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Splitting an Ordering into a Partition to Minimize Diameter

Charles J. Alpert Andrew B. Kahng

IBM Austin Research Laboratory University of California at Los Angeles

Abstract: Many algorithms can find optimal bipartitions for various objectives
including minimizing the maximum cluster diameter (‘‘min-diameter’’); these
algorithms are often applied iteratively in top-down fashion to derive a partition
P* consisting of k clusters, with k > 2. Bottom-up agglomerative approaches are
also commonly used to construct partitions, and we discuss these in terms of
worst-case performance for metric data sets. Our main contribution derives from a
new restricted partition formulation that requires each cluster to be an interval of a
given ordering of the objects being clustered. Dynamic programming can
optimally split such an ordering into a partition P* for a large class of objectives
that includes min-diameter. We explore a variety of ordering heuristics and show
that our algorithm, when combined with an appropriate ordering heuristic, outper-
forms traditional algorithms on both random and non-random data sets.

Keywords: Dynamic programming; Vertex ordering; Restricted partition; Con-
strained clustering; Sequencing; Seriation; Diameter criterion; Partition in metric
space.

1. Introduction

Given G(V,E), a cluster is a subset of V and a partition P* is set of k
nonempty clusters {C, C»,...,Ci} such that every v; € V is a member of
exactly one C;, 1<j<k. An instance (G,d,k.f) of the partition problem
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consists of:

* A weighted graph G(V,E), with n vertices V = {vy,v,,...,v,} and
EcCcVxV

e A desired number of clusters &, with 1 < k < .
A dissimilarity function d: E — R*, with d(v;, v;) denoting the dis-
similarity between vertices v; and v j- As examples, the d(v;,v;)
quantities may form the matrix of dissimilarities between all distinct
pairs of #n entities, or they may indicate the Euclidean distances
between all distinct pairs of # data points in multidimensional space.
In the latter case, we say (G,d,k,f) is a metric instance. Alterna-
tively, d(v;, v;) may denote the similarity between v; and v;, e.g., the
connectivity between nodes in a network.

*  Anobjective f: P¥ — R* that is a function of the partition.

For a gi\iekn instance (G,d,k,f), we seek a partition P¥ that optimizes fPh,
We use P to denote the optimal partition for f. Finally, an algorithm has a
performayge ratio of r if it always returns a solution P* such that
fPY/FPY <.

Much previous work has focused on cases where f is a function of
diameter and/or split. The diameter of a cluster C is defined as
diam (C) = max {d(v;, v;) | vi,v; € C}, and the split between two clusters
C; and C, is defined as split (Cq, C3) = min {d(v,-,vj) lv; e Cl,vj e C,}.
Diameter captures the notion that clusters are small and compact, while split
maintains that clusters are well-separated. For example, the following objec-
tives are well studied:

+ Min-Diameter: minimize f(P") = {nas)](c diam(C;).
<i
k
¢ Min-Sum-Diameters: minimize fPH = Y. diam(C;).
i=1
e Max-Split: maximize  f(P*)= min_split(C;,C}).
1<i<j<k

The min-diameter partition problem is NP-Complete in two or more
dimensions for £ 2 3 (e.g., Brucker (1978) and Hansen and Delattre (1978)).
Non-polynomial optimal algorithms have been proposed by Rao (1971), Han-
sen and Delattre (1978), and Guénoche (1993) for this case; such algorithms
can be effective in practice provided n is not too large. Brucker (1978)
showed that the min-diameter problem is solvable in polynomial time in one
dimension. Rao (1971), Hubert (1973), and Monma and Suri (1989) proposed
optimal polynomial algorithms for finding min-diameter partitions for k& = 2,
and speedups for metric instances have been found by Asano, Bhattacharya,
Keil, and Yao (1986) and by Avis (1986). These results form the basis of
top-down divisive hierarchical heuristics for k > 2, while an agglomerative
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implementation of the classic ‘‘complete-linkage’’ method forms the basis of
bottom-up approaches. For metric instances and other instances for which G
satisfies the triangle inequality, min-diameter algorithms with a performance
ratio of 2 have been given by Gonzalez (1985) and by Feder and Greene
(1988). Brucker (1978) showed that the min-sum-diameters objective is also
NP-hard for ¥ > 2; optimal bipartition algorithms for this objective have been
given by Hansen and Jaumard (1987), Monma and Suri (1989), and Hersh-
berger (1991). Optimal max-split partitions can be found via the well-known
“‘single-linkage’” method; Hansen, Jaumard, and Frank (1989) and Hansen,
Jaumard, and Musitu (1990) have addressed other split-related objectives.
Finally, Delattre and Hansen (1980) and Glasbey (1987) have proposed
approaches that trade off between diameter and split criteria.

In this work, we present a new non-hierarchical approach for construct-
ing min-diameter partitions based on a restricted partition (RP) formulation.
A vertex ordering is either a Hamiltonian path or a Hamiltonian circuit in G,
and the RP formulation seeks a partition such that each cluster in the partition
is an interval of the ordering. The RP formulation enables optimal partitions
to be determined in O(kn?) time for Hamiltonian cycles using dynamic pro-
gramming for a large class of objectives. For Hamiltonian paths, an O(kn?)
optimal solution is possible. In addition, prescribed upper and lower bounds
on cluster size can be handled transparently. For the min-diameter objective
in particular, an O(kn? log n) implementation can be obtained for Hamil-
tonian cycles.

The remainder of this paper is organized as follows. Section 2 reviews
the divisive min-diameter and complete-linkage algorithms for constructing
min-diameter partitions. Section 3 describes the restricted partition formula-
tion. Section 4 presents a dynamic programming algorithm for solving this
formulation and describes extensions that afford possible speedups. Section 5
discusses several possible ordering heuristics, Section 6 presents experimen-
- tal results, and we conclude in Section 7.

2. Review of Min-Diameter Approaches
The Divisive Min-Diameter (DQ) Algorithm

Many algorithms can find optimal min-diameter bipartitions, e.g., by
bicoloring a maximum spanning tree over G and assigning vertices with the
same color to the same cluster (Hubert 1973). To construct a hierarchy of
(possibly non-optimal) partitions, a given bipartition algorithm can be itera-
tively applied to the largest remaining cluster: this ‘‘divisive min-diameter’’
(DQ) algorithm is shown in Figure 1. Iteratively applying Hubert’s (1973)
algorithm yields an O(kn?) implementation for DQ. Guénoche, Hansen, and
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Divisive Min-Diameter (DQ) Algorithm (G,d, %, f = min-diameter)
Output: P* = {C,,Cs,...,Ci} = Partition into k clusters

Variables: P!, P% ..., P¥ = Set of partitions

1.Set Cy = V and P! = {C4}

2.form=1tok—1do

Let C; € P™ be such that diam(C;) is maximum

Apply an optimal min-diameter bipartition algorithm to C;, yielding C’,C"”
prHl = (pru{Cru{c”}) - {Ci}

o

Figure 1. Divisive Min-Diameter (DQ) Algorithm.

Figure 2. Illustration of the worst-case performance of DQ. Part (a) shows a set of points on
the line using Euclidean distang%s. Part (b) shows the DQ solution P> with diameter M. Part
(c) shows the optimal solution P with diameter 1; hence, the ratio of the DQ solution diame-
ter to the optimal diameter is M. Since M is an arbitrary constant, the performance ration for
DQ with £ = 3 is infinite.

Complete-Linkage (CL) Algorithm (G, d, k, f = min-diameter)
Output: P*={Ci,Cs,...,Ci} = Partition into k clusters
Variables: P*, P*~1, ... P* = Set of partitions

1. for i = 1 to n do C; = {v;}

2. P = {C},Cs,...,Cpn}

3. for m = n downto k£ + 1 do

4. Find clusters C;, C; such that diam(C; U C;) is minimum

5. pPml=(PmuU{C;uC;})—C;—C;j.

Figure 3. Complete-Linkage (CL) Algorithm.



Splitting Ordering into a Partition 55

Jaumard (1991) showed how to modify Rao’s (1971) algorithm to yield an
O(n? log n) implementation for the whole hierarchy.

Remark 1: For the min-diameter objective and k 23, DQ may have an
infinite performance ratio, even for metric instances (see Figure 2). =

In practice, such pathological behavior is a real concern, e.g., a parti-
tion P3 will likely be unbalanced when the partition P> above P> in the
hierarchy is balanced (see Section 6).

The Complete-Linkage (CL) Agglomerative Algorithm

Complete-linkage (CL) can be programmed as a bottom-up approach:
each vertex begins in its own cluster, and iteratively a pair of clusters is
merged into a single cluster such that the increase in the maximum cluster
diameter is minimized (see Figure 3). Benzécri (1982) has given an O(nz)
implementation using chains of nearest neighbors.

Remark 2: For weighted graph instances, complete-linkage has an infinite
performance ratio (see Figure 4). =

For metric instances, a tight worst-case performance ratio is not known.
For 1-dimensional data sets, it can be shown that for k = 2 and k = 3, CL has
a performance ratio of 2 for the min-diameter objective, and that this bound is
tight. However, this bound does not hold for k = 4; to our knowledge, the fol-
lowing provides the first demonstration that CL does not have a performance
ratio of 2.

Remark 3: For metric instances, CL may construct a partition with diameter
more than twice optimal, and has a performance ratio of at least 2.5.

Proof: Consider the instance in Figure 5(b). A solid line segment denotes an
existing cluster that may have been formed from an arbitrary number of
points lying on the segment, along with two points at the ends of the segment.
The instance shown has 14 clusters. The points that create the clusters with
diameter 1.1 (e.g., the dotted box contains two such clusters) must be distri-
buted more carefully so that no cluster contains two of the endpoints at dis-
tance 0.2 from each other. A possible distribution of these points is given in
(h). The execution of CL with appropriate tie-breaking on this instance is
shown in (c)-(g); the result is a 4-cluster partition with largest cluster diame-
ter 12.4, which is 12.4/5 = 2.48 times worse than the largest cluster diameter
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(a) (b) (c)

Figure 4. Illustration of the worst-case performance of CL. Part (a) shows a non-metric
instance over 4 points. Part (b) shows a possible CL bipartition with maximum diameter M:
CL will first merge the bottom two points into a cluster, then any subsequent merge sill create
a cluster with diameter M. Part (c) shows the optimal bipartition with maximum diameter 2,
hence the ratio of the CL solution diameter to the optimal diameter is M/2. Since M is an arbi-
trary constant, the performance ratio for CL with non-metric instances is infinite.

(a)

® =, 2 .

1 2 3.7 3.7 1.3 1.3 3.7 2 1
(¢ ~= = = PR 7 I n 2, . N
d) ——3— . » 24 . M Y . » . —
© 3 3.7 2.4 3.7 2.4 3.7 3
) 3 7.4 3.7 7.4 3
(@ 12.4 3.7 7.4 3
h) ™ 01 0.1 0.1 01 g1 g1 a

0.54 0.16 0.1 0.2 0.1 0.16 0.54

Figure 5. (a) gives the optimal solution ;’4 for (b) the geometric problem instance. (c)-(g)
show the execution of CL on this instance. The resulting maximum diameter of 12.4 gives CL
a performance ratio of 2.48 for this instance.

in the optimal solution (a). Distances in (b) can be slightly perturbed to avoid
ties and deterministically yield this partition; the instance can also be per-
turbed to force the performance ratio arbitrarily close to 2.5. =

Tight upper bounds on the performance ratio of CL remain unknown
for 1-dimensional and multidimensional metric instances and for weighted
graphs that satisfy the triangle inequality.
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3. The Restricted Partition (RP) Formulation

While the above approaches use the min-diameter objective, their
underlying paradigms can be extended to other objectives. We now present a
new approach for constructing min-diameter partitions; because our approach
easily extends to other objectives, we cast the discussion in terms of a generic
objective f.

A well-known Traveling Salesman Problem (TSP) heuristic of Karp
(1977) uses a partition of a planar data set to construct a heuristic tour (i.e., a
Hamiltonian cycle): every point in a given cluster is visited before the tour
moves on to the next cluster, until all points in all clusters have been visited.
The genesis of our approach lies in asking whether an “‘inverse’’ methodol-
ogy can succeed, i.e., whether we can use a tour of the vertices to generate a
partition. Given a tour, we require each cluster to be an interval of the tour,
thereby obtaining the following general approach: (i) construct a ‘‘good tour’’
over the vertices, then (ii) split the tour to obtain a partition into & clusters.
We will use the term ordering to refer to either a tour or a linear ordering
(i.e., a Hamiltonian path); the context should be clear from the discussion.

We represent an ordering Vaay Va@)y - - - »Vam) over
V={v{,va,...,v,} by the bijection m: [1---n] = [1---n]. We say that v;
is the j-th vertex in the ordering if ©(j) =i (S0 v; = vg;)). In other words,
V) is the first vertex in the ordering, vn) is the second, etc. An interval
[i,j1 of m is a contiguous subset of Vi) V) ---Vae) With
6,71 = (V) Vager) - - -V} i 1<) and [,71 = {Vagys Vags1ys - - - Ve )
U {Vray Vae)y - - -V} if § > j. An instance of the restricted partition (RP)
problem consists of a partition instance (G, d, k, f), a vertex ordering pi, and
lower and upper cluster size bounds L and U. While not necessarily an intui-
tive part of the RP formulation, cluster size bounds are easily integrated into
the algorithms that we present.

The Restricted Partition Problem (RP): Given a restricted partition
instance (G, d, k, f, &, L, U), find a partition P* that optimizes f(P") such that
the following conditions hold.

Condition 1: if V), vy € C for some cluster C € P¥, and i < j,
then either

@) [i,jlcC, or

®) UileC.
Condition2: L<1C; I SU, 1<j<k

Condition 1 captures the restriction that clusters must be intervals of «, and
Condition 2 enforces cluster size bounds.
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4. Splitting Orderings Optimally

We apply an O(kn2(U - L)) dynamic programming algorithm to solve
the RP formulation optimally. Removing Condition 1(b) from RP requires
clusters to be intervals from a linear ordering rather than from a tour, and
allows an O(n) factor speedup. Other speedups are possible when addressing
specific objectives, e.g., we give an O(nU logn) solution for the min-
diameter objective.

4.1 A Dynamic Programming Solution

Assume that there exists an ‘‘intracluster’’ cost function w(C) defined
over clusters C, such that f can be written in terms of w, e. g., we may write
the  min-diameter  objective as  f(P*) = maxiq« w(C;)  where
w(C;) = diam (C;). The cluster corresponding to interval [i, J1 is denoted by
Clij1> and we say that i and j are respectively the left and right endpoints of
the cluster. We let Pf; j) denote a restricted partition of the interval [i,] into &
Clusters. Notice that P; ;; = {C|;;;} is the optimal partition into one cluster
over the interval [i,j]. The set of partitions P’{,-, j1 Will serve as ‘‘building
blocks’” for solutions of the form P} j1where [i,j1c[i”,j land k < k",

Since each cluster C|; j1 18 uniquely determined by its first and last ver-
tices V() and v, only (U — L + 1)n clusters can be part of any RP solution.
Our algorithm begins by computing the cost w(C i,j1) for each of the
(U ~L + 1)n possible clusters; we assume the existence of a procedure
Cluster_Costs that performs this operation (see Section 4.2). These clusters
form the set of all optimal partitions of the form Pj; j1- We then build parti-
tions into two clusters P[Z,«, j1 from the P}; j1 solutions, etc., until a partition into
k clusters is derived over the interval [i,i — 1]. (All index manipulations are
performed modulo n, ie., i+j=({+j-1) mod (n+ 1), so that
[i,i —11=[1,n] if i = 1.) Figure 6 formally describes this algorithm, which
we call DP-RP for ‘‘Dynamic Programming for Restricted Partitions’’.

As an example, consider the ordering of 8 nodes shown in Figure 7.
We show the DP-RP construction of the partition P{; g with L =2 and U = 5,
by considering all combinations of the partition P[ZL,,,] with Cpy1,8)
(3<m <6) as in Steps 6 and 7 of Figure 6. The partitions P[Zl,m] B<m<6)
are assumed to have been previously constructed. The solution assigned to
P?Lg] is P%l,m] U {Cpn+1,81}, Where m is chosen to minimize
F(Pf,m © {Clms1,8)})- Notice that in (a), the cost of the partition Ph 3 is
infinite since it cannot satisfy the cluster size lower bound constraint.
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DP-RP Algorithm (G,d,k, f,n,L,U)
Output: P* = Optimal restricted partition
Variables: P[’flj] = Subsolutions

k' = Index denoting current number of clusters
m+ 1 = Beginning index of possible new cluster
frest = Value of objective function for best current P[’f'j]

1. for each 7,7 do compute f(P[}’j]) = w(C}; ;) using Cluster_Costs
2. for k' =2 to k do
for each ¢,j do

jbeﬂ =0
form=j—-Utoj— Ldo

if foest > f(Pf i U{Cims1,)}) then
Freat = F(P§ ot U{Cimarit})s By = Pt U{Clma,g1)
8. return P* = P[If,i-l] for the 7 that minimizes f(P[If,i—lj)’l <i<n

NS gk

Figure 6. The DP-RP algorithm. The template assumes that fis to be minimjzed. To maxim-
ize f, Steps 4, 6, and 8 are changed in the obvious manner.

1 2 3 4 5 6 7 8

(a) |l®@ © @ [o e o o o]rf1,3]+c

[4,8]

® o o o eo/(e o o @) +c

(5,81
2

c) | @ © © o @ (. ® .] Pi1,51% Cle.e
2

(d) | ® o ® ® @ ® [. ‘] Plie1* Cra.6;

Figure 7. DR-RP example. For an ordering of 8 nodes, with L =2 and U =5, the DP-RP
algorithm constructs a partition P[31,8] by choosing the best combination of a partition Plzl,m]
with a cluster C|y,,, 5 for m equal to (a) 3, (b) 4, (¢) 5, and (d) 6. Note that the solution in (a)
uses a partition P[zml which cannot exist, so (a) cannot be chosen.

Any partition P* can be expressed as the union of a set of subpartitions
P{,P,,...,P,. If two npartitions P*¥ and QF are expressible as
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PiUPyu--rUP, and Q,uUQ,uU-- ‘U Q, respectively, with
SJUP:D < f{Q;}) for 1<i <7, then fis monotone nondecreasing (monotone
nonincreasing) if and only if f(P*) < AQ*) (F(P*) = (Q*)) for all such P* and
QF. For example, the min-diameter and sum-of-diameters objectives are
monotone nondecreasing functions of the diameter.! We have the following
result:

Theorem 1: If f is monotone nondecreasing, DP-RP returns an optimal res-
tricted partition for the instance (G, d, k, f, «, L, U).

Proof: Let Pk ={C1,C;,...,C¢} be an optimal restricted partition for
(G, d, k, f,m, L’Al,{)’ and let i be the left endpoint of cluster C;. Assume that
the clusters in P~ are labeled consecutively with respect to 7, i.e., if cluster C;
has right endpoint m, then cluster Cj4+1 has left endpoint m + 1. We proceed
by induction on k&~ where k< k.

Inductive Hypothesis: Let j be the right endpoint of cluster Cy-. Then DP-RP
returns  (or stores in memory) a partition P’[‘,-y 1 Wwith f(P{‘i, RS
JH{C1.Co, ... .G }).

Basis: (k" =1) DP-RP computes the partition P[Ii, 1 =Cpij1=Cy over the
interval [i,j], hence f(Pf; ;) < f{C 1))

Induction: Let m be the right endpoint of cluster Crr -1 (80 Cpr = Cppaa i)
Assume the hypothesis holds for k"1, i.e., DP-RP finds a partition P[i;,}]
with f(Pf) < f({C1,C2, .. .,C-_1}). We show that the hypothesis also

1. In addition, common graph and hypergraph partition objectives from the communications
and VLSI CAD literatures are also monotone. Let H(V,E) denote a hypergraph where a
hyperedge e € E denotes a subset of V with size at least 2, and let E; =
{ee El3uveeue C,ve C) be the set of hyperedges cut by cluster C;. The following
objectives are monotone:

e Min Cut: Minimize:

fPY =3 w(C) withw(C)) = | E, |
1<i<k

¢ Scaled Cost (Chan, Schlag, and Zien 1994): Minimize:
|E;
ky : - —
fPY = nk—1) 1§5kW(Cl)wnh w(C;) IC

¢ Absorption (Sun and Sechen 1993): Maximize:
fPH= ¥ wC)withw(C)= 3

1<i<k (ee Elemncnzsy  1€1 =1

lenC;1 -1
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holds for k°. Express the partition {C{,C,,...,Cy} as P; U P, where
Pl = {C1,C2, eeesCr1} and P, = {Cy-}. Cons1der the partition Q[,
P[, m} Y A{C me1 j]} which can be expressed as P3 U P, where P3 = Pj; ml]
By the inductive hypothesis f(P3) < f(P,), and since f(P,) < f(P,), the fact
that f is monotone nondecreasing implies f(Q[, j])< J{C1,Cq, ... ,Ce D).
The algorithm finds and evaluates the partition Q[, j1 in Step 6 (Flgure 6).
DP-RP considers other solutions as well, storing the best one as Pf; j1> hence
f(P[z j]) <f(Q[l j]) This implies thatf(P[z ]]) <f({cl’ Cas .. Ck }) proving
the hypothesis.

Thus, the algorithm stores a partiton Pfj;y; such that
f(P;(l 1)) < f(P ), and in Step 8 it returns a partiion P* with
SP*) S f(Pliicay).

The proof can be slightly modified for the case of monotone nonin-
creasing functions.

4.2 Computing Cluster Costs

For the case of w(C;) = diam (C;), Figure 8 gives a simple O(nU)
implementation of Cluster_Costs. The algorithm starts with clusters C|;;j of
diameter zero. The key observation is that any edge within cluster Cy;
either is (i) contained in Cy;4q ), or (ii) contained in Cy; j_yj, or (iii) is the
edge (v;,v;). Step 5 obtains the diameter of each new cluster in constant
time, yielding the O(nU) complexity bound.

Theorem 2: With an O(nU) implementation of Cluster_Costs, DP-RP has
O k(U = Lyn®) time complexity, and O(kn>) complexity when there are no
cluster size bounds.

Proof: From Figure 6, Step 1 takes O(nU) time. Steps 6 and 7 take constant
time, so the loop in Step 5 takes O(U — L) time. This loop is executed kn?
times from the loops in Steps 2 and 3, yielding O(k(U — L)n?) overall com-
plexity. If U = n and L = 1, the complexity becomes O(kn?>). =

4.3 A More Efficient Min-Diameter Implementation

For certain choices of f and w, dynamic programming may not be

necessary. In particular, an lon " speedup is possible when the objective is

of the form f(Pk) = maXjg< W(C;). Here we will restrict ourselves to the
case L = 1. (Although this restriction is not required, extending this special
case to encompass L > 1 is nontrivial.) For this case, f(P*) can take on only a
polynomial number of possible values: since there are at most nU possible
clusters, there can be at most nU possible values for f(P*) despite an
exponential number of possible partitions P*.
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Cluster_Costs (G,d,n,U)

Output:  w(Cy; ;) = diam(Cy; ;1) for every cluster C|; ;) with no more than U vertices
Variables: § - one less than size of current clusters

1. fori=1ton do w(Cp) =0

2.for 6 =1to U -1 do.

3. fori=1tondo

J=(i+6-1) mod n) +1

w(Chig) = max{w(Clij—1))» W(Cli41,1) APni)s Un(s))}

o

Figure 8. Cluster_Costs for w(C;) = diam (C,).

Decide_Cluster (G,d,k, f = min-diameter,n, L =1,U), M
Input: M = Upper cost bound on w(C') for every C
Output:  P* iff 3P* with f(P*¥) < M, NO otherwise
Variables: first = Leftmost index of cluster C;
k' = Index denoting current number of clusters

. for first =1to U do
i=j= first; K =1
repeat

while ((|Cp; ;)| € U) and (w(C}; ;) < M) and (5 # first—1))doj=j+1

Co=Clhij1p; t=4; K =kK+1
until (j = first or k' = k)
if (k' < k and j = first) return P¥ = {C1,Ca,...,Cii}
8. return NO

Figure 9. Decide_Cluster Algorithm.

Consider the decision question, ‘‘does there exist an RP solution P*
with f(P") <SM?’ Given an oracle that answers this question in O(T) time
for any given value of M, we can solve the RP formulation by computing all
cluster costs and performing a binary search over the nU possible cost values,
using a total of O(nU + T'logn) time. We may implement the oracle
efficiently if w is monotone nondecreasing in the size of the cluster (note this
definition is different from the monotonicity of f in Section 4.1), i.e., if
i,jl< [i", j), then w(Cy; j3) Sw(Cy;- jq). For instance, w(C) = diam (C) is
monotone nondecreasing. Monotonicity of w allows us to solve the decision
problem greedily by simply growing each cluster C; as large as possible
while keeping w(C;) <M.

Figure 9 describes the Decide_Cluster algorithm that achieves the
desired oracle. Decide_Cluster begins with v 4, as the left endpoint of C;
(initially first = 1) and traverses the ordering while constructing each cluster
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to be as large as possible. When a cluster violates either the size or cost con-
straint (failure of Step 4), Decide_Cluster stores the cluster from just prior to
the constraint violation (Step 5) and begins constructing a new cluster. The
loop repeats until k clusters are generated or until every vertex belongs to a
cluster (Step 7). If every vertex belongs to a cluster then a legal P¥ exists and
Decide_Cluster exits; otherwise, Decide_Cluster starts constructing a new
partition with v 4,41y as the left endpoint for C;. If all possible values for
first fail, then no partition exists with f(Pk) <M and Decide_Cluster returns
NO. Decide_Cluster has O(nU) time complexity, giving us an O(nU log n)
RP solution for min-diameter. We now prove the correctness of
Decide_Cluster.

Theorem 3: Decide_Cluster returns a P* if and only if such an RP solution
with f(P*) < M exists.

Proof: If Decide_Cluster returns P* = {C{,C,,...,Cy} with k” <k, we
can easily form a P* without increasing f by arbitrarily splitting clusters.
Assume that Decide_Cluster returns NO but there exists a partition
QF={C"1,C, ... ,C'} with f(Qk) <M. Assume that the left endpoint of
C"1 18 V n(irsr) = Vi) Where @ is the smallest index of all left cluster endpoints
in Q*, and that the clusters of Q are labeled consecutively with respect to 7.
Let P¥ = {C1,Cy,...,Cy} be the partition computed by Decide_Cluster
with v g4y as the left endpoint for C.

Inductive Hypothesis: 1C’11 + 1C51 +.. 1C ", £1C{1 + 1C,1 +... 1C,, |
for1 <m<k’.

Basis (m = 1): Decide_Cluster constructs C to be as large as possible while
satisfying 1C¢1 <U and w(C{)<M. Since C’; also satisfies these con-
straints, |C" 1 < 1C1 1.

Induction: Assume 1C{| +1C1 +..1C",1 <ICy1 +1Cyl| +... IC,,|
holds for m™;, we will show this inequality holds for m + 1. If not, we must
have Cm+1 e C’m+1- We can write Cm+1 = C[,',j] and C'py1 = C[i',j'] for
i2i”and j <j". Butsince w(Cy- ;1) <M, Cy; ;1 can be expanded to Cy;
while still satisfying w(Cy; ;) <M (since w is monotone nondecreasing).
This is a contradiction since Decide_Cluster constructs a maximal C,, ..

The inductive hypothesis implies that for any subsolution Q'[”ﬁ,s,, 71 with
f(Qrst, ) <M, Decide_Cluster will find a subsolution Py jq with
SPrsej1) SM with m"<m and j°2j. Thus, if f(Q"[ﬁ,s,‘ﬁ,S,_u)SM, then
Decide_Cluster returns P"[ﬁ,s,,ﬁ,s,_l] with cost also bounded by M and with
k" <k.
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DP-RP Algorithm for Linear Orderings (G,d,k, f,7,L,U)
Output: P* = Optimal RP solution (without Condition 1(b))
Variables: P[}flj] = Subsolutions

k' = Index denoting current number of clusters
m 4+ 1 = Starting index of possible new cluster
frest = Objective value for best current P[’f’j]

1. for each ¢, do compute f(P[%’j]) = w(C}; ;) using Cluster_Costs
2. for k' =2 to k do
3. forj=1tondo
fbest = o0
form=j—-Utoj- L do
if fyesr > f(P[li/,:,j U {Cim+1,4}) then
frest = f(P[];:;} U {C[m+1,j]})7 P[};I,J] = P[I;/,r_ni U {C[m+1.j]}

8. return P* = P[li,n]

-~ O Ut

Figure 10. DP-RP Algorithm for Linear Orderings. The template assumes the f is to be
minimized. To maximize f, Steps 4 and 6 are changed in the obvious manner.

4.4 Linear Orderings

So far, we have considered the RP formulation where both Conditions
1(a) and 1(b) apply. In this case, DP-RP may have up to O(kn>) complexity,
which may be prohibitive for large instances. However, eliminating Condi-
tion 1(b) changes = from a tour into a linear ordering, restricting the solution
space but allowing a factor of n speedup (see Figure 10). The speedup arises
since we are guaranteed that some cluster has vy, as its left endpoint: for
each value of k”, we need record only O(n) subsolutions of the form P} il
instead of O(n?) optimal subsolutions. Since Steps 3-7 have time complexity
O(n(U - L)) (as opposed to O(nz(U — L)) in Figure 6), and since Step 1 has
OmU) time complexity, a linear ordering can be optimally split into a res-
tricted partition in O(kn(U — L)) time.

5. Possible Ordering Heuristics

For DP-RP to work well, a “‘good”’ ordering is required, yet it is not
completely clear what criteria apply in constructing such an ordering. Intui-
tively, the ordering should correspond to a low-cost tour if small consecutive
subsequences of points are to form low-diameter clusters. In addition, the
ordering should reveal ‘‘natural structure’’, visiting an entire cluster before
moving to the next one, as opposed to wandering out of and then back into
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the same cluster.

One problem formulation that captures ideas similar to these is called
seriation, i.e., metric unidimensional scaling. The »n points are to be respec-
tively assigned to 1-dimensional coordinates x = {x1,...,X,} t0o minimize
the objective @(X) = Zigicjsn (dij — |1x; —x;1)*. An ordering 7 can then be
induced by sorting the coordinates of x. Given the correct objective, points v;
and v; which are close to each other should have similar x; and x; coordi-
nates; v; and v; far from each other should have a large difference between x;
and x;. Seriation is well-studied; it was first formulated as a combinatorial
optimization by Defays (1978), and various other approaches have been pro-
posed including dynamic programming (Hubert and Arabie 1986), branch
search (Defays 1978) and smoothing (Pliner 1986, 1996). However, it is not
clear how well the (d;; — Ix; — x; 1)? terms capture our loose intuition. Nor is
it clear whether seriation is a more appropriate framework than, e.g., the
squared linear placement objective of minimizing X< <j<, dij(x; —xj)2 (Hall
1970). We leave open the effectiveness of ordering heuristics based on such
formulations.

Because of their widespread availability, ease of implementation and
previous heuristic study, we choose to apply three ordering heuristics from
the traveling salesman problem (TSP) literature; these are the 3-Opt heuristic
of Lin (1965), the heuristic of Lin and Kernighan (1973), and the spacefilling
curve heuristic of Bartholdi and Platzman (1989). Johnson (1990) has
reported that 3-Opt and Lin-Kernighan (along with an iterative version of
Lin-Kernighan) generally return tours with very low cost using very little run-
time, and that these heuristics are preferable to constructive, simulated
annealing, and genetic approaches.

The 3-Opt heuristic performs local optimization by iteratively con-
structing an improved solution from the current solution. The iteration finds
three edges in the current tour which can be deleted and replaced by three
new edges to yield a lower-cost tour. For example, 3-Opt might find indices

h, i, j such that if {V{,V2, ... .Vh Viels -« »Vi> Vigls - - sVjs Vials - - - Vn} 18
the current tour, then {v{,va,...,Vh, VislsVig2s -+ 5Vjs Vhel:Vhe2s - Vi
Vjs1:Vj42s - - - »Vn} i8 @ tour with lower cost, i.e., the edges (Vi Vi41)s (VisVis1)

and (v;,v;41) are deleted and replaced by the edges (Vi,Vi+1), (Vj,Vp4e1) and
(vi,vj+1). (In general, there are four different sets of edges that can possibly
replace a given triple of deleted edges.) When no triple of edges can be
profitably replaced, the algorithm terminates and returns the current (local
minimum) tour. We execute a single run (‘‘descent’’) of 3-Opt from a ran-
dom starting tour to generate the partitions discussed in the next section.
Lin-Kernighan (Lin-K) also uses iterative improvement, but with a
powerful asymmetric neighborhood structure that can avoid, e.g., 3-Opt local
minima. Given a tour 7, Lin-K generates perturbations of T into a sequence
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of Hamiltonian paths, then chooses the prefix of this sequence which results
in the Hamiltonian path whose completion into a tour has lowest cost. Ini-
tially, Lin-K finds edges x; € T and y; ¢ T incident to the same vertex, such
that y has smaller cost than x;. Edge x; is removed from T to yield a Hamil-
tonian path; then, edge y, is added to 7, which determines a unique edge x,
whose removal from T will maintain a Hamiltonian path. A tour can then be
completed by joining the endpoints of the path using edge y-,, or a new Ham-
iltonian path can be computed. The Hamiltonian paths in the sequence have

edges {x1,...,x;} removed from T and edges {y1,...,y;_;} added to 7. In
iteration i, KL considers all edges y; ¢ T such that the cost of edges
¥1,...,y; minus the cost of edges x1,...,x; is less than zero. If no such

edge y; exists, the procedure terminates and KL joins the endpoints of the
Hamiltonian path by edge y; to complete the tour. Of these edges y;, the one
which maximizes the difference in cost between x;,; and y; (x;,; is the
unique edge that must be removed from 7 to form a Hamiltonian path) is
added to 7, and x; ;1 is removed from 7. When the iteration terminates (say, at
J)» KL evaluates the cost of each tour T;=T-{xy,...,x5}+
{y1,....¥i-1,¥i}, 2<i <j constructed during the procedure; the tour with
lowest cost becomes the new current tour 7, and the entire process is repeated
until no further improvement is possible. Empirical studies by Lin and Ker-
nighan (1973) on Euclidean and nonmetric problems have shown that the run
time in practice grows approximately as n?2; however, the algorithm is PLS-
complete (Papadimitriou 1992), i.e., no polynomial bounds on the number of
iterations exist.

The spacefilling curve (SFC) heuristic of Bartholdi and Platzman
(1989) uses a recursive construction of Sierpinski (1912), the 2-dimensional
case of which is shown in Figure 11. In the Figure, the successive approxi-
mations become progressively refined until the curve ‘‘fills’” up the unit
square, passing arbitrarily close to every point. For a given fixed precision,
the curve actually passes through every point, and the order in which points
are visited by the curve yields the heuristic SFC ordering. The tour can be
computed in O(n log n) time and can be extended to data sets in arbitrary
dimensions. The SFC ordering will typically have higher cost than its 3-Opt
or Lin-Kernighan counterparts, but offers the possible advantage of a
predetermined structure in that it entirely visits one orthant before moving to
the next. Figure 12 shows the tours constructed by (a) 3-Opt, (b) Lin-
Kernighan and (c) SFC on a uniformly random instance of 200 points in the
unit square.
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Figure 11. The Sierpinski spacefilling curve in the plane is the limit of a sequence of recursive
constructions.

(a) (b) ()

Figure 12. Tours generated by (a) 3-Opt (cost 11.307), (b) Lin-Kernighan (cost 11.224) and
(¢) SEC (cost 13.945) over 200 random points in the Euclidean unit square.

"

ﬂf

W
.:é.

Figure 13. (a) a nonuniform geometric data set and a low-cost tour, (b) a partition into 3 clus-
ters resulting from splitting this tour, and (c) a low-cost linear ordering (plus the diameter
edge), and (d) a partition resulting from splitting this linear ordering.
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Below, we will see that DP-RP yields its best results using the SFC ord-
ering for k£ = 2 and k = 4, because of the structure of this ordering. However,
as k increases the other orderings perform significantly better. We also exper-
imented with applying 3-Opt post-processing to the SFC ordering, to see if
the structure of an SFC tour could be preserved while minimizing cost. How-
ever, SFC + 3-Opt typically led to results similar to those of 3-Opt alone, sug-
gesting that 3-Opt post-processing does not adequately preserve the structure
of the original SFC tour.

Note that for some instances, neither a tour with low cost nor one with
a predetermined structure will lead to success. Figure 13 illustrates such an
instance: (a) gives a tour with low cost, but (b) shows that a partition of this
tour into three clusters will not be very good. For this instance, which resem-
bles a correlated data set, it is advantageous to construct a tour as in (c), with
the diameter of the entire data set being an edge of the tour (i.e., a ““good”’
linear ordering is constructed from one endpoint of the diameter to the other).
Splitting this tour yields the solution P3 shown in (d). Thus, for correlated
instances, we propose to construct linear orderings via a modification of 3-
Opt called 3-OptL, which fixes a diameter as an edge in the tour and then runs
3-Opt.

Many other linear ordering constructions may work just as well, if not
better. For example, one could orthogonally project the points onto the line
determined by least-squares fit or linear regression to induce an ordering. For
a partition instance in which G is sparse, effective spectral approaches have
used the ordering given by the second eigenvector of the Laplacian of G (see,
for example Fiedler (1973) and Pothen, Simon, and Liou (1990)). Alterna-
tively, Bartholdi and Platzman (1989) outlined a space-filling curve construc-
tion that can be specifically tuned to given classes of non-uniform data sets.
The Sierpinski tour that we study is best suited for uniformly random data
points.

6. Experimental Results

We compare the CL and DQ algorithms discussed in Section 2 against
our DP-RP approach using each of the ordering constructions discussed in
Section 5. We present results for both random and non-random data sets and
conclude that DP-RP generally yields partitions with lower maximum diame-
ter than previous approaches, although the best tour construction varies with
n, k, and the nature of the instance.
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TABLE 1

Diameters (x10*) for 100 points (2-dimensional unit square). Average tour costs for 3-Opt,
Lin-Kernighan, SFC and SFC + 3-Opt were 79.28, 78.25, 96.30 and 79.80 respectively.

i CL DQ DP-RP
Clusters 3-Opt Lin-K SFC SFC+3-Opt
2 10408 10024 10041 10042 10024 10027
3 9425 9760 8547 8528 8375 8434
4 7075 6208 7053 6993 6089 6429
5 6328 5944 5897 5873 5716 5689
6 5747 5635 5316 5240 5355 5218
7 5267 5296 4868 4882 4986 4814
8 4843 4741 4498 4504 5350 4409
9 4503 4577 4160 4164 4140 4037
10 4182 4443 3864 3828 3925 3801
TABLE 2

Diameters (x 10%) for 100 points (3-dimensional cube). Average tour costs for 3-Opt,
Lin-Kernighan, SFC and SFC + 3-Opt were 172.0, 170.4, 234.9 and 172.2 respectively.

# CL DQ DP-RP
Clusters 3-Opt Lin-K SFC SFC+3-Opt
2 12851 12176 12518 12590 12455 12554
3 11697 11825 11458 11498 11260 11487
4 10651 10441 10401 10404 10130 10430
5 9799 10148 9679 9649 9555 9669
6 9049 9874 8834 8844 8959 8845
7 8160 9460 8144 8164 8218 8052
8 7477 8055 7590 7503 6641 7385
9 7017 7676 7090 6973 6299 6900
10 6671 7296 6607 6577 6140 6425
TABLE 3

Diameters (x10%) for 400 points (2-dimensional square). Average tour costs for 3-Opt,
Lin-Kernighan, SFC and SFC + 3-Opt were 152.8, 150.7, 191.7 and 154.9, respectively.

# CL bQ DP-RP
Clusters _ 3-Opt Lin-K SFC SFC+3-Opt

2 11061 10565 10650 10629 10565 10572
3 10216 10414 9494 9534 9274 9321
4 7842 6607 7987 8366 6570 7038
5 7178 6441 6888 7017 6351 6482
6 6590 6318 6255 6275 6158 6040
7 6102 6145 5847 5822 5898 5658
8 5674 5152 5441 5456 4731 5095
9 5272 5064 5148 5163 4645 4825
10 4975 4982 4848 4885 4566 4587
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6.1 Random Data Sets

We generated uniformly random instances of sizes 100 and 400 in the

2- and 3-dimensional unit cubes, using the Euclidean distance metric. Tables
1-4 give the maximum diameter values (multiplied by 10*) averaged over 100
instances for 2 <k < 10. The smallest diameter for each value of k is given in
boldface. We make a number of observations.

In comparing CL and DQ, Guénoche, Hansen, and Jaumard (1991)
conclude that CL usually creates partitions with larger diameter. We
confirm this behavior for small k and d = 2, but find that CL performs
better for larger k. In addition, we observe the practical relevance of
the worst-case example of Figure 2: DQ performs poorly when k is
just smaller than a power of 2 (e.g.,k =3 and k = 7).

DP-RP when used with any of the four ordering constructions per-
forms better overall than either CL or DQ; the SFC ordering construc-
tion performs best. Like DQ, SFC seems to perform best when k is a
power of 2 or slightly larger, and worst when % is just smaller than a
power of 2. The phenomenon occurs because the structure of an SFC
tour naturally breaks the plane or the cube into 4, 8 or 16, but has a
more difficult time with, e.g., 3, 7 or 15 clusters. However, this
behavior is not nearly as pronounced as with DQ.

3-Opt post-processing of SFC improves results on the instances for
which SFC does badly, but also can make the SFC results worse.
Whether the 3-Opt step is beneficial depends on the values of both 7
and k.

We note that random instances lack natural clusters, hence the above

observations cannot be generalized to non-random types of data. Thus, we
examine two non-random instances below.

6.2 Non-Random Data Sets

We present results for two data sets:

The Fisher (1936) Iris data consist of four measurements on 150
flowers of three varieties of Iris. Results are given in Table 5 using
Euclidean distance in R* as a dissimilarity measure. Results for this
data set have previously been given by Delattre and Hansen (1980)
and by Guénoche, Hansen, and Jaumard (1991).

Average temperatures in Farenheit for January, April, July, and
October for 88 cities in the United States were published in The
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TABLE

4

Diameters ($<104) for 400 points (3-dimensional cube).
Average tour costs for 3-Opt, Lin-Kernighan, SFC and
SFC + 3-Opt were 414.7, 409.6, 597.0 and 415.9, respectively.

# CL DQ DP-RP
Clusters 3-Opt Lin-K SFC SFC+3-Opt
2 13878 13233 13807 13875 13399 13861
3 13094 13037 13188 13092 12671 13117
4 11771 11159 12338 12332 10873 12367
5 10952 10996 11533 11479 10522 11607
6 10505 10793 10921 10843 10170 10949
7 9940 10626 10431 10394 9831 10377
8 8837 8259 9971 9904 7379 9839
9 8324 7973 9464 9371 7156 9365
10 7993 7782 8964 8944 6984 8908
TABLE 5
Fisher data, 150 points, 4 dimensions.
# CL DQ DP-RP
Clusters 3-Opt Lin-K SFC 3-OptL
2 40.25 38.24 38.24 38.24 48.14 40.25
3 32.11 36.82 36.82 36.82 43.59 27.44
4 24.29 24.29 2550 25.50 42.26 24.29
5 22.36 22.43 23.81 23.81 39.75 20.62
6 17.06 20.74 22.67 22,67 29.72 17.06
7 16.61 15.84 18.81 18.81 23.69 15.62
8 14.63 1584 16.58 16.58 22.83 14.66
9 14.53 13.89 16.28 16.28 20.32  14.63
10 14.49 13.82 14.07 14.07 2032 14.07
TABLE 6
Temperature data, 85 cities, 4 months.
# "CL DQ DP-RP
Clusters 3-Opt Lin-K SFC 3-OptL
2 96.41 76.37 77.75 76.37 76.37 76.37
3 50.59 75.44 73.40 73.40 7544  53.18
4 48.37 40.93 50.59 50.59 40.93 40.93
5 40.93 38.13 4593 4848 38.13 36.63
6 34.47 37.35 37.71 39.72 34.47 31.97
7 28.09 33.56 35.62 3562 33.56 28.93
8 27.53 33.54 32.88 29.56 31.08 26.40
9 26.19 27.53 29.38 29.38 27.53 24.15
10 24.92 25.28 26.87 28.20 2528 22.32

71
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World Almanac (Hoffman 1992). Results are given in Table 6, again
using Euclidean distance as a dissimilarity measure for this 4-month
instance.

For these non-random data sets, SFC + 3-Opt gave performance
equivalent to or worse than 3-Opt for each value of k, hence these results are
not reported. We also include 3-OptL results for these data sets since they are
both strongly correlated, as can be seen from the product-moment correla-
tions for each pair of the four data attributes: for the Fisher data set, pairwise
correlations are 0.978, 0.948, 0.898, 0.871, 0.809 and 0.984; for the Tempera-
ture data set, pairwise correlations are 0.959, 0.913, 0.954, 0.989, 0.998 and
0.992. We make the following observations:

e 3-OptL generally performs better than the other approaches, espe-
cially for small k. Hence, for correlated data sets and small k, a good
linear ordering may be preferable to a low-cost tour, It remains to be
seen whether other linear ordering constructions, e.g., eigenvector
(principal components) or least-squares fit approaches, can lead to
even better partitions.

¢ CL and DQ comparatively perform much better for non-random, as
opposed to random, data sets.

7. Conclusion

We have discussed two previous and one new approach to constructing
partitions for the min-diameter objective. Our new approach solves a res-
tricted partition formulation that requires clusters to be contiguous with
respect to a given tour or linear ordering. The approach is efficient for a large
class of objectives, in addition to min-diameter.

We have used our approach in conjunction with a variety of ordering
constructions. Our experimental results lead us to conclude that a
spacefilling curve construction is best suited for uniformly random data and
that a low-cost linear ordering — rather than a tour — is best suited for
strongly correlated data. For other types of data sets, we believe that Lin-
Kernighan tours, which have low cost, will generally yield good results. The
best tour construction clearly depends on the specific nature of the data set,
and explicitly identifying appropriate constructions remains an open direction
for future work.
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