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Figure 3: Analysis of 2,500 random locally minimum bisections for graph in G(150; 0:5). The data
represent 2,399 distinct local minima.

C
os

t

C
os

t

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

19.00 20.00 21.00 22.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

0.00 5.00 10.00 15.00 20.00 25.00

Ave distance from other local minima

(a)

Distance to best local minimum

(b)

Figure 4: Analysis of 2,500 random locally minimum bisections for graph in GBui(100; 4; 10). The
data represent 2,343 distinct local minima.

3 Exploiting Global Structure: Adaptive Multi-Start

It is natural to wonder whether more e�ective starting solutions for Greedy Descent can be derived if we

assume that a \big valley" structure holds for the set of local minima. In this section, we consider a simple
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instance of such an Adaptive Multi-Start (AMS) methodology and demonstrate its e�ectiveness in practice.

3.1 A Simple Adaptive Multi-Start (AMS) Heuristic

We have implemented a simple AMS heuristic consisting of two phases:

1. Phase One: Generate R random starting solutions and runGreedy Descent from each to determine

a set of corresponding random local minima.

2. Phase Two: Based on the local minima obtained so far, construct adaptive starting solutions and

run Greedy Descent A times from each one to yield corresponding adaptive local minima.

Intuitively, the two phases respectively develop, then exploit, a structural picture of the cost surface. Our

AMS heuristic is more precisely described in Figure 5. (Note that henceforth our discussion is couched with

respect to the symmetric TSP.)

Adaptive Multi-Start (G,D,R,k,A)
Input: TSP instance G = (V;E) with jV j = n

D � limit on number of descents � CPU budget
R � number of descents from random starting tours
k � number of local minima used to construct each adaptive tour
A � number of descents made from each adaptive starting tour

Output: t� � best local minimum found after D descents
Local Variables:

M � set of k best local minimum tours so far
/* (Phase One) */
1. Generate R random local minima
/* (Phase Two) */
2. repeat
3. Update M
4. t Construct Adaptive Starting Tour(M )
5. Run Greedy Descent(t) A times
6. Update t�

7. untilD total descents.

Subroutine Construct Adaptive Starting Tour(M)

Input: Set M = fM1; : : : ;Mkg of locally minimum tours
Output: Set t of edges forming a new starting tour
S1. In = union of all edges in set of tours M
S2. t = ;.
S3. Assign weight w(ei) to each edge ei 2 In
S4. for ei 2 In in order of decreasing w(ei) do
S5. if ei is a valid tour edge with respect to t then
S6. t = t [ feig with probability Pr(ei)
S7. while jtj < n (i.e., t is not yet a tour) do
S8. Add a randomly chosen valid tour edge from E n t

Figure 5: Adaptive Multi-Start template.
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In the Figure 5 template, the term descent denotes a single execution of Greedy Descent. We use

D to denote the total number of calls to Greedy Descent. The number of passes through Phase Two (Lines

3-6) is determined by the relationship passes = dD�R
A e. In obtaining the results of Section 4, we uniformly use

R = D=2 (i.e., we spend exactly half our CPU budget in Phase One) and A = 10. When D�R is not an exact

multiple of A we truncate the �nal pass in Line 5. The subroutine Construct Adaptive Starting Tour

always constructs an adaptive starting tour from the set of k best local minima found so far; we use k = 10 in

our experiments. In the description of Construct Adaptive Starting Tour, a partial tour is a set of edges

that is a subset of the edges in some tour. Given a partial tour t, edge e is a valid tour edge with respect to t

i� t [ feg is a partial tour. The experimental results in Section 3.2 below were obtained using the following

additional implementation details:

1. In Line S4, w(ei) is the sum of the inverse tour costs for tours in which ei appears, i.e.,

w(ei) =
X

Mj3ei

1

cost(Mj)
(1)

2. In Line S6, we use

Pr(ei) = exp(
w(ei)

W
� 1) (2)

where W =

jM jX

j=1

1

cost(Mj)
is the weight of an edge that is contained in all tours in M .

3. In Lines S7-S8, we simply insert random valid edges until t becomes a tour.

(In Line S4, our de�nition of w(ei) gives greater weight to edges that are present in many short tours;

however, we have obtained similar results using uniform edge weights. In Line S6, while we have also tried

other probabilistic weighting methods, our choice allows the probability that ei is included in t to approach

1 as w(ei) approaches its maximum possible value. In Lines S7-S8, we have found that a number of other

strategies yield very similar results, e.g., adding the shortest valid edge, testing edges according to a �xed

order, or following a nearest-neighbor heuristic.)

Given these implementation decisions, Construct Adaptive Starting Tour has O(kn logn + n2)

worst-case run time. Of course, this is dominated by the known exponential worst-case run time ofGreedy Descent

for 2-opt in the TSP [20].

3.2 Experimental Results

Table 1 compares results of our AMS implementation with results of Randommulti-start and Nearest

Neighbor (NN) multi-start (i.e., multi-start from initial tours obtained by the nearest-neighbor TSP heuristic).

NN tours are suggested in [10] for obtaining initial tours for 2-opt descents; although Bentley [4] has since

shown that the greedy TSP tour is a slightly better starting point for a single descent, it may be less appropriate
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Equivalent # Descents Average % Above
# Descents used Random NN Tour Cost Held-Karp

in AMS strategy strategy (AMS) Lower Bound

1 1 1 8.5404 10.91
50 442 50 7.9835 3.68
100 1508 176 7.9266 2.94

150 > 4500 426 7.8967 2.55
200 > 5700 826 7.8806 2.34
400 > 7800 > 3000 7.8555 2.02

600 > 9100 > 4000 7.8367 1.78
1000 > 10000 > 4500 7.8275 1.66

Table 1: Experimental results for AMS executions on 50 random 100-city Euclidean TSP instances
from the unit square. Results show the number of descents needed for Random multi-start or
Nearest-Neighbor-based multi-start to achieve the same solution quality. Random multi-start was
run for 3,000 descents and Nearest-Neighbor multi-start for 2,000 descents on each of the 50 instances.
Entries with \>" are conservative estimates based on linear extrapolation. Average tour costs and
their relationship to the expected Held-Karp lower bound on TSP cost (provided by D. S. Johnson
[12]) are shown in order to facilitate comparison with other work, e.g., [10].
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Figure 6: Graphical comparison of AMS, Random multi-start, and Nearest-Neighbor multi-start
approaches averaged over 50 random 100-city Euclidean TSPs instances.

for multi-start because there is only one greedy tour of a given instance versus up to n di�erent NN tours. As

problem size and the CPU budgets D increase, we obtain signi�cant improvements over the current methods,

e.g., for 100-city TSP instances, our adaptive strategy achieves in only 200 descents what random multi-start

would require over 5,700 descents to achieve. A more detailed portrait of this data is given in Figure 6.

Table 2 shows the stability of our AMS method, where we de�ne stability to be the standard deviation
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Adaptive NN Random

mean std dev mean std dev mean std dev
D=1 7.713 0.171 8.015 0.265
D=100 7.412 0.030 7.492 0.020 7.597 0.011
D=200 7.393 0.020 7.456 0.019 7.552 0.009

Table 2: Stability comparison of di�erent multi-start strategies on a single random 100-city TSP
instance. Mean and standard deviation of solution cost are computed for 50 executions of each
strategy.

50-city instance 100 city instance
Starting Tours Random NN Adaptive Random NN Adaptive

Distance to Local Min 47.52 (1.32) 13.20 (1.66) 5.18 (1.93) 97.90 (1.34) 27.16 (3.92) 9.69 (5.25)
Ave Dist to Random Mins 47.58 (1.13) 22.99 (0.82) 13.51 (0.88) 98.08 (1.01) 39.01 (1.14) 31.27 (1.52)

Table 3: Mean (standard deviation) of bond distance between 50 starting tours and the corresponding
locally minimum tours found by Greedy Descent. Also given are the mean (standard deviation)
of the average bond distance between each starting tour and 100 \random" local minima. Sample
size is 50 for all data; single random Euclidean instances are used for both n = 50 and for n = 100.

of cost(t�). Measured over 50 separate executions on a single 100-city instance, the stability of AMS is very

good, with a standard deviation of only 0.030. Although other multi-start methods can have greater stability,

AMS maintains its superiority because of its low average solution cost. AMS is also \stably better" than the

other methods. For example, in Table 1 AMS with D=200 gave a superior solution to random multi-start in

all instances and to NN multi-start in 47 out of 50 instances.

Finally, Table 3 shows the strong relationship between our adaptive starting tours and the corre-

sponding local minima. For the three types of starting tours (Random, NN, Adaptive), the Table shows

average bond distance between the starting tour used by Greedy Descent and the locally minimum tour it

returns. The Table also compares these distances with the average bond distance between starting tours and

100 \random" local minima obtained by Greedy Descent from 100 di�erent random starting tours. We see

that the position of a random starting tour has little e�ect on the position of the locally minimum tour found

by Greedy Descent: in fact, this local minimum is no closer to the starting tour than a \random local

minimum". By contrast, the NN and adaptive local minima are not only much closer to their starting tours,

but are also signi�cantly closer than other \random" local minima. (The high standard deviation of bond

distance from the adaptive starting tour to the corresponding local minimumtour is due to our data collection

methodology: to obtain 50 distinct adaptive starting tours using the AMS heuristic with the usual R = D=2,

A = 10, etc. we must use D � 1000, and the quality of the adaptive initial tours increases signi�cantly over

the course of this process. We could also obtain the adaptive initial tours by executing AMS 50 separate

times with D = 20; this yields slightly higher means and lower standard deviations of 7.46 (1.766) for n = 50,

and 15.20 (3.339) for n = 100.)
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4 Conclusions

Multi-start greedy optimization has shown much promise in practical applications, but the traditional random

multi-start implementation su�ers from a \central-limit catastrophe" when problem size grows large. In this

paper we address this di�culty with an adaptive multi-start methodology that is based on new insights into

global structure of optimization cost surfaces.

For instances of the symmetric TSP and graph bisection, we study correlations between the cost of

a local minimum and its average distance to all other local minima (as well as its distance to the best-found

local minimum). Our analyses show evidence of a \big valley" governing local minima in the optimization

cost surface, and motivate the adaptive multi-start methodology. In other words, our evidence suggests a

globally convex [9] structure for the set of local minima (we may make an analogy to the structure of an

integer polytope, which \viewed from afar" may appear to have a single minimum point, but which up close

has many local minima). Our results may explain why simulated annealing, tabu search, iterated greed, and

other hill-climbing heuristics have been so successful in practice: very good solutions are located near other

good solutions.

Based on these insights, our Adaptive Multi-Start (AMS) heuristic uses best-known locally minimum

solutions to generate starting points for subsequent greedy descents. Experimental evidence for TSP instances

shows signi�cant improvement in run time and solution quality over previous multi-start methods (random-

and nearest-neighbor-based). Future work should apply our adaptive approach to other greedy methods (e.g.,

3-opt and Lin-Kernighan for TSP) and other combinatorial formulations (e.g., graph partitioning and VLSI

circuit placement). Our current study also motivates consideration of alternate neighborhood structures which

can induce a \big valley" over the solution space.

Appendix 1. Relation between d(t; t0) and b(t; t0)

Recall from Section 2.1 that d(t; t0) is the 2-opt distance and b(t; t0) is the bond distance between TSP tours.

Theorem 1. For any two tours t1 and t2 of a given TSP instance, b(t1;t2)
2 � d(t1; t2) � b(t1; t2), with the

lower bound being tight.

Proof: The lower bound d(t; t0) � b(t;t0)
2

follows easily by noting that a single 2-opt a�ects only two edges in

the tour, and can therefore increase the bond distance by at most two. This bound is tight, since a sequence

of j 2-opts from t (1 � j � bn2 c), each of which is applied to two edges remaining from t, will yield t0 with

d(t; t0) = j and b(t; t0) = 2j.

We depict tours as permutations< 1; : : : > with city 1 listed �rst, followed by its lower-index neighbor.

In proving the upper bound, we use a canonical t-subtour representation to express t0 in terms of t. A t-subtour

of t0 is a sequence of contiguous cities in t that are also contiguous in t0; we use capital letters to label the
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t-subtours, with these labels assigned in alphabetic order according to their positions in t. A t-subtour is

de�ned to be lower (higher) than another t-subtour if its label is closer to the beginning (end) of the alphabet

(e.g., B is lower than C). Because all tours are notated as permutations beginning with city 1, the canonical

t-subtour representation always begins with A. A t-subtour that appears in t0 in reverse order is denoted

by a bar above its label. For example, if t =< 1; 2; 3; 4;5; 6 > and t0 =< 1; 2; 4; 3; 5;6 >, then the t-subtour

representation of t0 is ABC, where A =< 1; 2 >, B =< 3; 4 >, and C =< 5; 6 >. Any 2-opt in t0 which

preserves t-subtours will reverse a sequence of contiguous t-subtours in t0, e.g., a 2-opt involving the two edges

separating AjB and CjA in t0 = ABC will yield the tour ACB =< 1; 2; 6; 5; 3;4>.

We will prove the following three facts (note that b(t; t0) = 1 is impossible):

� Fact 1: If b(t; t0) = 2, then d(t; t0) = 1.

� Fact 2: If the t-subtour representation of t0 contains a reversed t-subtour, then there is a 2-opt which

transforms t0 to t00 such that b(t00; t) < b(t0; t).

� Fact 3: If the t-subtour representation of t0 contains a reversed t-subtour, then there is 2-opt which

transforms t0 into t00 such that either (i) b(t00; t) � b(t0; t) � 1 and t00 contains a reversed t-subtour, or

(ii) b(t00; t) = b(t0; t)� 2 and t00 contains no reversed t-subtour.

The following recipe transforms t0 to t using at most b(t; t0) 2-opts; the recipe relies directly on Facts 1 and 3.

(Fact 2 is used in the proof of Fact 3.) Each 2-opt used in the recipe reduces the bond distance from t0 to t

by either 0, 1, or 2; and every move that leaves the bond distance unchanged can be paired with a move that

decreases the bond distance by 2. Thus, we are left only with proving Facts 1 to 3.

1. If t0 contains no reversed t-subtours
arbitrarily reverse a t-subtour, leaving the bond distance to t unchanged.

2. If t0 contains at least one reversed t-subtour, perform a 2-opt that either
reduces b(t; t0) by 1 or 2 and leaves a reversed t-subtour; or
reduces b(t; t0) by 2 and leaves no reversed t-subtours. [Fact 3]

3. If b(t; t0) = 2 perform a 2-opt which transforms t0 into t. [Fact 1]
4. Repeat Lines 1 - 3 until t0 = t.

Proof of Fact 1: If b(t; t0) = 2, then t0 can be represented using t-subtours as either AB or ABC. In

either case, a single 2-opt reversing B will transform t0 into t.

Proof of Fact 2: Let � represent the lowest t-subtour that is reversed in t0, i.e., it appears as �, and let

� be the (non-reversed) t-subtour immediately preceding � alphabetically. The basic idea is to reduce the

bond distance by bringing � and � next to each other using a single 2-opt. If � occurs before � in t0, then a

2-opt which places � directly after � will reduce the bond distance to t by at least one, i.e., t0 = A : : :�Z� : : :

becomes t00 = A : : :��Z : : :, where Z represents the sequence of t-subtours between � and � in t0. (For

example, if t0 = ACB, then � = B, � = A, and t00 = ABC.) If � occurs after � in t0, then the 2-opt which

places � directly after � will reduce the bond distance to t; i.e., A : : :�Z� : : : becomes A : : :��Z : : :.
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Proof of Fact 3: Suppose t0 contains a reversed t-subtour, and that (i) is not true, i.e., there is no 2-opt

which transforms t0 to t00, with t00 containing a reversed t-subtour and having b(t00; t) < b(t0; t). Let X be the

�rst maximal contiguous sequence of reversed t-subtours in t0. Suppose t0 contains a t-subtour outside X .

Then any 2-opt will leave a reversed subtour. Since by Fact 2, there must be some 2-opt move reducing the

bond distance to t, it must be that all reversed t-subtours in t0 are contained in X . As before, let � be the

lowest reversed t-subtour in t0, let � be the t-subtour preceding � alphabetically, and let Z be the sequence

of t-subtours between � and �, with � denoting another t-subtour which may be present in t0. The template

below shows that the following three conditions must hold when there is no 2-opt move which both reduces

the bond distance to t and leaves a reversed t-subtour: (a) � appears before �; (b) � is located at the end of

block X ; and (c) � is located immediately before block X . If we let  denote the highest reversed t-subtour in

t0 and let � denote the t-subtour after  alphabetically (we use � = A if  is the highest t-subtour), a similar

argument shows that  must be located at the beginning of X , and � must lie immediately after X . Hence,

the resulting tour structure allows a 2-opt from t0 = : : :�Z�� : : : to t00 = : : :��Z� : : :, which reduces the

bond distance to t by 2. Thus, if t0 contains a reversed t-subtour and (i) is false, then (ii) must be true.

Case If () holds Then 9 2-opt satisfying (i)

(a) (� not before � in t0) : : : �Z� : : : ) : : :��Z : : :

(b) (� not at end of X in t0) : : : �Z�� : : : ) : : :��Z� : : :

(c) (� not next to X in t0) : : : ��Z� : : : ) : : :��Z� : : :

Appendix 2. Distribution of Tours in the TSP

In [15], an analysis of the distribution of tours at each bond distance from a given tour is attributed to D.

Gross and M. Mezard. By symmetry, this distribution is the same as the distribution of b(t1; t2) between

random tours t1 and t2. The cited result is that the number of common edges between two random tours t1

and t2, i.e., n � b(t1; t2), approaches a Poisson distribution with mean = 2 as n !1. We have studied this

distribution somewhat more precisely. In what follows, we show that the number of edges in common has

mean = 2 � n
n�1 . We then describe an exact method for e�ciently calculating the b(t1; t2) distribution.

Fact 4: The expected number of edges in common between two random tours on n cities is 2 � n
n�1 .

Proof: Each edge between cities occurs in exactly (n � 2)! di�erent tours. Since each tour has n edges,

the expected number of overlaps between a given tour and all tours in the solution space S is equal to

n(n�2)!
jSj

= n(n�2)!
(n�1)!=2 = 2 � n

n�1 .

To compute the b(t1; t2) distribution, without loss of generality we compute the distribution of I(n; k),

where I(n; k) denotes the number of tours on n cities that have k edges in common with the identity tour

�(n) =< 1; 2; : : : ; n � 1; n >. Each I(n + 1; k) can be calculated exactly based on the observation that any
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tour t0 of n+ 1 cities is uniquely expressible as the insertion of city n+ 1 into a tour t of n cities.

The basic methodology is that of dynamic programming: given the values I(n; k) for 0 � k � n we

can compute all the values I(n + 1; k) for 0 � k � n+ 1. For a given n, the entire computation of all I(n; k)

values requires only �(n2) time and �(n) space. We use the term bond to denote any adjacency in an n-city

tour t that is also contained in �(n), i.e., t has k bonds if b(t; �(n)) = n�k, or equivalently if there are k edges

in common between t and �(n). We say that we break a bond in t when we insert city n+ 1 between the two

cities forming the bond in t. One readily sees that breaking a bond will usually decrement by one the number

of bonds remaining in t0; similarly, inserting n+ 1 next to city 1 or n will generally increment the number of

bonds by one, while other positions for city n+ 1 will generally leave the number of bonds unchanged. The

analysis considers eight cases for each k, 0 � k � n, corresponding to the possible presence or absence of each

of three \special" bonds (1; 2), (1; n) and (n� 1; n). The reader is referred to [6] for details.
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