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DG-RePlAce: A Dataflow-Driven GPU-Accelerated
Analytical Global Placement Framework for
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Abstract—Global placement (GP) is a fundamental step in
VLSI physical design. The wide use of 2-D processing ele-
ment (PE) arrays in machine learning accelerators poses new
challenges of scalability and quality of results (QoR) for state-
of-the-art academic global placers. In this work, we develop
DG-RePlAce, a new and fast GPU-accelerated GP framework
built on top of the OpenROAD infrastructure , which exploits the
inherent dataflow and datapath structures of machine learning
accelerators. Experimental results with a variety of machine
learning accelerators using a commercial 12-nm enablement
show that, compared with RePlAce (DREAMPlace), our approach
achieves an average reduction in routed wirelength by 10% (7%)
and total negative slack (TNS) by 31% (34%), with faster GP and
on-par total runtimes relative to DREAMPlace. Empirical studies
on the TILOS MacroPlacement Benchmarks further demonstrate
that post-route improvements over RePlAce and DREAMPlace
may reach beyond the motivating application to machine learning
accelerators.

Index Terms—Dataflow, GPU acceleration, physical design
(EDA), VLSI placement.

I. INTRODUCTION

GLOBAL placement is a fundamental step in VLSI
physical design that determines the locations of standard

cells and macros in a layout. The backend design closure flow
requires a fast placement engine for rapid design prototyping,
feeding back to synthesis, and guiding optimization. However,
emerging machine learning accelerators have introduced new
challenges for global placement (GP). On the one hand,
machine learning accelerators with millions of standard cells
and macros raise runtime concerns for the design closure
process. On the other hand, machine learning accelerators
featuring 2-D processing element (PE) arrays, such as sys-
tolic arrays [26], have gained prominence because of their
efficiency in convolutional neural network computations [9].
The dataflow and datapath architectures of modern machine
learning accelerators exhibit substantial differences compared
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to those of traditional datapath designs, requiring dedicated
treatment during GP to achieve decent quality of results (QoR).

To address aspects of the aforementioned challenges, several
global placers have been proposed over the past decades.
To improve runtime, researchers have focused on paralleliz-
ing GP algorithms to leverage the computational substrates
provided by multicore CPUs and GPUs. [8] introduces a
multithreaded shared-memory implementation of RePlAce [3]
using off-the-shelf multicore CPU hardware. Cong and Zou
[7] and Lin and Wong [15] proposed GPU-accelerated
analytical placers by parallelizing the computation of the
logarithm-sum-exponential (LSE) wirelength function as well
as the density function. Recently, DREAMPlace [16], [20] and
Xplace [23] have implemented the approach of RePlAce on
GPU by casting the placement problem as a neural network
training problem; these works demonstrate the superiority
of GPU-accelerated global placers. While DREAMPlace has
already achieved significant runtime improvement relative to
RePlAce, our aim is to push these boundaries even further
by leveraging optimized data structures and a new parallel
wirelength gradient computation algorithm.

Netlist and register clustering are widely used in placement
to achieve better QoR. Lu et al. [17], [22] used clustering
information to induce soft placement constraints for commer-
cial placers. Chang et al. [4] proposed a register clustering
approach to balance clock power reduction and timing degra-
dation. Liu et al. [21] adopted c-spectral clustering to reduce
the problem size and ensure that standard-cell clusters and
macros are of comparable size. Kahng et al. [12] proposed a
power, performance and area (PPA)-aware clustering approach
that takes into account timing, power and logical hierarchy dur-
ing netlist clustering, effectively accelerating GP runtime and
improving post-route QoR. Other pioneering works adopt the
clustering idea to exploit the dataflow and datapath structures
during macro placement and GP. Kahng et al. [10] and Vidal-
Obiols et al. [27] exploited RTL information and dataflow to
guide macro placement. Lin et al. [19] integrated the dataflow
information into the mixed analytical GP framework through
virtual objects. Furthermore, Fang et al. [6] introduced the
first GP framework that exploits the datapath regularity of
2-D PE arrays. In our present work, we propose a new,
fast GPU-accelerated GP framework, exploiting both dataflow
information and datapath regularity. Our approach ultimately
guides GP toward better QoR. The main contributions of this
article are as follows.
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1) We propose DG-RePlAce, a new and fast global
placer that leverages the intrinsic dataflow and datapath
structures of machine learning accelerators, to achieve
high-quality GP.

2) DG-RePlAce is built on top of the OpenROAD
infrastructure with a permissive open-source license,
enabling other researchers to readily adapt it for other
enhancements.1

3) We propose efficient data structures and algorithms
to further speed up the GP. Experimental results on
a variety of machine learning accelerators show that,
our approach is, respectively, on average 22.49X and
1.75X faster than RePlAce and DREAMPlace in terms
of GP runtime. Overall turnaround time (TAT) is on par
with that of DREAMPlace, despite (one-time) file IO
runtime overheads that are due to OpenDB/OpenROAD
integration.

4) Experimental results on a variety of machine learn-
ing accelerators also show that in comparison with
RePlAce and DREAMPlace, our approach achieves an
average reduction of routed wirelength by 10% and 7%,
and of total negative slack (TNS) by 31% and 34%,
respectively.

5) Experimental results on the two largest TILOS
MacroPlacement Benchmarks [32] testcases show
that compared with RePlAce and DREAMPlace,
DG-RePlAce achieves much better-timing metrics
(worst-negative slack (WNS) and TNS) measured post-
route optimization. This suggests that the proposed
dataflow-driven methodology is not limited to machine
learning accelerators.

The remaining sections are organized as follows. Section II
introduces the terminology and background. Section III dis-
cusses our approach. Section IV shows experimental results,
and Section V concludes this article and outlines future
research directions.

II. PRELIMINARIES

In this section, we begin by discussing the fundamentals
of the systolic array structure in Section II-A. Following this,
we delve into the electrostatics-based placement formulation,
which is incorporated into DG-RePlAce, in Section II-B. Finally,
we examine previous works on dataflow-driven placement in
Section II-C. Table I summarizes important terms and their
meanings; for clarity, we give 1-D (x component) notation.

A. Systolic Array Structure

A systolic array [5] is a 2-D array of M × N PEs,
which performs massively parallel convolution and matrix
multiplication operations. A PE is often composed of a
multiply-accumulate (MAC) unit and registers, and PEs that
are aligned in the same row collectively form a processing unit
(PU). Fig. 1 shows an example execution flow of a systolic
array-based machine learning accelerator. Here, the input data
horizontally propagate through the PEs, are multiplied by
the weights in each PE, and then are accumulated vertically

1The source code is available in the DG-RePlAce GitHub repository [40].

TABLE I
TERMINOLOGY AND NOTATION

Fig. 1. Illustrative execution flow of a systolic array-based machine learning
accelerator (figure reproduced from [5]).

along the columns of the systolic array. This structure restricts
data transfers (multiple bitwidth) to neighboring PEs, thus
achieving better performance and efficiency.

B. Electrostatics-Based Placement

State-of-the-art academic global placers, such as
RePlAce [3] and DREAMPlace [16], [20], usually adopt the
electrostatics-based placement approach [14]. Let (Xv, Yv)

T

denote the vectors of x-y coordinates of movable instances.
The electrostatics-based placers formulate the GP problem as
follows:

min
Xv,Yv

∑

e∈E

WL(e;Xv, Yv)+ λ× D(Xv, Yv) (1)

where WL(·; ·) is the wirelength cost function, D(·) is the
instance density cost function, and λ is the weighting factor.
In this work, we use the weighted-average (WA) wirelength as
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the wirelength cost function, where the x-component of WA
for net e is given by

WLe =
∑

i∈e xi · exp
(

xi
γ

)

∑
i∈e exp

(
xi
γ

) −
∑

i∈e xi · exp
(
− xi

γ

)

∑
i∈e exp

(
− xi

γ

) (2)

where γ is a parameter that controls the smoothness and
accuracy of the approximation to the half-perimeter wirelength
(HPWL). With the notations in Table I, the gradient of WA
wirelength to a pin location xi is given as follows:

∂WLe

∂xi
=

(
1+ xi

γ

)
b+e − 1

γ
c+e

(
b+e

)2
· a+i −

(
1− xi

γ

)
b−e + 1

γ
c−e

(
b−e

)2
· a−i .(3)

C. Dataflow-Driven Placement

To obtain high-quality macro placement, human design-
ers usually rely on their understanding of the dataflow of
a design to determine the relative locations of macros.
However, this manual process is very time-consuming, often
taking several days to weeks to complete. To automate this
process, Vidal-Obiols et al. [27] and Hier-RTLMP [11] intro-
duced dataflow-driven multilevel macro placement approaches.
However, both approaches apply the Simulated Annealing [13]
algorithm to determine the locations of macros, resulting
in poor runtime scalability [1]. Lin et al. [18] presented
an analytical-based placement algorithm to handle dataflow
constraints in mixed-size circuits. Their approach initially
assigns larger weights to nets connecting to datapath-oriented
objects, and then gradually shrinks the weights according to
the status of placement utilization.2 However, their method
requires dataflow constraints from designers and cannot handle
the unique datapath regularity in machine learning accelerators
(see Section III-C). In this work, we incorporate the physical
hierarchy extraction approach in Hier-RTLMP [11] into the
GP framework to capture the dataflow information during GP.
Besides, we pay special attention to the datapath regularity in
machine learning accelerators during placement.

III. OUR APPROACH

The architecture of our DG-RePlAce framework is shown
in Fig. 2. The input is a synthesized hierarchical gate-level
netlist and a floorplan.def file that contains the block outline
and fixed IO pin or pad locations. The output is a.def file
with placed macros and standard cells. DG-RePlAce is built
on top of the open-source OpenROAD infrastructure [30], and
consists of four major steps.

1) Physical Hierarchy Extraction (Section III-A): During
this step, we convert the structural netlist representation
of the RTL design into a clustered netlist. The instances
within the same cluster are expected to remain close to
each other during GP.

2) Dataflow-Driven Initial Global Distribution
(Section III-B): During this step, we insert the dataflow
information into the clustered netlist, and determine

2Lin et al. [18] has reported an excellent dataflow-driven analytical mixed-
size placer. Unfortunately, no testcases or executables can be released by their
group.

Fig. 2. Overview of the proposed DG-RePlAce flow.

the location for each cluster through our new GPU-
accelerated parallel analytical placement method. Then,
every instance within a cluster is positioned at the
cluster’s center. Furthermore, we incorporate pseudo
net constraints into the original netlist, ensuring that
instances belonging to the same cluster are placed in
close proximity to each other.

3) Datapath Constraints Construction (Section III-C): This
step extracts datapath information from the original
netlist. Following this extraction, we transform the dat-
apath information into pseudo net constraints.

4) Parallel Analytical Placement (Section III-D): At this
step, we execute the GPU-accelerated mixed-size GP on
the original gate-level netlist, integrating the pseudo net
constraints derived from the Dataflow-Driven Initial GP
and the Datapath Constraints Construction steps. Here,
we leverage parallel processing capabilities of GPU to
accelerate the Nesterov’s method in RePlAce. In this
work, we use the GPU-accelerated parallel analytical
placement for both cluster-level and gate-level netlist
placement.

In the remainder of this section, we will explain each step
in detail. The runtime analysis for each step is presented in
Fig. 8 (see Section IV-B).

A. Physical Hierarchy Extraction

During this step, we transform the original logical hierarchy
into a physical hierarchy. Much like the logical hierarchy,
which is composed of logical modules, the physical hierarchy
consists of physical clusters. In contrast to logical modules,
a physical cluster consists of instances that are expected to
remain close to each other during GP. Specifically, we employ
the Multilevel Autoclustering component of the open-source
Hier-RTLMP [11] to perform physical hierarchy extraction.3

Upon establishing the physical hierarchy, we convert the
original gate-level netlist into a clustered netlist.

B. Dataflow-Driven Initial Global Distribution

In this section, we first describe how to insert dataflow
information into the clustered netlist. Then, we explain how

3The detailed algorithm is presented as [11, Algorithm 2]. The source code
is available in [40].
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Fig. 3. Dataflow visualization of Tabla01 design [5].

we use the GPU-accelerated parallel analytical placement
framework to distribute the clustered netlist evenly, and how
we solve the divergence issue by applying a bloat factor
to each cluster. Finally, we discuss how we use the placed
clustered netlist to guide the GP process.

After physical hierarchy extraction, we have a clustered
netlist in which the nodes are clusters and the nets are
bundled connections. We then insert the dataflow information
into the clustered netlist through virtual connections. We use
the term dataflow to refer to the way in which data moves
between different functional units of a netlist. The dataflow
can be visualized as the high-level conceptual movements
of data and how they are processed step by step. Fig. 3
shows the dataflow visualization of the Tabla01 design (see
Section IV for details of this and other testcases). When
backend engineers perform the place-and-route (P&R) flow for
a netlist, understanding the dataflow is critical for optimizing
PPA, as the dataflow determines how the netlist is pipelined
and how the parallel processing is implemented. We adopt the
same idea as [10], [11], and [27] and transform the dataflow
information into virtual connections between clusters. The
virtual connections (virtual_conn(A, B)) between clusters A
and B are defined as

virtual_conn(A, B) = info_flow(A, B)

2num_hops
. (4)

Here, info_flow corresponds to connection bitwidth and
num_hops is the length of the shortest path of registers
between clusters. As pointed out in [27], the virtual connec-
tions between clusters capture the pipelined signal flow and
the implementation of parallel processing. This helps to ensure
that the cluster placement aligns with the design’s dataflow
structure. When calculating the virtual connections between
clusters, we follow the same convention as [10] and [11]. If
the register distance (num_hops) between clusters is greater
than 4, then no virtual connection is added. In the example
shown in Fig. 3, if the register distance between PU0 and
Output Buffer is 2, then the calculated virtual connections are
16, given that the connection bitwidth is 64 bits.

Upon incorporating the dataflow information into the
clustered netlist, we call the GPU-accelerated parallel ana-
lytical placement framework, for which details are given
in Section III-D, to evenly distribute the clustered netlist.

Fig. 4. Illustration of the bloat-shrink approach for reducing cluster_overflow.
Left: Density overflow caused by overlap between clusters A and B; and
Right: Removal of overlap by shrinking clusters A and B.

However, directly working on the clustered netlist could lead
to divergence issues, particularly if the layout has a large
amount of whitespace. To solve the divergence issues, we
introduce a bloat-shrink methodology guided by the final den-
sity overflow of the cluster placement (refer to [14, eq. (37)]
for the definition). In the bloat-shrink methodology, we ini-
tially bloat each cluster before cluster placement to achieve
total cluster area that matches the area of the placement
region. If the cluster placement diverges, we then shrink each
cluster to solve the divergence issue. More specifically, this
methodology includes two steps:

1) Bloat: We first bloat each cluster by applying a bloat
factor (bloat_factor), defined as

bloat_factor = Area of placement region

Total area of clusters
. (5)

2) Shrink: If the cluster placement ends with a density
overflow cluster_overflow that exceeds the target density
overflow target_overflow, we then shrink each clus-
ter using a shrink factor (shrink_factor). shrink_factor
is determined by dividing the target density over-
flow (target_overflow) by the actual density overflow
(cluster_overflow)

shrink_factor = target_overflow

cluster_overflow
. (6)

Here, target_overflow (target_overflow = 0.2 by default
for cluster placement) is the convergence criterion for
the Nesterov’s approach.

Global placers like RePlAce usually fill whitespace through
filler insertion. The fillers are equally sized rectangles, mov-
able and disconnected (with zero pins). The additional density
force created by the insertion of fillers helps squeeze the
standard cells closer to their connected neighbors while
still satisfying the density constraints [14]. In contrast to
filler insertion used in RePlAce for filling whitespace, the
bloat-shrink methodology ensures a feasible cluster place-
ment solution that satisfies the density overflow constraint.
The shrinking step is necessary because all clusters are
square-shaped, which may lead to infeasible solutions.
Fig. 4 demonstrates how the bloat-shrink approach reduces
cluster_overflow.

After completing the placement of clusters, we place the
instances within each cluster at the cluster’s center to obtain
a good initial placement. Furthermore, for each cluster, we
add one pseudo net that connects all of the instances within
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the cluster. This ensures that instances belonging to the same
cluster are placed in close proximity to each other. However,
we notice that these high-fanout pseudo-nets could cause
convergence problems. To address this issue, we transform
the pseudo nets into multiple two-pin nets by the star model
(i.e., by adding a pseudo vertex as the star’s center, per
cluster). To ensure that the global placer follows the pseudo net
constraints imposed by the clustering constraints, we initially
assign a high-penalty factor penalty_factorp to the pseudo nets,
starting at the value of penalty_factorp0. With each successive
iteration, the penalty factor is progressively decreased to allow
for a more even distribution of instances across the placement
region. The adjustment of the penalty factor penalty_factorp

is determined by the following equation:

penalty_factorp0 = exp(iter0) (7)

penalty_factorp = penalty_factorp0

exp(iter)
(8)

where iter is the current iteration number, and iter0 (iter0 = 4
by default) is used to determine the initial value.4 To determine
the default value of iter0, we study iter0 values ranging from 0
to 9, utilizing Tabla01 and Tabla02 (see Table II) as testcases.
The score for our evaluation is the routed wirelength, which we
normalize against the baseline results obtained from RePlAce.
Based on this experiment, we use iter0 = 4 as the default.

C. Datapath Constraints Construction

After capturing the dataflow between clusters, we examine
the detailed data movement within each cluster, i.e., datapath
information. In contrast to dataflow, the datapath refers to the
actual hardware components and interconnections that imple-
ment the dataflow, representing the paths that data traverse in
a digital design. More specifically, the datapath is the circuit
performing bit-wise data operations in parallel on multiple
bits [2]. Each operation corresponds to a dedicated functional
block, such as adder, register, buffer, multiplexer, multiplier,
etc. Fang et al. [6] further pointed out that there is a significant
difference between the datapath within a systolic array and
that of traditional datapath designs, as shown in Fig. 5.

Fig. 5(a) shows the datapath in traditional datapath designs,
characterized by a continuous bit-sliced structure for opera-
tions across different bits [2]. In such scenarios, a pseudo net
can be applied to each alignment group (i.e., A[1:12], B[1:12],
and C[1:12]), ensuring that the instances in each alignment
group are placed in proximity. In contrast, as depicted in
Fig. 5(b), the datapath in a systolic array is not continuous,
with operations for different bits across multiple PEs. This
may lead to overlaps of PEs when a pseudo net is directly
applied to each alignment group, as shown in Fig. 5(c). To
address this issue, we propose to assign pseudo nets to
local alignment groups within each cluster. For example, in
Fig. 5(d), pseudo nets are independently applied to A[1:3] in
PE1, A[4:6] in PE2, A[7:9] in PE3 and A[10:12] in PE4. Here,
we also transform the pseudo nets into multiple two-pin nets
according to the star model. To maintain the integrity of local

4In our implementation, we set penalty_factorp to 0 if exp(iter) is NaN [45].

connectivity, we set the initial penalty factor penalty_factorp0
to 1 for the pseudo nets induced by datapath constraints.

D. Parallel Analytical Placement

Our GPU-accelerated mixed-size parallel analytical place-
ment framework uses the same Nesterov’s method as RePlAce,
and is developed on top of the OpenROAD infrastructure.
To minimize memory overhead, we integrate a data structure
inspired by Gessler et al. [8], which optimizes data locality
for the frequently accessed components during GP. As pointed
out by [15], the fast computation of wirelength gradient and
bin density is crucial for the efficiency of the global placer.
We adopt the parallel bin density computation algorithm from
Gessler et al. [8] [8, Algorithm 2]. For the fast computation of
wirelength gradient, we introduce a novel parallel algorithm,
presented in Algorithm 1. Our algorithm distinguishes itself
from Algorithm 1 in DREAMPlace [16] primarily in lines
1–6 and 12–18, where we leverage net-level parallelization
rather than pin-level parallelization to eliminate the need for
atomic additions. Furthermore, it differs from Algorithm 2
in DREAMPlace [16] primarily in lines 7–11 and 19–22,
where we implement pin-level computation parallelization
with multiple threads rather than the sequential computation
within a single thread. This approach is more efficient
for managing high-fanout nets while maintaining comparable
efficiency in handling low-fanout nets (see Section IV-B for
details). Empirical results demonstrate that our algorithm is
approximately 3.25X faster than the one implemented in
DREAMPlace [16, Algorithm 2].

IV. EXPERIMENTAL RESULTS

DG-RePlAce is implemented with approximately 14K lines
of C++ (and CUDA) with a Tcl command line interface
on top of the OpenROAD infrastructure [30]. We run all
experiments on a Linux server with an Intel Xeon E5-2690
CPU (48 threads) with 256-GB RAM and an NVIDIA TITAN
V GPU.

To show the effectiveness of our global placer, the following
three scenarios are evaluated and compared.

1) RePlAce: GP is done by RePlAce, which is the default
global placer in the OpenROAD project [30].

2) DREAMPlace: GP is performed by the latest version of
DREAMPlace [31], which is the state-of-the-art GPU-
accelerated global placer. The default hyperparameter
settings that we use for DREAMPlace are from [33].

3) DG-RePlAce: Results are obtained using our global
placer.

Our experiments use the following flow.
1) We first synthesize the design using a state-of-the-

art commercial synthesis tool, preserving the logical
hierarchy.

2) Next, we determine the core size of the testcase and
place all the IO pins using a manually developed script
(see [43]).

3) Then, the GP is performed using different methods
(RePlAce, DREAMPlace and DG-RePlAce).
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Fig. 5. Datapath constraints construction on the 2-D PE array. (a) Pseudo nets for bit stacks of a traditional datapath. (b) Example of a 2-D PE array.
(c) Applying pseudo nets on the 2-D PE array. (d) Datapath constraints on the 2-D PE array.

4) Finally, we use a state-of-the-art commercial P&R
tool, Cadence Innovus 21.1, to finish the legalization
of macros, detailed placement of standard cells and
routing. We follow the SP&R scripts in the public
MacroPlacement repository [32]. All metrics are col-
lected after post-route optimization. All studies use a
commercial foundry 12-nm technology (13 metal layers)
with cell library and memory generators from a leading
IP provider.

In this section, we first present the results for two types
of machine learning accelerators: non-DNN machine learning
accelerators (Tabla designs) and DNN machine learning accel-
erators (GeneSys designs), detailed in Section IV-A. Then,
we discuss the runtime comparison between DG-RePlAce and
DREAMPlace in Section IV-B. Following this, Section IV-C
compares DG-RePlAce with the dataflow-driven macro placer
Hier-RTLMP, which uses the same method to perform physical
hierarchy extraction. Next, we study the respective effects
of dataflow and datapath constraints by conducting an abla-
tion study of DG-RePlAce, in Section IV-D. Finally, we
apply DG-RePlAce to large nonmachine learning testcases
in Section IV-E, demonstrating the versatility and potential
benefit of the proposed dataflow-driven approach beyond our
motivating application context of large-scale machine learning
accelerators.

A. Results on Machine Learning Accelerators

We have validated our global placer using two types of
machine learning accelerators (Tabla and GeneSys) from
the VeriGOOD-ML platform [5]. The Tabla accelerators are

designed for training and inference for non-DNN machine
learning algorithms, and the GeneSys accelerators are for
DNN machine learning algorithms. Both Tabla and Genesys
adopt the systolic array structure, thus each design has an
m× n PE array. The major characteristics of the testcases are
summarized in Table II.

Table III shows the experimental results after completion
of post-route optimization. Rows represent testcases and GP
flows, and columns give information on total routed wire-
length, power, WNS, TNS, runtime of GP and TAT.5 The
metrics are normalized to protect foundry IP: 1) wirelength
and power are normalized to the RePlAce results and 2) timing
metrics (WNS and TNS) are normalized to the clock period
which we leave unspecified.

We can observe the following conclusions.
1) Our approach outperforms both RePlAce and

DREAMPlace in terms of routed wirelength, achieving
average reductions of 10% and 7%, respectively.

2) Our approach outperforms both RePlAce and
DREAMPlace in terms of TNS, achieving average
reductions of 31% and 34%, respectively.

3) Our approach achieves similar speedup as DREAMPlace
in terms of total TAT, but our approach is about 1.75X
faster than DREAMPlace in terms of GP runtime. The
detailed runtime analysis is presented in Section IV-B.

4) For the Tabla03 design, our approach significantly out-
performs both RePlAce and DREAMPlace in all the

5The runtime of GP refers to the runtime required to distribute the
original netlist across the placement region using the Nesterov’s method. For
DREAMPlace, we extract the relevant information from the following log file
entry: “[INFO] DREAMPlace - nonlinear placement takes xx seconds.”
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Algorithm 1: Parallel Wirelength Gradient Computation
Input: Instances V , Nets E, Pins P and Instance locations Xv
Output: Wirelength force for each instance FWLx (v)

1 for each thread 0 ≤ t < |E| do
2 Define e as the net corresponding to thread t;
3 x+e ← maxp∈exp; x+e is in the global memory
4 x−e ← minp∈exp; x−e is in the global memory
5 b±e ← 0; c±e ← 0; b±e , c±e are in the global memory
6 end
7 for each thread 0 ≤ t < |P| do
8 Define p as the pin corresponding to thread t;
9 Define e as the net that pin p belongs to;

10 a±p ← e±(xp−x±e /γ ); a±p is in the global memory
11 end
12 for each thread 0 ≤ t < |E| do
13 Define e as the net corresponding to thread t;
14 for pin p ∈ e do
15 b±e ← b±e + a±p ;
16 c±e ← c±e + xpa±p ;
17 end
18 end
19 for each thread 0 ≤ t < |P| do
20 Define p as the pin corresponding to thread t;
21 Compute the wirelength gradient of pin WLgradx (p) using

Equation (3); WLgradx (p) is in the global memory
22 end
23 for each thread 0 ≤ t < |V| do
24 Define v as the instance corresponding to thread t;
25 FWLx(v)← 0.0 FWLx(v) is in the global memory
26 for pin p of v do
27 FWLx (v)− = WLgradx (p);
28 end
29 end
30 return FWLx (v)

TABLE II
BENCHMARKS. “MACRO UTIL” STANDS FOR MACRO UTILIZATION,

WHICH IS DEFINED AS THE TOTAL AREA OF MACROS DIVIDED BY THE

CORE AREA. “UTIL” STANDS FOR UTILIZATION, WHICH IS DEFINED AS

THE TOTAL AREA OF STANDARD CELLS AND MACROS WITH A 2μM

HALO WIDTH DIVIDED BY THE CORE AREA

metrics (wirelength, power and timing). We attribute
this to DG-RePlAce‘s ability to identify the dataflow
and datapath of the design, which enables it to generate
the placement in accordance with dataflow and datapath
constraints. Fig. 6(c) shows the post-route layout of the
Tabla03 design for the GP generated by DG-RePlAce.
We can see that it perfectly matches the dataflow
pattern illustrated in Fig. 3. By contrast, in the layout
from DREAMPlace [Fig. 6(b)], we can see that PU2
(in orange) gets mixed up with other PUs, leading
to a significant degradation in wirelength, power and
performance. DREAMPlace’s lack of awareness of the
design’s dataflow and datapath information means that it

TABLE III
EXPERIMENTAL RESULTS. WE HIGHLIGHT BEST VALUES OF METRICS IN

BLUE BOLD FONT. DATA POINTS FOR WL, POWER, WNS, AND TNS ARE

NORMALIZED

has more difficulty in generating placements that align
with the dataflow and datapath structure of the design.

5) For the GeneSys02 design, our approach delivers sig-
nificantly better timing compared to both RePlAce and
DREAMPlace. This is because DG-RePlAce follows the
dataflow pattern inherent in the GeneSys02 design, as
shown in Fig. 6(f). We also observe that the Input Buffer
module (highlighted in purple) becomes mixed up with
other modules when placed by RePlAce [Fig. 6(d)] and
DREAMPlace [Fig. 6(e)]. While DREAMPlace’s solu-
tion generates significantly better wirelength, its power
improvement is very limited. We attribute this to the
GeneSys02 design’s extreme macro dominance, where
the leakage power and internal power (i.e., the power
consumed by the CMOS circuit during the brief period
when both pMOS and nMOS transistors are simulta-
neously switching as the logic changes its state [29])
constitute 67% of total power consumption. We leave
how to achieve a better power and timing tradeoff as a
direction for future work.

B. Runtime Comparison Against DREAMPlace

We now compare the runtime of DG-RePlAce against that
of the leading GPU-accelerated global placer, DREAMPlace.
As shown in Table III, the GP runtime of DG-RePlAce is less
than that of DREAMPlace, while its overall TAT is similar.
We will first discuss the GP runtime, and then examine the
overall TAT.

The GP runtime efficiency of DG-RePlAce can be attributed
to the following two factors.

1) DG-RePlAce achieves convergence with fewer itera-
tions, due to an improved initial placement generated
by our Dataflow-Driven Initial GP. The iterations
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Fig. 6. Post-route layouts of Tabla3 and GeneSys02 designs with different
flows. Design (Flow): (a) Tabla03 (RePlAce); (b) Tabla03 (DREAMPlace);
(c) Tabla03 (DG-RePlAce); (d) GeneSys02 (RePlAce); (e) GeneSys02
(DREAMPlace); and (f) GeneSys02 (DG-RePlAce). For the same design, each
module maintains consistent coloring across different layouts.

required for convergence of RePlAce, DREAMPlace and
DG-RePlAce are presented in Table IV.6 On average,
DG-RePlAce achieves convergence in 24% fewer itera-
tions compared to DREAMPlace.

2) Our parallel wirelength gradient algorithm
(Algorithm 1) outperforms the one used by
DREAMPlace, denoted as DREAMPlace-Alg2. For a
fair comparison, we implement the wirelength gradient
algorithm used by DREAMPlace [16, Algorithm 2].
The result is shown in Fig. 7, which suggests that our
algorithm is on average 3.25X faster. To further confirm
that the increased runtime overhead of DREAMPlace-
Alg2 is due to high-fanout nets, we remove all nets
connecting over 100 instances.7 After removing all of
these high-fanout nets, DREAMPlace-Alg2 achieves the

6The stop_overflow hyperparameter is 0.1 for RePlAce [34],
DREAMPlace [33] and DG-RePlAce.

7ignore_net_degree is 100 by default in DREAMPlace [33].

TABLE IV
ITERATIONS REQUIRED FOR CONVERGENCE OF RePlAce, DREAMPlace,
AND DG-RePlAce. WE HIGHLIGHT BEST VALUES IN BLUE BOLD FONT

Fig. 7. Runtime comparison for different implementations of wirelength
gradient computation.

Fig. 8. Runtime breakdown of DG-RePlAce.

same runtime as our Algorithm 1. This suggests that
our parallel wirelength gradient algorithm is effective
on high-fanout nets.

The longer overall TAT for DG-RePlAce results from the
file IO for testcase reading and writing and physical hierarchy
extraction. Fig. 8 shows the detailed runtime breakdown of
DG-RePlAce. We see that file IO for testcase reading and
writing accounts for 50% of the overall TAT. This is due to
complexity of the industry-strength database (OpenDB [38] in
OpenROAD [30]) that we use, which brings increased loading
times for designs. On the other hand, considering that the
design is typically loaded just once, substituting DG-RePlAce
for DREAMPlace in scenarios where GP is executed many
times (e.g., 1000 placement samples per design are obtained
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Fig. 9. Post-route layouts of Tabla02, Tabla04, and GeneSys01 designs
with different flows: (a) Tabla02 (Hier-RTLMP); (b) Tabla02 (DG-RePlAce);
(c) Tabla04 (Hier-RTLMP); (d) Tabla04 (DG-RePlAce); (e) GeneSys01 (Hier-
RTLMP); and (f) GeneSys01 (DG-RePlAce). For the same design, each
module maintains consistent coloring across different layouts. In this figure,
“Buf” stands for input and output buffer.

by AutoDMP [1]) will significantly improve runtimes for such
scenarios.

C. Comparison With Hier-RTLMP

In this section, we compare DG-RePlAce with the
dataflow-driven multilevel macro placer Hier-RTLMP [11].
Hier-RTLMP uses the same physical hierarchy extraction
approach and also considers dataflow information when deter-
mining locations of macros.8 The results are presented in
Table III, and Fig. 9 shows the post-route layouts. According
to Table III, DG-RePlAce achieves 15% wirelength reduction
compared to Hier-RTLMP. Hier-RTLMP has worse wirelength
because it models each cluster as a rectangular shape, as shown
in Fig. 9, potentially leading to unnecessary signal net detours.

Moreover, Hier-RTLMP fails to generate macro placement
for the GeneSys02 design. Hier-RTLMP uses the Sequence

8We use the latest version of Hier-RTLMP from the OpenROAD
repository [39].

Fig. 10. Speedup of DG-RePlAce over Hier-RTLMP for Tabla designs.

TABLE V
EFFECT OF DATAFLOW AND DATAPATH CONSTRAINTS (AVERAGES OVER

ALL TESTCASES). WE HIGHLIGHT BEST VALUES OF METRICS IN BLUE

BOLD FONT. DATA POINTS ARE NORMALIZED

Pair [24] representation and Simulated Annealing [13] algo-
rithm to determine shapes and locations for clusters level
by level. Therefore, it may not be able to obtain a feasible
solution when it tries to place macros within a cluster whose
location and shape have been determined in the previous step.
Additionally, as has been pointed in [1], the use of Simulated
Annealing algorithm in Hier-RTLMP makes it suffer from poor
runtime scalability. Fig. 10 shows how the speedup achieved
by DG-RePlAce over Hier-RTLMP changes with the number
of PUs (#PU) and the number of PEs per PU (#PE per PU)
for Tabla designs. We see that when the total number of PEs
increases from 32 (Tabla01) to 128 (Tabla04), the speedup
provided by DG-RePlAce over Hier-RTLMP increases from
76X to 103X. Such speedups are enabling for architects or
front-end designers who seek to identify the optimal #PU
and #PE per PU during the initial stages of machine learning
accelerator development.

We also observe that for the GeneSys01 design, Hier-
RTLMP generates the best-timing metrics in terms of both
WNS and TNS. We attribute this to the relatively low-macro
utilization of GeneSys01 (see Table II). In such contexts, Hier-
RTLMP is able to generate reasonable macro tilings that are
aligned with the dataflow structure, as shown in Fig. 9(e).

D. Ablation Study

To demonstrate the effect of dataflow and datapath con-
straints, we run an ablation study [37] by removing dataflow
or datapath constraints to understand their respective contribu-
tions to the overall performance of DG-RePlAce. We conduct
two separate experiments using variants of DG-RePlAce. The
first variant, referred to as DG-RePlAcenf , is executed without
the dataflow constraint. The second variant, designated as DG-
RePlAcenp, is executed without the datapath constraint. These
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TABLE VI
EXPERIMENTAL RESULTS ON TILOS MacroPlacement BENCHMARKS. WE

HIGHLIGHT BEST VALUES OF METRICS IN BLUE BOLD FONT. DATA

POINTS FOR WL, POWER, WNS,
AND TNS ARE NORMALIZED. DREAMPlace* REPRESENTS RUNNING

DREAMPlace WITH UPDATED HYPERPARAMETERS: ignore_net_threshold
= 1E9 AND iterations = 5000

modifications allow us to assess the individual contributions
of each constraint. The experimental results are presented
in Table V. In this table, WLavg and TNSavg, respectively,
represent the average normalized routed wirelength and aver-
age TNS over all the testcases in Table II, compared with
those from RePlAce. We observe that both DG-RePlAcenf and
DG-RePlAcenp generate better results than RePlAce in terms
of TNS, but DG-RePlAce always generates the best results.
This suggests that both dataflow and datapath constraints are
important components of DG-RePlAce.

E. Results on TILOS MacroPlacement Benchmarks

The dataflow-driven approach proposed in this work is
inspired by the unique demands of dataflow and datapath
structures in modern, highly scaled machine learning acceler-
ators. However, benefits of our proposed method may reach
beyond machine learning accelerators. To demonstrate the
generality and effectiveness of our DG-RePlAce, we conduct
evaluations on the two largest benchmarks – BlackParrot
(Quad-Core) [35] (827K instances, 196 macros) and MemPool
Group [36] (2529K instances, 326 macros) – from the TILOS
MacroPlacement Benchmarks [32]. The experimental results
are summarized in Table VI, and the post-route layouts are
presented in Fig. 11.

For the BlackParrot design, DG-RePlAce dominates
RePlAce and DREAMPlace across all metrics, including
wirelength, power, and timing. Fig. 11(a)–(c) show the post-
route layouts from RePlAce, DREAMPlace and DG-RePlAce,
respectively. It is clear that one of the CPU cores (marked
in yellow) gets mixed up when placed by RePlAce and
DREAMPlace, resulting in worse wirelength, power, and
timing. Additionally, we notice that DG-RePlAce is 2X faster
than DREAMPlace in terms of GP runtime, but has total TAT
larger than DREAMPlace. This is because it takes 134 s to
load the design into OpenROAD. Subtracting the loading time,
the TAT for DG-RePlAce drops to 66 s. These findings are
consistent with the runtime analysis presented in Section IV-B.

For the MemPool Group design, DG-RePlAce achieves
significantly better-timing (TNS) compared to both RePlAce
and DREAMPlace. However, DG-RePlAce suffers from 3%
wirelength degradation over DREAMPlace. To understand
this wirelength increase, we use early global route (eGR) in
a commercial place-and-route tool (Cadence Innovus 21.1)
to examine the congestion maps for placements generated

Fig. 11. Post-route layouts of BlackParrot and MemPool Group
designs with different flows. Design (Flow): (a) BlackParrot (RePlAce);
(b) BlackParrot (DREAMPlace); (c) BlackParrot (DG-RePlAce); (d) MemPool
Group (RePlAce); (e) MemPool Group (DREAMPlace); and (f) MemPool
Group (DG-RePlAce). The layouts from DREAMPlace are generated with
the default hyperparameter settings [33]. For the same design, each module
maintains consistent coloring across different layouts.

by DG-RePlAce and RePlAce. We observe that the place-
ment from DG-RePlAce is free from congestion, while
there are 0.05% horizontal and 0.02% vertical congestion in
the placement from DREAMPlace. This accounts for the
increased wirelength with DG-RePlAce, as DG-RePlAce tries
to distribute instances more evenly due to the bloat-shrink
methodology (see Section III-B)—but at the cost of wirelength
degradation. We leave how to achieve better wirelength and
congestion tradeoffs as a direction for future work.

We also notice that DREAMPlace, using its default
parameter settings [33], terminates because it reaches its
maximum number of iterations (iteration = 1000 by default).
To prevent such early termination, we rerun DREAMPlace
with updated hyperparameters that leave ample margin:
ignore_net_threshold = 1e9 and iterations = 5000; we denote
these runs as DREAMPlace*. These hyperparameters are also
set to be the default limits on net filtering and iteration
count for RePlAce and DG-RePlAce. As shown in Table VI,
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TABLE VII
RUNTIME BREAKDOWN FOR THE MEMPOOL GROUP AND

MEGABOOM_X4 BENCHMARKS. EFFECTIVE TAT IS THE NET TAT,
CALCULATED BY SUBTRACTING THE TIME SPENT ON HANDLING INPUT

AND OUTPUT FILES (IO) FROM THE TOTAL TAT. DREAMPlace*
REPRESENTS RUNNING DREAMPlace WITH THE UPDATED

HYPERPARAMETERS ignore_net_threshold = 1E9 AND iterations = 5000

TABLE VIII
EXPERIMENTAL RESULTS ON THE MEGABOOM_X4 DESIGN. DATA

POINTS FOR WL ARE NORMALIZED

DREAMPlace* delivers better results compared to the default
configuration of DREAMPlace, but at the cost of increased GP
runtime and total TAT. Even with the updated hyperparame-
ters, DG-RePlAce continues to outperform DREAMPlace* in
terms of timing metrics (WNS and TNS).

Additionally, for the MemPool Group design, the GP
runtime of DG-RePlAce exceeds that of DREAMPlace. To
delve into the reasons behind the GP runtime degradation, we
examine the detailed runtime breakdown for both DG-RePlAce
and DREAMPlace. The results are presented in Table VII. We
can observe the following conclusions.

1) The GP runtime of DREAMPlace increases by 2.47×
when considering all the signal nets during placement.

2) With the same hyperparameter settings, DG-RePlAce
is 1.46× faster than DREAMPlace* in terms of GP
runtime, while its total TAT is larger than that of
DREAMPlace*.

3) DG-RePlAce converges in fewer iterations compared to
DREAMPlace*, which accounts for its 1.46X speedup
of GP runtime. The runtime per iteration of DG-
RePlAce is longer than that of DREAMPlace*, due to
the additional pseudo nets introduced by the dataflow
constraints (Section III-B) and datapath constraints
(Section III-C). By removing these pseudo nets, the
GP runtime decreases from 122 s to 68 s. To further
confirm this speedup, we run the same experiments on
another large design, MegaBoom_X4 (four-core RISC-V
MegaBoom [42]), which has more than 5.8M instances.
Experimental results on MegaBoom_X4 (shown in
Table VII) give support to our analysis. Detailed metrics
for MegaBoom_X4 are presented in Table VIII.9

4) We also study the effect of ignore_net_threshold on
DG-RePlAce. We sweep the ignore_net_threshold values

9Since we cannot finish the place-and-route flow for the MegaBoom_X4
design, we report metrics (wirelength, horizontal and vertical congestion) after
early global routing in the commercial tool.

Fig. 12. Effect of ignore_net_threshold on DG-RePlAce. All the metrics
are collected after completion of post-route optimization and normalized
as described in Section IV-A. (a) BlackParrot (normalized wirelength).
(b) BlackParrot (normalized TNS). (c) MemPool Group (normalized wire-
length). (d) MemPool group (normalized TNS).

across 50, 100, 200, 500, 1000. The results are shown in
Fig. 12. We can see that increasing ignore_net_threshold
from 50 to 1000 results in approximately 1% improve-
ment in wirelength. However, the improvement in TNS
is significantly more substantial.

5) After subtracting the time spent on handling file input
and output (IO) from the total TAT, the net TAT
(“Effective TAT”) of DG-RePlAce is smaller than that
of DREAMPlace*. As pointed out in Section IV-B, we
attribute this to the physical hierarchy extraction pro-
cess. Enhancing the efficiency of the physical hierarchy
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extraction process is a key objective for our future
research efforts.

V. CONCLUSION AND FUTURE WORK

In this work, we develop DG-RePlAce, a new and fast
GPU-accelerated GP framework which is built on top of
the OpenROAD infrastructure [30], and which exploits the
inherent dataflow and datapath structures of machine learn-
ing accelerators to achieve superior results. Experimental
results show that DG-RePlAce outperforms both RePlAce and
DREAMPlace in terms of routed wirelength and TNS metrics.
Extensions to DG-RePlAce that we are currently exploring
include: 1) incorporation of density screens for routability
and virtual resizing for timing optimization; 2) application of
ML-based multiobjective optimization methods to autotune the
hyperparameters of DG-RePlAce, potentially achieving better-
tradeoffs across wirelength, congestion, power and timing;
and 3) improving the runtime of the physical hierarchy
extraction process. In combination with open-sourcing and
OpenROAD integration, we believe that this work will add
to the foundations for new research on fast and high-quality
global placers.
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