denoted by Meta (BPRIM, H1, H2, H3). Here, Meta 
(BPRIM, H1, H2, H3) returns the routing tree with min- 
imum cost. 

Although there exist examples where the BPRIM al- 
gorithm outperforms the more complicated variants (e.g., 
see Fig. 12), the data shown in Table I11 in Appendix I 
indicate that, on average, variant H1 dominates BPRIM, 
H2 dominates H1, and H3 dominates H2. Fig. 13 shows 
that the BPRIM approach produces a very smooth trade- 
off between routing cost and tree radius. 

The BRBC algorithm for spanning tree routing was 
tested on a large number of random nets generated from 
a uniform distribution in the grid. Results are summarized 
in Fig. 14, which clearly shows the trade-off between 
routing cost and maximum delay. As decreases, both the 
cost and radius curves shift monotonically from that of 
the minimum spanning tree to that of the shortest path 
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tree. More detailed data is given in Table IV in Appen- 
dix 11. 

The BRBC algorithm for Steiner tree routing was tested 
on random block layouts in the grid; these were generated 
by adding a fixed number of nonoverlapping blocks, with 
length, width, and lower-left coordinates all uniformly 
distributed. Given a block design, nets with terminals on 
the block peripheries were routed within the correspond- 
ing channel intersection graph. An example of the output 
from our algorithm is shown in Fig. 15. 

A detailed summary of experimental results for Steiner 
routing in block designs is contained in Table V in Ap- 
pendix 11. Once again, the simulations confirm the trade- 
offs inherent in the bounded-radius routing approach. Note 
that although our construction starts with the heuristic 
Steiner tree of Kou, Markovsky, and Berman, our routing 
solution may in some cases have smaller cost than the 
KMB tree. In all cases, the radius of our routing tree is 
no larger than that of the KMB tree. This too is reflected 
in the experimental data. Finally, SPICE was used to 
compare routings produced by our algorithm with MST 
routings for selected nets, as noted earlier in Fig. 3 .  

From Tables 11, 111, and IV, we observe the following. 
For any given value of E ,  the BPRIM approach, being 
inherently greedy, will yield a routing solution with ra- 
dius approaching (1  + e )  - R, but with small tree weight. 
On the other hand, the BRBC approach, being more con- 
servative, will yield a routing solution with radius notice- 
ably smaller than (1 + E )  . R, but at the expense of slightly 
larger tree cost. Therefore, the BRBC algorithm will have 
a slightly shifted cost-radius curve compared with the 
BPRIM algorithm. In practice, the asymptotic efficiency 
of implementation and the provably good output provide 

Fig. 15. A set of placed modules and their channel intersection graph. The 
highlighted tree is the routing produced by our algorithm. 

compelling reasons to adopt the BRBC algorithm, rather 
than the BPRIM approach. 

VIII. CONCLUSIONS 
We have proposed a new bounded-radius minimum 

spanning tree formulation for timing-driven global rout- 
ing in both cell-based and building-block design. An ef- 
fective method based on an analog of Prim’s minimum 
spanning tree construction is given. Furthermore, we have 
also proposed a new, provably good general algorithm for 
timing-driven global routing. This method is based on a 
routing tree construction where both the total wire length 
and the maximum delay of the routing are bounded by 
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TABLE I1 
MINIMUM,  AVERAGE, A N D  MAXIMUM RADIUS RATIOS FOR VARIOUS V A L U E S  OF € .  

min 
0.42 
0.26 
0.36 
0.34 
0.33 
0.30 
0.41 
0.48 
0.46 
0.44 
0.38 
0.39 
0.58 
0.67 
0.65 
0.65 
0.48 
0.53 
1.00 
0.86 
0.96 
1.00 
0.84 
0.82 

- 

- 

- 

- 

- 

pRIl 
ave 
0.82 
0.77 
0.75 
0.71 
0.69 
0.61 
0.93 
0.92 
0.91 
0.90 
0.86 
0.83 
1.00 
0.99 
0.99 
0.98 
0.98 
0.95 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

- 

- 

- 

- 

- 

max 
1.00 
1 .oo 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .oo 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .oo 
1.00 
1.00 
1.00 

0.99 

- 

- 

- 

H2 - H1 - 
min 
0.42 
0.26 
0.36 
0.34 
0.33 
0.30 
0.41 
0.33 
0.45 
0.44 
0.37 
0.39 
0.58 
0.56 
0.57 
0.54 
0.48 
0.53 
1.00 
0.80 
0.96 
1 .oo 
0.84 
0.82 

- 

- 

- 

~ 

- 

0.92 I 1.00 1 0.33 
0.90 1.00 0.45 
0.89 1.00 0.44 
0.86 1.00 0.37 

0.99 1.00 0.56 
0.98 I 1.00 (1 0.57 
0.98 1.00 0.54 
0.97 1.00 0.48 

1.00 1.00 0.67 
1.00 1 1.00 1) 0.78 
1.00 1.00 0.85 
1.00 1.00 0.81 
1.00 I 1.00 11 0.78 

constant factors away from optimal. Our approach readily 
extends to Steiner tree routing in arbitrary weighted 
graphs, where again the routing tree is only a small con- 
stant factor away from optimal in terms of both cost and 
radius. Extensive simulations over geometric routing 
graphs as well as channel intersection graphs derived from 
random block designs confirm that our approach gives 
very good performance. The results of Section VI1 indeed 
exhibit a smooth trade-off between the competing require- 
ments of minimum delay and minimum total wire length. 

Based on our methods for constructing bounded-radius 
routing trees, the global routing procedure will work as 
follows. We route all nets, one by one, according to their 
priorities. For each net, we construct a bounded-radius 
minimum spanning tree or bounded-radius minimum 
Steiner tree using the algorithms presented in Sections IV 
and V. The parameter E is either given by the user or com- 
puted based on an estimation of the timing constraints for 
the net. As noted in Section VI, different values of ei can 
be used within a single net to reflect timing constraints in 
various input-output paths. The cost of each edge in the 
routing graph is a function of wire lengths, channel ca- 
pacities, and the distribution of current channel densities. 
After routing each net, we update the edge costs in the 
routing graph. After all nets are routed, we may compute 
the timing-critical paths and, if necessary, further reduce 
the interconnection delay by rerouting some critical nets 
based on more accurate distributed RC delay models. 

Our algorithms readily extend to other norms and to 
alternate geometries (e.g., 45" or 30"-60"-90" routing 
regimes). There are several remaining open problems, 
such as the complexity of computing the minimum cost 
bounded-radius spanning tree in the Manhattan plane or 
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0.30 

0.39 

- 

0.58 

ave 
0.82 
0.77 
0.75 
0.71 
0.69 
0.61 
0.92 
0.92 
0.90 
0.89 
0.86 
0.82 
0.99 
0.99 
0.98 
0.97 
0.97 
0.94 
1 .oo 
1.00 
1.00 
1.00 
1.00 
0.99 

- 

- 

- 

- 

- 

max 
1 .oo 
1.00 
1.00 
1.00 
1.00 
0.99 
1.00 
1.00 
1.00 
1.31 
1.07 
1.04 
1.00 
1.00 
1.00 
1.06 
1.10 
1.06 
1 .oo 
1 .oo 
1.18 
1.10 
1.26 
1.16 

- 

- 

_. 

- 

- 

the complexity of choosing an MST with minimum radius 
when the MST is not unique. 

APPENDIX I 
BPRIM AND ITS VARIANTS 

A .  Experimental Data for  Ratios of Heuristic Tree 
Radius to MST Radius 

Table I1 gives the minimum, maximum, and average 
ratios of the heuristic tree radius to the MST radius, as 
computed by the BPRIM algorithm and its variants H 1, 
H2, H3, and Meta (BPRIM, H1, H2, H3).  The data 
shown represent averages of 500 cases generated from a 
uniform distribution in the unit square. The source node 
was selected to be one of the terminals at random. Note 
that the radius of the Meta (BPRIM, H1, H2, H3) solution 
may be larger than the radius produced by any single 
method, because the meta-heuristic is selecting the low- 
est-cost routing tree. 

B. Experimental Data for  Ratios of Heuristic Tree Cost 
to MST Cost 

Table I11 gives the minimum, maximum, and average 
ratios of the heuristic tree cost to the MST cost, as com- 
puted by the BPRIM algorithm and its variants H1, H2, 
H3, and Meta (BPRIM, H1, H2, H3). The data shown 
represent averages of 500 cases generated from a uniform 
distribution in the unit square. The source node was se- 
lected to be one of the terminals at random. 
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max 
2.22 
2.20 
2.33 
2.79 
2.71 
3.49 
1.60 
1.97 
1.73 
2.08 
2.91 
3.67 
1.27 
1.73 
1.47 
1.79 
2.38 
2.66 
1.00 
1.34 
1.08 
1.00 
1.39 
1.71 

750 

min 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

TABLE 111 
MINIMUM, AVERAGE, A N D  MAXIMUM COST RATIOS FOR VARIOUS 

VALUES OF E .  

1.23 
1.26 
1.32 
1.39 
1.52 
1.04 
1.05 
1.06 
1.08 
1.10 
1.15 
1.00 
1.01 
1.01 
1.02 
1.02 
1.04 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

- 
- 
min 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .oo 
1.00 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

- 

- 

_. 

- 

- 

1.94 
2.33 
2.77 
2.45 
2.91 
1.56 
1.59 
1.59 
1.60 
1.97 
1.93 
1.27 
1.54 
1.32 
1.30 
1.39 
1.71 
1.00 
1.07 
1.08 
1.00 
1.14 
1.13 

- 
Mett 
ave 
1.16 
1.20 
1.22 
1.23 
1.25 
1.30 
1.04 
1.04 
1.05 
1.05 
1.05 
1.06 
1.00 
1.01 
1.01 
1.01 
1.01 
1.02 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

- 
- 

- 

- 

- 

- 

1.25 
1.28 
1.33 
1.41 
1.04 
1.05 
1.06 
1.06 
1.08 
1.10 
1.00 
1.01 
1.01 
1.01 
1.01 
1.03 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

2.18 
2.53 
2.30 
2.92 
1.56 
1.59 
1.59 
1.53 
1.88 
1.75 
1.27 
1.54 
1.31 
1.30 
1.37 
1.47 
1.00 
1.07 
1.08 
1.00 
1.14 
1.11 

tree radius of 
our alnorithm 

Shortest Path tree cost of Shortest Pa th  
tree radius our alnorithm tree cost 

max 
1.00 
1.00 
1.00 
1.00 
0.94 
1.00 
0.99 
1.00 
0.99 
0.97 
1.00 
1.00 
1.00 
1.00 
0.99 
1.00 
1.00 
1.00 
1.00 
1.00 

inin 
0.44 
0.43 
0.38 
0.27 
0.34 
0.47 
0.46 
0.37 
0.42 
0.31 
0.56 
0.44 
0.50 
0.30 
0.31 
0.50 
0.40 
0.38 
0.35 
0.23 

1.66 
1.57 
1.53 
1 . i3  
1.30 
1.31 
1.47 
1.41 
1.43 
1.15 
1.22 
1.23 
1.19 
1.27 

1.02 1.37 
1.02 1.45 
1.13 1.54 
1.32 1.60 
1.00 1.22 
1.12 1.37 
1.03 1.45 
1.14 1.61 
1.37 1.71 
1.00 1.30 
1.03 1.48 
1.10 1.50 
1.18 1.49 
1.25 1.68 

- 
net 
size 
5 
8 
10 
15 
25 
50 
5 
8 
10 
15 
25 
50 
5 
8 
10 
15 
25 
50 
5 
8 
10 
15 
25 
50 

- 

- 

- 

- 

- 

E 
ave 
1.17 
1.25 
1.28 
1.39 
1.53 
1.92 
1.05 
1.07 
1.09 
1.13 
1.21 
1.40 
1.00 
1.01 
1.02 
1.03 
1.04 
1.13 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

- 

- 

- 

- 

- 

II H.? 

c - 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 

- 

- 

- 

- 
min 
1.00 
1.00 
1.00 
1.00 
1 .oo 
1.00 
1 .oo 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .oo 
1 .oo 
1.00 
1 .oo 
1.00 

- 

- 

- 

- 

- 

--" - 
ave 
1.16 
1.20 
1.23 
1.25 
1.28 
1.33 
1.04 
1.04 
1.05 
1.05 
1.05 
1.06 
1.00 
1.01 
1.01 
1.01 
1.01 
1.02 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

- 

- 

- 

- 

- 

- 
max 
2.22 
2.26 
2.18 
2.28 
2.16 
2.22 
1.56 
1.84 
1.59 
1.53 
1.72 
1.77 
1.27 
1.54 
1.31 
1.30 
1.33 
1.31 
1.00 
1.07 
1.08 
1.00 
1.09 
1.11 

- 

- 

- 

- 

- 

- 
min 
1 .oo 
1 .oo 
1.00 
1.00 
1.00 
1 .oo 
1.00 
1.00 
1 .oo 
1.00 
1 .oo 
1 .oo 
1.00 
1.00 
1.00 
1.00 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 

- 

- 

- 

- 

- 
min 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .oo 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

- 

- 

- 

- 

max 

1.94 
2.18 
2.28 
2.00 
2.22 
1.56 
1.59 
1.59 
1.53 
1.72 
1.74 
1.27 
1.54 
1.31 
1.30 
1.33 
1.31 
1.00 
1.07 
1.08 
1.00 
1.09 
1.09 

2.22 

- 

- 

- 

- 

TABLE IV 
BRBC TREE A N D  SHORTEST PATH TREE RADIUS A N D  COST STATISTICS FOR 

MINIMUM SPANNING TREE VALUES 
RANDOM NETS, EXPRESSED AS A FRACTION OF THE CORRESPONDING 

111 
min 
0.44 
0.43 
0.38 
0.27 
0.34 
0.57 
0.48 
0.42 
0.44 
0.33 
0.66 
0.56 
0.51 
0.44 
0.32 
0.84 
0.47 
0.51 
0.48 
0.36 

- 

- 

_. 

- 

- 

ave 
3.82 
0.74 
0.71 
0.65 
0.64 

0.74 
0.81 
0.72 

0.95 
0.84 
0.81 
0.73 
0.66 
0.99 
0.93 
0.86 
0.86 
0.74 

- 

0.90 

0.66 

- 

- 

ave 
0.81 
0.i4 
0.70 
0.65 
0.63 
0.85 
0.69 
0.75 
0.69 
0.63 
0.83 
0.74 
0.73 
0.66 
0.61 
0.78 
0.72 
0.69 
0.69 
0.60 

- 

- 

- 

- 

- 

ave 
1.25 
1.35 
1.39 
1.53 
1.57 
1.15 
1.22 
1.23 
1.29 
1.34 
1.03 
1.11 
1.13 
1.19 
1.25 
1.01 
1.05 
1.07 
1.08 
1.12 

- 

- 

- 

~ 

__ 

I l lax  - 
1.96 
1.99 
2.25 
2.71 
2.16 
2.04 
1.94 
2.05 
1.94 
2.14 
1.90 
1.96 
1.96 
2.28 
2.38 
2.03 
2.06 
2.28 
1.95 
2.31 

- 

- 

- 

- 

0.10 
0.10 10 
0.10 15 1.00 

0.93 
1 .oo 
0.99 
1.00 
0.99 
0.97 
1.00 
0.95 
1 .oo 
0.97 
0.93 
1.00 
0.94 
1.00 
1.00 
1.00 

_. 

- 

- 

- 

1.25 
1.00 
- 

0.50 
0.50 
0.50 
0.50 
1.00 
1.00 
1.00 
1.00 
1.00 
2.00 
2.00 
2.00 
2.00 
2.00 

- 

- 

- 

8 
10 
15 
25 
5 
8 
10 
15 
25 
5 
8 
10 
15 
25 

- 

- 

- 

1.00 
1.00 
1.11 
1.17 
1.00 
1.00 
1 .oo 
1 .oo 
1.11 
1.00 
1.00 
1 .oo 
1 .oo 
1.01 

- 

~ 

- 

generated from a uniform distribution in the unit square, 
and the minimum, average, and maximum values were 
computed. The source was selected to be one of the ter- 
minals at random. 

APPENDIX I; 
BRBC ALGORITHM FOR SPANNING AND STEINER 

TREE ROUTING 
A.  Experimental Data for  Random Nets 

Table IV shows the cost and radius of the BRBC tree 
and the SPT, compared with the corresponding MST Val- 
ues, for bounded-radius minimum spanning tree routing. 
For each E value and net size, 50 random test cases were 

B. Experimental Data for  Channel Intersection Graphs 
Of Random 

Table V shows the cost and radius of the BRBC tree 
and the SPT, compared with the corresponding KMB val- 

Designs 
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max 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

75 1 

OUI 

min 
0.91 
0.96 
0.99 
0.99 
1.00 
1.02 
0.89 
0.98 
0.97 
0.96 
0.98 
0.96 
0.89 
0.97 
1.00 
1.00 
0.96 
0.98 
1.00 
0.92 
1.00 
0.95 
1.00 
0.99 

- 

€ 

- 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
1.00 
1.00 
1.00 
1 .oo 
1.00 
1 .oo 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 

- 

- 

- 

- 

- 
net 
size 

3 
4 
5 
7 
10 
15 
3 
4 
5 
7 
10 
15 
3 
4 
5 
7 
10 
15 
3 
4 
5 
7 
10 
15 

- 

- 

- 

- 

- 

TABLE V 
HEURISTIC TREE A N D  SHORTEST PATH TREE RADIUS AND COST STATISTICS 

FOR RANDOM BLOCK DESIGNS, EXPRESSED AS FRACTIONS OF THE 
CORRESPONDING KMB TREE VALUES 

tree radius of 11 Shortest Path 111 tree cost of 11 Shortest Path 
Olr - 

min 
0.63 
0.50 
0.43 
0.42 
0.51 
0.31 
0.60 
0.55 
0.43 
0.48 
0.42 
0.40 
0.65 
0.64 
0.67 
0.55 
0.53 
0.47 
1 .oo 
0.71 
0.61 
0.49 
0.49 
0.46 

- 

- 

- 

- 

- 

rlgori t h m  

0.90 
0.84 
0.82 
0.82 
0.81 
0.94 
0.88 
0.89 
0.86 
0.80 

- 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

- 

0.50 
0.43 
0.42 
0.51 
0.31 
0.60 
0.52 
0.43 
0.45 
0.42 

- 

0.40 
0.57 
- 
0.54 
0.48 
0.55 
0.47 
0.47 
0.62 
0.55 
0.59 
0.43 
0.45 
0.45 

- 

- 

e rad 
ave 
0.93 
0.90 
0.84 
0.82 
0.82 
0.80 
0.94 
0.86 
0.87 
0.82 
0.77 
0.75 
0.93 
0.91 
0.86 
0.84 
0.81 
0.78 
0.92 
0.89 
0.85 
0.80 
0.81 
0.76 

- 
- 

- 

- 

- 

- 

ues, for bounded-radius Steiner routing. For each e value 
and net size, 50 test cases were generated, each with 15 
randomly placed modules. Routing was performed in the 
channel intersection graph, and minimum, average, and 
maximum values were computed. The source was se- 
lected to be one of the terminals at random. 
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