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Abstract

We analyze relationships among local minima for the traveling salesman and graph bisection problems
under standard neighborhood structures. Our work reveals surprising correlations that suggest a globally

convex, or \big valley" structure in these optimization cost surfaces. In conjunction with combinatorial
results that sharpen previous analyses, our analysis directly motivates a new adaptive multi-start paradigm
for heuristic global optimization, wherein starting points for greedy descent are adaptively derived from the
best previously-found local minima. We test a simple instance of this method for the traveling salesman
problem and obtain very signi�cant speedups over previous multi-start implementations.

Keywords: Global optimization, heuristic search, stochastic hill-climbing, multi-start, traveling salesman
problem, graph bisection.

1 Introduction

A combinatorial problem has a �nite solution set S and a real-valued cost function f : S ! <. Global

optimization seeks a solution s� 2 S with f(s�) � f(s0) 8s0 2 S. Because many formulations are intractable,

heuristic methods are employed which can often be described by the following template:

Iterative Global Optimization

for (i = 0; ; i++)
Step 1: Given the current solution si, generate a new trial solution s

0

Step 2: Decide whether to set si+1 = si or si+1 = s
0

(When stopping condition is satis�ed, Return best solution found)

Typically, s0 is a slight perturbation of si, i.e., s0 2 N (si) where N (si) is the neighborhood, or set of all possible

\neighbor" solutions, of si. The function f then de�nes a cost surface over the neighborhood topology.

This template is quite general. For example, simulated annealing (Kirkpatrick et al. [14]) generates a

random s0 2 N (si) in Step 1, while Step 2 sets si+1 = s0 with probability one if f(s0) � f(si), and probability

exp((f(si) � f(s0))=Ti) if f(s0) > f(si), where Ti is the \temperature" parameter at the ith iteration. Other

heuristics are greedy, with si+1 = s0 in Step 2 only if f(s0) < f(si). Of speci�c interest to us is the non-

deterministic Greedy Descent procedure, which iteratively tests solutions s0 2 N (si) in random order until
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an improvement si+1 = s0 with f(si+1) < f(si) can be made; the procedure terminates if no improving

s0 2 N (si) exists. With greedy search, progress stops when the �rst local minimum is encountered. Simulated

annealing can escape from local minima and has gained wide popularity because it is guaranteed theoretically

to return a globally optimum solution (given in�nite time), and in practice yields better solutions than most

other methods. On the other hand, annealing usually requires large amounts of CPU time to be successful.

Because greed returns a good solution relatively quickly, one alternative to simulated annealing is to apply

greed repeatedly and return the best result. Several studies have shown \greedy multi-start" superior to

simulated annealing in terms of both solution quality and runtime. Johnson [10] describes extensive empirical

studies of the traveling salesman problem (TSP) and indicates that multiple runs of various greedy methods

can outperform simulated annealing. Recent results of Sorkin [23] show that a multi-start approach is superior

to standard simulated annealing on a class of fractal cost surfaces. Boese and Kahng [5] have computed optimal

annealing temperature schedules for small combinatorial problems; these schedules can resemble multi-start,

with alternating periods of greedy descent and randomization (corresponding to annealing at zero and in�nite

temperatures). Multi-start is also attractive for its trivial parallelizability on distributed architectures.

Nevertheless, the multi-start approach has its weaknesses. Recent analyses of optimization cost surfaces

show that as problems grow large, random local minima are almost surely of \average" quality, implying that

current randommulti-start heuristics which rely on random starting solutions are doomed to a \central limit

catastrophe" (e.g., [3] [13]). Moreover, other work on graph partitioning indicates that the number of greedy

descents needed to achieve stable, good solutions (where stability means a low standard deviation in solution

cost) can grow rapidly with problem size [11] [26].

2 Global Structure of Optimization Cost Surfaces

Our motivating hypothesis is that multi-start heuristics can remain successful for large problem instances only

by exploiting global structure in the cost surface. Several general structural models have been proposed; for

example, Sorkin [22] and Weinberger [27] have �tted fractal and AR(1) processes respectively to real-world

optimization cost surfaces. For our purposes, the leading study is due to Kirkpatrick and Toulouse [15],

who attempt to con�rm an ultrametric relationship between local minima for the traveling salesman problem

(TSP). They observe only inconclusive evidence for ultrametricity, but do �nd that the distances between

random pairs of local minima satisfy a normal distribution with surprisingly low average. (Related studies are

due to Mezard and Parisi [17] and Sourlas [24]; the latter fails to �nd evidence for ultrametricity in the TSP,

and goes on to propose a modi�ed simulated annealing heuristic which eliminates edges from consideration

if they appear infrequently in good solutions. Similar studies of ultrametricity have been made for other

combinatorial problems such as graph coloring [2] and one-dimensional circuit placement [21]. Both [24] and

[17] discuss correlations of TSP tour costs with distances between tours, much as we do in Section 2.1 below;
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however, they fail to make any of the enabling observations that we present here.)

We also study relationships among local minima, but in a di�erent way: we consider the set of local

minima from the perspective of the best local minimum. As we describe in the remainder of this section,

our results indicate that many problem spaces exhibit a \globally convex" [9] structure, suggesting improved

multi-start strategies which derive starting points from the best previously-found local minima. Section 3

will develop this new class of adaptive multi-start (AMS) methods. AMS bears some similarities to \genetic

local search" algorithms [1] [18] [19] [25], although the latter generally form new starting solutions from only

two \parents", rather than from many local minima. Moreover, AMS does not depend on any evolutionary

analogy for its motivation. (Note that M�uhlenbein [18] and Ackley [1] (p. 35) do mention multi-parent, voting

approaches for forming new solutions and that M�uhlenbein et al. [19] also analyze the distribution of local

minima in a manner similar to ours. Note also that while \Iterated greed" [10] and tabu search in some sense

use information about local minima, such methods do not follow a \multi-start" paradigm.)

2.1 The Symmetric Traveling Salesman Problem

The symmetric TSP is perhaps the most well-studied of all NP-hard combinatorial problems [16]. Given n

cities with symmetric intercity distances, the TSP seeks a minimum-cost tour, i.e., a (cyclic) permutation of

the cities which minimizes the sum of the n distances between adjacent cities in the tour. We use the Lin

2-opt neighborhood operator that is usual in studies of the TSP [16]: a 2-opt deletes two non-adjacent edges

of the current tour and then reconnects the two resulting paths into a new tour.

To study the structure of the TSP solution space, we require a measure of distance between two tours t1

and t2. A natural de�nition of distance is the minimum number of 2-opts needed to transform t1 into t2; we

call this the 2-opt distance, denoted d(t1; t2). Since no polynomial method for computing d(t1; t2) is known,

Kirkpatrick and Toulouse [15] measure the similarity between t1 and t2 according to the number of edges, or

\bonds", common to both tours. We will use the term bond distance, denoted b(t1; t2), to equal n minus the

number of edges that are present in both t1 and t2 (disregarding edge direction). No previous results directly

link bond distance to the 2-opt or any other TSP neighborhood structure. We have partially addressed this

gap through the following result (see Appendix 1 for proof), which supports the existing practice of measuring

bond distance even in a 2-opt neighborhood structure.

Theorem 1. For any two tours t1 and t2 of a given TSP instance, b(t1;t2)
2 � d(t1; t2) � b(t1; t2), with the

lower bound being tight.

Recall that our new approach to multi-start will be motivated by examination of the set of local minima

from the perspective of the best local minimum. For each of 2,500 random locally minimum tours for a

100-city random Euclidean TSP instance, Figure 1(a) plots the tour's cost versus its average bond distance

to all (2,499) other local minima. All TSP instances that we discuss are chosen randomly from a uniform
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distribution over the unit square. A \random local minimum" is found by starting at a random initial solution

and executing Greedy Descent. In the Figure we see a clear correlation: the best local minimum appears

to be \central" to all other local minima, and indeed a \big valley" structure [6] can be said to govern the set

of locally minimum tours.
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Figure 1: Analysis of 2,500 random local minima for a 100-city Euclidean TSP instance. Tour cost
(vertical axis) is plotted against (a) average distance from the other 2,499 local minima and (b)
distance from the local minimum with lowest cost. All 2,500 local minima were distinct.

Further insight is gained from Figure 1(b), which plots the costs of the same 2,500 local minima against

their distances from the best local minimum found. Note that all local minima are within bond distance

48. In Appendix 2, we show that the average distance between two random n-city tours is just under n� 2,

slightly sharpening an observation in [15]. Appendix 2 also describes the �rst e�cient enumeration of tours

at each bond distance; for a 100-city TSP instance, this calculation indicates that less than 1=1060 of the

solution space lies within a \ball" of radius = 48. Thus, the set of local minima not only has a \big valley"

structure, but is also con�ned to a tiny portion of the solution space S. Such intuitions are clearly suggestive

vis-a-vis multi-start strategies. Finally, Figure 2 gives analogous plots for a random 500-city Euclidean TSP

instance (for which a ball of radius = 225 corresponds to less than 1=10463 of the solution space). In [6], we

have obtained similar results for random symmetric TSPs (with edge weights uniform in [0; 1]), which are

studied in [15] and elsewhere.
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Figure 2: Analysis of 2,500 random local minima from a 500-city Euclidean TSP instance. All 2,500
local minima were distinct. In (b), we do not show the best local minimum, which is at distance
zero.

2.2 The Graph Bisection Problem

We have found that a similar structure governs the local minima for graph bisection instances. Given an

unweighted graph G = (V;E), the graph bisection problem seeks a partition of V into disjoint subsets U and

W , with jU j = jW j, such that number of edges (u;w) 2 E with u 2 U , w 2 W is minimized. We adopt

the standard 2-interchange neighborhood structure, where a 2-interchange swaps a pair of vertices u 2 U and

w 2 W . The distance between solutions s1 and s2 is the number of 2-interchanges required to transform s1

into s2, and can be at most jV j=4.

We �rst study a standard class of random graphs G(n; p), i.e., graphs having n vertices and each possible

edge present independently with probability p (see Bollobas [7]). Because graphs in G(n; p) have expected

minimum bisection cost within a constant factor of the expected random bisection cost [8], more \di�cult",

structured models have been proposed. In particular, we also study the class GBui(n; d; b) of random graphs

proposed by Bui et al. [8], which have n nodes, are d-regular, and have minimum bisection cost almost

certainly equal to b. Typical results are shown in Figures 3 and 4. The \big valley" correlation is again clearly

apparent, although local minima are not as strongly con�ned to a small region of the solution space. (Some

local minima have maximumdistance from the best local minimum. Note that the expected distance between

random bisections is easily computed to be 23:02 for n = 100 and 35:04 for n = 150.)
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