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Abstract-We present critical-sink routing tree (CSRT) con- 
structions which exploit available critical-path information to 
yield high-performance routing trees. Our CS-Steiner and “global 
slack removal” algorithms together modify traditional Steiner 
tree constructions to optimize signal delay at identified critical 
sinks. We further propose an iterative Elmore routing tree (ERT) 
construction which optimizes Elmore delay directly, as opposed 
to heuristically abstracting linear or Elmore delay as in previous 
approaches. Extensive timing simulations on industry IC and 
MCM interconnect parameters show that our methods yield 
trees that significantly improve (by averages of up to 67 %) over 
minimum Steiner routings in terms of delays to identified critical 
sinks. ERT’s also serve as generic high-performance routing trees 
when no critical sink is specified: for 8-sink nets in standard 
IC (MCM) technology, we improve average sink delay by 19% 
(62%) and maximum sink delay by 22% (52%) over the minimum 
Steiner routing. These approaches provide simple, basic advances 
over existing performance-driven routing tree constructions. Our 
results are complemented by a detailed analysis of the accuracy 
andwelity of the Elmore delay approximation; we also exactly 
assess the suboptimality of our heuristic tree constructions. In 
achieving the latter result, we develop a new characterization of 
Elmore-optimal routing trees, as well as a decomposition theorem 
for optimal Steiner trees, which are of independent interest. 

I. INTRODUCTION 

UE to the scaling of VLSI technology, interconnection D delay has become a dominant concern in the design of 
complex, high-performance circuits [ 131, [34]. Performance- 
driven layout design has thus become an active area of research 
over the past several years. In this paper, we develop a 
new critical-sink problem formulation and new solutions for 
performance-driven routing tree design. 

For a given signal net, the typical goal of performance- 
driven routing is to minimize average or maximum source- 
sink delay. Much early work implicitly equates optimal rout- 
ing with minimum-cost Steiner routing. For example, [ 141 
used static timing analysis to yield net priorities, so that 
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the highest-priority nets may be routed by minimum Steiner 
trees, leaving lower-priority nets to subsequently encounter 
blockages. References [21], [28] have given approaches which 
are tuned to building-block layout and allow prescribed upper 
bounds on individual source-sink delays; the former work also 
incorporates a hierarchy-based net ordering. For minimum 
Steiner tree routing, the 1-Steiner method [22] is the best- 
performing heuristic, and we therefore use it as a basis for 
comparison below.’ 

Reference [9] proposed a heuristic which simultaneously 
considered both the cost (total edge length) and the radius 
(longest source-sink path length) of the routing tree. A more 
general formulation was given in [lo], wherein a parameter 
E guides the tradeoff between cost and radius minimization; 
the same authors in [ 101 proposed the “provably good” BRBC 
(bounded-radius, bounded-cost) algorithm, which affords both 
cost and radius simultaneously within constant factors of 
optimal. The BRBC method and works of [3], [23] all achieve 
a smooth cost-radius tradeoff via the same basic idea: 1) make 
a depth-first traversal of the minimum spanning tree over 
the signal net, and 2) if the accumulated path length from 
the source to some sink becomes too large, modify the tree 
to reduce that particular source-sink path length. The cost- 
radius tradeoff may also be viewed as one between competing 
minimum spanning tree (MST) (or minimum-cost Steiner 
tree) and shortest-path tree (SPT) constructions. Using this 
perspective, [ 11 recently proposed the AHHK algorithm, which 
achieves a direct MST-SPT tradeoff. Finally, [ 111 proposed 
the use of rectilinear Steiner arborescences [30], or A-trees; 
these are essentially minimum-cost SPT’s with Steiner points 
allowed. The delay performance of the AHHK algorithm is 
superior to that of the BRBC or A-tree constructions [l], and 
thus below we use AHHK as another basis of comparison 
with our new methods. 

A. Motivations for Critical-Sink Routing 

In performance-driven layout for cell-based designs, timing- 
critical paths are determined by static timing analysis, and 
modules in these paths are then placed close together (see, 
e.g., 1131, [18], [20], [26], [27], [34]). The static timing 
analysis thus iteratively drives changes within both the module 
placement and the global routing phases. Our contribution 
stems from carefully considering routing tree constructions 
within this overall performance-driven layout process. 

Recent studies by [4], using the optimal Steiner code of J. Salowe, show 
that 1-Steiner is within 0.25% of optimal on average. 

02784070/95$04.00 0 1995 IEEE 



1418 IEEE lXAhX.\CnOS OK COMPLTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 12, DECEMBER 1995 

In general, existing performance-driven placement algo- 
rithms may be classified as either net-oriented or path- 
oriented. Net-oriented placement typically uses centroid- 
connected star cost [33], probabilistic estimates of Steiner tree 
cost [20], minimum spanning tree cost [13] or the bounding 
box semiperimeter [27] to estimate wire capacitance and signal 
delay for a multi-terminal net. From this information, critical 
timing paths between primary inputs and primary outputs 
are computed, after which module placements are updated to 
reduce these “net-based” objectives for signal nets along the 
critical paths. By contrast, path-oriented placement considers 
delay between the source and a particular critical sink of a 
multi-terminal net. The critical sink is typically determined via 
timing analysis using known module delays and estimated path 
delays. For example, [26] used a linear delay approximation 
so that their method updates the module placement to reduce 
the rectilinear distance between sources and critical sinks. 
Other path-oriented methodologies include those of [ 181, [35]. 

If a timing-critical path passes through a given net, the path- 
oriented approach can provide an explicit bound on delay at 
that net’s critical sink. While the net-oriented approach may 
arguably provide only implicit routing constraints, it is still 
easy to identify critical sinks after the timing analysis has 
been performed, or a priori by finding paths in the design that 
contain more module delays. This reveals a “placement-routing 
mismatch:” the performance-driven routing constructions re- 
viewed above generally address net-specijc objectives (min 
cost, min radius, cost-radius tradeoffs, etc.) and do not exploit 
the critical-path information that is available during itera- 
tive performance-driven layout. As a consequence, designers 
cannot realize the full benefit of high-quality timing-driven 
module placements. With this in mind, our work develops new 
high-performance routing tree constructions which directly 
exploit available critical-path timing information. 

B. The Critical-Sink Routing Tree Problem 

A signal net N consists of a set of pin locations 
{no, n1,. . . , nk} in the Manhattan plane, which are to be 
connected by a routing tree T ( N ) .  We use no to denote the 
source, with the ni (1 5 i 5 IC) denoting sinks. The cost of an 
edge e i j  in T ( N ) ,  denoted by d i j ,  is the Manhattan distance 
between the endpoints ni and nj of the edge. The cost of 
the tree T ( N )  is simply the sum of its edge costs. En a given 
routing tree T ( N ) ,  the signal delay between two terminals lz i  

and nj is denoted by t(ni ,nj);  the shorthand notation t(ni) 
indicates the delay from the source to the sink ni. Finally, we 
allow each ni to have an associated criticality, ai, reflecting 
the timing information obtained during the performance-driven 
placement phase. Our goal is to construct a routing tree T ( N )  
which minimizes the weighted sum of sink delays: 

Critical-Sink Routing Tree (CSRT) Problem: Given a sig- 
nal net N = {no, n ~ ,  . . . , nk} C 8’ with source no and 
possibly varying sink criticalities ai 2 0, i = 1,. . . , k ,  
construct a routing tree T ( N )  such that E,”=, a; . t(ni) is 
minimized. 

This CSRT problem formulation is quite general, and easily 
captures traditional performance-driven routing tree objec- 
tives: 1) average delay to all sinks is minimized by using 

all a, = some positive constant, then taking the L1 sum of 
the weighted delays; and 2) maximum delay to any sink is 
minimized by using all a, = some positive constant, then 
taking the L,  sum of the weighted delays. In the discussion 
below, we will concentrate on the simple yet realistic case 
where exactly one critical sink, denoted by ne, has been 
identified. In other words, we assume that ae > 0 and that 
all other a, = 0. Our methods may be generalized to the case 
where a small number of critical sinks is specified. 

The remaining discussion is organized as follows: Section I1 
discusses the appropriate choice of a delay measure to guide 
the routing tree design, and derives motivating observations 
from analysis of the Elmore approximation for signal delay in 
distributed RC trees. Section I11 then presents our two main 
classes of CSRT algorithms. We first describe the CS-Steiner 
method, which perturbs an existing Steiner tree construction 
to account for the presence of identified critical sinks. We 
then propose an efficient class of Elmore routing tree (ERT) 
constructions which not only yield good CSRT solutions, 
but are also the first methods to optimize Elmore delay 
directly without any of the abstractions implicit in previous 
routing objectives. Section 111 also describes the extension 
of the ERT approach to net-dependent routing objectives. 
Experimental results are presented in Section IV, where we 
compare delays at critical sinks in our heuristic tree topologies 
with analogous delays obtained using the best-performing 
minimum Steiner tree heuristic 1221 and the AHHK routing 
[l]. Our methods prove extremely effective, obtaining up 
to an average 69% reduction in signal delay to identified 
critical sinks in 8-sink nets. The ERT approach also yields 
generic high-performance routing trees when all sinks are 
equally critical: for 9-pin nets in 1 . 2 ~  CMOS IC (MCM) 
technology, we improve average sink delay by 19% (62%) 
and maximum delay by 22% (52%) over the minimum Steiner 
routing. We thus obtain a significant advance over the existing 
performance-driven routing tree constructions in the literature, 
including such recent works as [l], [lo], [28]. Our results 
are complemented by a detailed analysis of the accuracy and 
fidelity of the Elmore delay approximation, and we furthermore 
provide exact assessments versus optimal for our heuristic tree 
constructions. To determine the latter data, we have developed 
a new theoretical characterization of Elmore-optimal routing 
trees, as well as a decomposition theorem for (Elmore-) 
optimal Steiner trees, which are of independent interest. 

11. ON DELAY APPROXIMATIONS 
AND TREE DESIGN OBJECTIVES 

For arbitrary signal nets N ,  the appropriate objective to 
use in eficiently constructing “high-performance routing trees” 
has not yet been established. In this section, we first consider 
necessary qualities for a delay approximation that is to be used 
in routing tree design. By studying both the relative accuracies 
and the relative jidelities of linear, distributed RC, distributed 
RCL, and SPICE-computed delay approximations, we demon- 
strate that the Elmore distributed RC delay approximation is 
of surprisingly high fidelity with respect to SPICE3e2. From 
Elmore’s simple formula (i.e., the first moment of the impulse 
response in a distributed RC tree), we then develop revealing 



1419 BOESE et al.: NEAR-OPTIMAL CRITICAL SINK ROUTING TREE CONSTRUCTIONS 

Name 
Technology 

r2 

TABLE I 
TECHNOLOGY PARAMETERS FOR THREE CMOS IC TECHNOLOGIES AND ONE MCM TECHNOLOGY. PARASITICS AND SPICE SIMULATION DECKS FOR 

THE IC1 AND IC2 TECHNOLOGIES ARE PROVIDED BY MOSIS; IC3 PARAXTICS ARE COURTESY OF MCNC. THE DRIVER RESISTANCES 
( R D )  AND SINK LOADING CAPACITANCES ARE DERIVED FOR MINIMUM-SIZE TRANSISTORS. NOTE THAT INDUCTANCE VALUES FOR IC1-IC3 
ARE SET TO 1 X fH/pm (EFFECTIVELY ZERO) BECAUSE THEY WERE NOT PROVIDED BY MOSIS/MCNC, AND BECAUSE A NONZERO 

INDUCTANCE IS REQUIRED BY THE TWO-POLE SIMULATOR (SEE FOOTNOTE 4). MCM INTERCONNECT PARASITICS ARE COURTESY OF PROFESSOR w .  
W.-M. DAI OF THE UNIVERSITY OF CALIFORNIA, SANTA CRUZ, AND CORRESPOND TO DATA PROVIDED BY AT&T MICROELECTRONICS DIVISION 

IC1 IC2 

164.0 R 212.1 R 
2.0 pm CMOS 1.2 pm CMOS 

- 
IC3 

0.5 pm CMOS 
270.0 R 

- 
unit wire resistance 

unit wire capacitance 
unit wire inductance 
loading capacitance 

resistance ratio (x 106pm) 

MCM 
MCM 
25:O R 

0.033 R/pm 
0.234 f F / p m  

~ x I O - ~  f H / p m  
5.7 f F  
0.0050 

1x1 cm2 

intuitions regarding the “correct” objective for critical-sink 
routing tree design. 

A. Accuracy and Fidelity of Delay Approximations 

Ideally, a routing algorithm will compute and optimize 
signal delays according to a detailed circuit simulation, such 
as that provided by SPICE. Since the computation times 
required by SPICE are prohibitive for routing tree construction, 
simpler delay approximations must be used. For example, the 
traditional minimum-cost Steiner tree objective, in addition to 
minimizing wiring area, corresponds to a lumped-capacitance 
model (i.e., signal delay is proportional to total tree capaci- 
tance, which is proportional to tree cost). In 191, [lo], [341, 
the linear delay approximation is used; sink delays are thus 
proportional to source-sink path lengths, and a minimum- 
radius criterion is obtained. 

Such simple delay approximations are known to be in- 
accurate as technology scales, e.g., smaller wire geometries 
imply that resistive effects of the interconnect become more 
dominant, particularly in relation to driver on-resistance (see 
the discussion below of “resistance ratio” effects, and note 
the four technology characterizations in Table I). Furthermore, 
greater system speeds and layout areas may expose inductive 
effects on delay. Given these considerations, distributed RC 
delay approximations (e.g., that of Elmore [15]) or distributed 
RCL delay approximations (e.g., the “Two-Pole’’ simulator 
of [38]) are of interest, since they are more accurate than 
linear or lumped-capacitance approximations while requiring 
less computation time than SPICE. 

Elmore delay in an RC tree [15], [32], [361 is defined as 
follows: Given routing tree T ( N )  rooted at the source no, let 
e, denote the edge from node ‘U to its parent in T ( N ) .  The 
resistance and capacitance of edge e, are denoted by rev and 
ce,, respectively. Let T, denote the subtree of T rooted at 
w, and let cv denote the sink capacitance of w (c, = 0 if v 
is a Steiner node). We use C, to denote the tree capacitance 
of Tu, namely the sum of sink and edge capacitances in T,. 
Using this notation, the Elmore delay along edge e, is equal 
to re, (+ + cu). Let r d  denote the output driver resistance at 
the net’s source. Then Elmore delay t ~ ~ ( n , )  at sink n, is 

0.073 R/pm 
0.083 fF/pm 

7.06 fF  
0.0029 

1x1 cm2 

i x10-5 f~ /pm 

0.112 R/pm 
0.039 fF/pm 

1.0 f F  
0.0024 
1x1 cm2 

1 ~ 1 0 - 5 f ~ / p m  

0.008 R/pm 
0.06 f F / p m  
380 f H / p m  
1000 fF  
0.0031 

Although Elmore delay has a compact definition and can be 
quickly computed2 it does not capture all of the factors that 
account for delay. For example, the Two-Pole distributed RCL 
simulator [ 381 considers inductive effects; according to [5], 
[38], its moment-based methodology is intermediate between 
SPICE and Elmore delay in both accuracy and computational 
efficiency. 

Accuracy: In choosing a delay simulator, one traditionally 
measures accuracy, which may vary with the circuit tech- 
nology and the specifics of a net (for instance, the number 
of pins it contains, or the size of its bounding box). Tables 
I1 and I11 indicate the accuracy of the linear, Elmore and 
Two-Pole models for each of the interconnect technologies 
described in Table I. For each of the three estimators, the 
tables give the average ratio of SPICE delay to the estimated 
delay, and also show the consistency of this ratio in terms of its 
standard de~iat ion.~ In Table 11, delay is calculated for a single 
random “critical” sink; in Table 111, delay is measured as the 
maximum delay at any sink in the net. For each net size, the 
results are averaged over 100 random nets with pin locations 
chosen from a uniform distribution over the routing area; 
each net is connected using the minimum cost spanning tree 
(MST) construction. We use MST’s rather than random tree 

*Elmore delay can be evaluated at all sinks in O ( k )  time, as noted in [32]. 
The calculation uses two depth-first traversals: 1) to compute the delay along 
each edge and 2,) to sum up the delays along each source-sink path. 

Our SPICE3e2 delay modeling uses constant unit resistance and capaci- 
tance values. The root of the routing tree is driven by a resistor connected 
to the source. For the Two-Pole and SPICE simulators, every interconnect 
segment is broken into uniform segments, each at most 1/1OOth the length of 
the layout dimension, connected in series. To model sink loads, we use pure 
capacitive loads derived using minimum-size transistors. For all simulators, 
we have used the 50% rise time delay criterion, and we have measured both 
average sink delay and maximum sink delay. For the Two-Pole and SPICE 
simulators we have used time steps of 0.005 ns for the IC technologies and 
0.05 ns for MCM. 

We have found our results to be qualitatively independent of methodological 
choices (e.g., 50% rise time instead of 90% rise time as a delay criterion). 
However, many reasonable alternative simulation methodologies were possi- 
ble. For instance, Elmore delay does not intrinsically correspond to any delay 
time (it is simply the first moment of an impulse response), but can be said to 
correspond to a 63% delay criterion since RC/2 is the coefficient of s in the 
system transfer function H ( s )  of a distributed RC line. On the other hand, 
the nature of the Two-Pole approximation makes it more suited to a 90% 
rise time criterion [38]. Other inconsistencies: while SPICE can model active 
devices as loads, the Two-Pole simulator can only handle “equivalent” sink 
capacitances; while SPICE and Two-Pole can model series inductance (for 
MCM interconnect), Elmore delay is solely a distributed RC model-indeed, 
the list of incomparable variables seems endless. 
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TABLE II 
ACCURACY OF THE LINEAR, ELMORE AND TWO-POLE ESTIMATORS FOR 

CRITICAL-SWK DELAY. THIS TABLE GIVES THE AVERAGE AND STANDARD 
DEVIATION OF THE RATIOS BETWEEN SPICE3E2 DELAY AND ESTIMATED 

DELAY AT A SINGLE RANDOM CRITICAL SINK, AVERAGED OVER 100 
RANDOM NETS, ALL NETS ARE CONNECTED USING MST CONSTRUCTIONS. 

STANDARD DEVIATIONS ARE REPORTED AS A PERCENT OF THE AVERAGE. 
LINEAR DELAY IS DEFINED AS THE SOURCE/SINK PATHLENGTH; BECAUSE 

THIS IS A DISTANCE RATHER THAN A TIME, WE DO NOT REPORT A 
SPICELINEAR “ h T I 0 . ”  HOWEVER, WE CAN REPOT(T THE STANDARD 

DEVIATION OF THIS QUOTIENT, SINCE IT Is INDEPENDENT OF UNITS 

Accuracv of Linear. Elmore and Two-Pole Delav Estimates I i MCM 

for Critical-Sink Delay 

SPICE/Elmore 
SPICE/2-Pole 
2-PolejElmore 1 
SPICE/Lineart 
SPICEjElmore 
SPICE/2-Pole 
2-Pole/Elmore 
SPICE/Lineart 
SPICE/Elmore 
SPICE/2-Pole 
2-Pole/Elmore I 
SPICE/Lineart 
SPICEjElmore 

2-Pole /Elmore ‘ I  SPICE/%Pole 

0.72 
1.27 
0.568 

0.74 
1.30 

0.572 

0.78 
1.36 

0.574 

0.69 
1.20 
0.568 

- 

- 

~ 

13.5% 
13.5% 

16.1% 
15.9% 

16.0% 
15.7% 

20.5% 

1.0% 
20.8% 

0.69 
1.23 

0.566 

0.70 
1.23 

0.568 

0.72 
1.27 

0.571 

0.65 
1.14 

0.566 

- 

- 

- 

15.4% 
15.4% 
0.2% 

38.8% 
17.8% 
17.8% 
0.5% 

40.3% 
17.8% 
17.9% 
0.8% 

61.6% 
25.1% 
25.2% 
0.4% 

TABLE 111 
ACCURACY OF THE LINEAR, ELMORE AND TWO-POLE ESTIMATORS FOR 

MAXIMUM SINK DELAY. SEE TABLE 11 FOR EXPLANATORY NOTES 

Accuracy of Linear, Elmore and Two-Pole Delay Estimates 

- 
IC1 

__ 
IC2 

- 
IC3 

___ 
MCM 

for hi 

Delay Ratio 
SPICE/Linear 
SPICE/Elmore 
SPICE/2-Pole 
2-Pole/Elmore 
SPICE/Linear 
SPICE/Elmore 
SPICE/2-Pole 
2-Pole/Elmore 
SPICE/Linear 
SPICE/Elmore 
SPICE/2-Pole 
2-Pole/Elmore 
SPICElLinear 
SPICE/Elmore 
SPICE/2-Pole 
2-Pole/Elmore 

rimum Sink Delay 

zverage std dev 
- 11.0% 

0.79 1.9% 
1.39 1.7% 

0.568 0.3% 

0.83 4.1% 
1.44 3.6% 

0.572 0.8% 

0.87 6.0% 
1.51 5.1% 

0.574 1.3% 

0.79 2.3% 
1.39 2.1% 

0.568 1.0% 

IN1 = 4 

- 12.5% 

- 13.0% 

- 25.8% 

IN1 = 7 
werage std dev 

- 11.4% 
0.79 1.7% 
1.39 1.7% 

0.567 0.2% 

0.81 2.6% 
1.42 2.4% 

0.568 0.4% 

0.83 3.6% 
1.46 3.4% 

0.569 0.4% 
- 23.3% 

0.79 2.0% 
1.39 1.9% 

0.566 0.4% 

~ 12.9% 

- 13.6% 

topologies so that our comparisons will be for relatively good 
(albeit not necessarily optimal) routing solutions. (Observe that 
for a 7-pin net, finding the optimal-delay routing solution by 
exhaustive enumeration using SPICE is not computationally 
feasible.) 

In all cases, the ratio of SPICE to Linear Delay has 
the largest standard deviation; this inaccuracy in the linear 
approximation is not surprising. It is also reasonable to expect 
poor “accuracy” of the Elmore and Two-Pole approximations 
with respect to SPICE, if only due to the somewhat ill- 
defined state of delay modeling and analysis noted in Footnote 
3. Indeed, based on the average ratio of SPICE to Elmore 

delay or to the Two-Pole simulator, neither estimator seems 
particularly accurate: each is generally at least 20% away from 
SPICE on average at the critical sink.4 Interestingly, Table 
III shows the ratio between SPICE and both the Two-Pole 
and Elmore estimators to be very consistent when measuring 
maximum sink delay, with standard deviations within 4% for 
all technologies on seven-pin nets. Thus, precomputed “cor- 
rection factors” would seemingly compensate for the observed 
inaccuracy of these estimators. However, for delay at a random 
critical sink, the standard deviation of the accuracy ratio 
is consistently above 15%. This lesser consistency perhaps 
indicates that the traditional net-based performance objective 
is more “forgiving” of errors in the delay estimate than newer 
path-based delay  objective^.^ 

Fidelity: A key observation is that precise accuracy is not 
really required of delay estimates used to construct routing 
trees. In practice, we only require that an estimator have a 
high degree ofjidelity, i.e, an optimal or near-optimal solution 
according to the estimator should also be nearly optimal 
according to actual delay. To this end, we have defined a 
measure of fidelity vis-a-vis an exhaustive enumeration of 
all possible routing solutions: we first rank all spanning tree 
topologies6 by the given delay model, then rank the topologies 
again by SPICE delay, and then find the average of the absolute 
value of the difference between the two rankings for each 
topology. This measure of fidelity corresponds to a standard 
rank-ordering technique used in the social sciences [2]. We 
have mn simulations to estimate this measure of fidelity for 
nets of size 4 and 5 using the linear and Elmore delay 
estimators and each of the four interconnect technologie~.~ 
(In this section, we show that the ratio between Elmore delay 
and the Two-Pole estimator of [38] is very nearly constant. As 
would therefore be expected, fidelity values for the Two-Pole 
simulator are nearly identical to those for Elmore delay, and 
we do not report them here.) 

Tables IV and V show the fidelity to SPICE of the linear and 
Elmore delay estimators; the delay criterion is the 50% delay 
time to a given randomly-chosen critical sink in the net. We 
report the average difference in ranking over all topologies; 
the average rank difference for the topology which has lowest 

4Recall that we assigned a near-zero inductance value for the IC technolo- 
gies, since inductance parameters were not available from MOSISNCNC, 
and since the Two-Pole simulator requires a nonzero inductance. We found 
that this does not change our results significantly. For example, if we increase 
the IC1 inductance parameter to 400 f Wpm, the average Two-Pole/Elmore 
ratio becomes 0.566 with a standard deviation of 0.51%. Elmore delay is 
independent of inductance since the first moment of the impulse response in 
a distributed RCL tree has no L term. 

’The small standard deviation of the accuracy values for maximum sink 
delay seems in part due to the rough similarity of the maximum source-sink 
distances over the examples studied. Note that, for example, with the MCM 
technology and IN] = 7, the average SPICEElmore ratio for a random sink 
is 0.65, whereas for the sink with greatest delay (generally furthest from the 
source) the ratio is 0.79. The critical-sink analysis in some sense better reveals 
this effect of sink distance from the source. 

6There are lNlINI-’ distinct spanning tree topologies for any given net 
N [161. 

7Again, we use linear delay defined to be the sourcdsink pathlength. This 
definition leads to numerous ties between topologies, and we break ties in 
favor of trees with lower total wirelength. Ties also occur with SPICE- 
computed delay because of the finite time step used; here we again break 
ties according to total wirelength. 
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CS 
1.000 
1.002 
1.005 
1.006 
1.006 
1.006 
1.007 
1.014 
1.036 
1.120 
1.134 
1.182 
1.191 
1.225 
1.233 
1.283 
1.326 
1.354 
1.413 
1.456 
10.81 

TABLE IV 
AVERAGE DIFFERENCE IN RANKINGS OF TOPOLOGIES, IN TERMS OF 50% DELAY 

50 RANDOM NETS OF EACH CARDINALITY, AND THE 50% RISE TIME DELAY 
CRITERION WAS USED. THE TOTAL NUMBER OF TOPOLOGIES FOR EACH NET 

TO A GIVEN RANDOM CRITICAL SINK IN EACH NET. THE SAMPLE CONSISTS OF 

Is 4(4-2) = 16 FOR IN1 = 4, AND 5(5-2) = 125 FOR IN1 = 5 

I I I Linear I Elmore I 
IC3 

Max 
1.000 
1.050 
1.089 
1.133 
1.158 
1.191 
1.221 
1.247 
1.279 
1.322 
1.345 
1.380 
1.417 
1.449 
1.483 
1.515 
1.595 
1.629 
1.672 
1.697 
6.83 

IC1 

vs SPICE vs SPICE 
Topologies IN1 = 4 IN1 = 5 IN1 = 4 IN1 = 5 ~ 

Best 2.30 16.3 0.54 5.9 

1 All I 2.44 16.9 I 0.94 7.9 
IC3 1 Best 1 2.60 19.8 1 0.58 5.6 

IC2 

5 Best 2.52 18.1 1.02 7.2 
All 2.43 17.0 0.92 8.0 
Best 2.52 19.4 0.58 6.4 
5 Best 2.66 20.2 0.99 7.2 

2.81 24.4 0.89 I 2.33 15.7 I 0.89 7.1 

MCM 

5 Best 2.68 20.9 0.93 6.5 
All 2.43 16.5 0.93 7.7 
Best 3.04 24.6 0.72 5.1 

I Topologies IN1 = 4 IN] = 5 I IN1 = 4 /NI = 5 
IC1 I Best I 0.50 2.06 I 0.38 0.10 

Linear 
vs SPICE 

Elmore 
vs SPICE 

delay according to the estimator; and the average difference for 
the five topologies which have lowest delay according to the 
estimator. Our results show that Elmore delay has surprisingly 
high fidelity for the critical-sink delay criterion, and nearly 
perfect fidelity for the maximum sink delay criterion. For 
example, with 5-pin nets and IC3 technology parameters, 
optimal critical-sink topologies under Elmore delay averaged 
only 5.6 rank positions (out of 125) away from optimal 
according to SPICE, while the best topology for maximum 
Elmore delay averaged only 0.2 positions away from its 
“proper” rank using SPICE. Reference [24] has similarly 
established the fidelity of Elmore delay for circuit design: they 
plotted Elmore- versus SPICE-computed delays for a suite of 
209 different placehoute solutions of the same ripple-carry 
adder circuit, and also found a very high correlation between 
the two delay measures. 

Table VI shows the average increase in SPICE delay from 
optimal for the 20 top-ranking topologies, i.e., the 20 lowest 
SPICE delays for IN1 = 5.  For IC2, the average distance of 
6.4 rank positions for the optimal critical sink Elmore topology 
implies an expected difference of approximately 1.6% in actual 
SPICE-computed delay (i.e., halfway between the seventh 
and eighth best topologies); for IC3 a distance of 5.6 rank 
positions implies approximately 0.7% delay suboptimality; and 

IC2 

IC3 

MCM 

TABLE VI 
AVERAGE SPICE DELAY RATIOS FOR THE TOP 20 TOPOLOGIES RANKED 

ACCORDING TO SPICE FOR IN1 = 5.  VALUES ARE AVERAGED OVER 50 RANDOM 
NETS AND NORMALIZED TO THE AVERAGE DELAY OF THE BEST TOPOLOGY. ALSO 

INCLUDED IS THE AVERAGE RATIO FOR THE WORST TOPOLOGY (RANK 125) 

5 Best 0.66 2.78 0.71 0.47 
All 0.94 7.74 0.65 1.39 
Best 0.40 2.26 0.16 0.20 
5 Best 0.68 2.61 0.51 0.53 
All 0.87 7.02 0.43 1.24 
Best 0.64 2.40 0.48 0.20 
5 Best 0.87 2.59 0.52 0.44 
All 1.04 6.96 0.60 1.22 
Best 0.70 4.56 0.14 0.08 
5 Best 0.71 3.15 0.11 0.22 
All 1.02 7.01 0.16 0.86 

- 
Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

125 

- 

- 

- 

- 

- 
- 

IC1 

- 
1 

CS 
1.000 
1.006 
1.011 
1.014 
1.016 
1.017 
1.026 
1.040 
1.074 
1. I60 
1.180 
1.224 
1.246 
1.288 
1.306 
1.327 
1.351 
1.380 
1.417 
1.445 
8.04 

- 
- 

-. 

- 

___ 

__ 
-- 

Critical Sink Delay Maximum Sink Delay 
INI=4 INI=5 INI=4 I N J = 5  
1.029 1.099 1.009 1.001 

L 
Max 
1.000 
1.049 
1.087 
1.120 
1.154 
1.180 
1.201 
1.227 
1.253 
1.282 
1.306 
1.330 
1.353 
1.387 
1.417 
1.436 
1.491 
1.517 
1.554 
1.574 
5.46 

- 

- 

- 

- 

- 
__ 

IC2 
IC3 

MCM 

- 
I 

cs 
1.000 
1.003 
1.005 
1.006 
1.007 
1.007 
1.012 
1.021 
1.046 
1.138 
1.155 
1.207 
1.218 
1.254 
1.269 
1.309 
1.344 
1.376 
1.427 
1.466 
10.36 

- 
- 

- 

- 

- 

- 
__ 

1.039 1.096 1.005 1.002 
1.038 1.078 1.013 1.002 
1.019 1.031 1.001 1.001 

2 
M m  
1.000 
1.046 
1.088 
1.128 
1.153 
1.184 
1.215 
1.243 
1.273 
1.311 
1.336 
1.371 
1.399 
1.436 
1.468 
1.495 
1.572 
1.600 
1.641 
1.667 
6.51 

- 
- 

- 

- 

- 

- 
- 

- 
M 

CS 
1.000 
1.001 
1.001 
1.002 
1.003 
1.004 
1.005 
1.005 
1.014 
1.047 
1.049 
1.058 
1.060 
1.064 
1.066 
1.103 
1.427 
1.431 
1.475 
1.686 
18.34 

- 
- 

- 

- 

- 

- 
- 

- 
!M - 

Max 
1.000 
1.044 
1.108 
1.189 
1.250 
1.297 
1.363 
1.419 
1.474 
1.531 
1.594 
1.652 
1.713 
1.763 
1.831 
1.886 
1.987 
2.039 
2.079 
2.142 
10.41 

- 

- 

- 

- 

- 
- 

TABLE VI1 
AVERAGE SPICE SUBOPTIMALITY OF ELMORE DELAY AS 

MEASURED BY THE RATIO BETWEEN THE AVERAGE SPICE DELAYS 
OF THE ELMORE-OFTIMAL AND SPICE-OPTIMAL TOPOLOGIES 

for MCM a difference of 5.1 rank positions implies 0.4% delay 
suboptimality. For maximum sink delay, Table VI implies 
approximate suboptimality ranging between 0.6% for MCM 
and 2.4% for IC3. 

A more direct measure of the suboptimality of Elmore 
delay is to compare SPICE delays of the Elmore-optimal 
and SPICE-optimal topologies. Table VI1 shows averages 
of this measure of suboptimality for both the critical sink 
and the maximum delay criteria. For critical sink delay and 
IN1 = 5,  the average SPICE suboptimality of the Elmore- 
optimal topology is between 3.1% for MCM and 9.9% for 
IC1. Moreover, the Elmore-optimal topologies are closer to 
SPICE-optimal for the IC3 and MCM technologies, which 
have lower resistance ratios. We believe that the estimates of 
Elmore suboptimality for critical-sink delay in Table VI1 are 
larger than those inferred above from Tables IV-VI, due to the 
convexity of the relationship between SPICE rank and average 
SPICE delay (Table VI). For maximum delay, Table VI1 
indicates that minimizing Elmore delay very nearly minimizes 
SPICE delay, with suboptimality of between 0.1% and 0.2% 
for the optimal Elmore topology. Thus, while the accuracy 
of Elmore delay has many dependencies on technology and 
is particularly weak for critical-sink delay, we find that the 
fidelity of Elmore delay is strong for both the critical-sink and 
maximum sink delay criteria. 
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(0.01 

Fig. 1. (a)-(c) Optimal Steiner tree (cost 2.0 cm, t(n,) = 3.34 ns); minimum 
cost shortest-paths tree (cost 2.5 cm, t(nc) = 2.26 ns); and optimal-delay tree 
(cost 2.2 cm, t(n,) = 1.67 ns) for the same sink set. Coordinates shown are 
in mm, and the 1 . 2 ~  IC2 technology parameters (Table I) were used with 
the two-pole simulator and 90% rise time delay criterion. (d) two distinct 
minimum-cost SPT solutions for a set of three sinks. 

B. Intuitions from Elmore Delay 

Because of its fidelity to SPICE-computed delay, Elmore 
delay is a good performance objective for constructing high- 
performance routing trees. Furthermore, the simplicity of the 
Elmore delay formula (1) allows us to intuit heuristics which 
effectively minimize delay. 

Since rev and ce, are usually proportional to the length of 
edge e,, we see that t E D ( n , )  has a quadratic relationship to 
the length of the no-nz path, suggesting a min-radius criterion. 
However, the C, term implies that Elmore delay is also linear 
in the total edge length of the tree which lies outside the no- 
n, path, suggesting a min-cost criterion. The relative size of 
the driver resistance Td heavily influences the optimal routing 
topology: if Td is large, the optimal routing tree (ORT) is a 
minimum cost tree; as rd decreases, the ORT tends to resemble 
a “star” topology. The size of rd relative to unit wire resistance 
is a “resistance ratio” [5] that captures the technology vis- 
a-vis routing tree design. Values of the resistance ratio are 
larger for current-generation CMOS, but tend to decrease in 
MCM substrate and some submicron CMOS IC interconnects 
(Table I). 

In Fig. 1, we show a signal net N with identified critical sink 
ne, along with three routing trees: (a) the 1-Steiner tree, (b) 
a minimum-cost SPT, and (c) the optimal CSRT with respect 
to critical sink n,. Based on this example, the example of 
Fig. 1(d), and (l), we make the following observations: 

e The minimum cost solution Fig. l(a) has large delay to 
the critical sink n, due to the long source-sink path. 

0 However, requiring a monotone path to every sink, as in 
the SPT Fig l(b) or a Steiner arborescence [I l l ,  [30], can 
result in large tree capacitance which again leads to large 
delay at n,. 

* The optimal CSRT construction Fig. l(c) illustrates the 
dependence of routing topology on the choice of critical 
sink, and reflects both the minimum-cost and the SPT 
solutions. 

0 Finally, (1) implies that the number of Steiner points 
in the n0-ne path should be minimized, and the Steiner 
points “shifted” toward no (i.e., branches off of the no- 
ne path should occur as close to the source as possible). 
Fig. l(d) shows two trees which are both shortest-path 
trees and minimum Steiner trees, yet the rightmost tree 
has less signal delay at n,. 

CS-StL--- -*-~---”-- 

hput: signal net N; source n o  E N; identified critical sink n, E N 
I Output: heuristic CSRT solution T 

1. 
2. 

Construct heuristic minimum-cost tree TO over N - n,. 
Form T by adding a direcd :connection from n, to TO, 

i.e., such that the n0-nc path in T is monotone. 

Fig. 2. The CS-Steiner heuristic. 

ID. Two CLASSES OF CSRT HEURISTICS 

A. The CS-Steiner Approach 

Given the observations above, we may characterize the op- 
timal CSRT solution in Fig. l(c) as one which minimizes total 
tree cost, subject to the path from no to ne being monotone (i.e., 
of minimum possible length). This simultaneous consideration 
of radius and cost parameters recalls the motivations in [l], 
[9], [lo], but here the tradeoff is formulated with respect to 
the critical sink ne. We thus obtain our CS-Steiner heuristic 
for the CSRT problem (Fig. 2). 

The idea behind CS-Steiner is simple: construct a minimum- 
cost Steiner routing tree as usual, then “fix” the tree to reflect 
an identified critical sink. Since the algorithm template is quite 
general, we have examined a number of CS-Steiner variants. 
All of our variants use the 1-Steiner heuristic of [22] to 
construct the initial tree To in Line 1. Section IV reports results 
for the following thee variants:* 

HI): The direct connection in Line 2 consists of a single 
wire from ne to no. 
H1: The direct connection in Line 2 consists of the shortest 
possible wire that can join ne to To, subject to the monotone 
path constraint. 
HBest: Accomplish Line 2 by trying all shortest connections 
from n, to edges in To, as well as from n, to no; perform 
timing analysis on each of these routing trees, and return 
the tree with lowest delay at n,. 
The time complexity of these variants is dominated by the 

construction of TO in Line 1 (or possibly by the simulator 
calls in HBest). 

We enhance the CS-Steiner construction via an efficient 
Global Slack Removal (GSR) postprocessing algorithm. GSR 
[6] is similar to the method developed independently in [8], 
which also removes “U’s” from interconnections. However, 
the objective of GSR is not to reduce tree cost (which is 
already effectively minimized by the 1-Steiner algorithm) but 
rather to maximize the monotonicity of all source-sink paths 
and reduce Elmore delay to all sinks. GSR accomplishes this 

*We also studied two additional variants. Variant H2 modifies Line 1 of 
CS-Steiner so that the initial heuristic tree To is constructed over the entire net 
A’. H2 then deletes the edge which lies directly above nc when we root To at 
no, and rejoins (the component containing) n, to (the component containing) 
no using a shortest possible wire from n,, as in variant H1. Variant H3 
performs Lines 1 and 2 simultaneously by executing the 1-Steiner algorithm 
subject to a “maintaining monotone feasibility” constraint. In other words, 
we iteratively choose a Steiner point which minimizes the sum of the tree 
cost and the cost of any needed direct connection from n, to no. The direct 
connection from n, requires that there exist a monotone path through the 
“bounding boxes” of the edges in the path to no. Intuitively, this favors 
initial choice of Steiner nodes along some monotone path from no and nc, 
since such nodes will most rapidly reduce the marginal cost of adding the 
direct %-no connection. The H2 and H3 variants yielded delays that were 
inferior to those of HO, H1, and HBest. 
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without increasing overall tree cost. For expository reasons, 
we defer formal description of GSR, along with its proofs of 
correctness, to Appendix A. 

B. Elmore Routing Trees 

From the discussion of Section TI-B, we see that current 
routing objectives such as minimum tree cost, bounded tree 
radius, or prescribed cost-radius balance have often been 
motivated by the Elmore model. However, such objectives 
are abstractions: they do not directly optimize Elmore delay. 
Thus, the effectiveness of a given objective often depends on 
the prevailing technology, on the particular distribution of sink 
locations for a given signal net, and on the user’s ability to find 
the parameter value (e.g., E in the BRBC algorithm [lo], or c 
in the AHHK algorithm [l]) which will yield a good solution 
for the particular input. 

In this subsection, we depart from the abstraction inher- 
ent in “minimum cost” or “bounded radius” objectives, and 
propose a new greedy Elmore routing tree (ERT) approach 
which optimizes Elmore delay directly as the routing tree is 
constructed. The ERT approach is efficient, since Elmore delay 
at all nodes of a routing tree can be evaluated in linear time 
(see Footnote 2). Based on the performance results in Section 
IV for both critical-sink and “generic” performance-driven 
routing formulations, we believe that the ERT approach, which 
we have embodied as the ERT, SERT, and SERT-C algorithms 
described below, offers a basic new tool for VLSI routing. 

The basic ERT approach is embodied in our Elmore routing 
tree (ERT) algorithm9 for spanning trees (Fig. 3), which is 
analogous to Prim’s minimum spanning tree construction [29]: 
starting with a trivial tree containing only the source, we 
iteratively find a pin n; in the tree and a sink nj outside the 
tree so that adding edge (ni,nj) yields a tree with minimum 
Elmore delay. The construction terminates when the entire net 
is spanned by the growing tree.1° Note that greedy approach 
of the ERT algorithm can be generalized to any delay model 
by applying the appropriate estimator in Line 3 of Fig. 3. 

We apply the ERT approach to Steiner routing by allowing 
the new pin to connect to an edge (or the source) of the existing 
tree, possibly inducing a Steiner node on this edge at the point 
that is closest to the new pin. In this way, the number of ways 
a pin outside the current tree can be added at each iteration 
is at most the number of edges in the current tree plus one 

’Note that “ERT approach” refers to our basic concept of optimizing Elmore 
delay directly via a greedy heuristic. In contrast, the “ERT algorithm” is simply 
one of many possible implementations of the ERT approach: specifically, it 
is a greedy spanning tree construction. 

‘OOur approach should be distinguished from the method of [28], wherein 
A* heuristic search and the actual Elmore delay formula are used in a 
performance-driven routing tree construction. Like our method, [28] grows a 
routing tree over a net N starting from the source no ; they perform A* search 
of a routing graph (e.g., in building-block design) to find the Elmore delay- 
optimal Steiner connection from the existing tree to a new sink. However, 
the choice of this new sink is forced: the algorithm always adds the sink that 
is closest (by Manhattan distance) to the existing tree, and thus falls into the 
standard pitfall of ignoring the underlying delay criterion. The effect of this 
difference is apparent in the ERT ordering of added nodes in Fig. 4. Indeed, 
the method of [28] can yield Elmore delays substantially larger than those of 
ERT: given a very tall, “hairpin”-like version of Fig. l(a) with many sinks 
very closely spaced along the entire hairpin path, [28] forces the sinks to be 
added into the tree according to the path order (starting from the source no 
at the lower left), yielding an obviously poor solution. 

Output: routing tree T over N 

2. While 1VI < (NI do 
Find U E V end U e V which minimize the maximum Elmore delay 

fromno toany sinkin the tree (VU{v),EU{(u,w))) 

E = E U  {(U,.)) 

Fig. 3. The ERT Algorithm: Direct incorporation of the Elmore delay 
formula into a heuristic routing tree construction. 

(i.e., a connection to the source). Note that the orientation of 
each “L-shaped” edge remains flexible until a Steiner node is 
placed on it. 

For generic performance-driven routing, our Steiner El- 
more routing tree (SERT) algorithm iteratively finds U $2 
V, (U, U’) E E, so that connecting U to the closest point on 
edge (w, 71’) minimizes the maximum source-sink Elmore 
delay in the resulting tree. 
TO address critical-sink routing, our Steiner Elmore rout- 
ing tree with identiJied critical sink (SERT-C) algorithm 
begins with a tree containing the single edge (no, n,) 
in Line 1 of Fig. 3, then continues as in the SERT 
algorithm, except that we minimize t ~ ~ ( n , )  rather than 
the maximum delay to all sinks. 

While CS-Steiner began with a minimum-cost Steiner tree 
and heuristically perturbed it to improve t(nc), SERT-C uses 
the opposite approach of starting with the required no-n, con- 
nection and growing the routing tree while keeping  ED (n,) 
as small as possible. Again, we note that SERT-C offers a 
consistent, direct incorporation of Elmore delay within its 
construction, in contrast to heuristics whose objectives or 
strategies are only motivated by Elmore delay and whose solu- 
tion quality may therefore be more sensitive to the technology, 
the input instance, and the choice of parameters. 

Time complexities for our ERT variants are analyzed as 
follows. 

Observation 1: The SERT-C algorithm can be implemented 
in O( k2 log k )  time. 

Proofi The effect on delay t ~ ~ ( n , )  of inserting a new 
edge ( U ,  w) into T arises only in the C, terms in (l), and 
is an additive constant no matter when ( U ,  w) is added into 
the tree. Initially, we compute the best connection from each 
noncritical sink to the tree containing only edge (no, n,). For 
each new sink added, at most three new edges will be inserted 
into the tree. In constant time, we can calculate the effects of 
connections from a given sink outside T to these three new 
edges (all previously computed effects remain unchanged and 
need not be recomputed). We can insert the new delay effects 
into a priority queue for each U $2 V in O(1og k )  time and also 
retrieve the current minimum-cost connection for w in O(1og k )  
time. Thus, each pass through the while loop of Fig. 3 can 
be accomplished in O(k1ogk) time, giving an overall time 

0 
Observation 2: The ERT spanning tree algorithm can be 

implemented in O( k 3 )  time, assuming constant unit wire 
resistance, unit wire capacitance, and sink capacitances. 

Proofi The result follows from a simple observation: If 
a new tree edge incident to sink U E V (Line 3 of Fig. 3) 

complexity of O( kz  log I C ) .  



1424 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 12, DECEMBER 1995 

Critical 

TABLE VILI 
TWO-POLE SIMULATION RESULTS COMPARING cs-STEINER TREES WITH 

1-STEINER HEURISTIC TREES. EACH ENTRY CORRESPONDS TO AN AVERAGE 
OVER DELAY COMPUTATIONS FOR RANDOM CRITICAL SEWS w EACH OF 100 

DIFFERENT RANDOM SIGNAL NETS. ST STEIN ER RESULTS ARE REPORTED IN THE 
PHYSICAL UNITS (ns OR cm) WHILE OTHER RESULTS ARE REPORTED BY THEIR 

 STEINER ER + GSR ALWAYS PRODUCED NEARLY IDENTICAL AVERAGE COSTS 
PERCENT DIFFERENCE FROM THE 1-STEINER RESULTS. NOTE THAT 1-STEINER AND 

p q = 5  [ N I = 9  I N [ = 5  l N ( = 9  
lStein 0.549 ns 0.848 ns 0.331 ns 0.520 ns 

1SteinfGSR -2.2% -3.6% -3.0% -6.6% 

r I I IC1 I IC2 

Hl+GSR 
HBest+GSR 

+4% +6% +4% +6% 
11% +12% +22% +21% 

I I I IC3 I MCM 
p q = 5  I INI=9 I INI=5 I INI=9 
0.218 ns I 0.342 ns I 2.31 ns 1 4.09 ns 
-3.2% 
-15.1% 
-7.8% 
-15.6% 
1.48 cm 
+29% 

-5.0% 
-33.6% 
-19.0% 
-30.7% 
2.18 cm 
+22% 

minimizes the maximum Elmore delay maxi t ~ ~ ( n i ) ,  it must 
connect U to the sink w V that is closest to U .  Thus, at each 
pass through the while loop, we simply compute the shortest 
“outside connection” for each node in V ,  i.e., every possible U, 

in 0 ( k 2 )  time. We then add each of the O ( k )  shortest outside 
connections to T in turn. Evaluating the Elmore delays at all 
sinks in each of the resulting trees requires O ( k )  time per tree. 
Hence, each pass through the while loop requires 0 (k’) time, 

0 
In practice, the complexity of the ERT algorithm will be 

transparent to the user, since IC is typically small (e.g., OUT 

runtimes for the problem sizes discussed here are 0.01 s on 
Sun SPARCl hardware; see also Footnote 18). We know 
of no implementation of the SERT algorithm that is faster 
than 0 ( k 4 ) .  Intuitively, the difficulty is that 1) in Line 3 we 
must always consider O ( k 2 )  Steiner connections, and 2) the 
connection which minimizes maxi  ED (ni) in Line 3 may not 
be the best one from the “perspective” of any individual sink in 
N or edge in T .  Thus, we currently have a rather interesting 
situation where the CSRT problem formulation leads to an 
algorithm (SERT-C) that enjoys nearly quadratic speedup over 
the generic Steiner computation (SERT). 

IV. EXPERIMENTAL RESULTS 

and this yields the 0(IC3) complexity result.” 

A. CS-Steiner Trees 
We implemented each of the CS-Steiner variants HO, H1 

and HBest, along with the 1-Steiner algorithm [22], using C 
on a Sun SPARCl ELC workstation, and ran these algorithms 

“Again, we note the fundamental difference between the ERT approach 
and the method of [28]: while [28] must add the single sink that is closest 
to the existing tree, the ERT algorithm identifies both a new sink and its 
connection such that Elmore delay is minimized. 

on random 4- and 8-sink inputs.12 We also applied our GSR 
post-processing algorithm (denoted as +GSR) to 1-Steiner and 
each of the CS-Steiner variants. Our inputs correspond to the 
four distinct technologies described in Table I. 

Table VI11 gives delay and tree cost (WL) results and 
comparisons. The delays at all sink nodes correspond to 50% 
rise times estimated using the Two-Pole simulator [37], [38]. 
Each entry in Table VI11 represents an average taken over 
every sink node in 50 random point sets. We emphasize that 
the 1-Steiner algorithm (or the BRBC, AHHK, etc. methods), 
being net-oriented, will return the same tree for a given sink set 
no matter which sink happens to be critical; the delays at the 
sinks 1zi are in some sense “generic.” In contrast, each of the 
three CS-Steiner variants can return a different tree for each 
choice of critical sink in the same net. Thus, for each variant 
we report the delay at n, in the speciJic tree corresponding to 
identification of n, as the critical sink. 

Variants HO and HBest significantly reduce delay to the crit- 
ical sink, particularly in larger nets and for MCM interconnect 
technology where output driver and wire resistances are low. 
In other words, the simple strategy of connecting the critical 
node via a path with low branching factor is very successful 
for these cases. Of course, this strategy will produce larger 
routing cost.13 

B. Elmore Routing Trees 

We constructed Elmore routing trees for the same sets of 
random inputs used in the CS-Steiner experiments. Delay sim- 
ulation results, again obtained using the Two-Pole simulator, 
are presented in the upper parts of Table IX. For comparison, 
the table includes data for the minimum spanning tree and 
A ” K  tree [ l ]  constructions. 

Our results show that even as generic net-dependent routers, 
the ERT methods we propose are highly effective, beyond 
their relative efficiency and ease of implementation. For nets 
with nine sinks, the spanning tree ERT construction reduces 
critical sink delay versus the MST construction by 16%, 
26%, and 30% in the respective IC technologies and by 67% 
in the MCM technology. ERT also improves upon AHHK 
for most of the technologies, with reductions of 0% (ICl), 
4% (IC2), 6% (IC3), and 46% (MCM). These results are 
particularly impressive because our AHHK data follows the 
experimental methodology in [ 11, which generates output trees 
for 21 different values of the c parameter and then chooses the 
best tree found for each signal net instance.14 

I2Results for 16-sink inputs have been reported in preliminary form, e.g., 
[6].  Whde such large inputs magnify the effect of our new methods, in practice 
most signal nets will be within the size range that we now discuss. 

l3 Highly “star-like” topologies can possibly introduce other difficulties such 
as crossing wires, nodes with degree > 4, and capacitive coupling effects; 
these are not modeled by either SPICE or the Two-Pole simulator. Note that 
HBest uses calls to the Two-Pole simulator in its delay analysis for candidate 
connections; see the definition of HBest in Section 111-A. 

14According to [l], AHHK already achieves strong improvements over such 
other recent methods as shallow-light routing [lo] or Steiner arborescences 
[ 111 when measured by the same Two-Pole simulation methodology. However, 
it should also be noted that delay reductions in practice will probably not 
attain exactly these magnitudes, partly because our modeling methodology 
cannot capture all of the device characteristics and delay effects related to the 
geometric embedding of our topologies. 
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Crit. 
Sink 

Delay 

TABLE IX 
TWO-POLE SIMULATION RESULTS FOR ELMORE ROUTING TREE 

VARIANTS. SPANNING ERT CONSTRUCTIONS ARE COMPARED WITH 
MST AND A " K ;  STEINER SERT AND SERT-C CONSTRUCTIONS ARE 

COMPARED WITH  C STEIN ER. ALL CHOICES OF CRITICAL SINK ARE 

NETS. MST AND I-STEINER RESULTS ARE REPORTED M THE PHYSICAL 
UNITS (ns OR cm) WHILE OTHER RESULTS ARE REPORTED AS PERCENT 

DIFFERENCES FROM CORRESPONDING MST OR  C STEIN ER RESULTS 

I I IC1 I IC2 I 

RANDOM, AND ALL RESULTS ARE AVERAGED OVER 100 RANDOM 

AHHK -9.6% -16.3% -13.7% 
ERT -12.1% -16.3% -19.6% 

Ste in  0.549 ns 0.848 ns 0.331 ns 

I INI=5 I INI=9  1 INI=5  
I 0.645 ns I 0.984 ns I 0.395 ns I MST 

I AveWL ERT I +IO% I +15% I +18% 
lStein I 1.48 cm I 2.18 cm 1 1.48 cm 

1 ~~y 1 i:: -3.3% 1 -11.6% 1 -7.9% 
SERT-C -5.3% -15.3% -13.0% 

0.758 ns 1.213 ns 0.485 ns 
AHHK -12.4% -19.5% -16.5% 

-14.5% -21.0% -21.4% 
1Stein 0.627 ns 1.028 ns 0.393 ns 

1 1 ::r 1 -4.5% I -14.7% 1 -8.1% 
SERT-C -3.0% -8.6% -3.8% 

AHHK +16% +9% +16% 
1.64 cm 2.43 cm 1.64 cm 

I 1 SERT 1 +6% 1 +9% 1 +11% I SERT-C I +6% I +6% I +15% 

IC3 M 
INI=5 INI=9 INI=5  

MST 0.262 ns 0.403 ns 2.82 ns 
Crit. AHHK -11.5% -25.1% -22.3% 
Sink 

Delay 

Delay 

Ave WL 

-21.8% -29.8% -52.8% 
lStein 0.218 ns 0.342 ns 2.31 ns 

SERT-C -16.1% -30.7% -43.3% 
0.326 ns 0.533 ns 3.86 ns 

AHHK -17.8% -27.0% -24.1% 

lStein 0.262 ns 0.444 ns 3.06 ns 
-23.6% -33.2% -45.6% 

I SERT I -9.2% 1 -24.1% I -30.1% 1 SERT-C I -4.6% 
I 

I -10.8% 1 -14.1% 
I 1.64 cm I 2.43 em I 16.4 cm MST 

W I = 9  1 
0.609 ns 
-23.0% 
-25.9% 
0.520 ns 
-19.4% 

0.792 ns 

-30.1% 
0.664 ns 
-22.0% 
-10.8% 
2.43 cm 

+25% 
2.18 cm 
+18% 
+11% 

-26.5% 

-25.3% 

4.80 ns 
-39.2% 
-67.1% 
4.09 ns 
-61.6% 
-66.0% 
7.05 ns 
-36.8% 
-60.1% 
5.92 ns 

-15.4% 
24.3 cm 

-51.9% 

21.8 cm 

+22% 

The Steiner ERT variant also performs well as a generic 
high-performance router. For 9-pin nets, SERT improves criti- 
cal sink delay versus the 1-Steiner routing by 19% and 62% for 
the IC2 and MCM technologies, respectively. The percentage 
reductions in maximum delay are somewhat greater for the IC 
technologies, but somewhat smaller for MCM interconnects. 
It should be noted that for the MCM technology, the ERT and 
SERT constructions tend to be star-like, producing tree costs 
significantly higher than those of the 1-Steiner construction. 
In practice, when delay is not an overriding concern, the user 
may recapture wirelength by simulating a larger output driver 
resistance. 

Finally, even more significant reductions in delay can be 
achieved when a critical sink has been identified per the 
original CSRT formulation. The SERT-C algorithm improves 
over the SERT results by an additional reduction in delay at the 

8 

6 

. 5  

.7 

.3  

.4 

% 

.7 
8 

. 5  - 7 j - 4  

.9 

.'I 
8 

r 9  

L t:,) 
.9 

(e) (0 
Fig. 4. Example of the progressive SERT Steiner tree construction for a 
9-terminal net using IC2 parameters. The source pin is labeled 1, and sinks 
are numbered in order of distance from the source. 

critical sink of 5%, 7%, and 6% for the three IC technologies, 
and 8% for MCM. Identification of a critical sink has clear 
advantages in terms of tree cost, particularly for MCM routing: 
the SERT-C trees have much less cost than the SERT outputs, 
while still improving the delay to the critical sink. Since 
maximum sink delays still decrease, it is likely that overall 
skew in the routing tree will be reduced even when we treat 
the critical-sink formulation. Finally, we note that the SERT- 
C router produces very similar delays and costs compared 
to the HBest and HO variants of CS-Steiner discussed in the 
previous subsection. However, SERT-C is more practical than 
HBest or HO since it runs in O(lc210gk) time (versus the 
O(S3) complexity of the best practical implementation of the 
1-Steiner heuristic that is called by HBest and HO), and it does 
not require any simulator calls as does HBest. 

Figs. 4 and 5 illustrate the SERT and SERT-C algorithms 
for a 9-pin signal net using the IC2 technology parameters. 
Fig. 4 shows the progressive growth of the SERT construction. 
Fig. 5 contains the trees produced by SERT-C for the various 
choices of critical node. The tree constructed when n, is node 
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IC1 IC2 
I N I = 5  I ( N I = 7  ( N I = 5  I IN1 = 7 

delay cost I delay cost delay cost I delay cost 
1.0 1103 I 1.0 1133 1 0  1.140 I 1.0 1175 

, 
9 

(c) 

19 

, ?5 i’ 1, $4 

2 

Fig. 5. SERT-C tree constructions for a single 9-pin net, showing variation 
of solution with choice of critical sink n,. (a) Node 2 (or 4) critical. @) Node 
3 (or 7) critical (also 1-Steiner tree). (c) Node 5 critical. (d) Node 6 critical. 
(e) Node 8 critical (also Steiner ERT). (0 Node 9 critical. 

3 or node 7 is also the 1-Steiner tree, and the tree constructed 
when n, is node 8 is the same as the generic SERT result. 

C. Elmore-Optimality of Spanning Tree Constructions 

We have seen that the ERT constructions yield greatly im- 
proved signal delay when compared to previous methods. An 
obvious question is whether we still need to seek methods that 
better minimize Elmore delay. Thus, we have implemented 
a branch-and-bound algorithm which finds optimal generic 
routing trees according to Elmore delay. Starting with a trivial 
tree containing only the source pin, we incrementally add one 
edge at a time to the growing tree and evaluate the maximum 
sink delay. If this value exceeds the maximum sink delay in 
any complete candidate tree seen so far, we prune the search 
and backtrack to select a different edge at the previous step. A 
recursive implementation of this Branch-and-Bound Optimal 
Routing Tree (BBORT) search is shown in Fig. 6. BBORT 
attempts to add sinks in all possible orders, but avoids testing 
any topology more than once by requiring that sinks be added 
in the order of a breadth-first traversal of the tree (if two sinks 
are connected to the same parent node, then the sink with 
smaller index must be added to the tree first). It is easy to 
verify that according to this convention, any tree topology will 
imply a unique ordering of the sinks. Consequently, although 
BBORT tries all possible orderings of sinks, it calculates delay 

BBORT Algorithm 
hput: signal net N with source no E N - 
Output: optimal-delay tree Topt over N 

2 t m = m  
3 Call Add_Edges(T) 
4. Output Topi 
Procedure Add_Edges(Tree: T = (K E ) )  
5 

6.  Compute tree delay t(T’) 
7. Et(T’) < t,,, Then 
8. 
9. Eke Call Add-Edges(T’) 

.While there exist w E V and U f! V such that 
T’ = (VU {U}, E U {(U, U)}) IS a new tree topology Do 

E IT’/ = IN1 Then Topt = T‘ ; t,,, = t(T‘) 

Fig. 6. Branch-and-Bound Optimal Routing Tree (BBORT) algorithm (re- 
cursive implementation). 

TABLE X 
ELMORE DELAYS AND WIRELENGTHS OF VARIOUS CONSTRUCTIONS USING Ic1, 

IC2, IC3, AND MCM PARAMETERS. SIMULATIONS WERE RUN ON 200 
RANDOM NETS FOR EACH NET SIZE. TREE COST IS NORMALIZED TO 

MST COST AND DELAYS ARE NORMALIZED TO ORT DELAY. 
STANDARD ERRORS FOR ERT DELAY ARE SHOWN iN PARENTHESES 

ERT 1.007 1.104 1.017 1.142 1.010 1.159 1.022 1.215 
(Std Err) (.0015) (.0021) (.0017) (.0022) 1 SPT 1 1.085 1.290 1 1.130 1.395 1 1.058 1.290 1.096 1.395 1 

MST I 1.169 1.0 I 1.282 1.0 1 1.272 1.0 1 1.451 1.0 I 

ORT 
ERT 

(Std Err) 
SPT I MST I 1.311 1.0 I 1.499 1.0 I 1.894 1.0 I 2.457 1.0 I 

at most once for each tree topology. In Fig. 6, lines 7 through 9 
comprise the core of the branch-and-bound methodology used: 
if the delay in the current tree T’ is greater than or equal to 
t,,, (the current best-known delay for a complete tree), then 
procedure Addxdges terminates and the algorithm backtracks. 
Otherwise, if T’ is a complete tree, then t,,, is set to the delay 
of T’, or if T’ is a partial tree, then AddJdges recursively 
adds more edges to T’. 

To track all of the above simulation results, we have 
run BBORT trials on random sets of 200 nets for each 
of several net sizes. Our inputs are evaluated using the 
same four sets of technology parameters discussed previously. 
Table X compares Elmore delays of the BBORT and ERT 
constructions, as well as of the minimum spanning tree (MST) 
and shortest path tree (SF’T) constructions, for each of the four 
techn~logies.’~ Delay for each tree is normalized to the ORT 
delay of the same net. Tree costs are similarly normalized to 
the MST cost of each net. 

In Table X, we see that ERT’s over seven pins in the IC1 
technology have an average maximum Elmore delay only 1.7% 
greater than optimal, while MST’s have average Elmore delay 
28.2% greater than optimal. For smaller nets, ERT’s are even 
better: for nets with five pins, ERT delays are only 0.7% 
above optimal on average, while MST’s are 16.9% above 

15The SPT construction is the tree which mnimizes cost subject to each 
source/sink path having mnirnum length, L e ,  it is a Steiner arborescence, or 
A-tree [ll],  [30]. 
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I 

SORT-C 
SERT-C 

1-Steiner 
(Std Err) 

SORT-C 
SERT-C 

1-Steiner 
(Std Err) 

optimal. Our confidence in the average difference computed 
between ERT’s and ORT’s is very high. For instance, the 1.7% 
difference obtained for 7 pins has a standard error16 of 0.21%, 
indicating a 95% confidence interval between 1.3% and 2.1% 
(i.e., an interval of within two times the standard error of the 
average). 

Technology IC3 gives our worst results in terms of the 
optimality of ERT’s. For the IC3 parameters and 7-pin nets, 
ERT gives an average value within 2.7% of ORT with a 95% 
confidence interval of between 2.2% and 3.2%. For MCM 
parameters, the Elmore-based ERT constructions are also very 
close to optimal: on average, they are within 2.4% of ORT 
delay for 7-pin nets. Finally, our tables compare the delays 
of the SPT construction with those of the ERT and MST 
solutions; the SPT outperforms the MST, but not the ERT, 
in terms of Elmore delay. 

IC 1 IC2 I 
I N / =  5 J N 1 = 7  I N J = 5  IN1 = 7 

delay cost delay cost delay cost delay cost 
1.0 1.111 1.0 1.112 1.0 1.161 1.0 1.158 

1.042 1.046 1.083 1.047 1.049 1.120 1.114 1.106 

1.117 1.0 1.200 1.0 1.228 1.0 1.362 1.0 
IC3 MCM 

[NI = 5 IN1 = 7 IN1 = 5 INI=7  
delay cost delay cost delay cost delay cost 

1.046 1.140 1.112 1.112 1.000 1.296 1.001 1.256 

1.275 1.0 1.429 1.0 1.455 1.0 1.634 1.0 

(.004) (.006) (.006) (.009) 

1.0 1.175 1.0 1.165 1.0 1.296 1.0 1.262 

(.006) (.010) (.OOO) (.0001) 

D. Elmore-Optimality of Steiner Tree Constructions 

We have shown that our spanning tree constructions are 
nearly optimal when we optimize the maximum Elmore delay 
over all sinks in the net. Because Steiner constructions give 
lower delay values than spanning trees in general, we close 
this section with a similar comparison for our SERT-C and 
SERT Steiner constructions. At first, this comparison appears 
very complicated because there are infinitely many possible 
locations for Steiner nodes. Indeed, while it is well-known 
that the result of [I71 restricts the choice of Steiner nodes in 
a minimum-cost Steiner tree to at most k . ( k  + 1) points, no 
such characterization has been established for a Steiner tree 
with optimal Elmore delay. In Appendix B, we present new 
theoretical results which restrict the choice of Steiner nodes 
in Elmore-optimal trees to exactly the same finite “Hanan 
grid” that contains the Steiner nodes of minimum-cost trees. 
This allows a finite algorithm which determines optimal trees 
with respect to any given linear combination of Elmore delays 
to critical sinks. We also present an entirely new “peeling 
decomposition” of any optimal Elmore delay Steiner tree into 
a sequence of subtrees, each of which adds a sink by a “closest 
connection” to some edge in the previous tree. 

When the driver resistance Td is very large, the optimd 
Elmore delay tree is a minimum-cost Steiner tree (l), [5]. As 
a consequence, our results extend very naturally to the well- 
studied problem of minimum-cost Steiner tree construction, 
and the restriction of Elmore-optimal Steiner nodes to the 
Hanan grid both generalizes and extends Hanan’s original 
results. (As Hanan did for minimum-cost Steiner trees, we 
prove that every Steiner node in an Elmore-optimal tree is 
connected to one sink by a horizontal segment of edges, and 
to another sink by a vertical segment of edges. However, our 
techniques (Lemmas BI-B4 in Appendix B) are much more 
powerful in order to address the optimality of the Steiner tree 

16As used here, the term standard error is defined as follows: For a random 
variable X ,  let X = X ,  be an estimator for the expected value of X .  
The standard error of X is an estimate of its standard deviation over multiple 
sample sets, and is equal to the standard deviation of X divided by 6. 
Because delays are recorded as ratios to the ORT delay, the standard error 
of the average difference between ERT and ORT delays is equivalent to the 
standard error of average ERT delay. 

with respect to Elmore delay.) Our peeling decomposition and 
its extension to minimum-cost Steiner trees are of independent 
interest since they provide both a new characterization of, and 
a new means of generating, such trees. 

Based on the results of Appendix B, we achieve a simple 
modification to our BBORT method which finds an optimal 
Steiner routing tree for any linear combination of Elmore 
delays to critical sinks. Rather than considering connections 
from each sink nJ outside the current tree to each sink n, 
inside the tree as in BBORT, the branch-and-bound method 
for Steiner optimal routing trees with critical sinks (BB-SORT- 
C) considers connections from n3 to each edge created when 
12% was added to the tree. In other words, each node n, already 
contained in T is replaced as a possible connection point by 
each of the edges created when n, was added to the tree 
earlier. Again we use branch-and-bound pruning to reduce the 
complexity of the search.17 

Table XI compares Elmore delay for trees constructed 
by the SERT-C algorithm with optimal Elmore delay trees 
found by BB-SORT-C for each of the four technologies. The 
size of nets used in the comparison is limited to nets with 
six sinks (i.e., seven pins) because of the exponential time 
complexity of BB-SORT-C. For nets with seven pins, our 
results show that SERT-C achieves Elmore delay that is on 
average within 11.1% of optimal for the IC1 technology; 
results for IC2, IC3, and MCM parameters are very similar. 
The table also gives average tree costs for our constructions 
and the standard error of our estimate for the ratio between 
SERT-C and SORT-C delays.’* We see that the SERT-C 
algorithm does not perform as well as the ERT algorithm in 
terms of nearness to optimality for the types of delay measures 
we have considered. Nevertheless, our results provide strong 
guidance for future efforts in performance-driven routing: 
even if future work improves the near-optimality of critical 

”Because we consider connections to up to three edges for each sink in 
the growing tree, our BB-SORT-C will introduce some redundancies in the 
tree topologies; we check for possible redundancies and prune the search at 
each redundant tree we find. 

‘*Average running times for each 5-pin net (m seconds) are 0.006 (BB- 
SORT-C), 0.0004 (SERT-C), 0.0014 (SERT), and 0.0012 (1-Steiner). Average 
running times for 7-pin nets are 0.44 (BB-SORT-C), 0.0007 (SERT-C), 0.0055 
(SERT), and 0.0035 (1-Steiner). 
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sink routing constructions, Table XI shows that any future 
improvement in Elmore delay will be at most from 8% to 
12% for nets with up to seven pins. 

V. CONCLUSION 

We have addressed a critical-sink routing tree (CSRT) 
formulation which arises when critical-path information be- 
comes available during the timing-driven layout process. TWO 
new classes of CSRT constructions are proposed: 1) the CS- 
Steiner method, which modifies a minimum Steiner tree to 
accommodate an identified critical sink, and 2) the SERT-C 
method, which begins with a connection from the source to 
the critical sink and then grows a tree so as to minimize the 
increase in Elmore delay to the critical sink. Each of these 
algorithms is efficient, and offers very significant performance 
improvements over existing performance-driven routing tree 
constructions. We note that the greedy “Elmore routing tree” 
(ERT) approach underlying the SERT-C algorithm seems 
quite powerful. In particular, the approach encompasses a 
“generic” SERT Steiner router which outperforms all previous 
performance-driven routing algorithms in the literature. The 
ERT approach is also the first to consistently, and directly, 
optimize the Elmore delay formula itself, rather than an 
objective which heuristically abstracts Elmore delay. Since 
Elmore routing trees are efficiently computed, our approaches 
may lead to basic new utilities that can be integrated within ex- 
isting performance-driven global routing codes. Assessments 
of the near-optimality of our Steiner constructions have led 
to a new characterization of Elmore-optimal Steiner trees, 
and to a new decomposition theorem for minimum-cost and 
minimum-Elmore delay Steiner trees; both of these results are 
of independent interest. 

Which of our routing heuristics is most useful will depend 
on the application. The CS-Steiner heuristics HO and B e s t  
yield the smallest delay values for a single critical sink, but 
have high time complexity which may make them impractical 
for repeated wiring of large nets. Our SERT-C heuristic has 
time complexity of only @ ( I C 2  log k )  and is readily extended 
to the case of nets with multiple critical sinks (e.g., first apply 
SERT with its min-max delay objective to the critical sinks, 
then apply SERT-C with a weighted average delay objective 
to connect the remaining sinks). The SERT heuristic can also 
be applied before critical path information becomes available 
(an alternative is the ERT spanning tree heuristic, which 
has lower time complexity but does not introduce Steiner 
nodes). For nets on noncritical paths, minimizing wire length 
can take precedence over minimizing delay, hence traditional 
minimum-cost Steiner heuristics such as 1-Steiner [22] are 
likely to be preferred. 

Our heuristics which optimize Elmore delay directly are 
near-optimal in terms of SPICE-computed delay: we show 
that our methods give Elmore delay that is nearly optimal, and 
we also showed that Elmore delay-optimal trees have nearly 
optimal SPICE delay. For spanning trees with five pins, we 
estimate that the optimal tree according to Elmore delay will 
be between 3% and 10% above SPICE-optimal, depending on 
the technology. Given that our SERT-C heuristic is between 

w1 

“2 “2 

(4 (b) 

n o w . . . :  ~ 1’3 n *... 1 v3 

Fig. 7. Removing a single “V” in the GSR algorithm. 

j no+...-?“ 
“2 vs v2 v3 

(a) (b) 

Fig. 8. Removing a single “U” in the GSR algorithm. 

0% and 5% above optimal in terms of Elmore delay for five- 
pin nets, we estimate that the SPICE delay suboptimality of 
our SERT-C heuristic ranges from 3% for MCM to about 12% 
for 0.5 pm and about 15% for 1.2 and 2.0 pm CMOS IC 
technologies. 

Current work addresses interesting extensions of the CS- 
Steiner and ERT approaches to incorporate wiresizing, address 
general-cell layout with arbitrary routing region costs, and 
exploit the inherent parallelizability of our approaches. Similar 
approaches may also apply to clock routing, although the 
extension is nontrivial because of larger net sizes and the 
addition of a minimum skew objective. Finally, we leave as 
an open problem the reduction in time complexity of the ERT 
constructions. 

APPENDIX A 
GLOBAL SLACK REMOVAL 

Recall from Section 111-A that global slack removal (GSR) 
is an efficient post-processing enhancement to the CS-Steiner 
approach. The worst-case complexity of GSR is O ( k 2 ) ,  al- 
though we believe the average-case complexity to be very 
close to U ( k ) .  GSR is a linear-time postprocessing enhance- 
ment to the CS-Steiner approach. GSR shifts edges in the 
1-Steiner output to maximize the monotonicity of all source- 
sink paths without any increase in total tree cost or Elmore 
delay to any sink. In what follows, we use the term 1-Steiner 
tree to refer to any tree that can be output by the 1-Steiner 

Dejinition: A V is a subpath of three consecutive nodes on 
a root-leaf path in a routing tree such that the combined edge 
cost dong the subpath is greater than the distance between its 
two end points [e.g., path ‘u1-’u3 in Fig. 7(a)]. 

De$nition: A U is a subpath of four consecutive nodes on a 
root-leaf path with edge cost greater than the distance between 
its end points [e.g., path ‘ 0 1 - ~ 4  in Fig. 8(a)]. 

Note that the nodes in a V or U can be either Steiner nodes 
or pins. A V can be removed by introducing a Steiner node 
which eliminates the overlap between the two adjacent edges, 
as in Fig. 7(b). It is easy to see that, if a U (say ~ 1 ~ 2 ~ 3 ~ 4 )  

does not contain any V’s, then its middle edge ( w 2 ,  113) must 
be either completely horizontal or vertical. Consequently, a U 
containing no V’s can be removed by moving the middle edge 
and adding up to two new Steiner nodes as in Fig. 8(b). 

algorithm. 
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GSR Algorithm 
Input: Steiner tree T with source no 
Output:  Steiner tree T with all U’s removed 
1. 
2. Q+- {no}; 
3. While Q # 0 
4. v +- Dequeue(Q); 
5. 
6. Q + Enpueue(v‘); 
7. 
8. Call Remove-V(v‘) 
9. 
10. Call Remove-U(v’) 
11. Call Clean-Up(v‘) 
12. 

Subroutine Clean-Up(node: U ’ )  

C1. 
c2.  Call Remove-V(parent(v’)) 
C3. 
c4. Call Remove-U(v’) 
c5. Call Clean-Up(v’) 
C6. Else 
C7. 
C8. Call Remove-U(parent(v’)) 
c9.  Call Clean-Up(parent(v’)) 

Remove all Steiner nodes of degree 5 2 from T ;  

For each node 21‘ E children(v) do 

If there is a V located at Y‘ 

If there is a U located at v’ 

Remove all Steiner nodes of degree 5 2 from T; 

If there is a V located at parent(v’) 

If there is a U located at v‘ 

If there is a U located at parent(u‘) 

Fig. 9. Pseudo-code for the global slack removal (GSR) algorithm. Local 
variables include a queue Q and nodes v and v‘. We use children( v) to denote 
the set nodes that are children of v when the tree is rooted at no; parent (v) 
denotes the parent of v in the rooted tree. The subroutine Remove-V(v) 
removes a V located at v as in Fig. 7 and Remove-U (U) removes a U 
located at v as in Fig. 8. 

Fig. 10. An example of a net with a source and five sinks for which 
processing the U’s in a bottom-up order returns a tree with one remaining U .  

Fig. 9 describes the GSR algorithm for removing V’s and 
U’s from any Steiner tree. We define a U (or V )  to be 
Zocated at node w if w is the node in the U (or V )  furthest 
topologically from the source. Three clarifying points should 
be noted. 1) GSR uses a “queue” Q which can be implemented 
arbitrarily as long as each node in the tree is processed before 
its children. In practice, a simple depth-first ordering suffices. 
2) The procedure Remove-U is invoked only for U’s not 
containing any V’s, and is executed as in Fig. 8. 3) All Zow- 
degree Steiner nodes of degree 52 are clearly superfluous and 
are removed, since more U’s  can be found if they are deleted 
at the outset. Because U removal can introduce additional low- 
degree Steiner nodes, they are again removed at the end of the 
algorithm. 

We now show that the tree returned by GSR dominates the 
input tree in terms of total tree cost, path length from the 
source to each sink, and Elmore delay at each sink. Let cost 
( T )  denote the cost of routing tree T .  

Theorem AI: Given any tree T as input, GSR will return a 
tree T’ such that (i) cost(T’) 5 cost(T); (ii) for each i > 0, 
the no-n, path length in T’ is less than or equal to the no-TI, 
path length in T ;  and (iii) the Elmore delay t ~ ~ ( n ; )  at each na 
in T’ is less than or equal to the Elmore delay t ~ ~ ( n ; )  in T .  

(a) cb) (C) 

Fig. 11. The GSR algorithm with input (a) can produce either tree (b) or 
tree (c), depending on the order in which the U’s are processed. 

Pro03 1) Removing a V reduces cost in the routing tree; 
removing a U as in Fig. 8 leaves tree cost unchanged; and by 
the triangle inequality the removal of a low-degree Steiner 
point will either reduce cost or leave it unchanged. These are 
the only operations on the tree by GSR. 

2) Remove-V reduces the source-sink path length to w3 
in the V and to all of its descendents; similarly, Remove-U 
reduces the source-sink path length to node w4 in the U .  
Other source-sink path lengths remain unchanged in either 
procedure. Removing low-degree Steiner nodes does not affect 
any source-sink path lengths. 

3) Assuming constant technology parameters,” removing a 
U or a V can affect Elmore delay along a source-sink path 
in only three ways: a) changing the length of the path; b) 
changing tree capacitances along the path (i.e., increasing the 
wirelength of branches off from the path); and c) shifting tree 
capacitances along the path (changing where branches connect 
to the path). Removing a V will reduce some path lengths, 
reduce tree capacitances, and shift tree capacitances closer to 
the source, thereby reducing Elmore delay to all pins in the 
tree. Removing a U reduces path length to node v4 in Fig. 8 
and shifts tree capacitance closer to the source for nodes w 2 ,  

213, and w4. (For 113, the capacitance that met the n0-213 path 
at v3 now meets the path at w1 and w2.) The only possible 
effect of removing low-degree Steiner nodes is to reduce total 

U 
The order in which U’s are removed from the tree is 

important. If the U’s were processed in a bottom-up rather than 
a top-down order, then new U’s could be introduced and the 
output tree might still contain U’s, as in Fig. Note also 
that two different top-down orderings can produce different 
outputs (although neither will contain any U’s; see Fig. 11). 

We now prove that GSR removes all V’s and all U’s 
from any input tree, and that its worst-case time complexity 
is quadratic. Note that we have constructed a class of nets 
for which the 1-Steiner heuristic constructs a tree which GSR 
processes in Q ( k 2 )  time [6].  GSR in practice, however, seems 
to exhibit close to linear-time complexity, because multiple 
calls to procedure Clean-up occur for very few nodes. 

Theorem A2 1) GSR returns a tree containing no V’s and 
no U’s, and 2)  GSR runs in O(n2)  time in the worst case. 

Proof: Since GSR checks for V’s and U’s at each node 
in the tree, the output tree will contain a V or U only if GSR 
creates one at a node that has already been traversed. A new 
V or U can be produced at a node w only if the no-v path 

191.e., including unit wire resistance, unit wire capacitance, driver resis- 
tance, and sink loading capacitances. 

*OBy “bottom-up” we mean that each node is processed ufer all of its 
children in the tree, while a “top-down” ordering implies that each node is 
traversed before any of its children. 

wirelength, which cannot increase delay to any sink. 
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Remove-V(w2 ) Rernove-U(ng) 

Fig. 12. 
U-removals and a V-removal to complete the Clean-up procedure. 

Example in which removing a U at 77.5 requires two subsequent 

length is increased (which is impossible by Theorem 1) or if 
nodes are removed from the no-v path. 

Removing a V at Line 8 in Fig. 9 will not introduce a new 
V or U at v2 (in Fig. 7) ,  because the 710-212 path length is 
unchanged and a new Steiner point w1 is added to this path. 
Removing a V will not introduce a V at 213 either, because 
~ 1 ~ 1 ~ 3  is not a V .  A U may remain at 213 after removing the 
V, but this will be detected later at Line 9. 

Removing a U at 214 in Fig. 8 can only introduce a new 
V or U at w2, v4, or one of their descendants, because all 
other nodes have unchanged source-sink path lengths and no 
fewer Steiner nodes on their source-sink paths. The subroutine 
Clean-up checks for V's and U's  at w2 and 214, and recursive 
calls to Clean-up will eventually terminate because a new V 
or U can be introduced only by reducing the number of nodes 
on the no-vq path. 

Fig. 12 shows how Clean-up can require several recursive 
calls before terminating. However, for any node U', a call to 
Remove-U (v') will introduce a new V or U at w' or parent 
( U ' )  only if it reduces the number of nodes on the no-w' path. 
Because any Steiner tree connecting k + 1 points can contain 
at most 2k nodes in total, there are O ( k )  nodes on the no-v' 
path. Hence, at most O ( k )  calls can be made to Clean-up 
for each node v' added to the queue in Line 6, and the total 

0 number of calls to Clean-up is O ( k 2 ) .  

APPENDIX B 
OPTIMAL STEINER ERT'S 

For minimum-cost Steiner trees, the classic result of 1171 
restricts the choice of Steiner nodes to at most IN1 . IN - 11 
points (the "Hanan grid") and enables finite branch-and-bound 
methods to determine optimal solutions. Here, we prove an 
analogous result for trees minimizing any weighted average 
of sink Elmore delays. Like Hanan, we show that any tree 
containing a Steiner node which is not a vertex in the Hanan 
grid can have its edges and Steiner nodes shifted to lie on 
the Hanan grid. However, we do not shift edges in the same 
way as Hanan (the edge shifts he uses can be suboptimal in 
terms of Elmore delay). Indeed, the result of, e.g., Lemma 
B1 below is obvious when minimizing tree cost, but requires 
a fairly involved proof when minimizing Elmore delay. Our 
development of the Hanan grid result becomes complete with 
the proof of Lemma B4 below. In Lemma B5, we extend our 
result to show that the branch-and-bound SORT-C method 

q 
'a 

"O 

Fig. 13. Proof of Lemma B1: Node a E T* is connected to edge 
(p .b)  E T*\a at node 2, either x = p = 77.0 or z = c, where c is 
the closest connection between a and ( p ,  b). 

described in Section IV-D returns the optimal delay Steiner 
tree.2I 

A. DeJinitions 

We assume that all delays are defined in terms of Elmore 
delay. We seek to characterize the optimal Steiner tree over 
N, denoted by T*, which minimizes the weighted sum of 
sink delays f = E,"=, 01, . t(n,), with each a, > 0. (The 
case of some Q, = 0 is effectively handled by setting these 
a, to a small positive value.) We assume that T* contains no 
Steiner nodes with degree < 3. For convenience, we normalize 
time and distance so that unit wire resistance and unit wire 
capacitance are both equal to one. We also consider a tree to 
be defined as a set of nodes and edges, so that the notations 
v E T for node v and e E T for edge e are well defined. 
An edge that is completely vertical or horizontal is called a 
straight edge; any other edge is called an L-shaped edge. 

The closest connection between three nodes is the location 
of the single Steiner node in a minimum-cost Steiner tree over 
the three nodes. This location is unique and has coordinates 
given by the medians of the x- and the y-coordinates of 
the three nodes (if the minimum-cost Steiner tree is a chain, 
then the closest connection is the middle node). The closest 
connection between a node v and an edge e is the closest 
connection between v and the two endpoints of e. Assume that 
a Steiner tree T over N is rooted at no. We define T\v to be 
the tree induced by removing node v and all of its descendants 
from T ,  and then removing all degree-2 Steiner nodes from 
the resulting tree. We say that node v E T is connected to an 
edge e E T\v if its parent node in T is located on edge e. If 
parent(v) is located at the closest connection between v and 
an edge e E T\w to which v is connected, then v is said to 
make a closest connection to e in T.  

B. Proof of Closest Connections in T* 
Lemma Bl :  Let x be the parent of node a E T*,  a # no. 

Then either x = no, or else LZ: is located at the closest 
connection between a and each edge in T*\a that is incident 
to a in T*. 

Proofi (See Fig. 13.) Let e = ( p , b )  E T*\a be an edge 
to which a is connected at node x in T*. Let c be the location 
of the closest connection between a and e. Assume that node 
p has degree three (the proof is nearly identical if p has degree 
four), and let q be p ' s  parent and d be the other child of p 
besides x. In our proof, we  also assume that p # no and that 

*'The following clarifications should be made about our results. Fmt, we 
allow the source pin n o  to have degree > 4, which is in general physically 
impossible, hut can be approximated by merging wms close to the source. 
Second, the optimal delay Steiner trees will not always be planar, as t h s  is 
not requlred by our definition of an optimal-delay tree. 
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p is the closest point to a on edge edge ( q ,  p ) .  The other cases 
are handled easily by analogous proofs.** 

For convenience, we overload z, a,b,c ,  and p to also 
represent the respective path lengths from q to these nodes or 
locations. Even though c is not necessarily a node in T*, we 
use T,* to represent the subtree of T* below location c. Finally, 
we use C,, c b ,  and C, to represent the tree capacitance in 
subtrees T,*, TC, and T,*, respectively. 

It is easy to see that x 5 e, since otherwise moving x 
forward to c will reduce or leave unchanged all subtree costs 
(i.e., capacitance terms) and all path lengths (i.e., resistance 
terms). We will show that delay function f is concave in 
terms of x for 0 L x 5 e. Our proof invokes several facts 
from elementary analysis: 1) any concave function defined 
over a real interval will be minimized at one of the two end 
points of the interval; 2) multiplying any concave function by 
a positive constant also gives a concave function; 3) the sum 
of two concave functions is also concave; and 4) any quadratic 
function of 2 with a negative coefficient for x2 is concave in 
terms of x. 

Consider the contribution made by the edge (2, U )  to Elmore 
delay at various sinks nJ E T*. First, consider the case of 
nJ E T,*. Delay t(n,) is the sum of four functions: f l  = 
delay from no to p ;  f 2  = delay from p to 2 due to capacitance 
in T*\b; f 3  = delay from p to IC due to capacitance in edge 
( b ,  q )  and Tz; and f4 = delay from IC to nJ. Simple application 
of the Elmore formula for these four functions gives 

(2 )  f i  = KO + Ki(K2 + a - x) 

f 3  = I C *  ( b -  q +  cb) if 2 5 q (4) 
f 3 = q * ( b - q + G )  i f x 2 q  ( 5 )  

(6)  

where KO, K1, K2 and K3 are constants. To be precise, KO 
is the sum of resistance/capacitance products along the no-p 
path: K1 is the sum of resistances from no to p ;  K2 equals 
the total capacitance in Ti minus the edge (x ,a) :  and K3 

is the delay from a to nj. Function f l  is linear in x, while 
f 2  and f4 are quadratic in x. The equation for f 2  + f4  has 
a negative coefficient for x2 ,  and so f z  + f 4  is concave. 
Function f 3  is linear and increasing for x 5 q and remains 
constant for x 2 q: thus, f 3  is also concave in IC. Consequently, 
t(nj)  = f l  + f 2  + f 4  + f3 is concave in x. 

If nj E T,* then f ~ ,  f 2 ,  and f 3  are identical to the case of 
nj E T,*. Function f 4  equals (c - x) * ( 7 + Cc) + K2, where 
K2 is the delay from c to nj. Again, f 1 ,  f 3 ,  and f 2  + f 4  are 
each concave in x, and so t(nj) is concave in x. 

If nj E TC or nj = q,  we can express delay to nj in terms 
of three functions f l ,  f i  and f 3 .  The definitions of f i  and fi 
are the same as for nj E T,, and f 3  gives the delay from 

*'If p = no, then a similar argument shows that f is c0ncav.e between 
p = no and c,  and will be minimized at one of these two points. If some 
point on ( q , p )  is closer to a than p ,  then a similar proof shows concavity for 
f over the interval between p and c. In this case, it is easy to show z # p 
because connecting a to a closer point on (p ,p)  produces a lower value for 
f than connecting it to p ,  and so 2 must be located at c.  

a - x  f* = ( a - z )  * ( - +c*) + K 3  

"0 "'e:: 91 

Fig. 14. Example of a routing tree T which cannot be constructed by 
algorithm BB-SORT-C, but which satisfies the condition that each nonsource 
node U E T makes a closest connection to each incident edge in T\w. 

p to nJ due to capacitance in !!'*\a. The equation for f l  is 
identical to that for nJ E T,*, while f 3  is a constant in terms 
of x. Hence, fi and f 3  are concave. For f 2 ,  we have 

(7) 
= q * ( a - x + C , )  i f z 2 q .  (8) 

f 2  = x * (a - x + C,) if x 5 q 

Any continuous, piece-wise differential function of a real 
variable is concave as long as its first derivative is monotone 
decreasing. It is clear that this property holds for f 2 ,  except 
possibly at IC = q. Let f i  be the derivative of f 2 .  Then for 
x < q,  f ; ( x )  = a - 2 2  + C,, and for x > q, fi(x) = -4. 
Substituting q for 11: in these equations, we see that f ;  is indeed 
decreasing at x = q (because a > x). Consequently, f 2  is 
concave in 2 and so is t(n,). 

Delay to any other sink in T* is linear (and thus concave) 
in x. Therefore, because f is a nonnegative linear combination 
of concave functions over the interval 0 5 z 5 e, it is also 
concave over this interval and will be minimized at 2 = 0 or 
x = e. However, we assumed that a is connected to ( p ,  b )  and 
so x # q = 0. The only exception occurs if p has no parent, 
i.e., p = no. Since e = ( p ,  b )  is an arbitrary edge in T*\a 
to which a is connected, it must be that a makes a closest 
connection to any edge it is connected to (unless a's parent is 
no). U 

Straightforward corollaries of Lemma B1 include: 1) any 
nonsource node in the optimal delay tree T* must have 
degree 5 4, and 2)  the possible configurations of edges 
incident to a Steiner node q E T* are restricted to the five 
configurations shown in Fig. 22. Note that Lemma B l  by 
itself is not sufficient to prove that BB-SORT-C will return 
the optimal delay tree. For example, if T* connects a four- 
pin net into an "H' with two degree-3 Steiner nodes q1 and 
q 2  (see Fig. 14), then the parent of each nonsource node U 

is connected by a closest connection to T*\u. However, T* 
cannot be constructed by BB-SORT-C since the "H' cannot 
be formed by adding the three sinks sequentially by closest 
connections to the growing tree. 

C. Hanan Grid Proof for Steiner Nodes in T* 
We root any routing tree T at the source no and for any node 

U E T define Tu to be the subtree of T rooted at U. We define a 
segment to be a contiguous set of straight edges in T which are 
either all horizontal or all vertical; a maximal segment (MS) is 
a segment not properly contained in any other segment. Let M 
be an MS in T.  The node in M closest to no on a source-sink 
path containing M is called the entry point to M .  A segment 
containing all points in M to one side of a node 'U located on 
M is a halfsegment with respect to U,  and a half segment with 
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Near side of M 
I "1 

no 0- . .. 

M pd-f-l - -  
n5 '6 " 2 n 

Far side of M 

Fig. 15. Example of a maximal segment M with entry point PO, one near 
branch b l ,  and four far branches, including b z ,  Note that by definition, 713 

forms a far branch with no edges. Also, edge (pa, 716) does nof form a far 
branch off of M because p a  is not an entry point to the MS containing 
( P O ,  126). 

respect to the entry point of M is called a brunch. A branch 
b is called a brunch off of MS M' if M' contains b's entry 
point and is perpendicular to b. Note that m y  given segment, 
M ,  will divide the plane into two half-planes. If M does not 
contain no, then the half-plane containing the edge between 
M's entry point and its parent is called the near side of M 
(because it is "nearer" to the source), and the other half-plane 
is called the far side of M .  (If M contains the source, the near 
and far sides of M can be labeled arbitrarily.) Branches off 
of M that are located on its near (resp. far) side are called 
near (resp. f a r )  branches. In addition, a sink located on M is 
defined to be a fur brunch off of M if none of its children are 
located on the far side of M (i.e., it is not the entry point to a 
larger far branch). For any segment S, we use Neur(S) (resp. 
Fur(,!?)) to denote the set of near (resp. far) branches off of 
the maximal segment containing S. Fig. 15 gives an example 
of an MS M with endpoints pl and p2, entry point PO,  and 
four branches, including near branch b l ,  far branch ba, and a 
far branch consisting only of sink 7%. 

Lemmas B2 and B3 establish some properties that must hold 
for any maximal segment in T*. Lemma B4 then uses these 
properties to show that each maximal segment in T* will have 
a sink located on it. An immediate corollary of Lemma B4 is a 
generalization of the classic result of Hanan [ 171 to the Elmore 
delay objective. (Hanan's original theorem may be viewed as 
a special case of this Corollary with the driver on-resistance 

Lemma B2: In the optimal tree T* , let qo be the entry point 
to a maximal segment M not containing no. Let S be any 
segment contained in M and having qo as an endpoint. Then 
IFur(S)l 2 /Neur(S)\ .  

Proof: By contradiction. Let S be the smallest segment 
in M with 40 as an endpoint so that Near(S) > Far(S). 
Then a portion of T* between no and q' looks like Fig. 16(a). 
Label the branches b l ,  . . . , b, in order from entry point 40. 

Fig. 16(b) shows how we can shift segment S topologically 
toward the source; this effectively shifts wire from each near 
branch to a far branch with is topologically closer to the source 
(i.e., with a smaller label). Shifting S does not affect tree 

and source-sink path lengths will be unchanged to all 
sinks except those connected to the tree through branches in 
Near( S), which will have reduced source-sink path lengths. 

r d  00.) 

2 3 U n l e ~ ~  qo is an endpoint for the MS containlng edge ( p ,  qo) ,  in which 
case tree cost will decrease. 

p j s r _ l  43 

" ;yp, " 
no+ ... no -. .. 

P 40 P qd 40 

(a) (b) 

Fig. 16. Proof of Lemma B2: Example (a) wlth INear(S)I > ]Far(S)I for 
a segment S between 40 and 4 3 ;  (b) shows how S can be shlfted to S' to 
reduce delay to alI sinks in T& and leave delay unchanged at all other sinks. 

h l  M' 

(a) (h) 

Fig. 17. Proof of Lemma B3: (a) Example where 
INear(M)I = IFur(iM)lfor maximal segment M .  M can be 
shifted to M',  as shown in (b), to reduce delay at all sinks in the subtree T4*, . 

Consequently, the shift will decrease delay to all sinks below 
40 in T* and leave delay to all other sinks unchanged, 

0 
We can now use Lemma B2 to show that if an MS M has 

as many near branches as far branches, then it can be shifted 
so as to reduce delay to some sinks and leave delay to others 
unchanged. This is because shifting M toward the source will 
not increase total wirelength and will decrease some source- 
sink pathlengths and shift capacitance along some source-sink 
paths closer to the source. Intuitively, this is the proof behind 
our next l e m a .  

Lemma B3: In the optimal tree T*, let M be an MS not 
containing no. Then IFur(M)l > INeur(M)/. 

Proo$ By Lemma B2, IFar(M)/ 2 /Near(M)I. Sup- 
pose that the exact equality IFur(M)I = )Near (M)]  holds. 
Lemma B2 then implies that each endpoint of M has a near 
branch incident to it as in Fig. 17(a) (otherwise, M would 
contain a subsegment S with all but one endpoint of M and 
having INear(S)l > IFar(S)/.) In Fig. 17(b), we show how 
M can be shifted toward the source without increasing total 
wirelength, while reducing source-sink pathlengths to nodes 
on the near branches of M and shifting capacitance toward 
the source for nodes on the far branches of M .  Consequently, 
moving M will reduce delay to all sinks in Tlo and leave delay 
to all other sinks unchanged (or reduced if the shift reduces 
total wirelength), thereby contradicting the optimality of T*. 0 

Lemma B4: In the optimal tree T*,  any maximal segment 
must contain either the source or a sink. 

Proof: (See Fig. 18.) Let M be a lowest maximal seg- 
ment in T* which does not contain either the source or a sink, 
i.e., every MS that is topologically below M contains a sink. 
Let qo be the entry point to M and let p0 be the parent node of 
qo in T'. Consider the possibility of shifting M ,  either toward 

contradicting the optimality of T*. 
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I I I q j  p. I Pj .. -”i 
I 

Fig. 18. Proof of Lemma B 4  Because the objective function f is concave in 
T over the interval 0 5 T 5 2 2  - z1, f will be minimized when the maximal 
segment M passes through either the gridline at z1 or the gridline at 22. 

the source or away from the source, without passing over any 
node in 7’& which is not in M .  Without loss of generality, 
assume that M is a vertical segment with z-coordinate zo, 
and with the near side of M having z < 20. Let z1 < xo be 
the closest value to xo on the near side of M such that shifting 
M to x = 2 1  would cause M to intersect a node that is in T& 
but not in M .  Similarly, let x2 > xo be the closest value to 
zo on the far side of A4 such that shifting M to x = x2 would 
cause M to intersect some node that is in T:o but not in M .  
Let the variable r, 0 5 r 5 x2 - x l ,  denote the position of 
M between the z-coordinates x1 and x2. We will show that 
minimizing the delay function f implies that either r = 0 or 
r = 2 2  - 2 1 .  

Let d = Far(M) - Near(M). Consider the delay to some 
sink n, located along a near branch b, off of M which has 
entry point q,. (In general, we let qj denote the entry point to 
branch b3.)  Delay t(n,) is quadratic in T only along the edge 
(PO, 40) and along the edge ( q , , ~ , ) ,  where p ,  is the child of 
q, on b,. To be precise, the delay due to ( P O ,  40)  is equal to 
r * ( r / 2  - d * T + K ) ,  where K is some constant; the delay 
due to (q,,p,) is equal to r * ( r / 2  + K’) + K”, where K’ and 
K” are again constants. Therefore, the equation for t(n,) is 

t(n,) = (1 - d)  * r2 + K1 * T + KO (9) 

where K1 and KO are constants. From Lemma B3, we know 
that d 2 1, implying that t(n,) is a concave function of r. 
Similarly, delay to a sink n3 along a far branch b, off of M 
will be equal to 

-d * r2 + Kir + KA (10) 

where again Ki and KL are constants; this too is a concave 
function of r.  Finally, delay to any sink whose source-sink 
path does not contain an edge in M will be linear in r,  and 
thus also a concave function. Since any linear combination of 
functions that are each concave on a given interval will also be 
concave on that interval, f is concave in r and is minimized 
at one of its extreme values, i.e., at r = 0 or r = x z  - 5 1 .  

Thus, M may be moved so that it contains a new node, 
say p,. If p ,  is a sink, the lemma is proved. If p ,  is a Steiner 
node, then because it has degree > 2, there must be a vertical 
MS incident to p,, and this vertical MS must contain a sink 

since M is the lowest maximal segment not containing a sink. 
Hence, if p i  is a Steiner node, the shifted M will also contain 
a sink. 0 

A direct corollary of Lemma B4 is that all Steiner nodes 
in the Elmore-optimal Steiner tree are contained in the Hanan 
grid. 

Corollary: Let X be the set of z-coordinates for all pins in 
N ,  and let Y be the set of y-coordinates in N .  Then if (x ,  y) 
is the location of a Steiner node in T* , x E X and y E Y .  

Thus, only a finite number of possible Steiner point locations 
need to be considered. Hanan’s original theorem may be 
viewed as a special case of this Corollary with the driver 
on-resistance r d  + 00. 

D. Decomposition Theorem for T* 
To prove that BB-SORT-C will return the optimal-delay 

tree T*,  we show that T* can be constructed by starting with 
a tree To containing only no, then adding a sequence of sinks 
n,, 1 5 i 5 k ,  each of which yields a tree T, by making 
a closest connection to some edge in the current tree T,-l. 
We show that such a sequence of trees exists by starting with 
T* = Tk and i = k ,  then “peeling off’ an n, at each iteration 
such that n, is joined by a closest connection in T, to some 
edge in T,-1 = T,\n,. 

At each step, we find an interior node q E T, whose children 
are all leaves. Each of these leaves must be a sink, because all 
low-degree Steiner nodes (i.e., with degree < 3) are removed 
from T,+l\n,+l. We choose one of q’s leaves to be the n, 
that is peeled off, and set T,-1 = T,\n,. The choice of which 
leaf should be peeled is guided by the function Pin(q), which 
specifies one of q’s children that should not be peeled off from 
q. Thus, when q is removed as a low-degree Steiner node, the 
edge between q and its parent is replaced with an edge between 
Pin ( q )  and q’s parent. More formally, we define Pin ( q )  for 
each node q E T* as follows: 1) if q is the source or a sink, 
then Pin(q) = q; and 2) if q is a Steiner node, then Pin(q) is 
chosen according to the template given in Fig. 19. 

After Pin(q) has been assigned, we can apply the rules 
described in Fig. 20 to peel off sinks, thus determining the 
sequence in which sinks can be added to construct T*. 
Note that node p in Line 3 of Fig. 20 must exist since T, 
is finite and has no cycles. Fig. 23 gives an example of 
the decomposition procedure applied to an eleven-pin net. 
Sinks in the figure are labeled in reverse order of how 
the decomposition procedure might peel them off from the 
tree. (Other orders are possible because the decomposition 
procedure is not completely deterministic.) Table XI1 shows 
how Pin(q) was assigned for each Steiner node in Fig. 21. 

We now show that the procedure of Fig. 20 gives a se- 
quential decomposition of the optimal-delay tree T*, such that 
each T, is constructed by connecting sink n, to tree T,-I by 
a closest connection to some edge in T,-1. 

LernrnaB.5: There exists a sequence of subtrees TO = 
{ ~ o } , T ~ , T z , .  . . ,Tk = T* such that for each 2 ,  1 5 z 5 I C ,  1) 
there is a sink n, E T, such that T,-1 = T,\n,, and 2) either 
n, is connected to no, or n, makes a closest connection in T, 
to some edge in T,-l. 
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Steiner node q Pin(q) 
nl 41 

42 n2 
93 n4 
44 n5 
y5 Pin(q6) 
46 Pin(g7) 
47 n-, 

Pin( q)  Assignment Procedure 
Input: Optimal delay tree T* 
Steiner noder q E T* such that Pin(q) has been assigned 
for each w E T,*,w # q 

1. p =parent(q) in T' 
2. If edge ( p ,  q )  is a straight edge 
3. 
4. If edge ( p ,  q )  is L-shaped 
5. 

6. Else if Tq contains a sink on M 
7. Set c to be a child of q on M 
8. Else if p is the entry point to M 
9. Set B to be the far branch of M at q 

10. Set c to be a child of q on B 
11. Else if p has degree 4 
12. Set c arbitrarily to be one of q's children 
13. Else if there is a near (far) branch of M at p 
14. If there is a far (near) branch B of M at q 
15. Set c to be the child of q on B 
16. Else Set c to be the child of q on M 
17. Pin(q) = Pin(c) 

Output: Pin(q) 

Set M to be the MS containing ( p ,  q) 

Set c arbitrarily to be one of q's two children 
/" (q  has exactly two children, by Lemma B1) */ 

/* (such a B exists by Lemma B2) * /  

Reason for Assignment 
( n a , q ~ )  is L-shaped (Line 4) 
nz is on MS containing (ql, 42)  (Line 6 )  

far branch at y3 and near branch at y4 (Line 15) 
44 has degree 4 (Line 11) 
far branch at 45 and no ne= branch at 46 (Line 16) 
far branch at 4s and near branch at q, (Line 15) 

is the entry point to MS containing (nl, qa) (Line 8) 

Fig. 19. Criteria used to associate a sink Pzn(q) with each Steiner nude q in 
the optimal-delay tree T*.  The assignment determines which sink in T, wiU 
remain in the tree when q i s  removed from the current tree while "peeling 
o b '  sinks from T*.  

T* Decomposition Procedure 
Input: Optimal delay tree T* 
Output: Sequence of sinks n l ,  . . . n k  used to construct T" 

1. i = k  
2. 
3. 
4. 
5 .  
6 .  

7. 
8. n, = Pin(c) 
9. 21-1 =K\ni 

using only closest connections of each ni to z-1 
Repeat until i == 0 

Find a node q E T,  whose children are all leaves 
If q == no set c to be any child of no in T* 
Else if q has degree 4 

Set e to be the child of q in T* on the MS 
containing edge (parent(q), q )  

Else Set c to be a child of q such that Pin(e) # Pin(q) 

in. i = i - i  

"4 "6 "8 9 "10 

n 

Fig. 21. Example of the order in which pins are "peeled" from an opti- 
mal-delay Steiner tree T*. (Sinks n2 are peeled from T* in reverse order 
of their subscripts.) 

TABLE XI1 
PIN ASSIGNMENT TO STEINER NODES IN THE EXAMPLE OF 
FIG. 21. LINE NUMBERS REFER TO THE CORRESPONDING 

LINE IN THE PP? ASSIGNMENT PROCEDURE OF FIG. 19 

I Pin Assimments for Examnle Tree 1 

lnl 

(C) (dl (e) 

Fig. 22. Five possible topologies at any Stemer node q in T".  Each diagram 
shows two sinks R I  and n2 below node q in the tree, such that 4 i s  the closest 
connection between nl ,  n2 and q's parent p .  

Fig. 20. Procedure to determine a sequence of sinks R I ,  . . . , n k  which can 
be used to construct T" by a sequence of closest connections from n, to 
tree T,-1. 

Pro08 Part 1) of the Lemma is true since the construction 
of Fig. 20 removes exactly one sink during each pass through 
Lines 3 to 9. 

To show 2), let p be the parent of the node q at Line 3 
in Fig. 20. The first case is when q is a sink or a degree-4 
Steiner node in T, [as in Fig 22(e)l. In this case, edge ( p ,  4 )  
will remain in tree T,-1. If ( p ,  q )  is L-shaped, we must have 
a connection as in Fig. 22(a), where the two children of q are 
eventually replaced by sinks on the maximal segments with 
entry point q (i.e., n1 and n2 in the Fig. 22). Both of these 
sinks have closest connections to ( p , q )  at q. If ( p , q )  is a 
straight edge, let M be the MS containing ( p ,  q ) ,  and let a be 
a child of q in T*.  The sink Pin(a) is assigned in the Fig. 19 
template such that the q-Pin(a) path in T* will contain only 
edges in M ,  edges in branches off of M ,  or edges in a sequence 
of far branches off of branches of M .  (For example, consider 
the paths from q to sinks nl and n2 in Fig. 22(c)-(e).) Thus, 
Pin(a)  and p cannot be on the same side of a line that passes 

through q and is perpendicular to M .  Consequently, q will be 
the closest connection between edge ( p ,  q )  and Pin(a). 

The second case is when q is a degree-3 Steiner node in 
T,. Let a and b be the children of q in T* such that Pin(a) 
and Pin(b) are q's children in T,. Without loss of generality, 
we assume that Pin(q) = Pzn(a) and n, = Pzn(b). We must 
show that q is located at the closest connection between nodes 
p ,  Pin(a), and Pin(b). There are four possible configurations 
for connections at q, as shown in parts Fig. 22 (a)-(d). 

0 In Fig. 22(a), edge ( p ,  q )  is L-shaped and both Pin(a) and 
Pin(b) (denoted by n1 and n2 in the figure) must be on 
maximal segments with entry point q; it is easy to see that 
q is the closest connection between p ,  Pin(a),  and Pin(b). 

In Fig. 22(b)-(d), edge ( p ,  q )  is a straight edge. Let M be the 
MS containing ( p ,  q) ,  and let M' be the MS perpendicular to 
M with entry point q. 

e In Fig. 22(b), edge (4, U )  is L-shaped and edge (4, b )  is 
on the MS MI. By Lemma B4, M' must contain a sink, 
which will be contained in subtree Tb. Thus, Pin(b) ( n 2  

in the figure) is located on MI. Node a is the entry point 
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for two perpendicular branches each containing sinks (by 
Lemma B4); Pin(a) is chosen arbitrarily from one of 
these branches (Line 3 in Fig. 19). In Fig. 22, either 
Pin(a) = n1 or Pin(a) = ni; thus, it can be seen from the 
figure that q is the closest connection between p ,  Pin(a), 
and Pin(b). 
In Fig. 22(c), M’ is the union of two branches. One of 
these branches contains a sink (by Lemma B4); without 
loss of generality, let this be the branch containing edge 
(q ,a) ,  with Pin(a) = n1 in M’. Let B be the branch 
containing edge ( q ,  b). If Pin@) is on B, then q will 
be the closest connection between p ,  Pin(a) and Pin(b). 
Otherwise, according to Lemma B2 we must have that 
b is the entry point to a far branch off of MI. Hence, if 
Pin(b) is not on B, the b-Pin(b) path in T* contains 
only edges on far branches [by the criteria in Lines 8-10 
in Fig. 19; see 122 = Pin@) in Fig. 22(c)]. Thus, Pin(b) 
is contained in the upper-right quadrant relative to q in the 
figure, and q is the closest connection between p ,  Pin(a), 
and Pin(b). 
Finally, consider the configuration in Fig. 22(d). Here, 
MS M‘ is a branch of M containing node a and sink 
Pin(a). Suppose that M’ is a far branch; if Pin(b) is not 
on MS M ,  then there must be a near branch off of M 
somewhere below q in T* (otherwise, we could reduce 
all delays by shifting the entire half segment of M below 
q toward a). Let B, be the near branch below q closest 
to q. Either sink Pi@) is on B3, or the q3-Pin(b) path 
in T* consists only of edges in B, or far branches. In 
either case, Pin(b) (= 722 in the figure) is contained in the 
lower-right quadrant relative to q. If M’ is a near branch, 
an analogous argument again shows that Pin(b) is in q’s  
lower-right quadrant. Thus, q is the closest connection 

0 
Except for redundancies and pruning of suboptimal trees, 

BB-SORT-C searches over all possible ways to construct a 
Steiner tree sequentially, such that each sink is added by a 
closest connection to some edge in the current tree. Thus, we 
have 

Theorem B l :  For any positive linear combination of sink 
delays, f = E,“=, a,.t(n,), a, > 0 Vi ,  algorithm BB-SORT-C 
returns a Steiner tree T* which minimizes f .  

between p ,  Pin(a) and Pin(b). 
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