
Old Bachelor Acceptance: A New Class of Non-Monotone

Threshold Accepting Methods

T. C. Huy, Andrew B. Kahng and Chung-Wen Albert Tsao

UCLA Dept. of Computer Science, Los Angeles, CA 90024-1596 Tel. 310-206-7073
y UCSD CS&E Dept., La Jolla, CA 92093-0114 Tel. 619-534-3854

Email: hu@cs.ucsd.edu, abk@cs.ucla.edu, tsao@cs.ucla.edu

Abstract

Stochastic hill-climbing algorithms, particularly simulated annealing (SA) and threshold ac-
ceptance (TA), have become very popular for global optimization applications. Typical imple-
mentations of SA or TA use monotone temperature or threshold schedules, and are not formu-
lated to accommodate practical time limits. We present a new threshold acceptance strategy
called Old Bachelor Acceptance (OBA) which has three distinguishing features: (i) it is specif-
ically motivated by the practical requirement of optimization within a prescribed time bound,
(ii) the threshold schedule is self-tuning, and (iii) the threshold schedule is non-monotone, with
threshold values even allowed to become negative. The standard implementation of the TA
method of Dueck and Scheuer is a special case of OBA. Experiments using several classes of
symmetric traveling salesman problem instances show that OBA can outperform previous hill-
climbing methods for time-critical optimizations. A number of directions for future work are
suggested.

Given a set S of feasible solutions and a real-valued cost function f : S ! <, global optimization

may without loss of generality be formulated as the search for a global minimizer s 2 S such that

f(s) � f(s0) 8s0 2 S. Typically, jSj is very large compared to the number of solutions that can be

examined in practice. For small instances of certain global optimizations, implicit enumeration (e.g.,

branch-and-bound) or polyhedral approaches can prune the solution space and a�ord solutions within

practical time limits; other problem formulations may be tractable to problem-speci�c methods.

However, many important global optimization formulations (both discrete and continuous) are not

only NP-hard [8], but also have no known problem-speci�c solution methods. Therefore, general-

purpose heuristics are of interest. In this paper, we present a new class of stochastic hill-climbing

heuristics for global optimizations; we call this new strategy Old Bachelor Acceptance (OBA).

Our discussion opens in Section 1 with a characterization of iterative, stochastic hill-climbing

heuristics; these are usually superior to greedy methods in that they can probabilistically escape

from locally optimal solutions. The leading examples of stochastic hill-climbing algorithms { the

simulated annealing (SA) approach of Kirkpatrick et al. [25] and Cerny [6], along with the threshold

acceptance approach of Dueck and Scheuer [7] { have gained wide popularity due to the quality of the

1



solutions that they return. Nonetheless, we observe that current SA and TA implementations usually

have two shortcomings: (i) they are not formulated with respect to a practical CPU bound for the

optimization, and (ii) they are respectively restricted to monotone schedules for their temperature

and threshold parameters. In Section 2, we exhaustively determine optimal, �nite-time threshold

schedules for small (synthetic) problem instances. These schedules provide the motivation for a

non-monotone strategy. We then propose our new Old Bachelor Acceptance (OBA) method, which

a�ords a self-tuning, non-monotone approach to (bounded-time) hill-climbing optimization. After

a discussion of parameters which can be used to tune the OBA approach, we state two promising

variants, which we call OBA1 and OBA2. In Section 3, we present experimental results for our

OBA variants over classes of traveling salesman problem (TSP) instances. Our simulations show

that OBA can provide signi�cant improvements over the previous TA method of Dueck and Scheuer

[7], particularly in the regime of strongly time-bounded global optimization. The paper concludes in

Section 4 with a number of directions for future research.

1 Preliminaries: Global Optimization Heuristics

1.1 Iterative Methods

We are interested in heuristics which iteratively apply the following two rules (Figure 1):

Iterative Global Optimization

Rule 1: Given the current solution si, generate a new trial solution s0

Rule 2: Decide whether to set si+1 = si or si+1 = s0.

Figure 1: High-level template for iterative global optimization.

Rule 1 is memoryless, with generation of s0 based only on the current solution si. Note that a

\history-dependent" Rule 10 might be, for example: Given the history of solutions evaluated thus

far, generate a new trial solution s0. Such a Rule 10 accommodates such methods as iterated descent

[3] and tabu search [10], which more systematically exploit information about the recent history

of solutions, e.g., whether the current solution has been previously visited, whether the current

solution is known to be a local optimum, etc. (see also the heuristic search techniques used in

arti�cial intelligence [29]). These latter methods are beyond the scope of the present discussion.

Rule 1 also induces the notion of a neighborhood structure over S, where the neighborhood N (si) of

the current solution si 2 S is the set of possible trial solutions s0 that can be generated from si. The

2



quality of solutions de�nes a cost surface over the neighborhood structure, and optimization is search

for a global minimum in this cost surface. Typically, the set N (s) consists of slight perturbations of

the current solution s, for example, via the 2-interchange operator for the traveling salesman problem

[18] or the pair-swap operator for graph bisection [17]. When the size of N (s) is constant for all

s 2 S, we denote the neighborhood size by jN j. In practice, Rule 1 simply picks a random s0 2 N (si)

from within \obvious" neighborhood structures such as those noted for the TSP and graph bisection

problems [18]. Therefore, it is Rule 2 which determines the nature of an optimization heuristic as it

traverses the cost surface.

A simple instance of Rule 2 is, \Replace si by s0 if f(s0) < f(si)," which corresponds to greedy

optimization. Greed has been widely employed because of its simplicity and its acceptable success

in a variety of implementations, e.g., Johnson et al. [16] [17] have documented the utility of greed

for several hard combinatorial problems. However, the performance of greedy methods is erratic,

and achieving \stable" { i.e., predictable { performance requires multiple random initial starting

solutions. Johnson et al. [16] have determined that several thousand initial random starting con-

�gurations are necessary for greed to a�ord stable solution quality for graph bisection instances

of size n = 500; this number grows rapidly with n and becomes hopeless for instance sizes of, e.g.,

n = 100; 000 which arise in arenas such as VLSI circuit partitioning. Moreover, central limit phenom-

ena in the cost surface [3] imply that as problems grow large, random local minima are almost surely

of \average" quality, so that simple \multi-start" heuristics [31] fail. For details on this subject, the

reader is referred to discussions by Baum [3] and Kirkpatrick and Toulouse [26] on traveling salesman

structures; by Kau�man and Levin [23] on evolutionary optimization for \adaptive landscapes"; and

by Bui et al. [5] and Hagen and Kahng [11]) for graph partitioning. In view of these factors, global

optimization heuristics must escape from local minima to adequately explore the solution space of

large problems.

1.2 Stochastic Hill-Climbing: SA and TA

Stochastic hill-climbing methods escape from local minima in the cost surface by probabilistically

accepting disimprovements, or \uphill moves". The �rst such method, simulated annealing (SA),

was proposed independently by Kirkpatrick et al. [25] and Cerny [6] and is motivated by analogies

between the solution space of an optimization instance and microstates of a statistical thermodynam-

ical ensemble. Figure 2 summarizes the SA algorithm, which uses the following criteria for Rule 2.

If f(s0) < f(si), then si+1 = s0, i.e., the new solution is adopted. If f(s0) � f(s), the \hill-climbing"

disimprovement to si+1 = s0 still has a nonzero probability of being adopted, determined by both

3



the magnitude of the disimprovement and the current value of a temperature parameter Ti. This

probability is given by the \Boltzmann acceptance" criterion in Line 6 of Figure 2.

Algorithm SA(M)

M � limit on number of Rule 1 iterations

1. Choose (random) initial solution s0;
2. Choose initial temperature T0;
3. for i = 0 to M � 1
4. Choose (random) neighbor solution s0 2 N(si);
5. if f(s0) < f(si) then si+1 = s0

6. else si+1 = s0 with Pr = exp((f(si)� f(s0))=Ti);
7. Ti+1 = next(Ti);
8. Return si, 0 � i �M , such that f(si) is minimum.

Figure 2: Bounded-time SA template.

Another stochastic hill-climbing heuristic called threshold acceptance (TA), which uses a di�erent

Rule 2 criterion (Figure 3), has recently been proposed by Dueck and Scheuer [7]. TA relies on

a threshold, Ti, which de�nes the maximum disimprovement f(s0) � f(si) that is acceptable at the

current iteration. All disimprovements greater than Ti are rejected, while all that are less than Ti are

accepted. Thus, in contrast to the Boltzmann acceptance rule of annealing, TA o�ers a deterministic

Rule 2.

Algorithm TA(M)

M � limit on number of Rule 1 iterations

1. Choose (random) initial solution s0;
2. Choose initial threshold T0;
3. for i = 0 to M � 1
4. Choose random neighbor solution s0 2 N(si);
5. if f(s0) < f(si) + Ti then si+1 = s0

6. else si+1 = si
7. Ti+1 = next(Ti);
8. Return si, 0 � i �M , such that f(si) is minimum.

Figure 3: Bounded-time TA template.

At timestep i, the SA temperature Ti allows hill-climbing by establishing a nonzero probability of

accepting a disimprovement, while the TA threshold Ti allows hill-climbing by specifying a permis-

sible amount of disimprovement. Typical SA practice uses a large initial temperature and a �nal

temperature of zero. [Note that T = 1 accepts all moves (i.e., a random walk in the cost surface);

4



T = 0 accepts only improving moves (i.e., greed).] The monotone decrease in Ti is accomplished by

next(Ti), which is a heuristic function of the Ti value and the number of iterations since the last

cost function improvement. (Typically, next(Ti) tries to achieve \thermodynamic equilibrium" at

each temperature value.) Similarly, implementations of TA [7] begin with a large initial threshold

T0 which decreases monotonically to TM = 0. Note that both SA and TA will in practice return the

\best-so-far" (BSF) solution, i.e., the minimum-cost solution among s0; s1; : : : ; sM ; this is re
ected

in line 8 of each template in Figures 2 and 3, as well as in the experimental comparisons of Section

3 below.

The SA and TA algorithms both enjoy certain theoretical attractions. By using Markov chain

arguments and basic aspects of Gibbs-Boltzmann statistics one can show for SA that with an ap-

propriate next(Ti) function, Pr(sM 2 R) ! 1 as M ! 1, where R denotes the set of all global

minimum solutions. In other words, SA is optimal in the limit of in�nite time [1]. Althofer and

Koschnick [2] argue that each execution of SA lies in some sense within the convex hull of a set of

TA executions, and that TA is therefore also provably good. However, this convergence result is

slightly weaker than those established for SA.

Finally, the practical utility of stochastic hill-climbing is well-documented, with the SA algorithm

now being one of the most widely used heuristics for global optimization [1]. Thus, it is noteworthy

that Dueck and Scheuer [7] claim that their TA method \yields better results than SA" with respect

to both CPU time and the number of \new state choice steps" (i.e., applications of Rule 1), a standard

measure of runtime complexity. Experimental results are presented in [7] which support this claim.

A further practical advantage of TA is its greater simplicity of Rule 2, with no exponentiation

or random number generation being required. With this in mind, our experimental results below

compare OBA variants against the TA algorithm.

2 Non-Monotone Threshold Schedules: The OBAApproach

2.1 Motivations

Recall from the above discussion that SA and TA are traditionally implemented with monotone

temperature or threshold schedules. For SA, the thermodynamic analogy, as well as the convergence

proof based on Gibbs-Boltzmann statistics, together motivate the following intuition [12]: monotone

temperature schedules allow annealing to explore \large features" of the cost surface at high T ,

and then perform �ner optimization at lower T . For TA, the authors of [7] state that the \trivial"

threshold schedule (linear in i, with Ti = T0 � (1 �
i

M
)) is \essentially best", and suggest that the

5



performance of TA is basically insensitive to the threshold schedule. Indeed, the successful results

reported in [7] were obtained using monotone threshold schedules. However, despite the tremendous

success of both SA and TA, certain observations motivate the study of alternative hill-climbing

strategies.

First, standard implementations of SA and TA are not amenable to a priori speci�cation of CPU

limits. With respect to the templates of Figures 2 and 3, common practice will use M = 1 and

test for a stopping criterion (e.g., \equilibration" in SA) to terminate the algorithm. A �nite time

limit M will obviate the theoretical convergence results, and also re
ect practical requirements for

optimization. Experimental results [21] [19] for large discrete and continuous global optimizations

show that optimal annealing schedules vary strongly with the time limit M , but it is not clear how

next(Ti) should be de�ned to accommodate �nite M . [The results in [21] and [19] are with respect to

single-temperature annealing schedules, which were used in order to reduce the number of degrees of

freedom in the experiment. Recent work by Boese, Kahng and Tsao [4] has con�rmed the dependence

on CPU limit of general annealing schedules; the reader is also referred to the work of Strenski and

Kirkpatrick [33] and Althofer and Koschnick [2], which we discuss later in this section.]

Second, current SA and TA implementations are \blind" to the speci�c features of the cost surface

in any given optimization instance. Previous work [21] [19] [20] [32] has shown that large, real-world

cost surfaces exhibit strong �ts to models of self-similar random structure (e.g., VLSI placement

problems have hierarchical scaling properties which resemble high-dimensional fractional Brownian

motions [32]). The parameters of such �tted models vary with the individual problem instances, and

again, evidence suggests that optimal hill-climbing schedules should be tuned to these parameters

[20].

These two observations prompt a variety of questions and simple experiments. Consider the BSF

performance of TA from random starting solutions in the one-dimensional cost surface of Figure 4

(six solutions si, each with two neighbors). We have exhaustively enumerated threshold schedules for

M = 2; 3; : : : ; 9 for the cost surface of Figure 4. The value of the threshold will be the cost di�erence

between any two neighboring states in Figure 4, i.e., �1 and �3. The optimal schedules are de�ned

as the ones that maximize the probability of �nding the optimal solution D within prescribed time

bounds (starting from a random initial solution). Among all the optimal schedules thus found, many

are non-monotone, and some even contain negative threshold values. Some examples are: f�1; Xg,

and f0; Xg for M = 2 (Pr = 0:5000), f�1; 0; Xg for M = 3 (Pr = 0:5833), f0; 3;�1; Xg for M = 4

(Pr = 0:6250); f0;�3; 3; 1; Xg for M = 5 (Pr = 0:6875); f0; 0; 3; 0;0;Xg for M = 6 (Pr = 0:7396);

f�1;�3;�3; 3; 1;�1; Xg for M = 7 (Pr = 0:7656); f0; 3; 0; 0;3; 0; 0;Xg for M = 8 (Pr = 0:8047);

6



and f0;�3; 3;�1;�3;3;3;�1;Xg for M = 9 (Pr = 0:8372). Observe that the last value TM�1

(denoted as X ) in the threshold schedule does not a�ect the best-so-far solution value at time M ,

as long as X � �3.

A

B

C

D

E

F

(A)

0

1

2

3

4

cost

1.0

0.5

1.0

0.5

0.5

0.5

0.5

D*

1.0

0.5

1.0

0.5

0.5

0.5

A

B

C

F

A

B

C E

F

0.5

0.50.5

D*D*

0.5

T=0T=2

E

0.5 0.5

0.5

Figure 4: A simple cost surface, along with transition probabilities for T = 2
and T = 0.

A number of other authors have also touched on the issue of non-monotonicity in annealing. In

particular, Glover [9] suggests in a very general way that some sort of nonmonotonicitywould improve

the performance of heuristic search procedures. Very recently, Osman [28] has reported very e�ective

simulated annealing approaches with non-monotone cooling schedule; these signi�cantly outperform

other SA implementations that use cooling schedules. Strenski and Kirkpatrick [33] have shown

that \locally optimal" annealing schedules can be non-monotone for a small instance of the graph

bisection problem that is highly structured to reduce the size of the solution space. Hajek and Sasaki

[13] show that a class of cost surfaces exists for which optimal schedules are non-monotone. Finally,

Althofer and Koschnick [2] enumerate optimal TA schedules for a small cost surface and �nd clear

evidence (Table 4.1 in [2]) of non-monotonicity; however, the authors surprisingly make no comment

on this data. Our own investigations [4] support these previous studies. Moreover, we have found

that the non-monotonicity of the known optimal schedules does not seem to be an artifact of the

small size of jSj relative to the available time M in these studies. Given these motivations, we have

investigated a class of threshold accepting methods which use non-monotone threshold sequences.

7



2.2 The OBA Algorithm

Old Bachelor Acceptance uses a threshold criterion in Rule 2, but the threshold changes dynamically

{ up or down { based on the perceived likelihood of being near a local minimum. Observe that if the

current solution si has lower cost than most of its neighbors, it will be hard to move to a neighboring

solution; in such a situation, standard TA will repeatedly generate a trial solution s0 and fail to

accept it. OBA uses a principle of \dwindling expectations": after each failure, the criterion for

\acceptability" is relaxed by slightly increasing the threshold Ti (this motivates the name \Old

Bachelor Acceptance"). After su�ciently many consecutive failures, the threshold will become large

enough for OBA to escape the current local minimum. The converse of \dwindling expectations" is

what we call ambition, whereby after each acceptance of s0, the threshold is lowered so that OBA

becomes more aggressive in moving toward a local minimum. With this in mind, the basic OBA

template is as shown in Figure 5.

Algorithm OBA(M)

M � limit on number of Rule 1 iterations

1. Choose (random) initial solution s0;
2. Choose initial threshold T0;
3. for i = 0 to M � 1 do
4. Choose (random) neighbor solution s0 2 N(si);
5. if f(s0) < f(si) + Ti then
6. si+1 = s0;
7. Ti+1 = Ti � decr(Ti);
8. else
9. si+1 = si;
10. Ti+1 = Ti + incr(Ti);
11. endif.
12. Return si, 0 � i �M , such that f(si) is minimum.

Figure 5: High-level OBA description.

Notice that if we use update functions decr(Ti) = �incr(Ti), then OBA can be made equivalent to

the TA method of Dueck and Scheuer (e.g., using the constant functions decr(Ti) = �incr(Ti) =
T0

M

yields the \trivial" threshold schedule recommended in [7]). Thus, special cases of OBA will enjoy

the same convergence properties shown for TA in [2].

2.3 OBA Variants

Via the threshold update functions incr(Ti) and decr(Ti), the template of Figure 5 captures many

possible strategies. We have typically based decr and incr on the following factors:

8



1. The neighborhood size, jN j, along with the age of the current iteration, which is the number

of Rule 1 applications since the last move acceptance. The value of jN j a�ects \reachability"

between solutions, i.e., the diameter of and multiplicity of paths within the neighborhood

structure. Intuitively, age re
ects the OBA algorithm's current perception of local structure in

the cost surface: increasing age implies greater likelihood that si is a local minimum, and that

the threshold should increase faster.

2. The amount of time remaining, M � i. Since previous work [19] [20] has observed strong

dependence of optimal hill-climbing strategies on the time bound M , we may allow decr and

incr to depend on the proportion of time used, i=M .

3. The current threshold value Ti. We may allow di�erent update rules depending on whether Ti

is highly positive, highly negative, close to zero, etc.

Our initial experiments involved OBA variants that used the \obvious" choice of decr(Ti) = �1

and incr(Ti) = �2 both being constant functions, since TA is included among such variants. In

Section 3 below we give experimental results for two slightly more sophisticated strategies, which we

call OBA1 and OBA2. While OBA1 and OBA2 are only two out of a vast range of possible OBA

variants, their empirical performance illustrates both the generality of the OBA approach as well as

its practical utility.

OBA1. The OBA1 variant (see Figure 6) is highly tunable via the parameters �, a, b, and c.

The algorithm has a core threshold update strategy of form

Ti+1 = ((
age

a
)b � 1) � (�) � (1�

i

M
)c:

Whenever age = 0, OBA1 immediately sets the threshold to the most negative value allowable (i.e.,

as low as �� in line 8), thus giving the algorithm the \ambition" to improve rapidly. The threshold

then rises from this negative value until the next move acceptance occurs. For age > 0, the update

rule allows the OBA1 threshold growth rate to increase with age. More speci�cally, the parameters

a, b and c a�ord the ability to �ne-tune the growth rate incr(Ti) as follows:

� a changes the threshold growth rate by a multiplicative factor;

� b allows a power-law growth rate; and

� c tunes a heuristic \damping" factor (1 � i

M
) which is used to scale the magnitude of Ti

as i ! M . [Here, the damping factor does not have any thermodynamic motivations as

9



Algorithm variant OBA1(M ,�,a,b,c)

M � limit on number of Rule 1 iterations
� � threshold update granularity
a � multiplicative factor in growth rate
b � power-law in growth rate
c � coe�cient in damping of threshold magnitude

1. T0 = 0;
2. age = 0;
3. Choose (random) initial solution s0;
4. for i = 0 to M � 1 do
5. Choose random neighbor solution s0 2 N(si);
6. if f(s0) < f(si) + Ti then
7. si+1 = s0;
8. age = 0;
9. else
10. si+1 = si;
11. age = age + 1
12. endif
13. Ti+1 = ((age

a
)b � 1) � (�) � (1� i

M
)c;

14. endfor.
15. Return si, 0 � i �M , such that f(si) is minimum.

Figure 6: OBA1 variant, which incorporates �ne tuning of incr threshold
update function, along with a maximally ambitious decr threshold update
strategy.

with annealing schedules that go to zero, but rather is intended to ensure that at some point

during the optimization, the appropriate \granularity" in the threshold update is applied.

The parameter c can be useful in determining the stage of the optimization at which a given

granularity is applied.]

In this way, OBA1 can capture the gamut of strategies from \steep descent, mild ascent" to \steep

descent, steep ascent" (cf. the terminology of Hansen and Jaumard [14]). Two important points

should be noted. First, OBA1 demonstrates that the new threshold value Ti+1 does not have to be a

function of the previous Ti; here, Ti+1 is completely determined by age, the current timestep i, and

the parameterization of the algorithm. Second, OBA1 follows the intuition provided by the example

of Figure 4, allowing threshold values to become negative so that the algorithm may prefer a good

improving move over a random improving move. In our experiments below involving the traveling

salesman problem, we use a = 1 � n (i.e., scaled to the size n of the problem instance), b = 2, and

c = 0:5.

10



OBA2. The OBA2 variant (Figure 7) recalls the \steepest descent, mildest ascent" strategy

proposed by Hansen and Jaumard described in [14]. In contrast to OBA1, the new threshold Ti+1

in OBA2 depends on the previous value Ti. OBA2 uses a decrement decr(Ti) whose magnitude

grows quadratically, a�ording greater ambition; OBA2 also uses a linear incr(Ti) function so that

expectations do not \dwindle" too rapidly. In lines 9-10 of the algorithm template, we use the

algorithm parameter d to establish the criterion for an easy move acceptance, namely, an acceptance

si+1 = s0 is easy if fewer than d move generations have elapsed since the last acceptance of s0. In

practice, we believe that the choice of d should be dependent on the neighborhood size. In our

experiments below, we use d =
p
2 � jN j, which happens to be the number of cities in the TSP

instance. (Intuitively, d sets the threshold for consecutive failures at which the algorithm begins to

assume that it is at a local minimum. Note also that the dependence of d on problem size is similar

to the dependence of the OBA1 parameter a on problem size.)

Algorithm variant OBA2(M ,�,d)

M � limit on number of Rule 1 iterations
� � threshold update granularity
d � \easy" move threshold
count � number of consecutive \easy" move acceptances

1. T0 = 0;
2. count = 1; prev age = M (large initial value);
3. Choose (random) initial solution s0;
4. for i = 0 to M � 1 do
5. Choose random neighbor solution s0 2 N(si);
6. if f(s0) < f(si) + Ti then
7. si+1 = s0;
8. age = 0;
9. if prev age < d then
10. count = count+ 1;
11. else
12. count = 1;
14. endif
13. Ti+1 = Ti � count �� � (1� i

M
);

15. else
16. si+1 = si;
17. age = age+ 1;
18. Ti+1 = Ti +

�

d
� (1 � i

M
);

19. endif
20. prev age = age.
21. endfor.

Figure 7: OBA2 variant, incorporating steeper descent and milder ascent,
along with criterion for consecutive \easy" move acceptances.

11



Finally, we also report results for two further variants, which we call OBA1 N and OBA2 N.

The OBA1 N (OBA2 N) result is obtained by executing the OBA1 (OBA2) algorithm, with the

only di�erence being that the Rule 2 acceptance criterion treats negative threshold values Ti < 0 as

if they are equal to zero. Our goal here is to obtain some indication as to whether \ambition" is

practically useful, the example of Figure 4 notwithstanding.

We close this section with a qualitative portrayal of the di�erences in the threshold schedules

produced by our four OBA variants. Each of the four algorithms was executed with M = 400; 000

on a single 50-city Euclidean planar TSP instance with random city locations. Figure 8 shows in

detail the 500-step threshold subsequence from i = 100; 000 to i = 100; 500 in each of these runs.

The threshold sequences are superimposed against the linearly decreasing TA threshold sequence.

Note that since the Figure shows only a very small portion of the total OBA execution, the linearly

decreasing TA threshold sequence appears to be constant.

T value

0

0

0

0

0.1

0.1

0.1

0.1

i = 100; 000 i = 100; 500

OBA1 vs. TA

OBA1 N vs. TA

OBA2 vs. TA

OBA2 N vs. TA

Figure 8: Detailed 500-step intervals, i = 100; 000 to i = 100; 500, taken
from runs with M = 400; 000. The non-monotone nature of the OBA
threshold sequences clearly contrasts with the linearly decreasing TA se-
quence shown by the darkened solid line. Speci�c parameter values:
M = 0:4� 106, � = 0:093, a = 1, b = 2, c = 0:5 and d = 50.

12



3 Experimental Results

We tested OBA1, OBA1 N, OBA2, OBA2 N and TA on instances of the traveling salesman problem

(TSP). The TSP is a well-studied NP-hard problem as well as a historically ubiquitous testbed for

both SA and TA. Our experimental protocol was as follows:

1. Two classes of TSP instances were considered: (i) Euclidean planar instances corresponding

to random pointsets drawn from a uniform distribution in the Euclidean unit square; and (ii)

random instances having symmetric distance matrices with each intercity distance drawn from

a uniform distribution in [0; 1]. These are the two most commonly treated classes of TSP, and

in some sense represent limiting cases with respect to \metricity" of the TSP instance. (We also

studied a class of hierarchical TSP instances, which re
ect a clustered, non-uniform distribution

of points in the Euclidean plane. Results for these instances were qualitatively similar to those

for Euclidean instances which had n (the number of cities in the TSP instance) equal to the

number of clusters in the hierarchical instances, so we do not report them here.)

2. Instance sizes ranged from n = 50 to n = 200; for these sizes, we considered CPU limits of

between M = 0:4� 106 and M = 1:0� 106 applications of Rule 1, closely following the studies

of Rossier et al. [30]. Since move generations and cost function evaluations dominate the

runtimes of stochastic hill-climbing algorithms, the actual running time for OBA, SA, TA, etc.

for any given value of M will be essentially identical. For all OBA1 runs, we used � = 0:093,

a = 1 � n, b = 2 and c = 0:5. For all OBA2 runs, we used � = 0:093 and d = n. (In our initial

studies, the value of � was empirically set equal to the cost of the minimum spanning tree over

the pointset divided by the size of the pointset. Intuitively, this is an appropriate granularity

for the TSP optimization. The same � value was also used as the initial temperature of the

TA. Here, we �x � at a representative value.)

3. Our Rule 1 corresponds to the popular Lin 2-opt neighborhood structure [24], wherein a neigh-

bor solution s0 is generated by deleting a random pair of edges in si and then reconnecting

the two paths to achieve the \other" possible tour. The size of the neighborhood structure is

jN j = n(n�1)
2 � n (all pairs of edges, except for adjacent pairs, which yield no change in the

tour).

4. We report the best solution quality encountered during the execution of the algorithm, i.e.,

the minimum value among f(s0); f(s1); : : : ; f(sM ), as indicated by the last line of the Figure

5 template.

13



Tables I and II compare our four OBA variants against TA for Euclidean and random instances

of size n = 50 (M = 0:4 � 106), n = 100 (M = 0:7 � 106) and n = 200 (M = 1:0� 106). These

are exactly the same time bounds used by Rossier et al. ([30], p. 162, Table 4) in their studies of

the SA algorithm. In the tables, we measure the relative performance of the algorithms versus TA

at intervals of M=5 move generations. We use f(x) to denote the BSF solution quality at step x,

normalized to the BSF TA solution quality. Thus, f(x) � 1:000 for the TA algorithm. Each of our

results represents a geometric average of single runs for each of 100 randomly generated instances.

(Since the score of each run is a ratio of OBA performance to TA performance, we believe that using

a geometric average is more intuitive. For instance, given two scores 2 and 0:5, the geometric average

gives the more reasonable value of 1 while the arithmetic average returns the value 1:25. Figure 9

shows that the choice of averaging scheme does not materially a�ect the conclusions drawn from

our experiments. Of course, for any given instance and any given execution, it is possible for OBA

performance to 
uctuate due to random seeds, etc.)

50-city Euclidean TSP

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

50-city random TSP Normalized
tour cost

0.90

0.95

1.00

1.05

1.10

1.15

OBA1_N
(Geom Ave)

OBA1_N
(Arith Ave)

OBA2_N
(Geom Ave) OBA2_N

(Arith Ave)

0 0.2M 0.4M 0.6M 0.8M M 0 0.2M 0.4M 0.6M 0.8M M

Normalized
tour cost

OBA2_N
(Arith Ave)

OBA2_N
(Geom Ave)

OBA1_N(Geom Ave)

OBA1_N(Arith Ave)

Figure 9: Example results showing that the choice of geometric over arith-
metic averaging does not a�ect the conclusions drawn from experimental
data.

In most cases, the OBA variants �nd signi�cantly better solutions than TA within the early

stages of the optimization; this is consistent with the original �nite-time motivations for the OBA

strategy. In addition, we note that the OBA2 variant seems particularly promising: it uniformly

outperforms TA on the random instances and is very competitive with, if not better than, TA on

the Euclidean instances. Finally, the OBAx N variants are noticeably better than the corresponding

OBAx variants; indeed, negative threshold values resulted in worse performance for all of the OBA

variants that we tested [22]. This suggests that negative threshold values may not be useful in

14



practical optimization, despite the optimality of schedules that use negative Ti for such examples as

Figure 4.

n = 50, M = 5i = 0:4� 106

Algorithm f(si) f(s2i) f(s3i) f(s4i) f(s5i)
OBA1 1.002 1.016 1.017 1.007 1.004
OBA1 N 0.962 0.987 0.999 1.000 0.998
OBA2 0.971 0.995 1.004 1.004 1.002
OBA2 N* 0.958 0.986 0.999 1.001 1.000

n = 100, M = 5i = 0:7� 106

OBA1 1.001 1.025 1.033 1.029 1.023
OBA1 N 0.947 0.991 1.012 1.017 1.017
OBA2 0.968 1.003 1.016 1.018 1.016
OBA2 N* 0.939 0.986 1.006 1.013 1.012

n = 200, M = 5i = 1:0� 106

OBA1 1.010 1.044 1.060 1.055 1.048
OBA1 N 0.942 0.997 1.033 1.044 1.047
OBA2 1.103 1.017 1.032 1.036 1.030
OBA2 N* 0.931 0.981 1.014 1.025 1.026

Table I: Euclidean TSP results for n = 50; 100; 200 and respective time
bounds M = 5i = 0:4�106, 0:7�106, 1:0�106, normalized to TA solution
quality (average taken over 100 randomly generated instances).

Finally, Figures 10 and 11 give a more detailed portrayal of how the OBA1 and OBA2 algorithms

progress, in comparison with the TA algorithm. Again, we use the geometric average of performance

ratio, averaged at each time step. Figure 10 portrays the four OBA variants over 100 Euclidean

instances and one run per instance, using n = 50; the four variants are all within 0.4% of TA

after M = 400; 000 steps, but can also be signi�cantly better than TA in the earlier stages of the

optimization. Figure 11 similarly portrays the same OBA variants over 100 random instances with

n = 50; the variants return results that are on average from 11.1% to 13.3% better than those of TA.

4 Conclusions

Our experimental results indicate that non-monotone threshold schedules are promising within hill-

climbing approaches to global optimization. We believe that the OBA paradigm provides a powerful

and general template for exploration of such non-monotone heuristics. Indeed, a number of previous

strategies, including multi-start [31], steepest ascent-descent [27], and even the TA algorithm [7],

may all be captured within the unifying OBA paradigm.

15



n = 50, M = 5i = 0:4� 106

Algorithm f(si) f(s2i) f(s3i) f(s4i) f(s5i)
OBA1 0.966 0.928 0.908 0.893 0.889
OBA1 N 0.941 0.915 0.899 0.893 0.887
OBA2 0.925 0.895 0.884 0.876 0.869
OBA2 N* 0.914 0.889 0.879 0.871 0.867

n = 100, M = 5i = 0:7� 106

OBA1 1.055 0.998 0.967 0.952 0.945
OBA1 N 1.011 0.971 0.949 0.939 0.935
OBA2 0.985 0.943 0.926 0.920 0.914
OBA2 N* 0.978 0.937 0.922 0.916 0.911

n = 200, M = 5i = 1:0� 106

OBA1 1.066 1.075 1.055 1.041 1.030
OBA1 N 1.026 1.034 1.023 1.014 1.009
OBA2 1.131 1.031 1.005 0.983 0.972
OBA2 N* 1.035 1.017 0.990 0.976 0.968

Table II: Random TSP results for n = 50; 100; 200 and respective time
bounds M = 5i = 0:4�106, 0:7�106, 1:0�106, normalized to TA solution
quality (average taken over 100 randomly generated instances).

The OBA variants that we have presented (particularly OBA2 N) perform well on both random

and Euclidean TSP instances, and this good performance is furthermore achieved with respect to

a prescribed time bound that is an parameter of OBA. Since random and Euclidean instances are

extremal with respect to \geometricness" or \metricity" of symmetric TSP's, we surmise that the

OBA variants we report here are fairly robust. We note that our broader experiments have also

con�rmed the strength of Dueck and Scheuer's original TAmethod: for example, our implementations

of OBA variants corresponding to the steepest ascent-descent [27] and iterated descent [3] approaches

exhibited noticeably poorer performance than TA [22]. This is an indication of the sensitivity of

multi-start and iterated greedy approaches with respect to input parameters. In this sense, the self-

tuning capabilities of the OBA approach seem quite valuable. (On the other hand, certain multi-

start and iterated descent methods can be only approximately captured within the OBA template,

since the requirement of a memoryless Rule 1 (i.e., move generation) makes checking local minima

ine�cient and/or inaccurate. The poorer performance of OBA variants which emulate such strategies

should be assessed with this in mind.)

A number of research directions seem promising. (i) We would like to extend the non-monotone

OBA approach to simulated annealing (using temperature T instead of threshold T ). (ii) We hope

16



0.9

0.95

1

1.05

1.1

1.15
1.2
1.25
1.3
1.35
1.4
1.45
1.5

1 2 4 8 16 32 64 100

normalized
tour
cost

i/4000

Average performance vs. TA

OBA1
OBA1 N

TA
OBA2

OBA2 N

Figure 10: Ratios of OBA solution quality to TA solution quality, geomet-
rically averaged at each time step over 100 Euclidean planar TSP instances.
In the �gure, data is sampled at every 4000 time steps, yielding 100 data
points for M = 400; 000. Note that the plot is on a log-log scale.

to con�rm the robustness of our OBA variants on larger instances and on other problem classes,

e.g., asymmetric TSPs and a wider variety of combinatorial optimizations. A related goal would be

to derive natural relationships between the proper parameterization of OBA algorithm variants, the

available CPU limitM , and the size n of the problem instance. A more careful investigation of the

OBA2 N strategy seems warranted since OBA2 N is clearly the best variant that we report here; re-

call that OBA2 N is suggestive of the \steepest descent, mildest ascent" strategy proposed by Hansen

and Jaumard [14] (see also the discussions in [3] [15]). (iii) Recall from above that OBAx N will

always dominate the OBAx variant on \real" cost surfaces, the example of Figure 4 notwithstand-

ing. We hope to show that this dominance always holds within, e.g., the structural models of cost

surfaces proposed in [32] [21]. (iv) We would like to extend the hill-climbing optimization template

to include non-degenerate history (i.e., memory) in the Rule 1 generation of s0. Augmenting our

existing OBA template in this way would provide a very general taxonomy of available hill-climbing

approaches. (v) Finally, the most far-reaching outgrowth of this research may eventually stem from

the motivating studies of Section 2.1, and speci�cally, from such studies of \BSF-optimal" schedules

as those made with respect to Figure 4. Our preliminary work [4] indicates that such studies may

lead to additional justi�cations for the non-monotone approach to stochastic hill-climbing.

17



0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 4 8 16 32 64 100

normalized
tour
cost

i/4000

Average performance vs. TA

OBA1
OBA1 N

TA
OBA2

OBA2 N

Figure 11: Ratios of OBA solution quality to TA solution quality, geomet-
rically averaged at each time step over 100 random TSP instances. In the
�gure, data is sampled at every 4000 time steps, yielding 100 data points
for M = 400; 000. Note that the plot is on a log-log scale.

5 Acknowledgments

Partial support for this research was provided by NSF MIP-9110696, NSF Young Investigator Award

MIP-9257982, ARO DAAK-70-92-K-0001 and ARO DAAL-03-92-G-0050. We thank the anonymous

reviewers for their detailed and constructive comments.

References

[1] E. H. L. Aarts and J. Korst, 1989. Simulated Annealing and Boltzmann Machines: a Stochastic

Approach to Combinatorial Optimization and Neural Computing, Wiley, New York.

[2] I. Althofer and K. U. Koschnick, 1991. On the Convergence of Threshold Accepting, Applied

Mathematics and Optimization 24, 183-195.

[3] E. B. Baum, 1986. Iterated Descent: a Better Algorithm for Local Search in Combinatorial

Optimization Problems, Technical Report 164-30, Crellin Laboratory, California Institute of

Technology, Pasadena, CA 91125.

18



[4] K. D. Boese, A. B. Kahng and C.-W. A. Tsao, 1993. Best-So-Far vs. Where-You-Are: New

Perspectives on Simulated Annealing for CAD, Proc. European Design Automation Conference,

78-83.

[5] T. N. Bui, S. Chauduri, F. T. Leighton and M. Sipser, 1987. Graph Bisection Algorithms with

Good Average Case Behavior, Combinatorica 7(2), 171-191.

[6] V. Cerny, 1985. Thermodynamical Approach to the Traveling Salesman Problem: an E�cient

Simulation Algorithm, Journal of Optimization Theory and Applications 45(1), 41-51.

[7] G. Dueck and T. Scheuer, 1990. Threshold Accepting: A General Purpose Optimization Al-

gorithm Appearing Superior to Simulated Annealing, Journal of Computational Physics 90,

161-175.

[8] M. R. Garey and D. S. Johnson, 1979. Computers and Intractability: A Guide to the Theory of

NP Completeness, W. H. Freeman, San Francisco.

[9] F. Glover, 1986. Future Paths for Integer Programming and Links to Arti�cial Intelligence,

Computers and Operations Research 13(5), 533-549,

[10] F. Glover, 1989. Tabu Search - Part I, ORSA J. on Computing 1, 190-206.

[11] L. Hagen and A. B. Kahng, 1992. New Spectral Methods for Ratio Cut Partitioning and Clus-

tering, IEEE Trans. on CAD 11(9), 1074-1085.

[12] B. Hajek, 1988. Cooling Schedules for Optimal Annealing, Mathematics of Operations Research

13, 311-329.

[13] B. Hajek and G. Sasaki, 1989. Simulated Annealing - To Cool or Not, Systems and Control

Letters 12, 443-447.

[14] P. Hansen and B. Jaumard, 1990. Algorithms for the Maximum Satis�ability Problem, Comput-

ing 44, 279-303.

[15] D. S. Johnson, 1990. Local Optimization and the Traveling Salesman Problem, Proc. of the 17th

International Colloquium on Automata, Languages and Programming, 446-460.

[16] D. S. Johnson and C. R. Aragon, L. A. McGeoch and C. Schevon, 1989. Optimization by

Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning, Operations

Research 37(6), 865-892.

19



[17] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Schevon, 1991. Optimization by Simulated

Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning,

Operations Research 39(3), 378-406.

[18] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Schevon, 1995. Optimization by Simulated

Annealing: an Experimental Evaluation; Part III, the Traveling Salesman Problem, Operations

Research, forthcoming.

[19] A. B. Kahng, 1992. Exploiting Fractalness in Error Surfaces: New Methods for Neural Network

Learning, Proc. IEEE Intl. Symp. on Circuits and Systems, 41-44.

[20] A. B. Kahng, 1992. Random Structure of Error Surfaces: New Stochastic Learning Methods,

Proc. SPIE Conf. on Neural Networks and Optimization 1710(pt. 1, vol.2), 768-779.

[21] A. B. Kahng and G. Robins, 1990. On Structure and Randomness in Practical Optimization,

UCLA Computer Science Department 1990-1991 Annual, 23-38.

[22] A. B. Kahng and C. W. Tsao, 1992. Old Bachelor Acceptance: A New Class of Non-Monotone

Threshold Acceptance Methods, UCLA CSD TR-920040, Computer Science Department,

UCLA.

[23] S. Kau�man and S. Levin, 1987. Toward a General Theory of Adaptive Walks on Rugged

Landscapes, Journal of Theoretical Biology 128, 11-45.

[24] B. Kernighan and S. Lin, 1970. An E�cient Heuristic Procedure for Partitioning Graphs, The

Bell System Tech. Journal 49(2), 291-307.

[25] S. Kirkpatrick, C. D. Gelatt, Jr. and M. Vecchi, 1983. Optimization by Simulated Annealing,

Science 220(4598), 671-680.

[26] S. Kirkpatrick and G. Toulouse, 1985. Con�guration Space Analysis of Traveling Salesman

Problems, Journal de Physique 46, 1277-1292.

[27] J. B. Lasserre, P. P. Varaiya and J. Walrand, 1987. Simulated Annealing, Random Search,

Multi-Start or SAD?, Systems and Control Letters 8, 297-301.

[28] I. H. Osman, 1983. Metastrategy simulated annealing and tabu search algorithms for the vehicle

routing problem, Annals of Operations Research 41, 421-451.

[29] J. Pearl, 1984. Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-

Wesley, Reading, MA.

20



[30] Y. Rossier, M. Troyon and T. M. Liebling, 1986. Probabilistic Exchange Algorithms and Eu-

clidean Traveling Salesman Problems, OR Spektrum 8(3), 151-164.

[31] F. Schoen, 1991. Stochastic Techniques for Global Optimization: A Survey of Recent Advances,

J. Global Optimization 1, 207-228.

[32] G. Sorkin, 1991. E�cient Simulated Annealing on Fractal Energy Landscapes, Algorithmica

6(3), 367-418.

[33] P. Strenski and S. Kirkpatrick, 1991. Analysis of Finite Length Annealing Schedules, Algorith-

mica 6(3), 346-366.

21


