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Abstract 

Kahng, A.B. and G. Robins, Optimal algorithms for extracting spatial regularity in images, Pattern Recognition Letters 12 
(1991) 757-764. 

Finding spatial regularity in images is important in military applications (e.g., finding rows of landmines), texture analysis, 
and other areas. We give an optimal ®(n 2) algorithm for finding all maximal equally-spaced cnllinear subsets within a pointset 
in E g. We also generalize this method to yield an optimal ®(n 3) algorithm for determining all maximal regular coplanar 
lattices,. 
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I. Introduction 

Given a finite pointset P C E  d with all points 
distinct, a subset P'c_P is collinear if [P'[/>2 and 
all points of  P '  lie on a single line. A maximal col- 
linear subset (MCS) of  P is a collinear subset that 
is not properly contained in any other collinear 
subset of  P. The problem of  finding an MCS in an 
image arises in line and feature detection for com- 
puter vision, and instances can occur in dimensions 
greater than two. To solve the MCS problem, 
bucketing techniques based on the Hough trans- 
form (e.g., Duda and Har t  (1972), Risse (1989), 
Ben-Tzvi and Sandler (1990)) or other duality rela- 
tions are often used. However,  these methods do 
not give any insight into the spatial regularity of 
collinear points. 

To capture the notion of  regularity in an image, 
we call a collinear subset P '  c_ P an equally-spaced 

collinear subset if [P'[_>3 and all the points of  P '  
are equally-spaced along their containing line. 
When given a pointset in the plane, it is very 
natural to ask "Wha t  is its largest equally-spaced 
collinear subset?" 

Maximum Equally-Spaced Collinear Subset 
(MESCS) Problem. For n points in E d, find the 
largest equally-spaced, collinear subset of  points. 

Like MCS, the MESCS problem arises in many 
practical applications, particularly since regularity 
is in many cases the distinguishing characteristic of  
' interesting' regions in an image. A motivating 
(military) application for our work is the examina- 
tion of  infrared ground surveillance bitmaps to 
find equally-spaced collinear 'hotspots '  (rows of  
surface landmines, fenceposts in a region peri- 
meter, etc.) Since we wish to find contiguous se- 
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Figure 1. A sample pointset and two of its maximal equally-spaced collinear subsets. 

quences of points with equal spacing, the usual 
spectral methods for determining gross periodicity 
in data cannot be used. 

Often, we would like to examine all possible 
regularities in an image, and therefore require a 
roster of all maximal (equally-spaced) collinear 
subsets; the output itself can be of size ~(n2), as 
described below. In other words, we want the com- 
plete order statistics of the input with respect to the 
given problem: 

All Maximal Equally-Spaced Collinear Subsets 
(AMESCS) Problem. Given a set of n points in 
E d, find all maximal equally-spaced, collinear 
subsets of points. 

Figure 1 illustrates a pointset and two of its max- 
imal equally-spaced collinear subsets. 

Existing algorithms for line-finding do not ex- 
tend well to encompass the added difficulties of 
regularity detection or high-dimensional data. For 
example, MCS in E d can be solved in O(n d) time 
using a method of Edelsbrunner (1987, pp. 278- 
282), but the exponential dependence on dimen- 
sion is prohibitive. The work of Edelsbrunner and 
Guibas (1986) implies an O(n 2) time algorithm for 
MCS in two dimensions, but this method does not 
generalize to higher dimensions, nor does it seem 
applicable to the MESCS or the AMESCS prob- 
lem. Hough-style bucketing algorithms will also 
usually require time exponential in the dimension 
d or in the granularity of the bucketing. In general, 
we find that the current ad hoc methods for find- 
ing spatial regularity in images (e.g., in the texture 
classification literature) are dependent on low 

dimension, prescribed matching templates, or 
limits on the scale of features. On the other hand, 
our formulation of regularity detection and the 
algorithms proposed below are quite general. 

This note presents an optimal O(n 2) time algo- 
rithm for solving the AMESCS problem for a 
pointset in arbitrary dimension. We also generalize 
the 'equally-spaced' notion of regularity to 2-di- 
mensional lattices, and give an optimal ®(n a) 
algorithm for determining all maximal regularly- 
spaced planar sublattices within an arbitrary point- 
set in E d. 

2. Preliminaries 

We establish a lower bound of f~(n log n) for 
both MCS and MESCS by reduction from the Ele- 
ment Uniqueness (EU) problem (i.e., determining 
whether a given set of numbers contains dupli- 
cates), which is known to require f~(n log n) time in 
the standard comparison model of computation 
(e.g., Preparata and Shamos (1985)). A lower 
bound of ~(n 2) for AMESCS is established based 
on the output size. 

Theorem 1. MCS and MESCS both require at least 
~(n log n) time to compute. 

Proof. Given an instance S = (,.5' I . . . . .  s n )  of EU, we 
construct an instance of the 2-dimensional MCS 
problem by transforming each element si into a 
point Pi = (Si, S/2), as shown in Figure 2. The result- 
ing MCS instance has a collinear subset with car- 
dinality 3 or greater iff S contains duplicates, since 
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Figure 2. Transforming an instance of the Element Uniqueness 
(EU) problem into an instance of the Maximal Collinear Subset 

(MCS) problem. 
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Figure 3. Example of a pointset containing a quadratic number 
of distinct maximal collinear equally-spaced subsets: each point 
in the middle third of the bottom row can be used along with 
an arbitrary point in the middle third of the middle row to 

determine a distinct collinear equally-spaced triple. 

no triple of  dist inct  points on a parabola can be 
collinear. It follows that the f~(nlogn) lower 
bound for EU also holds for the MCS problem in 
all dimensions. 

Similarly, we may reduce EU to a 1-dimensional 
instance of MESCS as follows. Given an instance 
S = (sl . . . . .  %3 of  EU, we transform each element s i 

into 

Pi = si + e/2s~ 

(where e is a positive real number smaller than the 
difference between any two si's). This transfor- 
mation elirfiinates all arithmetic progressions that 
may be present in the original EU instance, since 
all differences Pi--P] a re  distinct, i ~ j .  We then 
form the MESCS instance 

P = (Pt ..... P.. P, ..... P.); 

P will contain 3 or more equally-spaced elements 
(i.e., an arithmetic progression of size 3) iff S con- 
tains duplicate elements (this arithmetic progres- 
sion will be degenerate, with difference=0).  We 
conclude that the ~(n log n) lower bound for EU 
also holds for MESCS in all dimensions. [] 

Theorem 2. AMESCS requires at least f~(n 2) t ime 

to compute .  

Proof.  The output of  AMESCS can be of  size 
~(n2), since there can be a quadratic number of  
distinct collinear equally-spaced triples, as ex- 
emplified by the pointset 

41,2,3 . . . . .  n/a} × {1,2,3}, 

shown in Figure 3. In this example, each point in 
the middle third of the bottom row can be used 

along with an arbitrary point in the middle third of  
the middle row, to determine a distinct collinear 
equally-spaced triple. The total number of  such 
triples is therefore (n/9)2= ~(n2). [] 

3. An optimal AMESCS algorithm 

A naive O(n21ogn) algorithm for AMESCS 
iterates through all (~) line segments induced by 
the pointset, and determines how far each segment 
spacing can be extended to either direction within 
the pointset. Extending a given solution in this 
manner costs O(log n) time per added point (via 
binary search on a preprocessed, sorted version of  
the input). Since no segment can participate in 
more than one solution, we need to examine each 
segment only once during this process, hence the 
O(n 2 log n) bound. 

In this section, we develop an optimal method 
for the AMESCS problem in arbitrary dimension. 
Our method is based on a solution of  the l-dimen- 
sional AMESCS problem, i.e., finding all maximal 
arithmetic progressions in a set of  numbers. 

First, consider the very restricted 1-dimensional 
AMESCS variant which looks only for equally- 
spaced triples of  points, i.e., arithmetic progres- 
sions of  length three, t We may find al l  equally- 
spaced triples as follows. First, sort the input using 

t Using the same reductions as in the proof of Theorem l, 
we can show that this problem, as well as the decision problem 
of determining whether a given pointset contains a collinear 
triplet, also has an Q(n log n) lower bound. Interestingly, for 
neither of these apparently much simpler decision problems is 
an o(n 2) time algorithm known (Edelsbrunner, O'Rourke and 
Seide[ 0986)). 
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O(n log n) time, yielding a sorted list P~,P2 . . . . .  P, .  
Next, assume that we have a pointer to position 
A = i in the sorted list, and that PA is the leftmost 
point of a triple. We maintain two pointers B and 
C to positions in the sorted list, with initially 
B=i+ 1 and C = i + 2 .  Let X~(PA) denote the coor- 
dinate (on the x~ axis) of the point PA. If 

XI (PB) -- XI (PA) > X I  ( P c )  - X I  (PB),  

we increment C by I, otherwise we increment B by 
1. Whenever the two differences are equal, we 
record the equally-spaced triple (PA,PB, Pc). 
Because the pointers B and C simply march along 
the sorted list, we find all equally-spaced triples 
with Xl(pA ) as leftmost component using linear 
time; iterating over i=  1,2 . . . . .  n -  2 will report all 
equally-spaced triples within O(n 2) time. This 
method is asymptotically optimal, since by 
Theorem 2 inputs can have up to a quadratic 
number of triples. 

The main idea is that the AMESCS problem 
can be solved by overlapping these equally- 
spaced triples in order to determine all maximal 
equally-spaced collinear subsets. This is accom- 
plished by constructing a graph where for each 
reported equally-spaced triple (PA,Ps, Pc) we 
create the nodes (A,B) and (B,C) and the edge 
((A,B), (B, C)). Each node in this graph has 
degree at most two, so the edge set and vertex set 
both have size O(n2). Connected components in 
this graph correspond to maximal equally-spaced 
collinear subsets in the original pointset, and any 
linear-time algorithm for determining connected 
components can be used over this graph 2 to yield 
all maximal equally-spaced subsets within O(n 2) 
time. 

To solve AMESCS in higher dimensions, we sort 
the pointset by the first coordinate only; i.e., we 
project onto the x~ axis. Without loss of generali- 
ty, we can assume that no two points have the same 

x I coordinate) We then proceed to solve the 
l-dimensional AMESCS problem for the sorted, 
projected pointset, as outlined above. Equally- 
spaced triples in the pointset will correspond to 
equally-spaced triples in the projection. Although 
some equally-spaced triples in the projection will 
not correspond to actual equally-spaced triples in 
the pointset, checking for such spurious triples re- 
quires only constant time per triple in any fixed 
dimension. Since the number of equally-spaced 
triples is bounded by (~) in all dimensions, our 
algorithm will run in time O(n 2) in any fixed 
dimension. Our optimal AMESCS algorithm for 
an arbitrary finite pointset P C E  d is thus as given 
in Figure 4. 

4. Generalization to equally-spaced lattices 

In this section, we generalize the notion of 
'equally-spaced' regularity to two dimensions by 
considering lattices that are determined by linear 
combinations of  a pair of linearly independent 
vectors. 

Definition. Given fixed d-dimensional vectors a, b, 
and c, where a and b are linearly independent, a 
lattice L(a,b,c) is a pointset of the form 

{o lo  = j a + k b + c  for all integers j and k}. 

The lattice point o is said to have lattice coor- 
dinates (j, k). 

Definition. Given a fixed lattice L(a, b, c), a finite 
coplanar pointset L' is a sublattice of L if L'__q L. 

Next, we introduce the notion of lattice 'cells': 

Definition. Four points of a given fixed lattice L 
define a lattice cell if their lattice coordinates are of 
the form 

2 Converting from this 'ordered-pair' (edge list) representa- 
tion to the standard adjacency-list representation is accomplish- 
ed in time proportional to the size of the graph: we sort the edge 
list by its first component, then scan the sorted edge list, group- 
ing all edges with the same first component into an adjacency 
list for that vertex. Since edge components are pairs of 
vertex/point indices (i.e., integers between l and n), a linear- 
time bucket sort may be used. 

{( j ,k) , ( j+ 1,k) , ( j ,k+ l ) , ( j +  1,k+ 1)}; 

the lattice cell itself is said to have cell coordinates 
(j, k). Four points in a sublattice L ' c  L constitute 
a cell in L' if they also constitute a cell in L. 

3 E.g., rigidly rotate the pointset by a tiny angle 0 so as to 
make all of the xl coordinates unique. 
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AMESCS Algorithm for arbitrary dimension 

Input: An arbitrary finite pointset P in E d 
Output: All maximal collinear equally-spaced subsets of P 

Rotate P if necessary so that all zl coordinates are unique 
P = (Pl .... ,p.) = Sort P by zl coordinate 
G = (v, E) = (0, o) 
For A = 1 to n -  2 Do 

B = A + I  
C=A+2 
Until C > n Do 

If PA, PB, PC are collincar and equally-spaced Then 
V = VII {(A,B),(B,C)} 
E = E U {C(A, B), (B, C))} 

If Xt(pn) - Xl(Pa) > Xt(Pc) - XI(pB) Then C = C + I Else B = B + I 
Convert G into adjacency-list format (using bucket sort) 
Output the connected components of G 

Figure 4. An optimal O(n 2) algorithm for the AMESCS problem in arbitrary dimension. 

Definition. Two cells p and q o f  a given lattice are 
neighbors (denoted p(>q) if their respective cell 

coordinates (Jl, kl)  and (J2, k2) satisfy 

IJ~-J2l  + Ik l -k21  = 1. 

The relation ¢ over the ceils o f  a sublattice in- 

duces a graph  structure: 

I 

Definition. Given a fixed lattice L,  the cell graph 
of  a sublattice L'c_L is defined by G(L' )=(V,E)  = 
({ < u ) [ u is a cell in L '  }, { (< u ), < o )) I u and o are cells 
in L',  and u¢o}) .  

Definition. A set o f  points L '  in the plane is said to 

be regularly-spaced with respect to some fixed lat- 
tice L if 

(i) L '  is a sublattice o f  L,  
(ii) every point  in L '  belongs to some cell o f  L' ,  

and 
(iii) the cell graph o f  L '  is connected.  
A regularly-spaced subset is maximal if it is not  

a proper  subset o f  any other  regularly-spaced 

subset. 

We may now define the following problem: 

Maximum Regularly-Spaced Subset (MRSS) Prob- 
lem. Given a pointset in the plane, find its largest 

regularly-spaced subset. 

In particular,  for a variety o f  applications we are 

interested in finding all order  statistics with respect 
to regularity in two dimensions (i.e., all maximal  
regularly-spaced subsets): 

All Maximal Regularly-Spaced Subsets (AMRSS) 
Problem. Given a pointset in E a, find all o f  its 
maximal regularly-spaced coplanar  subsets. 

Figure 5 illustrates a 2-dimensional instance o f  
AMRSS and one o f  its maximal  regularly-spaced 
subsets. It is easy to show a worst-case upper  
bound  of  O(n 3) on the ou tpu t  size o f  AMRSS:  

Theorem 3. The sum o f  the sizes (i.e., number o f  
points) o f  all maximal regularly-spaced subsets 
embedded in a given set o f  points is bounded by 
O(n3). 

P roo f .  A non-coll inear  triple o f  points is both  
necessary and sufficient to completely determine 
exactly three structures (i.e., there are only three 
ways to complete the parallelogram). Thus the 
number  o f  distinct lattice structures induced by a 
given pointset is bounded  by 3 .  ( ~ ) =  O(n3). Recall 
the definition o f  a lattice cell above; since any three 
points can belong to at mos t  three different ceils, 
it follows that a pointset contains at most  O(n 3) 

ceils. Because a cell uniquely determines a lattice 
structure,  no  cell can appear  more  than  once in the 
output .  Therefore ,  the size o f  the output  is 
O(n3). []  
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Figure 5. A sample 2-dimensional pointset and one of  its maximal regularly-spaced subsets. 

We may also show a worst-case lower bound of 
g)(n 3) for any AMRSS algorithm: 

Theorem 4. The AMRSS problem requires at least 
~(n 3) time to solve. 

Proof. Consider the pointset 

{1,2,3 . . . . .  n/2} x {0, 1}, 

where the output of AMRSS will contain each of 
the cells determined by a triple of points as shown 
in Figure 6. In this example, any two points in the 
left half of the bottom row, along with an arbitrary 
point in the left half of the top row, will determine 
a distinct regularly-spaced subset. It follows that in 
the worst case the output can be of size at least 

. 

7 t  2 / =~(n3) '  

and this gives the desired lower bound on the time 
complexity of any algorithm for the AMRSS prob- 
lem. [] 

The remainder of this section develops an op- 
timal ®(n 3) time algorithm for the AMRSS prob- 
lem. We begin by considering the problem in two 
dimensions. 

(o 

(o 

o o . . i  . . . .  0 9 . - - - 0 - - - ; 0  o o o 
s 

o 

o c _-~ o o o o o 

Figure 6. Example of  a pointset containing ~(n 3) distinct max- 
imal regularly-spaced subsets: any pair of  points in the left half 
of  the bottom row, along with an arbitrary point in the left half 
of  the top row, will determine a distinct regularly-spaced subset. 

As in the discussion of AMESCS, we assume 
that the xl coordinates of the input points are uni- 
que (again via a rigid rotation if needed). Create 
the set T o f  all ('~) segments defined by pairs of in- 
put points, sorted by three keys: 

(i) the length of the segment, 
(ii) the slope of the segment, and 

(iii) the xl coordinate of the (lower) left end- 
point of the segment. 

This preprocessing/sorting phase requires 
O(r/2 log n) time and allows us to determine the 
complete list of segments having a given length and 
slope at logarithmic cost per inquiry. Moreover, 
this returned list, which is contiguous in the sorted 
list T, will already be sorted by xl coordinates of 
the left endpoints (i.e., the third sort key). We use 
t i to denote the ith segment in the sorted segment 
list T, and use Xl(t) to denote the xl coordinate of 
the left endpoint of segment t. 

Our algorithm proceeds by detecting pairs of 
equal-length parallel edges, since these define lat- 
tice cells. For each segment tiE T, we extract the 
(already-sorted) list Q of all O(n) segments which 
have the same length and slope as ti, and which 
also have left endpoint x~ coordinate greater than 
or equal to Sl(ti) (note that QI -- ti). Analogous to 
our solution for AMESCS, the idea is to find all 
pairs of adjacent congruent cells, and then overlap 
these pairs to determine maximal connected groups 
of cells. 4 

4 Our algorithm actually outputs all maximal groups which 
contain two or more cells. To output isolated cells as well, one 
may simply list all pairs of  segments which have identical slope 
and length; we showed earlier that the total number of  such 
pairs is O(n3). 
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A pair of adjacent congruent cells is determined 
by three segments which have the same length and 
slope, and whose left endpoints form an equally- 
spaced triple of points. Assume that t i is the left- 
most segment of the three parallel segments that 
define a pair of adjacent congruent cells. Let A = i, 
and maintain two pointers B and C to segments in 
Q, with initially B = i +  1 and C = i + 2 .  If 

XI(QB) - XI(QA ) > Xt (Qc) - Xt (QB), 

we increment C by I, otherwise we increment B by 
I. Whenever the two differences are equal, the cor- 
responding triple of segments (A,B, C) defines a 
pair of adjacent congruent cells, and we record this 
event. As in the AMESCS solution, we require 
linear time to find all pairs of adjacent congruent 
cells for which t i is the leftmost of the three seg- 
ments defining the pair of cells; iterating over all 
(~) segments detects all pairs of adjacent con- 
gruent cells within O(n 3) time. Since by Theorem 4 
inputs can have a cubic number of adjacent cell 
pairs, this approach is asymptotically optimal. 

Finally, we solve the 2-dimensional AMRSS 
problem by overlapping the cell pairs to determine 
all maxim~il connected groups of congruent cells. 
For each reported pair of cells u and o, we create 
nodes <u) and <v) and the edge (<u),<o)) in a 
graph. Each node in this graph has degree at most 
four, so the edge set and vertex set are both of size 
O(n3). Connected components in this graph cor- 
respond to maximal regularly-spaced subsets in the 

original pointset, and we can determine these using 
any linear-time connected components algorithm, 
after the edge list is converted into an adjacency 
list representation, as described above. 

To solve AMRSS in higher dimensions, we pro- 
ject the input onto the x t - x  2 plane, assuming 
without loss of generality that all xl and x2 coor- 
dinates are distinct, and then solve the 2-dimen- 
sional AMRSS problem for the projected pointset. 
Congruent adjacent cells will correspond tO con- 
gruent adjacent cells in the projection, and check- 
ing for spurious cells in the projection requires 
only constant time per cell pair in any fixed dimen- 
sion. Since the number of congruent adjacent cells 
is bounded by O(n 3) in all dimensions, the algo- 
rithms runs in time O(n 3) in any fixed dimension. 
The optimal algorithm for AMRSS of an arbitrary 
pointset P C E  d is given in Figure 7. 

5. Conclusion 

We have given an optimal algorithm and lower 
bounds for computing all order statistics of 
equally-spaced collinear subsets within a pointset 
in arbitrary dimension. The methods generalize to 
yield an optimal algorithm for determining all 
maximal regularly-spaced coplanar subsets in all 
dimensions. A longstanding open question remains 
whether even the existence of a single collinear 
triple can be detected in subquadratic time. It is 

AMItSS  Algorithm for arbitrary dimension 

Input :  A pointset P in E a 
Outpu t :  All maximal regularly-spaced subsets of P 

Project P onto the zl-z2 plane 
Rotate P if necessary so that all z , ,  z2 coordinates are unique 
T = Sort  {t = (p,q) ] p 6 P,q 6 P} by 3 keys: i) length(t), ii) slope(t), iii) Xt(t) 
G = ( V , E ) = ( 0 ,  @) 
For ~ E T Do 

Q = sor t  {s 6 T I slope(s) = slope(t), length(s) -- length(t) } by Xl(s) 
(A,B,C) = (1,2,3) 
Unt i l  C > [QI Do 

I f  Qa, QB, Qc define two congruent adjacent cells Then  
V = V U { ( A , B ) , ( B , C ) }  
E = EU ( ( ( A , B ) , ( B , C ) ) )  

I f  Xa(QB) - Xt(Qa) > Xa(Qc) - Xt(QB) T h e n  C = C + 1 Else B = B + 1 
Convert G into adjacency-list format (using bucket sort) 
Output the connected components of G 

Figure 7. An optimal O(n 3) algorithm for the AMRSS problem in arbitrary dimension. 
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also open whether an equally-spaced triple can be 
detected in subquadratic time; in this note we 
showed that quadratic time suffices to detect all 
equally-spaced triples. Finally, although we have 
shown that quadratic time suffices to detect all 
maximal collinear equally-spaced subsets, it is not 
known whether the detection of even a single max- 
imal collinear equally-spaced subset can be ac- 
complished in subquadratic time. 
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