696 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 2, FEBRUARY 2025

DG-RePlAce: A Dataflow-Driven GPU-Accelerated
Analytical Global Placement Framework for
Machine Learning Accelerators

Andrew B. Kahng™', Fellow, IEEE, and Zhiang Wang"™, Member, IEEE

Abstract—Global placement (GP) is a fundamental step in
VLSI physical design. The wide use of 2-D processing ele-
ment (PE) arrays in machine learning accelerators poses new
challenges of scalability and quality of results (QoR) for state-
of-the-art academic global placers. In this work, we develop
DG-RePlAce, a new and fast GPU-accelerated GP framework
built on top of the OpenROAD infrastructure , which exploits the
inherent dataflow and datapath structures of machine learning
accelerators. [Experimental results with a variety of machine
learning accelerators using a commercial 12-nm enablement
show that, compared with RePIAce (DREAMPlace), our approach
achieves an average reduction in routed wirelength by 10% (7%)
and total negative slack (TNS) by 31% (34 %), with faster GP and
on-par total runtimes relative to DREAMPlace. Empirical studies
on the TILOS MacroPlacement Benchmarks further demonstrate
that post-route improvements over RePlAce and DREAMPlace
may reach beyond the motivating application to machine learning
accelerators.

Index Terms—Dataflow, GPU acceleration, physical design
(EDA), VLSI placement.

I. INTRODUCTION

LOBAL placement is a fundamental step in VLSI

physical design that determines the locations of standard
cells and macros in a layout. The backend design closure flow
requires a fast placement engine for rapid design prototyping,
feeding back to synthesis, and guiding optimization. However,
emerging machine learning accelerators have introduced new
challenges for global placement (GP). On the one hand,
machine learning accelerators with millions of standard cells
and macros raise runtime concerns for the design closure
process. On the other hand, machine learning accelerators
featuring 2-D processing element (PE) arrays, such as sys-
tolic arrays [26], have gained prominence because of their
efficiency in convolutional neural network computations [9].
The dataflow and datapath architectures of modern machine
learning accelerators exhibit substantial differences compared

Manuscript received 23 March 2024; revised 19 June 2024; accepted
19 July 2024. Date of publication 1 August 2024; date of current version
22 January 2025. This article was recommended by Associate Editor E. Young.
(Corresponding author: Zhiang Wang.)

Andrew B. Kahng is with the Electrical and Computer Engineering
Department and the Computer Science and Engineering Department,
University of California at San Diego, La Jolla, CA 92093 USA (e-mail:
abk @ucsd.edu).

Zhiang Wang is with the Electrical and Computer Engineering Department,
University of California at San Diego, La Jolla, CA 92093 USA (e-mail:
zhw033 @ucsd.edu).

Digital Object Identifier 10.1109/TCAD.2024.3436521

to those of traditional datapath designs, requiring dedicated
treatment during GP to achieve decent quality of results (QoR).

To address aspects of the aforementioned challenges, several
global placers have been proposed over the past decades.
To improve runtime, researchers have focused on paralleliz-
ing GP algorithms to leverage the computational substrates
provided by multicore CPUs and GPUs. [8] introduces a
multithreaded shared-memory implementation of RePlAce [3]
using off-the-shelf multicore CPU hardware. Cong and Zou
[7] and Lin and Wong [15] proposed GPU-accelerated
analytical placers by parallelizing the computation of the
logarithm-sum-exponential (LSE) wirelength function as well
as the density function. Recently, DREAMPlace [16], [20] and
Xplace [23] have implemented the approach of RePIAce on
GPU by casting the placement problem as a neural network
training problem; these works demonstrate the superiority
of GPU-accelerated global placers. While DREAMPlace has
already achieved significant runtime improvement relative to
RePlAce, our aim is to push these boundaries even further
by leveraging optimized data structures and a new parallel
wirelength gradient computation algorithm.

Netlist and register clustering are widely used in placement
to achieve better QoR. Lu et al. [17], [22] used clustering
information to induce soft placement constraints for commer-
cial placers. Chang et al. [4] proposed a register clustering
approach to balance clock power reduction and timing degra-
dation. Liu et al. [21] adopted c-spectral clustering to reduce
the problem size and ensure that standard-cell clusters and
macros are of comparable size. Kahng et al. [12] proposed a
power, performance and area (PPA)-aware clustering approach
that takes into account timing, power and logical hierarchy dur-
ing netlist clustering, effectively accelerating GP runtime and
improving post-route QoR. Other pioneering works adopt the
clustering idea to exploit the dataflow and datapath structures
during macro placement and GP. Kahng et al. [10] and Vidal-
Obiols et al. [27] exploited RTL information and dataflow to
guide macro placement. Lin et al. [19] integrated the dataflow
information into the mixed analytical GP framework through
virtual objects. Furthermore, Fang et al. [6] introduced the
first GP framework that exploits the datapath regularity of
2-D PE arrays. In our present work, we propose a new,
fast GPU-accelerated GP framework, exploiting both dataflow
information and datapath regularity. Our approach ultimately
guides GP toward better QoR. The main contributions of this
article are as follows.

1937-4151 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on January 23,2025 at 08:29:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4490-5018
https://orcid.org/0000-0002-6669-9702

KAHNG AND WANG: DG-RePlAce: A DATAFLOW-DRIVEN GPU-ACCELERATED ANALYTICAL GP FRAMEWORK 697

1) We propose DG-RePlAce, a new and fast global
placer that leverages the intrinsic dataflow and datapath
structures of machine learning accelerators, to achieve
high-quality GP.

2) DG-RePlAce is built on top of the OpenROAD
infrastructure with a permissive open-source license,
enabling other researchers to readily adapt it for other
enhancements.!

3) We propose efficient data structures and algorithms
to further speed up the GP. Experimental results on
a variety of machine learning accelerators show that,
our approach is, respectively, on average 22.49X and
1.75X faster than RePlAce and DREAMPIlace in terms
of GP runtime. Overall turnaround time (TAT) is on par
with that of DREAMPlace, despite (one-time) file 10
runtime overheads that are due to OpenDB/OpenROAD
integration.

4) Experimental results on a variety of machine learn-
ing accelerators also show that in comparison with
RePIAce and DREAMPIlace, our approach achieves an
average reduction of routed wirelength by 10% and 7%,
and of total negative slack (TNS) by 31% and 34%,

respectively.

5) Experimental results on the two largest TILOS
MacroPlacement Benchmarks [32] testcases show
that compared with RePlAce and DREAMPlace,

DG-RePIAce achieves much better-timing metrics
(worst-negative slack (WNS) and TNS) measured post-
route optimization. This suggests that the proposed
dataflow-driven methodology is not limited to machine
learning accelerators.

The remaining sections are organized as follows. Section II
introduces the terminology and background. Section III dis-
cusses our approach. Section IV shows experimental results,
and Section V concludes this article and outlines future
research directions.

II. PRELIMINARIES

In this section, we begin by discussing the fundamentals
of the systolic array structure in Section II-A. Following this,
we delve into the electrostatics-based placement formulation,
whichis incorporated into DG-RePlAce, in Section II-B. Finally,
we examine previous works on dataflow-driven placement in
Section II-C. Table I summarizes important terms and their
meanings; for clarity, we give 1-D (x component) notation.

A. Systolic Array Structure

A systolic array [5] is a 2-D array of M x N PEs,
which performs massively parallel convolution and matrix
multiplication operations. A PE is often composed of a
multiply-accumulate (MAC) unit and registers, and PEs that
are aligned in the same row collectively form a processing unit
(PU). Fig. 1 shows an example execution flow of a systolic
array-based machine learning accelerator. Here, the input data
horizontally propagate through the PEs, are multiplied by
the weights in each PE, and then are accumulated vertically

IThe source code is available in the DG-RePlAce GitHub repository [40].

TABLE I
TERMINOLOGY AND NOTATION

[Notation | Description |
v instance (standard cell or macro)
P instance pin or input-output pin
e net e = {p}
1% Set of all instances {v}
E Set of all nets (hyperedges) {e}
P Set of all pins {p}
W Lgraa, (p) | Wirelength gradient on pin p
Tp x coordinate of pin p
xT maTice T;, Ve € B
To minice Ti, Ve € B
-
aj' ewp(%), Vice,ecFE
— T;—x_ .
a; exp(———=<),Vi€e, e€ E
b Ziee aj, ec FE
b ZiEe a; ,e€ E
e Dice xiaj', ec E
Ce Y iceTia; ,eEFE
Xy Instance location, Vv € V'
Fywr, (v) erelen‘gth force on instance v
PU Processing unit
PE Processing element
o SystolicAmay .
weightBW 7 il '
= EEE
£ ivlq HBW o M ‘ ‘ '
Oft-chip ‘ H
Off-chip BandWidth Momory| Weights 5 g u z U z z i
Wemory mortace : E:-B_._._. h i
pari ? i
ms Meight BW M ﬂ 1
T R = ot |
H == == ==
I | ﬁ*** i
L E
Y [T
l SIMD Vector Unit]
I I T
Fig. 1. TIllustrative execution flow of a systolic array-based machine learning

accelerator (figure reproduced from [5]).

along the columns of the systolic array. This structure restricts
data transfers (multiple bitwidth) to neighboring PEs, thus
achieving better performance and efficiency.

B. Electrostatics-Based Placement

State-of-the-art academic global placers, such as
RePlAce [3] and DREAMPlace [16], [20], usually adopt the
electrostatics-based placement approach [14]. Let (X, YT
denote the vectors of x-y coordinates of movable instances.
The electrostatics-based placers formulate the GP problem as
follows:

min 3 WL(e; Xy,) + 4 x DX, V) M

vy Ly

ecE

where WL(:; -) is the wirelength cost function, D(-) is the
instance density cost function, and X is the weighting factor.
In this work, we use the weighted-average (WA) wirelength as

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on January 23,2025 at 08:29:07 UTC from IEEE Xplore. Restrictions apply.

698 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 2, FEBRUARY 2025

the wirelength cost function, where the x-component of WA
for net e is given by

WL, = Lot oxp(3) Lieori-exp(-5) 2

Ziee exp(%) Ziee exp(—%)

where y is a parameter that controls the smoothness and
accuracy of the approximation to the half-perimeter wirelength
(HPWL). With the notations in Table I, the gradient of WA
wirelength to a pin location x; is given as follows:

3WL€ _ (l + %)bj - %C;‘r (- %)b; + %C;
o Gy)

~a;.(3)

C. Dataflow-Driven Placement

To obtain high-quality macro placement, human design-
ers usually rely on their understanding of the dataflow of
a design to determine the relative locations of macros.
However, this manual process is very time-consuming, often
taking several days to weeks to complete. To automate this
process, Vidal-Obiols et al. [27] and Hier-RTLMP [11] intro-
duced dataflow-driven multilevel macro placement approaches.
However, both approaches apply the Simulated Annealing [13]
algorithm to determine the locations of macros, resulting
in poor runtime scalability [1]. Lin et al. [18] presented
an analytical-based placement algorithm to handle dataflow
constraints in mixed-size circuits. Their approach initially
assigns larger weights to nets connecting to datapath-oriented
objects, and then gradually shrinks the weights according to
the status of placement utilization.? However, their method
requires dataflow constraints from designers and cannot handle
the unique datapath regularity in machine learning accelerators
(see Section III-C). In this work, we incorporate the physical
hierarchy extraction approach in Hier-RTLMP [11] into the
GP framework to capture the dataflow information during GP.
Besides, we pay special attention to the datapath regularity in
machine learning accelerators during placement.

III. OUR APPROACH

The architecture of our DG-RePlAce framework is shown
in Fig. 2. The input is a synthesized hierarchical gate-level
netlist and a floorplan.def file that contains the block outline
and fixed 10 pin or pad locations. The output is a.def file
with placed macros and standard cells. DG-RePIlAce is built
on top of the open-source OpenROAD infrastructure [30], and
consists of four major steps.

1) Physical Hierarchy Extraction (Section III-A): During
this step, we convert the structural netlist representation
of the RTL design into a clustered netlist. The instances
within the same cluster are expected to remain close to
each other during GP.

2) Dataflow-Driven Initial Global Distribution
(Section III-B): During this step, we insert the dataflow
information into the clustered netlist, and determine

2Lin et al. [18] has reported an excellent dataflow-driven analytical mixed-
size placer. Unfortunately, no testcases or executables can be released by their
group.

I

.def (floorplan def with placed IO pins)
.v (hierarchical netlist)
Jlef + lib + .sdc

Static Timing Analysis

(OpenSTA) Physical Hierarchy Extraction |

‘ Clustered netlist

.

’ Dataflow-Driven Initial Global Distribution

OpenROAD

‘ Initial locations for instances

’ Datapath Constraints Construction

AYIdAY-9a

Shared Data Model
(OpenDB)

‘ Datapath constraints

L

’ Parallel Analytical Placement |

| Global Placement ‘

Fig. 2. Overview of the proposed DG-RePIAce flow.

the location for each cluster through our new GPU-
accelerated parallel analytical placement method. Then,
every instance within a cluster is positioned at the
cluster’s center. Furthermore, we incorporate pseudo
net constraints into the original netlist, ensuring that
instances belonging to the same cluster are placed in
close proximity to each other.

3) Datapath Constraints Construction (Section III-C): This
step extracts datapath information from the original
netlist. Following this extraction, we transform the dat-
apath information into pseudo net constraints.

4) Parallel Analytical Placement (Section III-D): At this
step, we execute the GPU-accelerated mixed-size GP on
the original gate-level netlist, integrating the pseudo net
constraints derived from the Dataflow-Driven Initial GP
and the Datapath Constraints Construction steps. Here,
we leverage parallel processing capabilities of GPU to
accelerate the Nesterov’s method in RePlAce. In this
work, we use the GPU-accelerated parallel analytical
placement for both cluster-level and gate-level netlist
placement.

In the remainder of this section, we will explain each step

in detail. The runtime analysis for each step is presented in
Fig. 8 (see Section IV-B).

A. Physical Hierarchy Extraction

During this step, we transform the original logical hierarchy
into a physical hierarchy. Much like the logical hierarchy,
which is composed of logical modules, the physical hierarchy
consists of physical clusters. In contrast to logical modules,
a physical cluster consists of instances that are expected to
remain close to each other during GP. Specifically, we employ
the Multilevel Autoclustering component of the open-source
Hier-RTLMP [11] to perform physical hierarchy extraction.?
Upon establishing the physical hierarchy, we convert the
original gate-level netlist into a clustered netlist.

B. Dataflow-Driven Initial Global Distribution

In this section, we first describe how to insert dataflow
information into the clustered netlist. Then, we explain how

3The detailed algorithm is presented as [11, Algorithm 2]. The source code
is available in [40].

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on January 23,2025 at 08:29:07 UTC from IEEE Xplore. Restrictions apply.

KAHNG AND WANG: DG-RePlAce: A DATAFLOW-DRIVEN GPU-ACCELERATED ANALYTICAL GP FRAMEWORK 699

Fig. 3.

Dataflow visualization of TablaO1 design [5].

we use the GPU-accelerated parallel analytical placement
framework to distribute the clustered netlist evenly, and how
we solve the divergence issue by applying a bloat factor
to each cluster. Finally, we discuss how we use the placed
clustered netlist to guide the GP process.

After physical hierarchy extraction, we have a clustered
netlist in which the nodes are clusters and the nets are
bundled connections. We then insert the dataflow information
into the clustered netlist through virtual connections. We use
the term dataflow to refer to the way in which data moves
between different functional units of a netlist. The dataflow
can be visualized as the high-level conceptual movements
of data and how they are processed step by step. Fig. 3
shows the dataflow visualization of the TablaO1 design (see
Section IV for details of this and other testcases). When
backend engineers perform the place-and-route (P&R) flow for
a netlist, understanding the dataflow is critical for optimizing
PPA, as the dataflow determines how the netlist is pipelined
and how the parallel processing is implemented. We adopt the
same idea as [10], [11], and [27] and transform the dataflow
information into virtual connections between clusters. The
virtual connections (virtual_conn(A, B)) between clusters A
and B are defined as

info_flow(A, B)

virtual_conn(A, B) = -
2num_hops

“4)
Here, info_flow corresponds to connection bitwidth and
num_hops is the length of the shortest path of registers
between clusters. As pointed out in [27], the virtual connec-
tions between clusters capture the pipelined signal flow and
the implementation of parallel processing. This helps to ensure
that the cluster placement aligns with the design’s dataflow
structure. When calculating the virtual connections between
clusters, we follow the same convention as [10] and [11]. If
the register distance (num_hops) between clusters is greater
than 4, then no virtual connection is added. In the example
shown in Fig. 3, if the register distance between PUO and
Output Buffer is 2, then the calculated virtual connections are
16, given that the connection bitwidth is 64 bits.

Upon incorporating the dataflow information into the
clustered netlist, we call the GPU-accelerated parallel ana-
Iytical placement framework, for which details are given
in Section III-D, to evenly distribute the clustered netlist.

Fig. 4. Illustration of the bloat-shrink approach for reducing cluster_overflow.
Left: Density overflow caused by overlap between clusters A and B; and
Right: Removal of overlap by shrinking clusters A and B.

However, directly working on the clustered netlist could lead
to divergence issues, particularly if the layout has a large
amount of whitespace. To solve the divergence issues, we
introduce a bloat-shrink methodology guided by the final den-
sity overflow of the cluster placement (refer to [14, eq. (37)]
for the definition). In the bloat-shrink methodology, we ini-
tially bloat each cluster before cluster placement to achieve
total cluster area that matches the area of the placement
region. If the cluster placement diverges, we then shrink each
cluster to solve the divergence issue. More specifically, this
methodology includes two steps:

1) Bloat: We first bloat each cluster by applying a bloat

factor (bloat_factor), defined as
Area of placement region

bloat_factor = . 5
oattactor Total area of clusters ©)

2) Shrink: If the cluster placement ends with a density
overflow cluster_overflow that exceeds the target density
overflow target_overflow, we then shrink each clus-
ter using a shrink factor (shrink_factor). shrink_factor
is determined by dividing the target density over-
flow (target_overflow) by the actual density overflow
(cluster_overflow)

. target_overflow
shrink factor =

(6)

cluster_overflow

Here, target_overflow (target_overflow = 0.2 by default
for cluster placement) is the convergence criterion for
the Nesterov’s approach.

Global placers like RePIAce usually fill whitespace through
filler insertion. The fillers are equally sized rectangles, mov-
able and disconnected (with zero pins). The additional density
force created by the insertion of fillers helps squeeze the
standard cells closer to their connected neighbors while
still satisfying the density constraints [14]. In contrast to
filler insertion used in RePlAce for filling whitespace, the
bloat-shrink methodology ensures a feasible cluster place-
ment solution that satisfies the density overflow constraint.
The shrinking step is necessary because all clusters are
square-shaped, which may lead to infeasible solutions.
Fig. 4 demonstrates how the bloat-shrink approach reduces
cluster_overflow.

After completing the placement of clusters, we place the
instances within each cluster at the cluster’s center to obtain
a good initial placement. Furthermore, for each cluster, we
add one pseudo net that connects all of the instances within

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on January 23,2025 at 08:29:07 UTC from IEEE Xplore. Restrictions apply.

700 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 2, FEBRUARY 2025

the cluster. This ensures that instances belonging to the same
cluster are placed in close proximity to each other. However,
we notice that these high-fanout pseudo-nets could cause
convergence problems. To address this issue, we transform
the pseudo nets into multiple two-pin nets by the star model
(i.e., by adding a pseudo vertex as the star’s center, per
cluster). To ensure that the global placer follows the pseudo net
constraints imposed by the clustering constraints, we initially
assign a high-penalty factor penalty_factor, to the pseudo nets,
starting at the value of penalty_factoryy. With each successive
iteration, the penalty factor is progressively decreased to allow
for a more even distribution of instances across the placement
region. The adjustment of the penalty factor penalty_factor,
is determined by the following equation:

penalty_factor,y = exp(iterp) @)
penalty_factor, = w ®)
exp(iter)
where iter is the current iteration number, and iterqy (iterg = 4
by default) is used to determine the initial value.* To determine
the default value of iter(y, we study itery values ranging from O
to 9, utilizing TablaO1 and Tabla02 (see Table II) as testcases.
The score for our evaluation is the routed wirelength, which we
normalize against the baseline results obtained from RePlAce.
Based on this experiment, we use iteryp = 4 as the default.

C. Datapath Constraints Construction

After capturing the dataflow between clusters, we examine
the detailed data movement within each cluster, i.e., datapath
information. In contrast to dataflow, the datapath refers to the
actual hardware components and interconnections that imple-
ment the dataflow, representing the paths that data traverse in
a digital design. More specifically, the datapath is the circuit
performing bit-wise data operations in parallel on multiple
bits [2]. Each operation corresponds to a dedicated functional
block, such as adder, register, buffer, multiplexer, multiplier,
etc. Fang et al. [6] further pointed out that there is a significant
difference between the datapath within a systolic array and
that of traditional datapath designs, as shown in Fig. 5.

Fig. 5(a) shows the datapath in traditional datapath designs,
characterized by a continuous bit-sliced structure for opera-
tions across different bits [2]. In such scenarios, a pseudo net
can be applied to each alignment group (i.e., A[1:12], B[1:12],
and C[1:12]), ensuring that the instances in each alignment
group are placed in proximity. In contrast, as depicted in
Fig. 5(b), the datapath in a systolic array is not continuous,
with operations for different bits across multiple PEs. This
may lead to overlaps of PEs when a pseudo net is directly
applied to each alignment group, as shown in Fig. 5(c). To
address this issue, we propose to assign pseudo nets to
local alignment groups within each cluster. For example, in
Fig. 5(d), pseudo nets are independently applied to A[1:3] in
PE1, A[4:6] in PE2, A[7:9] in PE3 and A[10:12] in PE4. Here,
we also transform the pseudo nets into multiple two-pin nets
according to the star model. To maintain the integrity of local

“In our implementation, we set penalty_factory to 0 if exp(iter) is NaN [45].

connectivity, we set the initial penalty factor penalty_factoryy
to 1 for the pseudo nets induced by datapath constraints.

D. Parallel Analytical Placement

Our GPU-accelerated mixed-size parallel analytical place-
ment framework uses the same Nesterov’s method as RePlAce,
and is developed on top of the OpenROAD infrastructure.
To minimize memory overhead, we integrate a data structure
inspired by Gessler et al. [8], which optimizes data locality
for the frequently accessed components during GP. As pointed
out by [15], the fast computation of wirelength gradient and
bin density is crucial for the efficiency of the global placer.
We adopt the parallel bin density computation algorithm from
Gessler et al. [8] [8, Algorithm 2]. For the fast computation of
wirelength gradient, we introduce a novel parallel algorithm,
presented in Algorithm 1. Our algorithm distinguishes itself
from Algorithm 1 in DREAMPlace [16] primarily in lines
1-6 and 12-18, where we leverage net-level parallelization
rather than pin-level parallelization to eliminate the need for
atomic additions. Furthermore, it differs from Algorithm 2
in DREAMPIlace [16] primarily in lines 7-11 and 19-22,
where we implement pin-level computation parallelization
with multiple threads rather than the sequential computation
within a single thread. This approach is more efficient
for managing high-fanout nets while maintaining comparable
efficiency in handling low-fanout nets (see Section IV-B for
details). Empirical results demonstrate that our algorithm is
approximately 3.25X faster than the one implemented in
DREAMPIlace [16, Algorithm 2].

IV. EXPERIMENTAL RESULTS

DG-RePlAce is implemented with approximately 14K lines
of C++ (and CUDA) with a Tcl command line interface
on top of the OpenROAD infrastructure [30]. We run all
experiments on a Linux server with an Intel Xeon E5-2690
CPU (48 threads) with 256-GB RAM and an NVIDIA TITAN
V GPU.

To show the effectiveness of our global placer, the following
three scenarios are evaluated and compared.

1) RePlAce: GP is done by RePlAce, which is the default

global placer in the OpenROAD project [30].

2) DREAMPlace: GP is performed by the latest version of
DREAMPIlace [31], which is the state-of-the-art GPU-
accelerated global placer. The default hyperparameter
settings that we use for DREAMPlace are from [33].

3) DG-RePlAce: Results are obtained using our global
placer.

Our experiments use the following flow.

1) We first synthesize the design using a state-of-the-
art commercial synthesis tool, preserving the logical
hierarchy.

2) Next, we determine the core size of the testcase and
place all the IO pins using a manually developed script
(see [43)).

3) Then, the GP is performed using different methods
(RePlAce, DREAMPlace and DG-RePlAce).

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on January 23,2025 at 08:29:07 UTC from IEEE Xplore. Restrictions apply.

KAHNG AND WANG: DG-RePlAce: A DATAFLOW-DRIVEN GPU-ACCELERATED ANALYTICAL GP FRAMEWORK 701

Fig. 5.

Datapath constraints construction on the 2-D PE array. (a) Pseudo nets for bit stacks of a traditional datapath. (b) Example of a 2-D PE array.

(c) Applying pseudo nets on the 2-D PE array. (d) Datapath constraints on the 2-D PE array.

4) Finally, we use a state-of-the-art commercial P&R
tool, Cadence Innovus 21.1, to finish the legalization
of macros, detailed placement of standard cells and
routing. We follow the SP&R scripts in the public
MacroPlacement repository [32]. All metrics are col-
lected after post-route optimization. All studies use a
commercial foundry 12-nm technology (13 metal layers)
with cell library and memory generators from a leading
IP provider.

In this section, we first present the results for two types
of machine learning accelerators: non-DNN machine learning
accelerators (Tabla designs) and DNN machine learning accel-
erators (GeneSys designs), detailed in Section IV-A. Then,
we discuss the runtime comparison between DG-RePIlAce and
DREAMPIlace in Section IV-B. Following this, Section IV-C
compares DG-RePlAce with the dataflow-driven macro placer
Hier-RTLMP, which uses the same method to perform physical
hierarchy extraction. Next, we study the respective effects
of dataflow and datapath constraints by conducting an abla-
tion study of DG-RePlAce, in Section IV-D. Finally, we
apply DG-RePlAce to large nonmachine learning testcases
in Section IV-E, demonstrating the versatility and potential
benefit of the proposed dataflow-driven approach beyond our
motivating application context of large-scale machine learning
accelerators.

A. Results on Machine Learning Accelerators

We have validated our global placer using two types of
machine learning accelerators (Tabla and GeneSys) from
the VeriGOOD-ML platform [5]. The Tabla accelerators are

designed for training and inference for non-DNN machine
learning algorithms, and the GeneSys accelerators are for
DNN machine learning algorithms. Both Tabla and Genesys
adopt the systolic array structure, thus each design has an
m x n PE array. The major characteristics of the testcases are
summarized in Table II.

Table III shows the experimental results after completion
of post-route optimization. Rows represent testcases and GP
flows, and columns give information on total routed wire-
length, power, WNS, TNS, runtime of GP and TAT. The
metrics are normalized to protect foundry IP: 1) wirelength
and power are normalized to the RePlAce results and 2) timing
metrics (WNS and TNS) are normalized to the clock period
which we leave unspecified.

We can observe the following conclusions.

1) Our approach outperforms both RePIlAce and
DREAMPIlace in terms of routed wirelength, achieving
average reductions of 10% and 7%, respectively.

2) Our approach outperforms both RePlAce and
DREAMPlace in terms of TNS, achieving average
reductions of 31% and 34%, respectively.

3) Our approach achieves similar speedup as DREAMPlace
in terms of total TAT, but our approach is about 1.75X
faster than DREAMPlace in terms of GP runtime. The
detailed runtime analysis is presented in Section IV-B.

4) For the Tabla0O3 design, our approach significantly out-
performs both RePIAce and DREAMPlace in all the

SThe runtime of GP refers to the runtime required to distribute the
original netlist across the placement region using the Nesterov’s method. For
DREAMPIlace, we extract the relevant information from the following log file
entry: “[INFO] DREAMPlace - nonlinear placement takes xx seconds.”

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on January 23,2025 at 08:29:07 UTC from IEEE Xplore. Restrictions apply.

702 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 2, FEBRUARY 2025

Algorithm 1: Parallel Wirelength Gradient Computation

Input: Instances V, Nets E, Pins P and Instance locations X,
Output: Wirelength force for each instance Fyy, (v)

for each thread 0 <t < |E| do

Define e as the net corresponding to thread ¢;

X« MaxpeeXp; P x is in the global memory
X, < MminpeeXp; P x, is in the global memory
bE <« 0; cF <0, B bt ¢ are in the global memory
end

for each thread 0 <t < |P| do

Define p as the pin corresponding to thread f;

Define e as the net that pin p belongs to;

R N AT R W N e

—
=l

a[@t < X/ V), > a[jf is in the global memory
end
for each thread 0 <t < |E| do
Define e as the net corresponding to thread t;
for pin p € e do

bF <« bF + api;
gc <« cei + xpai;

L e <l
R W N -

—
N

c
end

-
~

end

for each thread 0 <t < |P| do

Define p as the pin corresponding to thread f;

Compute the wirelength gradient of pin WLgq, (p) using

N R e
- &

Equati