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Abstract—We provide an improved assessment of Google
Brain’s deep reinforcement learning approach to macro place-
ment [29] and its updated Circuit Training (CT) implemen-
tation in GitHub [53]. A stronger simulated annealing (SA)
baseline leverages the ‘“go-with-the-winners” metaheuristic [3]
and a multi-threading implementation. We develop and release
new public benchmarks in sub-10nm technology: LEF/DEF for
Google’s 7nm TSMC Ariane protobuf and scaled variants, as well
as testcases implemented in the open-source ASAP7 7nm research
enablement. We evaluate from-scratch training and fine-tuning
results for the latest “AlphaChip” release of Circuit Training,
alongside multiple alternative macro placers. We also study the
recently-published pre-training guidance in [53]. A commercial
place-and-route tool is used to provide ‘“true reward” post-route
power, performance and area metrics. All data, evaluation flows
and related scripts are publicly available in the MacroPlace-
ment GitHub repository [63]. Our study affords insights into
reproducibility and reporting in the research literature, and
points out still-missing confirmations (e.g., of CT’s scalability
and pre-training methodology) that remain open questions for
the research community.

I. INTRODUCTION

Macro placement is a fundamental problem in VLSI physical
design that involves determining the positions of large circuit
blocks (macros) on a chip layout canvas. These macros typi-
cally include memory arrays, processor cores, analog blocks,
and other pre-designed components that are significantly larger
than standard cells. The macro placement problem is NP-hard
and involves complex trade-offs between multiple objectives
including wirelength, area utilization, timing closure, power
consumption, and routing congestion. The quality of macro
placement directly impacts the final chip performance, manu-
facturability, and cost, making it one of the most critical steps
in modern chip design flows.

In June 2021, authors from the Google Brain and Chip
Implementation and Infrastructure (CI2) teams reported a
novel reinforcement learning (RL) approach for macro place-
ment [29] (Nature). The authors stated, “In under six hours,
our method automatically generates chip floorplans that are
superior or comparable to those produced by humans in all
key metrics, including power consumption, performance and
chip area.” Results were reported to be superior to those of
the RePlAce academic placer [5] and the simulated annealing
(SA) metaheuristic.

Nature authors promised data and code availability, e.g.,
“The code used to generate these data is available from the
corresponding authors upon reasonable request”’. The Circuit
Training (CT) repository [S3]], which “reproduces the method-
ology published in the Nature 2021 paper”, was made public

in January 2022. However, reproduction and evaluation of
Nature and CT has been hampered because neither the data
nor the code used in these works is, as of November 2025,
fully available. The irreproducibility of Nature claims has led
to controversy and slowed progress in the field.

This situation reflects a broader scientific concern with
reproducibility and integrity. When high-profile claims shape
research agendas and public perception, transparent and repli-
cable evaluation becomes essential. Recent discussions in
Nature (Jan. 2025) [33] and work in PNAS (Aug. 2025) [30]
emphasize this point. For macro placement specifically, broad
coverage in mainstream and trade press of RL-based ap-
proaches after Nature underscores the EDA community’s re-
sponsibility to deliver clear, technically rigorous, and repro-
ducible assessments of empirical merit and practical impact.

A 2022 “Stronger Baselines” (SB) study, performed at
Google [4], claimed that a properly-implemented simulated an-
nealing outperforms Nature. [4] used a Google-internal version
of CT with different benchmarks and evaluation metrics. Our
conference paper [6] presented efforts toward an open-source
implementation and assessment of Nature and CT. We made
the data, scripts and results public in the MacroPlacement
GitHub repository [63], with additional background, details,
FAQs, etc. given in updates [68]], an extended arXiv version
[7], and “Our Progress” [64] and other documentation in [63]].

In 2024, Nature authors published an addendum [14]] to
clarify methods and results of [29]. Importantly, updates to CT,
dubbed “AlphaChip”, were publicly released with pre-trained
model weights (CT-AC) [53]F_] Markov [27] published a peer-
reviewed meta-analysis of the Nature results, cross-checking
[4] and [6]]. Goldie et al., in the arXiv post [13l], criticized
[6]], raising issues such as: (i) absence of peer-review; (ii) lack
of RL pre-training; (iii) potential non-convergence of training
for some testcases; (iv) use of 45nm and 12nm technologies
versus sub-10nm (TSMC 7nm, corresponding to TPU v4) in
CT; and (v) insufficiency of compute resources used.

Against this backdrop, rather than proposing a new algo-
rithm, we carefully evaluate the extent to which the Nature
method improves upon prior approaches, using extensive
experimentation and a transparent methodology. In this work,
we re-execute and augment the studies reported in [6] to
thoroughly and conclusively address the criticism in [13].
Through this effort, we obtain a more rigorous assessment
of the CT approach, along with further insights into report-

'Below, we refer to training Circuit Training (commit hash: 4c6fd98)
from scratch as CT-Scratch. We denote fine-tuning of “AlphaChip” using the
checkpoint released in August 2024 (commit hash: 4c6fd98) as CT-AC.



ing and reproducibility in the research literature. Our main

contributions beyond [6] are as follows.

« Evaluation of updated CT. For all testcases, we train
the updated Circuit Training from scratch, and also fine-
tune AlphaChip from Google’s August 2024 pre-trained
checkpoint. Experimental observations, including resource
requirements, model quality, and convergence and variability
behavior, are reported in Sections [VI] and below.

« Improved SA. We strengthen the simulated annealing base-
line by incorporating multi-threading and a 1994 “go-with-
the-winners” [3|] metaheuristic, while also ensuring repro-
ducibility of executions (see Section [[V). The improved SA
achieves up to 26% better proxy cost within the same run-
time while using only a quarter of the resources, compared
to the SA implementation reported in [6]. The improved SA
maintains superior performance over recent CT-AC methods,
reaffirming the effectiveness of carefully optimized classical
heuristics for combinatorial optimizations in the context of
macro placement.

« Sub-10nm testcases. We strengthen sub-10nm experimental
enablement in two ways. (i) We convert Google’s public
TSMC 7nm Ariane testcase (CT-Ariane) from protobuf [53]
to LEF/DEF; we publish this and additional scaling studies
of macro placement optimizers, following the “quantified
scaling suboptimality” methodology of [17]] and evaluating
AlphaChip’s performance on “blocks with over 500 macros”
[14] in the MacroPlacement repository [63]]. (ii) We port
our testcases to a second 7nm enablement, the open-source
academic ASAP7 PDK from ASU/Arm [41]]. Studies with
these new sub-10nm enablements reaffirm findings of [6].

o Pre-training studies. We perform pre-training of CT fol-
lowing the instructions in the Circuit Training repository
[53]. Our studies (see Section highlight the need for
further confirmations of scalability, resource efficiency and
other claims in [29].

o Addressing resources and convergence. Our revised ex-
perimental protocol provides compute resources that are
sufficient for CT per [29] [53]]. Furthermore, in both training
from scratch (CT-Scratch) and fine-tuning (CT-AC) — for
all our testcases — we double iterations from 200 to 400
to provide sufficient opportunity for CT to converge, and
conduct multiple trials before declaring non-convergence.
Our updated and strengthened evaluation reconfirms conclu-

sions of [6]. Our contribution is evidence-based evaluation —

rigorous experiments, strengthened baselines, and reproducible
sub-10nm enablements — rather than a new placement algo-
rithm; this prioritizes clarity on empirical merit and prac-
tical impact. The simulated annealing and human baselines
continue to show superiority to the latest AlphaChip while
using substantially fewer resources. Further, scaled sub-10nm

Ariane variants expose additional weaknesses of Nature, e.g.,

regarding stability, scalability, and resource demands. The

MacroPlacement effort highlights the importance of “friction-

less reproducibility” [[11]], along with open source code and

data releases “upon which others then build” [31]], in the
academic EDA field and its nexus with AI/ML.

In the following, Section lists the macro placement
methods studied, Section describes efforts toward open-

source replication of CT and Section details our simu-
lated annealing approach. Section [V] presents our experimental

setup, and Sections and present results. Section [VIII
provides conclusions and directions for future research.

II. Macro PLACEMENT METHODS

VLSI physical design researchers and practitioners have stud-
ied macro placement for well over half a century, as reviewed
n [28] [36]. In this work, we study the following macro
placement methods.

« Circuit Training [53] uses the RL approach to sequentially
place macros. CT first divides the layout canvas into small
grid cells, then uses placement locations along with hy-
pergraph partitioning to group standard cells into standard-
cell clusters (soft macros), to set up the environment. The
RL agent then places macros one by one onto the centers
of grid cells; after all macros are placed, force-directed
placement is used to determine the locations of standard-cell
clusters and calculate the proxy cost. Proxy cost is comprised
of three metrics — wirelength, density, and congestion —
which are proxies for routed wirelength, design density, and
routing congestion. Lower values of these metrics imply
better design qualityE] Finally, the negative of the proxy cost
is provided as the reward feedback to the RL agent.

In this work, we use three variants of Google’s RL approach:
(1) training AlphaChip (i.e., the latest version of the renamed
framework in the Circuit Training repository [53]]) from
scratch (denoted as CT-Scratch); (ii) fine-tuning AlphaChip
using the pre-trained checkpoint released in August 2024
(denoted as CT-AC); and (iii) fine-tuning AlphaChip using
our own checkpoint pre-trained with specific testcase vari-
ants (denoted as CT-Ours). Note that our present work uses
Circuit Training [53] commit hash 4c6fd98 from Febru-
ary 2025, while our previous work [6] used commit hash
9lel4fd from August 2022.

RePlAce [5] [49] models the layout and netlist as an electro-
static system. Instances are modeled as electric charges, and
the density penalty as potential energy. Instances are spread
apart according to the gradient with respect to the density
penalty. Note that our present work uses RePlAce from
OpenROAD [2] [49], commit hash f02a3d4 from August
2024, which is the appropriate comparison; our previous
work [6] used a specific standalone RePlAce chosen to
match the “Stronger Baselines” study [50]], and Nature
used a standalone RePlAce from the OpenROAD project
repository [47] [62], which was deprecated in January 2021.
e CMP is a state-of-the-art commercial macro placer from
Cadence Design Systems, which performs concurrent macro
and standard-cell placement. CMP has been available in
Innovus place-and-route tool from 2019 versions onward.
CMP results also serve as input to the Cadence Genus
iSpatial physical synthesis tool. We include results of CMP
in our experimental study (see Section |[VI).
Human-Expert macro placements are contributed by indi-
viduals at IBM Research [57]], ETH Zurich and UCSD [59];

2[6] provides a detailed description of these proxy cost components. An
open-sourced implementation [[65] reproduces the black-box implementation
of the proxy cost in CT.



human-expert placements are one of the two baselines used

by Nature authors [29].

o Simulated Annealing (SA) is the second baseline used
by Nature authors, and is studied by both Nature and SB.
Annealing is applied to place macros in the same grid cells
as CT (see Section [IV).

All testcases and results from the above methods, along with
all scripts and codes where applicable, are publicly available
in the MacroPlacement GitHub repository [63] Based on
permission from Cadence Design Systems, we are able to
make public the Cadence runscripts used to obtain post-route
power, performance and area (PPA) metrics — i.e., final chip
metrics — from macro placement solutions. Licensed users of
Cadence Genus 21.1 and Cadence Innovus 21.1 are able to
fully replicate our results, through post-route PPA metricsﬂ

Last, we note that since 2021, many researchers from
the machine learning and EDA communities have proposed
various RL-based macro placement methods [9], [8], [L5],
(12, [16], [24], [23], [132], 1371, 1351, [39]. However, these
works only show results on (non-real, old-node) physical
design contest testcases (a practice that has drawn criticism
from Google authors [13]]), and do not report post-route
PPA metrics. In [25]], the authors combine Circuit Training
with simulated annealing to handle rectilinear layouts, and
further show the results on proprietary in-house testcases.
Our ongoing outreach to the authors in this recent literature
aims to draw more attention to MacroPlacement testcases,
runscripts and evaluation methods, to spur further assessment
and understanding of the RL approach.

III. RepPLICATION OF CIRCUIT TRAINING

In this section, we discuss clarifications and reproduction
in open source of CT. We first summarize key mismatches
between CT and Nature. We then discuss the computing
resources needed for studies of Circuit Training. As in [6],
we are thankful to Google engineers for answering questions
and for many discussions that helped our understanding of CT
starting in April 2022.

A. Discrepancies between CT and Nature

From its outset, the CT GitHub repo has been stated to

reproduce the methodology published in Nature [76]. Yet,

several discrepancies between CT and the claims of Nature

authors should be noted in the present context [6] [7]].

o Availability of code. Two key “blackbox” elements, i.e.,
force-directed placement and proxy cost calculation, are
neither clearly documented in Nature nor visible in CT.
Reverse-engineering and replication in open-sourced C++
are discussed in [6] and Section below.

o Need for pre-training. Nature [29] does not show benefits
from pre-training in its “Table 17 metrics. Rather, [29]]

3MacroPlacement [[64] also includes macro placement solutions from
AutoDMP [1]] and Hier-RTLMP [21]. In this work, we do not compare with
AutoDMP and Hier-RTLMP, as these were released after the Nature work.

“Note that the CT “grouping” step is implemented using the hMETIS
binary, which is nondeterministic. Therefore, clustered netlists used in [6]
are not reproducible, nor are studies of CT/AlphaChip that run the clustering
step on a gate-level netlist. We describe below how use of the hMETIS shared
library can avoid this nondeterminism (see Subsection .

only shows benefits (from the pre-trained model) in terms
of runtime and final proxy cost. Additionally, the January
2022 ARIANE.md in Circuit Training [54] states that “Our
results training from scratch are comparable or better than
the reported results in the paper (on page 22) which used
fine-tuning from a pre-trained model”.

o Gridding of macro placement locations. The method de-
scribed in Nature “place[s] the centre of macros and stan-
dard cell clusters onto the centre of the grid cells”. However,
CT does not require standard-cell clusters to be placed onto
centers of grid cells.

o Adjacency matrix construction. The Nature paper describes
generation of the adjacency matrix based on the register
distance between pairs of nodes. This is a well-known
technique (e.g., [34]) that is consistent with timing being
a key metric for placement quality. However, CT builds its
adjacency matrix based only on direct connections between
nodes (i.e., macros, IO ports and standard-cell clusters).
For completeness, we recognize that approximately 2.5 years

of effort and updates are embodied in the delta between

CT’s commit hash 91el4fd studied in [6] and commit hash

4c6fd98 that we study here [S3]. This delta has brought

numerous changes to CT7, spanning functionalities, default
settings, and library dependencies. For example, (i) CT has
now open-sourced pre-training and fine-tuning scripts, which
we use in our present study. (ii) CT has also enabled use of

DREAMPIace [26] to finalize soft macro placement. However,

since our goal is to evaluate the claims in the original Nature

paper — not newer variations that mix RL with other techniques
already known to work well for macro placement — we do not

use the DREAMPlace-enabled CT in our experiments. (iii)

Parameter changes between the two commit hashes include

reduction of gradient clipping from 1.0 to 0.1; reduction of the

penalty for infeasible placement from -1 to -4; and reduction
of #episodes per iteration from 1024 to 256 (which is stated
to help with convergence and the final return). (iv) The hidden

binary for plc_client has been updated from version 0.0.3

to 0.0.4, and our environment hence updates several library

dependencies: TF-Agent 0.14.0 to 0.19.0, TensorFlow 2.10.0

to 2.15.0, dm-reverb 0.9.0 to 0.14.0, and CUDA 11.8 to 12.2.

B. Computing resources for Circuit Training

A critical concern [13]] is whether compute resources are
sufficient to enable assessment of Circuit Training and re-
production of the Nature results. Such resources have three
main dimensions: training server; collect servers; and training
iterations (equivalently, steps or walltime). To assess adequacy
of resources, we rely on documentation from Google authors
in, e.g., [29] [38] [53].

Training server. We use eight NVIDIA-V100 GPUs to train
the model for global batch size = 1024. We believe this is
adequate, based on [38]] where the authors state, “We think the
8-GPU setup is able to produce better results primarily because
it uses a global batch size of 1024, which makes learning more
stable and reduces the noise of the policy gradient estimator.
Therefore, we recommend using the full batch size suggested
in our open-source framework in order to achieve optimal
results.” Circuit Training [53] itself shows the use of an 8-



GPU setup to reproduce their published Ariane results [54].
The global batch size = 1024 used in our runs is the same
global batch size that is used in the Nature paper [29]
Collect servers. In [38], Google authors write that “with
distributed collection, the user can run many (10s-1000s) Actor
workers with each collecting experience for a given policy,
speeding up the data collection process.” They further explain
that “as mentioned in Section 2.2, data collection and multi-
GPU training in our framework are independent processes
which can be optimized separately.”

Our previous work [6] used two collect servers each running
13 collect jobs, i.e., a total of 26 collect jobs were used for data
collection. In our present work, we increase this to five collect
servers each running at least 51 collect jobs, i.e., a total of
256 collect jobs are used for data collection. We believe this is
adequate, again based on [38]], which suggests that increasing
collect jobs beyond this point has diminishing returns. (The
Nature authors run 512 collect jobs for data collection, with
the number of collect servers used to run these 512 collect jobs
being unclear from the description provided. At the same time,
[38] indicates that a larger number of collect jobs only speeds
up training without affecting the outcome quality.) Since we
use fewer collect jobs, our runs are slower, but quality is
not compromised. We expect our runtimes to be higher than
what Nature reports, and we define experimental protocols
accordingly, as described next.

Training iterations. Published Google materials indicate a

sufficient number of training iterations to use for CT in our

experiments.

e Train steps per second is the indicator of the CT training
speed. Figure [Ifs left plot shows the CT training speed of
~0.9 steps/sec for Ariane [54] in our environment. The right
plot shows the CT training speed (~2.3 steps/sec) for CT-
Ariane from a TensorBoard (no longer available) in the CT
[54]] repo. From this, we infer that our runtime is expected to
be approximately 2.6 x longer in our environment, compared
to when the resources suggested in the CT repo are used.

o We observe that [54] gives 200 as a suggested number of
iterations. To ensure adequacy of iterations afforded to CT
in our experiments, we provide another 200 iterations, for
a total of 400. Moreover, for larger testcases (BlackParrot
Quad-Core and MemPoolGroup; see Table , we extend
further: in light of non-determinism in CT behavior, if
training fails to converge after 400 iterations, we execute up
to two additional 400-iteration runs before declaring non-
convergence (i.e., “Divergence” in Tables [[II] and [[V).

IV. A STRONGER ANNEALING BASELINE

Both Nature and SB use simulated annealing (SA) [22] as
a baseline for comparison. Table 2 of [4] gives a concise
comparison of hyperparameters used by the two works. As in
[6], we implement and run SA based on the description given

in the SB manuscript. Our implementation differs from that

5[29] refers to the use of 16 GPUs. However, based on the statements in
[38] and what Circuit Training describes for “reproduce results”, the final
proxy cost achieved by our environment should not differ materially from
the environment with 16 GPUs described in [29]. Indeed, using our setup
we achieve similar proxy cost for Google’s Ariane testcase (CT-Ariane) as
reported in CT (see Subsection [VI-A).

RunTime/train_steps_per_sec
tag: RunTime/train_steps_per_sec

train_steps_per_sec
tag: train_steps_per_sec

Fig. 1. Train steps per second plot for our CT run (left) and the CT run
available (right) in the CT repository for Ariane.

described in Nature in its use of move and shuffle in addition to
swap, shift and mirror actions. We also use two initial macro
placement schemes, i.e., “spiral macro placement” whereby
macros are sequentially placed around the boundary of the
chip canvas in a counterclockwise spiral manner, and “greedy
packer” whereby macros are packed in sequence from the
lower-left corner to the top-right corner of the chip canvas [4].
Force-directed (FD) placement is used to update the locations
of standard-cell clusters every {2n, 3n, 4n, 5n} macro actions,
where n is the number of hard macros; FD is not itself an
action. The SA cost function is the proxy cost, which consists
of wirelength, density and congestion.

As described in [6]], Google’s implementations of FD and
proxy cost calculation are not open-sourced, but are only avail-
able via the plc_ client in [S3]]. For speed and transparency, our
SA experiments use our own C++ reimplementations of FD
and proxy cost calculation; however, the Google plc client
is used for final FD soft macro placement and proxy cost
evaluation at the end of the SA run. (Section 3.2 in [6] provides
details of force-directed placement and proxy cost congestion.)
Our SA codes are open-sourced in MacroPlacement [[66].

A Go-With-the-Winners Enhancement. Similar to Nature
and SB, our previous work in [6] runs 320 SA workers in
parallel for 12.5 hours. Each worker, with its own hyperparam-
eter setting, operates independently and does not communicate
with other workers. Then, the macro placement solution with
minimum proxy cost (as calculated by our C++ code) is used
as the final SA solution. However, running 320 SA workers in
parallel requires multiple servers, which may be impractical
for users with limited computing resources.

To obtain a stronger SA baseline, we adopt the “go-with-the-
winners” (GWTW) scheme [3] in a multi-threading implemen-
tation. In essence, GWTW allows a set of solution threads to
proceed independently, but periodically executes a ‘sync-up’
whereby (i) the best threads are identified, (ii) their solutions
are cloned to fill up the entire set of threads, and (iii) the
threads then independently continue the solution process until
the next ‘sync-up’. This approach has seen previous adoption
in physical design, e.g., for gate sizing [18].

The detailed algorithm is shown in Algorithm [T} The
algorithm can be divided into following steps:

o Lines 1-10: We initialize SA workers in parallel, with each
using a unique random seed to shuffle same-size macros.
Placement is initialized via spiral initialization (resp. greedy
packing) for workers with odd (resp. even) IDs.

« Lines 14-17: Each SA worker is run for sync_ iter iterations
in parallel. sync_iter is set based on sync_ freq. We use



sync_ freq = 0.1, meaning there are 9 synchronizations
among the workers.

o Lines 18-21: The algorithm stops when Iter iterations
are performed; otherwise, syncWorkers selects the top
k workers based on proxy cost and replicates their macro
locations and orientations to the remaining workers evenly.

o Line 22: writes out the best macro placement solution in
terms of proxy cost for each worker.

Algorithm 1: Simulated Annealing

TABLE I
GooGLE’s TSMC 78M ARIANE TESTCASE (CT-ARIANE) AND ITS SCALED
VERSIONS. #GRPS INDICATES THE NUMBER OF STANDARD-CELL CLUSTERS.

TESTCASES FOR EVALUATION. #FFs AND #MACROS RESPECTIVELY REPRESENT
THE NUMBER OF FLIP-FLOPS AND MACROS IN BOTH NANGATE45 AND ASAP7.

Design #StdCells (K) | #Grps | #Macros | #Macrolype
CT-Ariane 83 799 133 1
CT-Ariane-X2 166 982 266 1
CT-Ariane-X4 332 1519 532 1
TABLE 11

Input: Random seeds: seed = 1,
Number of iterations: Iters,
N X #macro moves per iteration (N = 20),
Initial temperature: 7o = 0.005,
Minimum temperature: Tonin = 1 X 1078,

Cooling rate: o = exp ( %),

Number of workers: W = 80,

Replicated top k£ = 8 workers,

Synchronization frequency: sync_ freq = 0.1
Output: Macro placement solutions.

1 workers < create W workers;

2 for i < 0 to W — 1 in parallel do

workersli].seed < seed + ;

workers[i].N < N,

workers[i].T < To;

workersli].a + «;

if (¢ mod 2) = 0 then

workers[i].macro_ placement <—

“spiral macro placement”;

e N e W

9 else
10 |

workers[i].macro_ placement < “greedy packer”;

11 iter _count < 0;
12 sync__iter <— Iters X sync_freq;

13 while rrue do

14 end iter < min(Iters, iter count + sync_iter);
15 for i < 0 to W — 1 in parallel do
16 Each worker performs (end iter — iter_count) SA

iterations; applying N X #macro moves per
iteration and updating temperature;

17 iter _count <— end _ iter;

18 if iter _count = Iters then

19 | break;

20 candidate _solutions <— extractTopK(workers, k);

21 Evenly distribute these top-k solutions across all the
workers;

22 Write out the best solution of each worker.

As noted above, after placing soft macros (standard-cell
clusters) with GWTW SA, we use CT’s plc_ client to evaluate
the proxy cost of the best macro placement solutions for each
worker, and then return the best solution in terms of proxy
cost for P&R evaluation. In our runs, the probabilities for five
solution move operators (swap, shift, move, shuffle and flip)
are respectively set to 0.24, 0.24, 0.24, 0.24 and 0.04. The
number of iterations is set to ensure that overall runtime for
each testcase is less than 12 hours on our slowest CPU server[d]

Relative to the SA implementation in [6], our present SA im-
plementation achieves similar or better results while using only

SFor Ariane, BlackParrot, MemPoolGroup, Ariane-X2 and Ariane-X4, we
set the number of iterations to 18K, 9K, 4.5K, 9K and 4K, respectively. This
corresponds, e.g., to ~11 hours on an Intel Xeon Gold 6148 CPU, or ~3
hours on an AMD EPYC 9684X CPU.

Design #StdCells (K) | #FFs (K) | #Macros | #MacroType
Ariane 99 - 117 20 133 1
BlackParrot 686 - 835 214 220 6
MemPoolGroup | 2529 - 2729 361 324 4

one-fourth of the CPU resources: 80 threads instead of 320
threads, enabling execution on a single CPU server. Further,
to ensure exact reproducibility across different platforms, (i)
we use lookup tables for exponent computation and provide a
binarized version of the lookup table in our repository; and (ii)
we provide scripts to generate Docker and Singularity images
that reproduce the same environment. Our testing across a
range of Intel Xeon Gold and AMD EPYC CPUs confirms
exact matching of SA solutions obtained by all 80 workers
using the same Docker or Singularity image.

V. EXPERIMENTAL SETUP

We now describe our experimental setup. We first describe
testcases and design enablements. We then present the com-
mercial evaluation flow used to evaluate macro placement
solutions. Last, we present our settings for CT.

A. Testcases and enablements

To enable studies that are relevant to the sub-10nm regime
[14], we develop scaled versions of Google’s TSMC 7nm Ari-
ane testcase (CT-Ariane), and port other macro-heavy testcases
to the open 7nm enablement ASAP7 [41][] Details of testcases
and design enablements used in our studies are as follows.
Testcases. We convert the only publicly available Google
testcase, Ariane in TSMC 7nm (CT-Ariane), from protobuf
format (available in the CT repo [53]) to LEF/DEF format [10].
Scaled (x2 and x4) versions of CT-Ariane serve as additional
testcases, and are also used in pre-training and “quantified
suboptimality” analyses [17]]. Table [l provides details of scaled
versions of CT-Arianelf]

We also study three open-source testcases which are publicly
available in [70]: Ariane [40], BlackParrot (Quad-Core) [42]
and MemPoolGroup [46]. Table [II] provides testcase parame-
ters. #Macrolype gives the number of distinct macro sizes:
Ariane has all same-sized macros, while BlackParrot and
MemPoolGroup each contain macros of varying sizes. We use
the 133-macro Ariane variant to match the Ariane in Nature
and CT. Table [lI| also gives ranges for standard cell counts,
since #StdCells differs between NanGate45 and ASAP7.

TWe drop the ICCADO4 [51] testcases, which correspond to much older
technologies. Experimental results for these testcases remain available in [63].

8Note that the CT-Grouping flow uses hMETIS to generate standard-cell
clusters with a parameter npart, which is set to 500 plus the number of
predefined groups (macros and IO ports). Therefore, the number of standard-
cell clusters (#Grps) scales sublinearly in Table



Enablements. Our studies use two open-source enablements
that are public in MacroPlacement: NanGate45 [52] and
ASAP7 [41]. We use the bsg fakeram [43] generator to gen-
erate SRAMs for NanGate45. We also use FakeRAM2.0 [44]
to generate SRAM abstracts for ASAP7-based testcases. We
also use one closed-source enablement: GlobalFoundries 12LP
with SRAMs from a third-party IP provider.

B. Commercial evaluation flow

Figure [2| presents the commercial tool-based flow that we
use to create macro placement instances and evaluate macro
placement solutionsﬂ The flow has the following steps.

Step 1: We run logic synthesis using Cadence Genus 21.1 to
synthesize a gate-level netlist for a given testcase.

Step 2: We input the synthesized netlist to Cadence Innovus
21.1 and use CMP (Concurrent Macro Placer) to place macros.

Step 3: We input the floorplan .def with placed macros to the
Cadence Genus iSpatial flow and run physical-aware synthesis,
which also generates initial placement locations (i.e., (X,y)
coordinates) for all standard cells.

Step 4: We obtain macro placement solutions from seven
methods: CT-Scratch, CT-AC, CT-Ours, SA, RePlAce, CMP
and human-expert. The CMP macro placement is produced
in Step 2. Before running C7T or SA macro placement, we
convert the Verilog netlist to protocol buffer (protobuf) format
using code available in [63]], and use CT-Grouping to gener-
ate standard-cell clusters. The initial placement of standard
cells obtained in Step 3 is used to guide the CT-Grouping
process [[14]. For the CT and SA runs reported below, we run
the grouping flow provided in Google’s CT after generating
the protobuf netlist. RePlAce and human experts are not given
any initial placement information for standard cells or macros.

Step 5: For each macro placement solution, we input the
floorplan .def with macro placement locations to Innovus for
place and route (P&R). After reading the .def file into Innovus,
we set all standard cells to unplaced, and legalize macro
locations using the refine_macro__placement command@] We
then perform power delivery network (PDN) generation[r]
After PDN generation, we run placement, clock tree synthesis,
routing and post-route optimization (postRouteOpt).

Step 6: We extract the total routed wirelength (rWL), standard
cell area, total power, worst negative slack (WNS), total
negative slack (TNS) and DRC count from the post-routed
design. Table 1 of the Nature paper [29] presents similar
metrics to compare different macro placement solutions[]
Below, we refer to these as the (Nature) “Table 1 metrics”.

9We do not perform any benchmarking of the EDA tools used in this study.

1Macro placements produced by RePlAce, CT-Scratch, CT-AC, CT-Ours
and SA can have macros that are not placed on grids (cf. Subsection .

CT assumes that 18% of routing tracks are used by PDN [73]. We
implement our PDN scripts following the “18% rule” for all the enablements.
All of our PDN scripts are available at [74] in MacroPlacement.

12 According to Nature authors, “The final metrics in Table 1 are reported
after PlaceOpt, meaning that global routing has been performed by the EDA
tool”. In this paper, we report metrics after postRouteOpt, meaning that the
entire P&R flow has been performed. A number of results reported in [64]
include metrics after both PlaceOpt and postRouteOpt.
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Fig. 2. Evaluation flow for placements produced by different macro placers.

C. Settings for Circuit Training

When running Circuit Training, we follow the default setting
given in [33]], except that we use a density weight of 0.5
instead of 1.0, based on guidance from Google engineers [S6].
Training is conducted on a single server equipped with eight
NVIDIA V100 GPUs, paired with five collect servers, each
featuring a 96-thread CPU. Each training job deploys 256
collect jobs, as increasing beyond this threshold yields dimin-
ishing speedup benefits [29]. Unless otherwise mentioned, we
use 333 as the global seed. As detailed in Subsection [III-B]
we use 200 iterations [[77]] for training and 400 iterations for
fine-tuning across all testcases. An additional 200 iterations
are allocated (i.e., twice the suggested iterations in the CT
repo [34]) to ensure that CT has sufficient opportunity to
achieve its best results. Due to significant runtime and resource
usage, we cap the extension at 200 iterations. We then report
the best placement cost found across all iterations. For training
that diverges, we restart the run at least two more times to
confirm the divergence "]

VI. EXPERIMENTS AND RESULTS

In this section, we first evaluate the performance of CT and
other macro placers. We then present results of stability and
ablation studies. All scripts are public in [63].

A. Comparison of CT with other macro placers

Configuration of different macro placers. We generate
macro placement solutions using CT, CMP, SA and RePlAce.
We also include macro placement solutions generated by
human-experts. For CT, we provide three results: training
AlphaChip (i.e., the latest version of the renamed framework
in the Circuit Training repository [S3]) from scratch (denoted
as CT-Scratch); fine-tuning AlphaChip using the pre-trained
checkpoint released in August 2024 (denoted as CT-AC);
and fine-tuning AlphaChip using our own checkpoint pre-
trained with specific testcase variants (denoted as CT-Ours (see
Subsection for details). Due to the very high runtime
of pre-training, we run CT-Ours only for the Ariane designs.
We follow the default settings in [53]], except that we use
a density weight of 0.5 instead of 1.0, based on guidance
from Google engineers [56]]. For CMP, we use the default
tool settings. For SA, we use the configurations described in

130ne exception: training of CT-Ariane-X4 from scratch was abandoned
after loss and placement return stayed flat in three attempts with 200 iterations.



Section and the C++ implementation available in [63]. For

RePlAce, we use OpenROAD [49] and set the target density

as util + (1 — util) x 0.5, where wtil is the floorplan density

of the design. All experiments use Genus 21.1 for synthesis

(Fig. 2 Step 1) and Innovus 21.1 for P&R (Steps 5 and 6).

Evaluation of Nature Table 1 metrics for different macro

placers. We generate macro placement solutions for testcases

in open NanGate45 (NG45) and ASAP7 and commercial

GlobalFoundries 12nm (GF12) enablements. Tableﬂpresents

Nature Table 1 metrics obtained using the evaluation flow of

Figure 2] for different macro placers on our testcases. The Table

I metrics in GF12 are normalized to protect foundry IP: (i)

standard-cell area is normalized to core area; (ii) total power

and routed wirelength (rWL) are normalized to the CT-AC
result; and (iii) timing metrics (WNS, TNS) are normalized to
the target clock period (TCP) which we leave unspeciﬁed

In NG45, the default TCP values for Ariane, BlackParrot

Quad-Core (BlackParrot), and MemPoolGroup (MemPool) are

1.3ns, 1.3ns, and 4.0ns. In ASAP7, they are 0.9ns, 0.85ns, and

1.8ns. All testcases reported in Table |lII} have 68% floorplan
utilization, matching the Ariane design that is public in CT.
Table [l1I| also reports CT proxy cost for all macro placement
solutions, as evaluated by CT’s plc_client. To compute proxy
cost for CMP, RePlAce, SA and human-expert solutions, we
first update hard macro locations and orientations, then run FD
placement via the plc _ client to place all standard-cell clusters

(soft macros). We then compute the proxy cost. Figure [3|shows

Ariane-ASAP7 macro placements produced by the macro

placers we studyE] We observe the following.

o Comparison of routed wirelength (rWL): CMP consis-
tently dominates the other macro placers except on Ariane-
NG45, where CMP’s rWL is 2% worse than SA’s. For
BlackParrot-GF12, CMP has 34% less rWL than CT-AC.

o Comparison of proxy cost: SA dominates other macro
placers in 6 of 9 cases, CT-AC dominates other macro
placers in 2 of 9 cases, and CT-Scratch dominates other
macro placers in 1 of 9 cases.

o Comparison between CT-AC and CT-Ours: CT-AC con-
sistently outperforms CT-Ours in proxy cost for the Ariane
testcase in all three technologies (NG45, ASAP7, GF12).

« Comparison between CT-AC and SA: CT-AC yields better
TNS than SA for 6 of 9 cases, while SA gives better rWL
(7 of 9 cases) and proxy cost (6 of 9 cases) than CT-AC.

o Comparison between CT-AC and Human experts: For
large macro-heavy designs such as BlackParrot and Mem-
PoolGroup, human experts dominate C7-AC in terms of the
Nature Table 1 metrics of postRouteOpt “ground truth” [29]
outcomes (5 of 6 cases). For these large designs, even though
the proxy congestion cost for CT-AC is better than that of
the human expert, both macro placement solutions finish

14WNS and TNS timing metrics in Table suggest that TCP for
MemPoolGroup-GF12 could be increased; we report such improvements and
updates in [64].

ISAll postRouteOpt designs are DRC-clean, except that in our ASAP7 en-
ablement, we observe spacing violations across all macro placement solutions
around macro blockages for MemPool Group design. These violations arise
from a few macro pins being covered by the blockage layer, resulting in total
DRC counts below 200.

routing DRC-clean or with very similar DRCs in ASAP7,
as mentioned in Footnote

« Comparison of resource usage: Resource requirements
vary across the macro placers. Considering that 1 GPU is
equivalent to 10 CPUgs, i.e., following the analysis in [29],
resources (Fcpus x runtime) used for BlackParrot-NG45
by CT-Scratch, CT-AC, SA, RePlAce, and CMP are, respec-
tively, (8 x 10+ 256) x 56.76 = 19,068, (8 x 10 4 256) x
64.01 = 21,507, 80 x 11.2 = 896, 1 x 0.31 = 0.31, and
8 x0.33 = 2.64 CPU-hours Human expert solutions are
generated in under 12 hours for each design.

« SA runtime calibration: We report SA runtimes on an Intel
Xeon Gold 6148 CPU. However, we have observed that for
some testcases, runtime can be as low as one-third of this
reported runtime when using an AMD EPYC 7742 CPU.

o Comparison of SA with SA in [6]: Compared to the SA
in [6], our updated SA with GWTW achieves better proxy
cost in two of the three NG45 testcases (geometric-mean
improvement of 9% and up to 26%), better routed wirelength
and total power in all three cases, and better TNS in one of
the three cases. Note that SA in [6] finds better proxy values
than CT-AC for two of the three NG45 testcases.

Evaluation of different macro placers on CT-Ariane and
its scaled versions. Table presents results for Google’s
public TSMC 7nm Ariane testcase (CT-Ariane) and its scaled
(x2, x4) versions. Since the LEF/DEF files generated from
protobuf [53]], do not include the timing or layout information
required for a complete P&R flow, we only report post-detailed
placement half-perimeter wirelength (DP-HPWL) along with
proxy costF_TI We observe the following.

e Both CT-AC and CT-Scratch produce better proxy cost (in
all three components) than the reference (from Google’s
internal runs) provided in the CT repo [53][1—_51 This indicates
that we are training CT-AC and CT-Scratch correctly.

o SA dominates both CT-AC and CT-Scratch in terms of DP-
HPWL and proxy cost, while using only a fraction of the
runtime and compute resources.

« We follow the “quantified scaling suboptimality” method-
ology in [17] to perform scaling studies of different macro
placers. We define the scaling suboptimality o(k) as

DP-HPWL _k
- LN | 1
(k) = < DPHPWL 1) M

where DP-HPWL [k is the DP-HPWL of the scaled (kx)
version of the base design. A lower value of «(k) indicates
better scaling behavior. For CT-AC, SA, RePlAce and Human
solutions, ((2), «(4)) are (0.000, 0.037), (0.009, 0.064),
(0.005, -0.022) and (0.003, 0.028), respectively.

16Qr, in financial terms, running the CT model on Google Cloud [43]
with one 8 NVIDIA V100 GPU train server and five collect servers costs
approximately $(17.01+5 x 3.21) = $33.06/hr, while SA runs cost $3.21/hr.

"We run the place _design command in Innovus 21.1 to place standard
cells, then report “Total half perimeter of net bounding box” (DP-HPWL)
from the log of the ‘earlyGlobalRoute’ command.

18We use for comparison the best result (run_07) reported in [53].



TABLE III
PPA, PROXY COST, RUNTIME, AND RESOURCE DETAILS OF DIFFERENT MACRO PLACEMENT SOLUTIONS ON OUR MODERN BENCHMARKS, ACROSS THREE DIFFERENT
ENABLEMENTS. GF12-BASED RESULTS ARE NORMALIZED. | INDICATES THAT A TOTAL OF 400 ITERATIONS ARE USED FOR TRAINING. BEST RWL, TNS AND PROXY COST
VALUES FOR EACH DESIGN, ACROSS ALL MACRO PLACEMENT METHODS, ARE HIGHLIGHTED USING BLUE BOLD FONT. #G AND #C DENOTE THE NUMBER OF V100 GPUs
AND CPU THREADS, RESPECTIVELY.

Design Macro PostRouteOpt PPA (From Innovus) Proxy Cost Details Runtime (Hrs)
Tech Placer Area (um?) [ tWL (um) [ Power (mW) [ WNS (ps) [TNS (ns) | WL [ Den. [ Cong. [ Proxy (#G, #C)
CT-Scratchf 246303 4648156 832 -140 -119.1 [ 0.102 [ 0.518 | 0.973 | 0.848 | 36.26 (8, 576)
CT-ACT 248382 4995968 836 -88 -52.210.101 { 0.508 | 0.931 | 0.820 | 36.18 (8, 576)
Ariane CT-OursT 245703 4898125 831 -86 -57.8 10.108 | 0.538 | 0.966 | 0.860 | 38.79 (8, 576)
NG45 SA 247TTT 3976569 827 -126 -116.8[0.090 | 0.515] 0.907 | 0.801 | 11.52 (0, 80)
RePlAce 251117 5131963 842 -99 -94.0 [ 0.092 [ 0.998 | 1.748 | 1.465 0.04 (0, 1)
CMP 256230 [ 4057140 852 -154 -196.510.088 [ 0.909 | 1.455 | 1.270 0.05 (0, 8)
Human 249034 | 4681178 832 -88 -46.8[0.107 [ 0.738 | 1.376 | 1.164 NA
CT-Scratchf 1990312 | 47785761 4822 -205 -1203.4 [ 0.096 | 0.790 | 1.132 | 1.057 | 56.76 (8, 576)
CT-ACT 1944272 | 33165774 4569 -230 | -1486.5 | 0.066 | 0.755 | 1.053 | 0.970 | 64.01 (8, 576)
BlackParrot SA 1938779 | 28937792 4512 -230 | -3012.8 [0.054 | 0.711 | 0.936 | 0.878 | 11.20 (0, 80)
NG45 RePlAce 1930960 | 26854143 4485 -191 -868.0 [ 0.050 | 1.049 | 1.153 | I.151 031 (0, I)
CMP 1916166 | 23144317 4429 -144 -356.2 [ 0.050 | 0.882 | 1.066 | 1.024 0.33 (0, 8)
Human 1919928 | 25915520 4470 -97 -321.9 [ 0.054 | 1.158 | 1.260 | 1.263 NA
CT-Scratchf 4915555 | 119607588 2754 -163 -47.710.064 | 1.200 | 1.232 | 1.280 | 91.77 (8, 576)
MemPool CT-ACT 4871665 | 112486298 2683 -51 -32.1{0.062 | 1.006 | 1.086 | 1.108 | 91.39 (8, 576)
Group SA 4915598 | 115229509 2720 -32 -5.910.062 [ 1.131 | 1.095 | 1.175 | 11.90 (O, 80)
NG45 RePlAce 4930394 | 113315081 2688 -96 -7.310.056 | 1.621 | 1.652 | 1.693 0.88 (0, 1)
CMP 4837150 | 102907484 2587 -20 -1.0 [ 0.057 [ 1.495 | 1.554 | 1.581 1.97 (0, 8)
Human 4873872 | 107597894 2640 -49 -11.910.067 [ 1.586 | 1.710 | 1.715 NA
CT-Scratchf 16570 1026239 505 -142 -184.2 1 0.119 | 0.821 | 0.871 | 0.965 | 36.53 (8, 576)
CT-AC 16524 1014938 505 -108 -105.0 [ 0.122 | 0.804 | 0.850 | 0.950 | 36.35 (8, 576)
Ariane CT-OursT 16612 1033863 505 -144 -204.1 [ 0.125 [ 0.811 | 0.873 | 0.967 | 39.95 (8, 576)
ASAP7 SA 16467 886776 503 -124 -141.1]0.108 | 0.817 | 0.822 | 0.928 | 10.87 (0, 80)
RePlAce 16410 917539 504 -108 -124.0 [ 0.102 | 1.169 | 1.160 | 1.266 0.02 (0, I)
CMP 16350 843757 504 -124 -146.1[0.102 | 1.122 | 1.141 | 1.233 0.04 (0, 8)
Human 16613 1182350 508 -104 -81.8[0.131 [ 1.177] 1.484 | 1.461 NA
CT-Scratchf 126524 | 11380551 1609 <226 | -2043.7 | 0.089 | 0.908 | 1.002 | 1.044 | 55.87 (8, 576)
CT-ACT 124987 8880315 1569 -201 -1448.6 | 0.067 | 0.848 | 0.833 | 0.908 | 58.27 (8, 576)
BlackParrot SA 123141 7266869 1547 -120 -424.8 10.053 | 0.758 | 0.751 | 0.808 | 9.78 (0, 80)
ASAP7 RePlAce 123205 6718623 1540 -96 -590.0 [ 0.064 | 1.097 | 1.066 | 1.145 0.20 (0, I)
CMP 122603 6104230 1529 -111 -240.4 [ 0.058 | 1.058 | 0.936 | 1.055 0.65 (0, 8)
Human 122914 | 6521501 1536 -89 -356.6 [ 0.057 | 1.204 | 1.053 | 1.186 NA
CT-Scratchf Divergence
MemPool CT-ACT 339535 | 27208664 1402 -122 -629.0 [ 0.072 | 1.170 | 0.812 | 1.063 | 112.87 (8, 576)
Group SA 338798 | 26898162 1402 -169 -941.0[0.069 | 1.305 | 0.834 | 1.139 [ 10.19 (0, 80)
ASAP7 RePlAce 338781 | 26239567 1387 -152 -819.9 1 0.063 | 1.740 | 1.319 | 1.593 0.60 (0, 1)
CMP 338559 | 23259139 1343 -88 -224.910.060 | 1.756 | 1.207 | 1.541 1.09 (0, 8)
Human 338457 24573102 1354 -84 -193.4[0.073 | 1.758 | 1.326 | 1.614 NA
CT-Scratch 0.139 1.018 1.006 -0.128 -106.6 | 0.095 | 0.529 | 0.689 | 0.704 | 37.42 (8, 576)
CT-AC 0.139 1.000 1.000 -0.194 -201.30.092 | 0.528 | 0.678 | 0.695 | 37.22 (8, 576)
Ariane CT-OursT 0.139 1.093 1.016 -0.135 -120.9 [ 0.107 | 0.554 | 0.705 | 0.736 | 35.32 (8, 576)
GE12 SA 0.138 0.894 0.993 -0.159 -176.210.092 [ 0.522 ] 0.677 | 0.692 | 10.16 (0, 80)
RePlAce 0.140 1.016 1.018 -0.168 -197.40.093 | 0.550 | 0.673 | 0.704 0.03 (0, 1)
CMP 0.139 0.843 0.993 -0.159 -142.310.08210.748 | 0.831 | 0.871 0.04 (0, 8)
Human 0.137 1.037 0.983 -0.139 -106.6 [ 0.104 | 0.914 | 1.156 | 1.139 NA
CT-Scratchf 0.192 1.189 1.025 -0.099 -80.0 [ 0.088 | 0.861 | 0.842 | 0.940 | 48.10 (8, 576)
CT-ACT 0.191 1.000 1.000 -0.059 -42.710.087 | 0.754 | 0.752 | 0.825 | 51.10 (8, 576)
BlackParrot SA 0.190 0.867 0.978 -0.084 -45.510.058 | 0.610 | 0.640 | 0.683 | 8.90 (0, 80)
GF12 RePlAce 0.191 0.751 0.967 -0.098 -143.910.056 | 1.027 | 0.865 | 1.002 0.17 (0, I)
CMP 0.190 0.662 0.949 -0.087 -138.910.051|0.871 0.779 | 0.876 0.29 (0, 8)
Human 0.189 0.709 0.954 -0.049 -15.4 | 0.054 | 1.152 ] 0.949 | 1.105 NA
CT-Scratchf 0.413 1.105 1.074 -0.178 -2201.3 1 0.074 | 1.196 | 0.869 | 1.107 | 91.73 (8, 576)
MemPool CT-ACT 0.411 1.000 1.000 -0.171 -2061.6 | 0.069 | 0.960 | 0.788 | 0.943 | 89.83 (8, 576)
Group SA 0.408 1.021 0.994 -0.186| -1499.3]0.068]1.020] 0.756 | 0.956 | 10.68 (0, 80)
GF12 RePlAce 0.409 0.980 0.982 -0.209 | -1858.5[0.059 ] 1.629| 1.250 | 1.499 0.68 (0, 1)
CMP 0.405 0.857 0.918 -0.197 -1961.310.059 [ 1.526 [ 1.183 | 1.413 1.19 (0, 8)
Human 0.406 0.928 0.944 -0.149| -1766.5]0.069 | 1.523] 1.278 | 1.469 NA
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Fig. 3. Macro placement solutions for the Ariane-ASAP7 design, produced by different macro placers.
TABLE IV TABLE V

DP-HPWL AND PROXY COST, RUNTIME, AND RESOURCE DETAILS OF DIFFERENT
MACRO PLACEMENT SOLUTIONS ON CT-ARIANE AND ITS SCALED (X2, X4)
VERSIONS. T INDICATES A TOTAL OF 400 ITERATIONS USED FOR TRAINING. BEST

VARIATION IN POSTROUTEOPT PPA AND PROXY COST FOR CT-SCRATCH ON
ARIANE-ASAP7 Across 9 RUNS (3 GLOBAL SEEDS X 3 RUNS PER SEED).

DP-HPWL AND PROXY COST VALUES ARE HIGHLIGHTED USING BLUE BOLD FONT. Seed PostRouteOpt PPA (From Innovus) Proxy Cost Details
#G AND #C DENOTE THE NUMBER OF V100 GPUs aND CPU THREADS, Area rWL Power | WNS | TNS WL | Den. | Cone. | Prox
RESPECTIVELY. (wm? | (wm) [mW)]| (ps) | (ns) ) e Y
i i 16528 [ 1022767 | 505.6 | -128 [-133.6]0.123]0.802] 0.848 | 0.947
’ Design | Macro ‘DP-HPWH Proxy Cost Details [ Runtime (Hrs) 111 [T6419 | 991490 | 504.1 | 97 | -39.9 | 0.118 | 0.809 | 0.822 | 0.934
Placer (um) | WL [ Den. [Cong.| Proxy | (#G, #C) 16410 | 993215 | 504.6 | -122 [-123.8 | 0.121 | 0.800| 0.842 | 0.946
CTrepo S4I] _NA__ [0.098]0.511] 0.868 [0.787 NA 16446 [ 1014526 | 502.0 | -112 | -84.6 [0.120 ] 0.807 | 0.834 | 0.040
Crscratchl | D817 10099 93031 085 | 0772 | 3189 (8. 379 || 20> [ 16537 | 985154 | 505.7 | -142 | -163.4 | 0.119 [0.825 | 0.828 | 0045
CT-AC 938528 |0.092 | 0.509 | 0.829 | 0.761 | 55.16 (8, 576) : e : : :
CT-Ariane <1 §04208 T 0.081 0525 [0.814 [ 0.750 | 11.13 (0 80) 16482 | 1006802 | 505.3 | -131 |-127.4]0.119 | 0.805 | 0.843 | 0.943
RePlAce 952429 | 0.081[0.992 | 1.285 | 1.219 | 0.03 (0, D) 16528 [ 1013108 | 504.5 | -128 |-164.1]0.119]0.821 | 0.871 | 0.965
CMP 745370 ] 0.0750.743 ] 0.999 | 0.946 | 0.02 (0, 16) 333 [ 16630 | 1016008 | 506.4 | -162 | -228.0 | 0.126 | 0.801 | 0.855 | 0.953
Human 931105 [0.093]0.824 ] 1.241 | 1.126 NA 16602 | 1026772 | 506.1 | -198 |-355.0 | 0.125 | 0.829 | 0.851 | 0.964
CE'TS%‘TC‘“ fg;gggg 8(1)‘7’} gi;g égég 8?;2 3222 EZ g;g; [Mean | 16509 | 1007760 | 5049 | -136 [-160.0 | 0.121 | 0.812 | 0.844 | 0.949 |
CEAviane = 16730561 0.0671 04901 0834 1 079 T 6.03 (0.50) | STD | 76.8 | 14651.3 | 1.34 | 29.5 | 87.65 | 0.003]0.010| 0.015 [ 0.010 |
o RePlAce | 1913954 |0.078 | 0.754] 1.091 | 1.000 | 0.06 (0, D) . . . L
CMP 1510219 [0.074 [ 0620 | T.I34 | 0951 | 0.04 (0, 16) decrease for the diverged run. Given this behavior, if a CT run
Human 1868380 | 0.081[0.832 | 1.227 | T.111 NA
CT-Scratch Divergence ) _
CT-ACT | 3893091 ]0.0560.466 0.836 | 0.707 | 188.69 (8, 576) A e teps her-sec
CT-Ariane |_CT-OursT | 5525222 [0.075 | 0.473 | 0.922 | 0.772 | 174.07 (8, 576) o 0845
X4 SA 3423907 | 0.052 | 0.467 | 0.815 | 0.693 | 9.97 (0, 80) ' -
RePlAce | 3726672 |0.0550.730] 1.062 | 0.950 | 0.17 (0, D) o4
CMP 3049402 | 0.055]0.735| 1.139 | 0.992 | 0.03 (0, 16) 5 0825
Human 3827163 | 0.060 | 0.757 | 1.590 | 1.233 NA a5 0815
*We compute the proxy cost for CT-Ariane using the cost components 2 ij:
reported in the CT repo [54], with weights of 1.0 for wirelength and 0.5 for 8 e
34

both density and congestion.
B. Stability studies

Outcomes from CT training, SA execution, and hMETIS-
based grouping will all vary according to given input seedslﬂ
We have studied how this can affect final proxy cost and
postRouteOpt PPA metrics. In the following, we present sta-
bility issues observed in C7, then analyze seed effects in C7-
Scratch. We then examine seed effects on SA, and seed effects
on hMETIS-based grouping.

Stability issues of CT. We observe that on the same machine,
in the same environment, and for the same netlist and seed
(e.g., the default “333”), CT can converge in one run but
diverge in another. Further, all of our CT runs use machines
with identical configurations, and we also observe different
outcomes from otherwise identical runs that are executed on
different machines, regardless of netlist size. Figure [ plots
loss and train steps per second for the Ariane-GF12 design,
where two identically-configured runs result in convergence
(red) and divergence (blue). Although both runs reach a similar
speed of around 0.8 steps per second, the loss does not

9Perturbing the design (e.g., changing the SDC clock period by 1 ps
or the floorplan width by +1 site) produces different outputs from CMP
and RePlAce, thereby modifying the input design. We evaluate seed-induced
variation in SA and CT while holding the input design fixed. Because CMP
and RePlAce do not expose a seed and produce deterministic outputs for a
fixed input design, we do not perform variation studies for them.

0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k S50k 60k 70k

Fig. 4. Loss (left) and train steps per second (right) for converged (red) and
diverged (blue) CT runs on Ariane-GF12. Both runs use the same machine,
same environment, same netlist, and same (default) seed = 333.

diverges, more runs must be launched to confirm divergence.
Determining exact causes and resource-efficient mitigations of
this stochasticity is an open direction for future investigation.
Seed effects in CT. Despite non-determinism of CT training
and its outcomes (even with the same seed, environment, and
machine), we have sought to understand the variability of CT
outcomes, as follows. (i) We set three global seeds (111, 222,
and 333) for random weight initialization. (ii) We then perform
three independent runs of CT-Scratch for 400 iterations on the
Ariane-ASAP7 design per each seed, resulting in a total of
nine runs. Table [V] shows final proxy cost and postRouteOpt
PPA of these nine runs

Seed effects in SA. SA runs are deterministic: when run
with the same seed, on the same machine and in the same
environment, SA produces the exact same result. Table
gives details of proxy cost and postRouteOpt metrics for the
Ariane-ASAP7 design when SA is run with ten different seeds.
From Tables [V] and we observe the following.

20We note that Narure Extended Data Table 5 [29] and [47]] discuss seed
effects on variation, but not the stochasticity effects that we document here.



TABLE VI
VARIATION IN POSTROUTEOPT PPA AND PROXY COST FOR SA ON THE
ARIANE-ASAP7 DESIGN ACrROSS 10 SEEDS.

TABLE VII
VARIATION IN POSTROUTEOPT PPA AND PROXY COST FOR SA ON 5 DIFFERENT
CLUSTERED NETLISTS OF THE ARIANE-ASAP7 DEsIGN, WHEN HMETIS 1s RUN
WITH 5 DIFFERENT SEEDS IN THE CT GROUPING FLOW.

Seed PostRouteOpt PPA (From Innovus) Proxy Cost Details
Area | rWL | Power | WNS | TNS WL | Den. | Cone. | Pro GRP PostRouteOpt PPA (From Innovus) Proxy Cost Details
(p,mz) (um) | (mW) | (ps) | (ns) : g- Xy S Area rWL | Power | WNS | TNS
eed 2 WL | Den. | Cong. | Proxy
1 [ 16467 [ 886776 ] 503.5 | -124 [ -141.1]0.108 [ 0.817 ] 0.822 [ 0.928 (pm?) | (um) | mW) | ps) | (ns)
111 | 16503 | 902468 | 503.6 | -120 |-131.3]0.111[0.820| 0.845 | 0.943 111 | 16412 | 896408 | 502.6 | -97 | -74.8 | 0.104 [ 0.830 | 0.806 | 0.922
222 | 16380 | 901541 | 500.7 | -89 | -62.1 |0.108 | 0.817 | 0.802 | 0.917 222 | 16434 | 886847 | 504.3 | -104 | -72.7 | 0.107 | 0.815 | 0.817 | 0.923
333 | 16494 | 896866 | 504.7 | -102 | -83.7 |0.108 [ 0.803 | 0.848 | 0.934 333 | 16448 | 907544 | 503.6 | -95 | -91.8 [0.104 | 0.824 | 0.802 | 0.917
444 | 16401 | 900137 | 503.9 | -70 | -37.3 [0.108 [ 0.818 | 0.812 | 0.923 444 | 16431 | 915978 | 504.4 | -104 | -98.5 | 0.104 [ 0.843 ] 0.790 | 0.920
555 | 16461 | 894386 | 504.1 | -81 | -56.9 [0.1050.814 | 0.813 | 0.919 555 | 16433 | 904477 | 503.9 | -398 |-219.7 [ 0.109 | 0.850 | 0.806 | 0.937
666 | 16420 | 898643 | 504.3 | -109 | -95.7 | 0.107 | 0.802 | 0.808 | 0.912 Mean | 16432 | 902251 | 503.7 | -160 |-111.5 | 0.106 | 0.832 ] 0.804 | 0.924
777 | 16563 | 898613 | 504.3 | -118 | -113.1|0.107 | 0.815 | 0.835 | 0.933 STD | 12.8 | 111002 070 |1333 | 61.47 | 0.002]0.014 | 0.010 | 0.008
888 | 16486 | 898399 | 504.8 | -133 |-110.3 | 0.106 | 0.822 | 0.806 | 0.920
999 | 16522 [ 904774 | 502.6 | -121 |-105.3]0.107 [ 0.813 | 0.810 | 0.918 TABLE VIII
Mean | 16470 [ 898260 [ 503.7 | -105 | -93.7 [0.107 [ 0.815] 0.822 [ 0.926 EFFECT OF INITIAL PLACEMENT ON CT-SCRATCH OUTCOME FOR ARIANE-ASAP7.
STD | 564 [4984.1 1.21 206 | 33.47 [0.002]0.007] 0.017 | 0.010 Initial PostRouteOpt PPA (From Innovus) Proxy Cost Details
L. . Placement Area rWL Power | WNS | TNS
o For proxy cost, CT-Scratch and SA show very similar vari- wm?) | (um) | mW)| @s) | (ns) | W& | Den- ‘C"“g‘ Proxy
ation, which differs from the observation in [6]. Decreased Genus iSpatial [ 16570 [ 1026239 [ 505.4 [ -142 [-184.2]0.119]0.821] 0.871 [ 0.965
.. . Center 16444 | 984576 | 504.3 | -108 | -79.0 | 0.119 | 0.789 | 0.840 | 0.933
variation of proxy cost for CT-Scratch may be due in part Lower Lefl | 16466 | 951872 | 503.6 | -121 | -113.2| 0.110 | 0.795 | 0.834 | 0.925
to updates in the new version of CT and to our training for Upper Right | 16416 | 992912 | 504.7 | -105 | -83.0 [ 0.115]0.821 | 0.829 | 0.939
No Placement | 16399 | 975230 | 502.3 | -98 | -81.9 | 0.129 | 0.843 | 0.870 | 0.986

400 iterations, as opposed to 200 in [6]]. Increased variation
in SA proxy cost may be due to use of 80 SA workers, as
opposed to 320 workers in [6].

o For PPA (rWL, power and TNS), SA shows significantly
less variation than CT-Scratch. Furthermore, mean PPA and
proxy cost values from SA are better than those from CT-
Scratch, indicating that SA outperforms CT-Scratch.

Seed effects in CT-Grouping. The CT-Grouping flow in CT
uses the AMETIS binary, which does not support a seed input
and is non-deterministic. An example consequence is that
we cannot reproduce the generation of the clustered netlists
used in [6l]. However, the hMETIS shared library C API
does support specification of a seed: we have written a C++
wrapper (publicly available in [63]]) which accepts a seed
and ensures reproducibility of the grouping flow. To study
the effect of seeds in grouping, we generate five clustered
netlists for Ariane-ASAP7 using seeds (111,222,...,555);
these netlists respectively have 782, 791, 784, 785 and 786
standard-cell clusters. We then run SA and evaluate the macro
placement solutions using the evaluation flow described in
Subsection Table [VII] presents the postRouteOpt PPA and
proxy cost for these five runs. We see that variation in proxy
cost is similar to that seen in the seed study of SA (Table [VI),
while there is larger variation in postRouteOpt PPA metrics.

Further, we study the combined effects from seeding of
CT-Grouping and seeding of SA, by “crossing” the first six
rows of Table with the five rows of Table That is,
for each of the five clustered netlists generated using different
grouping seeds, we run six SA runs with different seeds, and
capture resulting postRouteOpt PPA and proxy costs. Mean
(standard deviation, STD) for power, WNS, TNS and proxy
cost are respectively 504.3 (0.69), -117 (59.1), -106.5 (52.27)
and 0.929 (0.009). For proxy cost, the combined effect of
SA and grouping is similar to the effect of only grouping or
only SA. For PPA, the combined effect shows less variation in
power, WNS and TNS compared to varying only the grouping
seed. Compared to varying only the SA seed, variation in TNS
and WNS increases while variation in power decreases.

C. Ablation studies

We present results and takeaways from ablation, stability and
related studies; further examples appear in [63]] [64].

Effect of initial placement on the CT outcome. CT’s use
of a physical synthesis tool (Synopsys DC-Topographical) and
the initial placement locations that it outputs with the gate-
level netlist is well-discussed in [47] [14]. To evaluate the
effect of initial placement, we generate four new clustered
netlists for the Ariane-ASAP7 testcase when all cells are
placed (i) at the lower left corner (0, 0), (ii) in the middle of
the canvas (111.204, 110.970), (iii) at the upper right corner
(222.408, 221.940), and (iv) with no placement informationE]
We run CT from scratch for 400 iterations to obtain a macro
placement for each clustered netlist, then run our evaluation
flow to capture postRouteOpt PPA. Table shows that
PPA numbers are very similar to those from the default run
— which uses placement information from Genus iSpatial.
This observation differs from that of [6], which found up to
10% improvement in rWL when a Genus iSpatial placement
solution was used. ([6] used the older version of CT, trained
for 200 iterations, and tested on the Ariane-NG45 design.)
Correlation of proxy cost to Nature Table 1 metrics. The
RL agent in Nature and CT is driven by proxy cost, while
the EDA tool’s post-P&R output is “ground truth” [29]. To
study correlation of proxy cost with Nature Table I metrics,
we collect 30 macro placements produced by CT-Scratch for
Ariane-ASAP7 having proxy cost less than 1.0, and generate
Table 1 metrics for each. Table shows the Kendall rank
correlation of proxy cost and Table I metrics. Values close to
+1 (resp. -1) indicate strong correlation (resp. anticorrelation),
while values close to 0 indicate lack of correlation. Similar to
[6]], in the regime of relatively low proxy cost (high solution
quality), we observe poor correlation of proxy cost and its
components with Table I metrics. Compared to the proxy cost
correlation study on Ariane-NG45 in [6] (Table 2), we see

21'To model the absence of placement information, we turn off the breakup
flag in the CT grouping flow.
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Fig. 5. The impact of pre-training versus training from scratch on performance (higher placement return on the y-axis is better) for (a) Ariane-ASAP7, (b)
Ariane-GF12 and (c) Ariane-NG45. Here, the placement return is defined as the negative of the proxy cost.

TABLE IX
KENDALL RANK CORRELATION COEFFICIENT BETWEEN PROXY COST AND NATURE
TaBLE I METRICS FOR ARIANE-ASAP7.

Proxy Cost
Element
Wirelength
Congestion
Density
Proxy

rWL

0.355
0.297
0.299
0.402

WNS

-0.002
0.116
-0.039
0.051

TNS

0.019
0.149
0.023
0.090

Power

0.222
0.251
0.299
0.320

Area

0.046
0.053
-0.055
0.058

TABLE X
MACROPLACEMENT SOLUTIONS GENERATED FOR ARIANE-ASAP7 using CMP 1N
INNovUus VERsIONS 19.1, 20.1, anp 21.1.

Macro PostRouteOpt PPA (From Innovus) Proxy Cost Details
Placer Area rWL | Power | WNS | TNS WL | Den. | Cone. | Prox
(um?) | (wm) | mW)| ps) | (ns) o Dl
CMP 19.1 | 16407 | 879781 | 504 | -131 [-128.6[0.104 | 1.256 | 1.308 | 1.386
CMP 20.1 | 16423 | 884527 | 504 | -155 [-196.8 [0.103 | 1.295 | 1.333 | 1.417
CMP 21.1 | 16350 | 843757 | 504 | -124 |-146.1{0.102|1.122 | 1.141 | 1.233

that the new CT-Scratch on Ariane-ASAP7 shows improved
correlation between proxy cost and rWL, but degraded corre-
lation between proxy cost and WNS. Overall, the proxy cost
function optimized in the Nature paper shows poor correlation
with final chip metrics; therefore, relying on this proxy as an
optimization target is not a sound physical design strategy.

Effect of different Innovus versions. We have studied whether
differences between CMP versions affect our conclusions. We
run CMP in Cadence Innovus versions 19.1, 20.1, and 21.1 to
obtain three macro placement solutions for the Ariane-ASAP7
design. We then run the evaluation flow using Innovus 21.1
(see Figure [2)). Table [X] gives postRouteOpt PPA metrics for
the three macro placement solutions, which are qualitatively
very similar. We observe that CMP 21.1 produces the best
rWL result, while CMP 19.1 produces the best TNS result.

VII. StubDIES OF PRE-TRAINING

In [6], we do not address pre-training because CT did not
provide pre-training scripts. [38] and [54] show that training
from scratch achieves results similar to pre-training. The
Nature paper does not study the impact of pre-training on
PPA metrics. However, several recent writings [14]] [13]] [48]]
highlight the lack of pre-training in [6]. Here, Google’s recent
open-sourcing of a recipe for pre-training [S3] as well as pre-
trained AlphaChip model weights (CT-AC) [S3]] enable us to
study pre-training in detail. We are guided by [38] [53]], where
Nature authors describe two ways to leverage pre-training so as
to improve fine-tuning results for a given target netlist. (i) The
first way is to use Google’s published AlphaChip checkpoint,
which is pre-trained on 20 diverse TPU blocks [53]; we refer
to this as CT-AC. (ii) The second way is to pre-train a model

using similar slices of the target block, following guidance
from [38]] [53]; we refer to this as CT-Ours.

In the following, the first subsection studies pre-training on
variants of target slices, and fine-tuning on the original target
slice. This aims to validate “pretraining on different slices of
the same block” from [38]]. The second subsection studies pre-
training on variants of slices of the target block itself, and
fine-tuning on the entire block, to help with convergence. This
aims to use the pre-trained model to improve CT scalability
on the previously diverged large testcase, CT-Ariane-X4. The
third subsection studies sensitivity to netlist diversity, as well
as inherent scalability, of pre-training. Here, our studies show
limitations of the pre-training recipe published in [S3].

A. Pre-training and fine-tuning on slices

We study pre-training with diverse variants, using the Ariane
testcase in three technologies: ASAP7, GF12 and NG45. The
variants are generated using a perturbation strategy adapted
from [38] (cf. Section 3.2.2 in [38]), where “we pre-trained a
model on the first 7 slices, and fine-tune on the 8" slice”. In
our experiment, all slices have the same internal and 1/O logic,
but differ in their I/O port locations. We apply three operators
to produce variant slices for a given target block: (i) X-flip
(flip along the x-axis); (i) Y-flip (flip along the y-axis); and
(iii) Shift (move each I/O clockwise on the canvas boundary,
by a distance equal to 3% of the length of the canvas side on
which the I/O is located).

Given a target netlist with placed I/O ports, we produce the
7 slices of the pre-training dataset using (i) Shift; (ii) X-flip;
(>iii) Y-flip; (iv) XY-flip (flip along both axes); (v) Shift-X-flip
(X-Flip followed by Shift); (vi) Shift-Y-flip (Y-Flip followed
by Shift); and (vii) Shift-XY-flip (XY-Flip followed by Shift).
Then, (viii) the 8" slice is the (unchanged) target itself.

For each of the Ariane-ASAP7, Ariane-GF12 and Ariane-
NG45 testcases (each having 133 macros), we pre-train a
model using the first 7 slices. As recommended by [38]] [S3],
we use 252 collect jobs (36 collect jobs for each slice) to
pre-train the model for 200 iterations. We then run three
experiments with the 8" slice (i.e., the original target without
any change): (i) training CT from scratch; (ii) fine-tuning the
CT-Ours model that we pre-trained on the first 7 slices; and
(iii) fine-tuning Google’s public CT-AC model.

Figure [3] illustrates the performance of these three models
— in terms of placement return versus training time — for each
testcase. The model pre-trained from scratch takes similar time
to converge to a high-quality solution as do the pre-trained
models. This is qualitatively different from Figure 8 in [38],
where “starting from scratch takes 5x longer to reach a high-



quality placement”. Also, the model fine-tuned using CT-Ours
converges to a worse placement compared to the model fine-
tuned using CT-AC; this aligns with the observation in [38].

B. Pre-training on slices and fine-tuning on the whole block

As shown in Table CT-Ariane-X4 diverges when training
from scratch. We now explore if pre-training on CT-Ariane and
CT-Ariane-X2 variants helps CT-Ariane-X4 converge during
fine-tuning. Because CT-Ariane-X4 can be constructed by
replicating CT-Ariane four times or CT-Ariane-X2 twice, we
treat CT-Ariane and CT-Ariane-X2 as slices of CT-Ariane-
X4, again following guidance from [38]. Then, we generate
six variant slices — CT-Ariane-X1-{Shift, X-flip, Y-flip}, CT-
Ariane-X2-{Shift, X-flip, Y-flip} — for pre-training. With these
six slices, we pre-train a model using 252 collect jobs (42
collect jobs per slice) for 200 iterations.

We run three experiments with the original CT-Ariane-X4:
(1) training CT from scratch; (ii) fine-tuning the CT-Ours that
we pre-trained on six CT-Ariane and CT-Ariane-X2 slices;
and (iii) fine-tuning Google’s public CT-AC model. Each fine-
tuning experiment is run for 400 iterations.

Figure [6] shows placement return versus training time for
our study. We observe the following. (i) Pre-training enables
AlphaChip to converge on a larger netlist for which from-
scratch training fails. (ii) The CT-AC model pre-trained on
20 diverse TPU blocks ultimately achieves a higher placement
return than the CT-Ours model pre-trained on other slices; this
is consistent with the observation in Subsection (iii)
The model pre-trained on other slices sees a sharp placement
return increase at 50 hours but improves by only 4% further
over the next 125 hours. (iv) For CT-Ariane-X4, the CT-AC
model pre-trained on diverse TPU blocks has a lower starting
point, unlike what we observe in Figure [3]
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Fig. 6. Placement returns achieved during training from scratch and during
fine-tuning from two pre-training strategies: one using data from slices (CT-
Ariane and CT-Ariane-X2), and the other using a diverse set of TPU blocks.
Although the model pre-trained on slices produces a sharp increase in return
at 50 hours, it does not outperform the model pre-trained on a diverse set of
TPU blocks. Here, the placement return is the negative of the proxy cost.
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C. Convergence of pre-training

We study how pre-training convergence relates to the diversity
of the pre-training dataset and to the size (i.e., #macros) of
the largest slice in the pre-training dataset. Our results show
limitations of the current pre-training recipe provided in [53].
Diversity. We use a larger testcase, MemPoolGroup, to study
the impact of pre-training dataset diversity. We generate seven
slices for MemPoolGroup as described in Subsection
From these seven slices, we create five pre-training datasets
that are respectively comprised of 7, 5, 5, 4 and 3 distinct

slices. These pre-training datasets are summarized as Set IDs
1-5 in Table For each pre-training dataset, we pre-train a
model with at least 252 collect jobs (distributed across slices)
for 50 iterations. The rightmost column of Table [XI| indicates
that higher diversity leads to divergence
Scalability. To investigate the effect of the number of macros,
we use the unperturbed netlists of CT-Ariane, CT-Ariane-
X2, and CT-Ariane-X4 as individual pre-training sets, each
containing a single netlist. We again use 252 collect jobs, and
all jobs collect samples on the same unperturbed netlist. The
last three rows of Table [XI| show that pre-training on smaller
netlists (CT-Ariane and CT-Ariane-X2) converges, while pre-
training on CT-Ariane-X4 diverges.

Our diversity and scalability studies of pre-training motivate

several open questions for future investigation, e.g.:

« How much additional computational resource, and/or addi-
tional iterations, are needed to ensure convergence of pre-
training with increased diversity of the pre-training dataset?

« When generating slices [38], by how much should each
perturbation differ from the original (target) netlist? (Can
too-small or too-large perturbations harm convergence?)

TABLE XI

CONVERGENCE OF PRE-TRAINING ACCORDING TO PRE-TRAINING SET DIVERSITY
AND NUMBER OF MACROS.

Design ?g Pre-Training Dataset #1\1\/?2 ?me #gggzu Converge?
1 | Shift, {X,Y,XY}-flip, Shift-{X,Y.XY}-flip| 324 252 No
MemPool 2 Shift, XY-flip, Shift-{X,Y,XY}-flip 324 255 No
Group 3 Shift, {X,Y}-flip, Shift-{X,Y}-flip 324 255 No
NG45 4 Shift, {X,Y}-flip, Shift-XY-flip 324 256 Yes
5 Shift, {X,Y}-flip 324 252 Yes
CT-Ariane 6 Original (no change) 133 252 Yes
CT-Ariane-X2 | 7 Original (no change) 266 252 Yes
CT-Ariane-X4 | 8 Original (no change) 532 252 No

VIII. CoNCLUSIONS

Google’s Nature paper [29], and the subsequent GitHub re-
leases of Circuit Training and its “AlphaChip” update [53],
have drawn broad attention throughout the EDA and IC design
communities. To the best of our knowledge, no successful
reproduction by others of claims in [29]] has been published
in conferences or journals as of November 2025. Meanwhile,
Nature authors have made updates to CT during the 2.5 years
between the commits studied in [6] and in this work; notably,
these include much-welcomed pre-training recipes and the pre-
trained AlphaChip model weights. This has motivated our
continued efforts toward open, transparent implementation and
a more rigorous assessment of Nature and CT.

In this work, we train Google’s AlphaChip from scratch and
fine-tune AlphaChip (from the pre-trained checkpoint released
in August 2024), for all our testcases. We strengthen the
simulated annealing baseline by incorporating multi-threading
and a 1994 “go-with-the-winners” metaheuristic. Importantly,
we add sub-10nm experimental enablement: (i) CT-Ariane
translated from Google’s protobuf, along with scaled versions;
and (ii) porting of our testcases to the open-source academic
ASAP7 PDK. We also perform pre-training of CT following
instructions in the CT repo [53] and guided by [38]].

Our updated evaluation reconfirms conclusions of [6]]. SA
and human baselines remain superior to the latest Alpha-

221n the same pre-training study performed with MemPoolGroup-GF12, all
five pre-training jobs diverge.



Chip, with statistically significant differences in proxy cost
and postRouteOpt PPA metrics, using substantially fewer
resources. Moreover, studies with scaled sub-10nm Ariane
variants reveal further weaknesses of [29] — in stability,
stochasticity, scalability, and compute and runtime demands.
[14] notes that “In any case, AlphaChip has been used in
production on blocks with over 500 macros”. At the same
time, our experimental results for CT-Ariane-X4 (532 macros,
TSMC 7nm) indicate that SA achieves better results than
AlphaChip in both post-detailed placement HPWL and proxy
cost, using a fraction of runtime and computing resources.

We draw conclusions from data in experiments performed
since the Nature publication. (i) As baselines should use best
available prior algorithms, using weak or outdated baselines
may lead to misleading conclusions. Careful implementation
of strong baselines is crucial for reliable assessments. (ii) It
remains an open research question whether classical meta-
heuristic methods will continue to stay ahead of data-hungry
AI/ML methods such as RL, in large-scale discrete optimiza-
tions like macro placement, where “ground truth” is post-P&R
PPA [29]. Notably, our data show that the proxy cost optimized
in CT correlates weakly with final post-route PPA metrics
(Table [[X)), underscoring a fundamental misalignment between
the optimization target used in Nature [29] and ultimate design
objectives. (iii) There is no substitute for open access to
data and code. Reproducibility requires both well-documented
methodologies and the exact code implementation. (iv) Ideally,
a physical design tool should be deterministic, i.e., producing
the same result given the same machine and parameter settings.
If nondeterminism exists, variations in results must be clearly
acknowledged and analyzed. And (v) reproducibility is a cor-
nerstone of scientific research. When proposing a new method-
ology, authors should strive to facilitate replication through
comprehensive documentation, results on public benchmarks,
and open-source code implementation.

The difficulty of reproducing the methods and results of
[29], and the effort spent on MacroPlacement, highlight the
importance of “frictionless reproducibility” [11], along with
open source code and data releases “upon which others then
build” [31], in the academic EDA field and its nexus with
AI/ML. Policy changes of EDA vendors [20] since late 2022
are a laudable step forward; they enable us to include Tcl
scripts for commercial synthesis, place and route flows in the
MacroPlacement GitHub. We are also encouraged by recent
research-community interactions sparked by, e.g., our scaled
CT-Ariane testcases and open-sourced experimental enable-
ment. As we wrote in [[6]: contributions of benchmarks, design
enablements, implementation flows and additional studies to
the MacroPlacement effort are warmly welcomed.
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