
An Open-Source ML-Based Full-Stack Optimization

Framework for Machine Learning Accelerators

HADI ESMAEILZADEH, University of California San Diego, La Jolla, United States

SOROUSH GHODRATI, University of California San Diego, La Jolla, United States

ANDREW KAHNG, CSE and ECE, University of California San Diego, La Jolla, United States

JOON KYUNG KIM, University of California San Diego, La Jolla, United States

SEAN KINZER, University of California San Diego, La Jolla, United States

SAYAK KUNDU, Electrical and Computer Engineering, University of California San Diego, La Jolla, United

States

ROHAN MAHAPATRA, University of California San Diego, La Jolla, United States

SUSMITA DEY MANASI, University of Minnesota, Minneapolis, United States

SACHIN SAPATNEKAR, Electrical and Computer Engineering, Univ of Minnesota, Minneapolis, United

States

ZHIANG WANG, ECE, University of California San Diego, La Jolla, United States

ZIQING ZENG, University of Minnesota, Minneapolis, United States

Parameterizable machine learning (ML) accelerators are the product of recent breakthroughs in ML. To fully

enable their design space exploration (DSE), we propose a physical-design-driven, learning-based prediction

framework for hardware-accelerated deep neural network (DNN) and non-DNN ML algorithms. It adopts

a unified approach that combines power, performance, and area (PPA) analysis with frontend performance

simulation, thereby achieving a realistic estimation of both backend PPA and system metrics such as runtime

and energy. In addition, our framework includes a fully automated DSE technique, which optimizes backend

This material is based on research sponsored in part by Air Force Research Laboratory (AFRL) and Defense Advanced

Research Projects Agency (DARPA) under Grant Agreement No. FA8650-20-2-7009. Andrew B. Kahng also acknowledges

support from NSF Grant No. CCF-2112665. The U. S. government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are

those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either

expressed or implied, of AFRL, DARPA, or the U. S. government.
Authors’ Contact Information: Hadi Esmaeilzadeh, University of California San Diego, La Jolla, California, United States;

e-mail: hadi@eng.ucsd.edu; Soroush Ghodrati, University of California San Diego, La Jolla, California, United States; e-

mail: soghodra@ucsd.edu; Andrew Kahng, CSE and ECE, University of California San Diego, La Jolla, California, United

States; e-mail: abk@ucsd.edu; Joon Kyung Kim, University of California San Diego, La Jolla, California, United States;

e-mail: jkkim@eng.ucsd.edu; Sean Kinzer, University of California San Diego, La Jolla, California, United States; e-mail:

skinzer@eng.ucsd.edu; Sayak Kundu, Electrical and Computer Engineering, University of California San Diego, La Jolla,

California, United States; e-mail: sakundu@ucsd.edu; Rohan Mahapatra, University of California San Diego, La Jolla, Cal-

ifornia, United States; e-mail: rohan@ucsd.edu; Susmita Dey Manasi, University of Minnesota, Minneapolis, Minnesota,

United States; e-mail: manas018@umn.edu; Sachin Sapatnekar, Electrical and Computer Engineering, Univ of Minnesota,

Minneapolis, Minnesota, United States; e-mail: sachin@umn.edu; Zhiang Wang, ECE, University of California San Diego, La

Jolla, California, United States; e-mail: zhw033@ucsd.edu; Ziqing Zeng, University of Minnesota, Minneapolis, Minnesota,

United States; e-mail: zeng0083@umn.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 1084-4309/2024/07-ART68

https://doi.org/10.1145/3664652

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0002-8548-1039
HTTPS://ORCID.ORG/0000-0001-5514-8027
HTTPS://ORCID.ORG/0000-0002-4490-5018
HTTPS://ORCID.ORG/0000-0003-2698-7950
HTTPS://ORCID.ORG/0000-0002-0955-585X
HTTPS://ORCID.ORG/0000-0002-8077-1328
HTTPS://ORCID.ORG/0000-0002-2887-9761
HTTPS://ORCID.ORG/0000-0001-9358-6255
HTTPS://ORCID.ORG/0000-0002-5353-2364
HTTPS://ORCID.ORG/0000-0002-6669-9702
HTTPS://ORCID.ORG/0000-0002-6981-2299
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3664652
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664652&domain=pdf&date_stamp=2024-07-09


68:2 H. Esmaeilzadeh et al.

and system metrics through an automated search of architectural and backend parameters. Experimental

studies show that our approach consistently predicts backend PPA and system metrics with an average 7%

or less prediction error for the ASIC implementation of two deep learning accelerator platforms, VTA and

VeriGOOD-ML, in both a commercial 12 nm process and a research-oriented 45 nm process.

CCS Concepts: • Hardware → Physical design (EDA); Hardware accelerators; Application specific

integrated circuits;

Additional Key Words and Phrases: PPA prediction, design space exploration, ML accelerator

ACM Reference Format:

Hadi Esmaeilzadeh, Soroush Ghodrati, Andrew Kahng, Joon Kyung Kim, Sean Kinzer, Sayak Kundu, Rohan

Mahapatra, Susmita Dey Manasi, Sachin Sapatnekar, Zhiang Wang, and Ziqing Zeng. 2024. An Open-Source

ML-Based Full-Stack Optimization Framework for Machine Learning Accelerators. ACM Trans. Des. Autom.

Electron. Syst. 29, 4, Article 68 (July 2024), 33 pages. https://doi.org/10.1145/3664652

1 INTRODUCTION

Recent advances in machine learning (ML) algorithms have catalyzed an increasing demand for
application-specific ML hardware accelerators. The design of these accelerators is non-trivial: the
design cycle from architecture to silicon implementation often takes months to years and involves
a large team of cross-disciplinary experts. When faced with stringent time-to-market requirements,
it is imperative to reduce turnaround time without sacrificing product quality.

Recent research has developed automation flows for generating parameterizable accelerators,
suitable for both FPGA and ASIC platforms. Parameterizable deep neural networks (DNNs)

accelerators include VTA [3, 28], GeneSys [9], and Gemmini [12]. Accelerators for non-DNN ML
algorithms [35], such as support vector machines or linear/logistic regression, have widespread
applications, but have seen more limited research, with the TABLA platform [26] being a
prominent example of a general-purpose non-DNN accelerator.

Generators such as those listed above allow designers to configure key parameters of DNN/non-
DNN ML accelerators, e.g., the number of processing units or the on-chip memory configuration.
The accelerator hardware description is then automatically translated to hardware at the register-

transfer level (RTL). The search for an optimal configuration involves tradeoffs between the
power dissipation, performance, and area (PPA) of the hardware platform, and the energy

and runtime required to execute an ML algorithm on the platform. Therefore, this optimization
involves the solution of two problems: (i) generating an ML accelerator that optimizes the PPA
metrics and (ii) selecting a PPA-optimized hardware configuration that optimizes system-level
metrics such as the runtime and energy required to run an ML algorithm. As far as we know, our
work is the first to solve these two problems.

The prediction of platform PPA based on an architectural description is a longstanding challenge
in electronic design automation. In modern nanoscale technologies, PPA is closely linked to
physical design. Moreover, for many ML hardware platforms, a considerable fraction of the layout
area is occupied by large memory macros whose presence exacerbates the problem of PPA predic-
tion. The prediction of system-level metrics, such as the runtime and energy required to execute
an ML algorithm, is performed using system-level simulation engines. These simulators model
data transfer and computation within the accelerator to determine the number of operations,
stall cycles, memory latencies, and so on. Since they use the frequency and power metrics of the
hardware platform as inputs, their accuracy depends on the quality of PPA prediction.

Given an ML accelerator, a target clock period, and a target floorplan utilization, the metrics
of interest are the PPA of the hardware, and the energy and runtime required to execute ML

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.

https://doi.org/10.1145/3664652


Open-source ML-based Full-stack Optimization Framework 68:3

Fig. 1. (a) Post-SP&R layouts of two TABLA designs implementing the same ML algorithm. Design-A

achieves better runtime, while Design-B achieves better energy. (b) Miscorrelation of post-synthesis and

post-routing metrics: total power and clock frequency for TABLA designs.

algorithms. However, optimizing PPA does not necessarily guarantee optimal runtime and energy
consumption. For instance, smaller hardware may consume less power but may not necessarily
deliver the required improvements in energy consumption or meet runtime criteria. In Figure 1(a),
which shows two designs implementing the same ML algorithm, we see that Design-B achieves
48% better power efficiency than Design-A. However, in terms of energy efficiency, it only shows
20% improvement and does so at a significantly slower runtime. This illustrates why Design

Space Exploration (DSE) necessitates a rapid evaluator capable of assessing PPA, runtime, and
energy consumption for numerous architectural configurations within a given design space. A
DNN accelerator may easily have 5-10 million instances, and conventional evaluators require
several days of synthesis, place, and route (SP&R) runs to evaluate even a single configuration.
Parallel evaluation runs cannot offer relief due to limited compute resources and available EDA
tool licenses. Using post-synthesis PPA without P&R is inadequate: Figure 1(b) shows poor corre-
lation between the post-synthesis and post-SP&R results for TABLA designs, visually and through

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:4 H. Esmaeilzadeh et al.

the Kendall rank correlation coefficient (τ ), where 0 signifies no correlation and ±1 indicates
strong correlation or anti-correlation. For example, the τ values of four TABLA designs for total
power are 0.61, −0.20, 0.07, 0.47, and for effective clock frequency are 0.45, −0.20, −0.16, 0.10.

To fully harness the potential of parameterizable ML accelerators, we propose a physical-design
driven, learning-based prediction framework for hardware-accelerated ML algorithms. Our ML-
based method accurately predicts PPA and system performance, and overcomes the limitations
associated with the high computational expense of design space exploration. We accomplish
this by using a manageable number of SP&R backend runs to train ML models, which in turn
predict the performance of ML accelerator designs for unseen configurations. Furthermore, we
incorporate Multi-objective Tree-structured Parzen Estimator (MOTPE)-based Bayesian
optimization to automatically optimize the ML accelerators for the target ML algorithm and metric
requirements, using the trained models. Whereas previous works primarily focus on architectural
design and/or RTL generation, our framework offers a full-stack optimization solution for ML
accelerators, encompassing all aspects, from high-level ML algorithm specification to SP&R
implementation guidelines. The main contributions of our work are as follows.

— We develop an ML-based full-stack optimization framework that integrates key design
components ranging from ML algorithms and architectural parameters to SP&R recipes.
This framework extends our previous work [10] to include chip area prediction and incor-
porates floorplan utilization as a backend feature, enhancing the accuracy of our prediction
framework.

— We explore three sampling methods: Latin Hypercube sampling (LHS), and two
low-discrepancy sequence (LDS) types, specifically Sobol and Halton sequences, across
different sample sizes. Selecting the right sampling method and sample size is crucial
for building high-accuracy prediction models. Additionally, the generation of train and
test dataset using these sampling methods ensures uniform coverage of the design space,
increasing the reliability of the ML model for DSE.

— We introduce a physical-design-driven, learning-based prediction methodology and a
MOTPE-based method to automatically optimize ML accelerators for given target ML
algorithm and metric requirements. Our experimental results suggest that our method can
significantly reduce the implementation time of optimized ML accelerators, reducing both
human effort and tool runtime from months to days.

— We present a novel method that capitalizes on the high degree of modularity present in ML
accelerators. It generates a logical hierarchy graph, in which each leaf node represents a
building block of the ML accelerators. This methodology employs a Graph Convolutional

Network (GCN) to extract graph embeddings and train the model. Our experiment results
indicate that the GCN model, even when trained on less data, can match or even outperform
other models in predicting the test dataset.

In addition to the above, we have extensively tested our framework on two platforms, VTA
and VeriGOOD-ML, and used different types of ML accelerators, including Non-DNNs (Axiline
and TABLA), as well as DNNs (GeneSys and VTA). Among the non-DNN accelerators, Axiline is
designed for smaller ML algorithms, while TABLA is intended for larger ML algorithms. In the
category of DNN accelerators, GeneSys and VTA have been developed by two distinct research
groups. The high accuracy and low error of our framework for these ML accelerators show that
our framework is generalizable. We have made our SP&R flow scripts, model training, and DSE
code publicly available in the VeriGOOD-ML GitHub repository [44].

The rest of this article is organized as follows. Section 2 reviews the relevant literature on
PPA prediction. Section 3 explains the key definitions and notations used in this article. Section 4

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:5

presents the problem formulation for PPA prediction and design space exploration for ML acceler-
ators. Section 5 provides an overview of our approach, with brief descriptions of each component
of our proposed framework. Section 6 offers a detailed description of the logical hierarchy graph
generation process used in GCN-based model training. Section 7 discusses the experimental setup,
including data generation, data separation for model training and testing, and the details of the
model training process. Section 8 presents our experimental results, which include an assessment
of different sampling methods, the performance evaluation of our prediction models, and the re-
sults from DSE. Finally, Section 9 concludes the article and outlines future research directions.

2 RELATED WORK

Prior efforts have sought to predict power, performance, and area at different stages of the design
flow using two classes of predictors, respectively, based on analytical models and ML models.
The works in References [15, 19] introduce ML models and demonstrate significant improvement
in PPA prediction over previous analytical models such as ORION [37] and McPAT [21]. Works
include power metric prediction for high-level synthesis (HLS) [8] and PPA prediction for
memory compilers [18]. Such approaches indicate that ML models outperform analytical models
and are more convenient to train a wide range of ready-to-use ML models. To the best of our
knowledge, no prior work builds ML models based on full backend SP&R for ASIC. In Reference
[2], an NN-based ML model is used to predict power and performance for different microarchi-
tectures and to find Pareto optimal design points for power and performance. An ML model
to estimate power metrics in HLS, along with sampling-based techniques to prune the search
space, is presented in Reference [24]; these methods are used to find the Pareto frontier and
Pareto-optimal designs for FPGA implementations.

Recently, several studies have showcased the use of GNNs for predicting PPA, although they
do not focus on ML hardware. The work in Reference [33] directly predicts post-placement power
and performance from RTL, demonstrating that the XGBoost model surpasses the performance
of GCN-based models. The authors of Reference [33] report 95% accuracy in terms of R-squared
score, but calculation of the absolute percentage error from the provided data reveals a significant
prediction error. Several other studies have employed GNNs for PPA prediction. For instance,
Reference [25] forecasts final PPA from the early stages of the P&R flow; Reference [20] predicts
post-synthesis PPA for Network-on-Chip (NoC) design using NoC parameters, topology
configurations, and task graphs with the aid of a message-passing neural network; and [7]
employs the graph representation of the netlist to predict leakage recovery during the ECO
stage. Nevertheless, these studies do not offer prediction for post-route optimization or backend
PPA from the RTL. In contrast, our work takes a novel approach for a given ML accelerator. We
generate a logical hierarchy graph from the RTL and utilize GNNs to extract graph embeddings,
which are then employed for backend PPA prediction.

In the ML hardware context, there is limited prior work on the early prediction of DNN accel-
erator performance. Aladdin [34] combines PPA-characterized building blocks with a dataflow
graph representation to estimate performance but does not incorporate the impact of physical
design decisions beyond the block level. However, these decisions can substantially impact system
performance. NeuPart [27] develops an analytical model to predict energy for computation
and communication in a DNN accelerator. AutoDNNchip [39] proposes a predictor for energy,
throughput, latency, and area overhead of DNN accelerators based on architectural parameters. It
determines system-level performance metrics in an analytical-model-based coarse-grained mode
and a runtime-simulation-based fine-grained mode, but has no clear engagement with backend
design optimizations. However, it is well-understood that the performance of an ML accelerator is
acutely dependent on the tradeoffs made in backend design. Numerous technology, methodology,

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:6 H. Esmaeilzadeh et al.

and tool/flow effects must be comprehended, modeled, and exploited; e.g., Reference [1] shows
that post-routing wirelength can be improved by about 15% with different settings of flow
knobs. ML accelerators are considerably more complex than the testcases used in Reference
[1], and can be expected to show even greater overall variation in post-routing outcomes due
to tool/flow effects. In contrast to all previous works, our approach takes the effect of backend
flows into account and effectively ties the prediction of system-level performance metrics to
backend PPA.

3 KEY DEFINITIONS AND NOTATION

We formally define a set of key terms used in our work.

— ML accelerator (design). An ML accelerator or design is the RTL netlist created by a pa-
rameterizable ML hardware generator.

— Workload. A workload is a user-specified ML algorithm (or a set of algorithms) that runs
on an ML accelerator. Due to the inherent structure of the computation for a given network,
the cost metrics for a workload, i.e., the energy and runtime of the accelerator, depend on
the network topology and not on the specific input data.1

— Architectural parameters. These are a set of parameters used by a parameterizable ML
hardware generator to generate an ML accelerator. An architectural configuration is a
specific setting of architectural parameters. The parameterizable ML hardware generator
can only generate one ML accelerator for a given configuration. This means there is a
one-to-one mapping between ML accelerators and configurations for a parameterizable ML
hardware generator.

— Target clock period. The target clock period is the clock period in the .sdc (Synopsys
Design Constraints) file. The target clock frequency (ftarget) is the reciprocal of target clock
period. Altering ftarget impacts the outcome of the SP&R process. SP&R tools aim to meet
the specified ftarget, neither more nor less. Exceeding the ftarget can result in increased power
consumption and area usage, whereas falling short of the ftarget will lead to compromised
performance.

— Floorplan utilization. Floorplan utilization (util ) is an input parameter within the backend
flow that determines the chip area based on the input synthesized netlist. The chip area
is typically calculated as total standard cell and macro area within the synthesized netlist,
divided by the floorplan utilization.

— Backend parameters. ftarget and util are the backend parameters. These parameters
control the outcome of SP&R for a given ML accelerator RTL. A backend configuration is a
specific setting of backend parameters.

— Design configuration is a specific setting for architectural and backend parameters.

For an ML accelerator:

— Power (P) is the sum of internal, switching, and leakage power, as reported by the SP&R
tool after post-routing optimization.

— Performance (feffective) of an ML accelerator is measured using the effective clock frequency
(feffective). The feffective indicates the maximum frequency at which the chip can operate. This
is the reciprocal of effective clock period, defined as the target clock period minus the worst
slack reported by the SP&R tool after post-routing optimization.

1The computational demand for a specific network is primarily determined by the network’s structure and is largely inde-

pendent of the input data values. This is illustrated in Reference [6], which reports energy consumption for a single layer

of AlexNet and VGG-16. Similarly, the work in Reference [22] provides details on the energy usage for a single layer of

AlexNet and GoogleNet-v1, giving additional confirmations that these measurements are not influenced by input data.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:7

— Area (A) is the chip area reported by the P&R tool. For all our runs, we consider a chip aspect
ratio of one, implying that the chips are square in shape.

— Energy (E) is the total energy required to run the user-specified workload on the ML ac-
celerator. Given an ML accelerator and a workload, a simulator computes the energy based
on the instruction mix and the post-SP&R performance/power metrics of the accelerator
submodules.

— Runtime (T ) is the time required to run the user-specified workload. For an ML accelerator
and a specific workload, a performance simulator is used to compute the runtime.

4 PROBLEM FORMULATION

4.1 Prediction Framework

We divide the problem of full-stack optimization of ML hardware accelerators into two subprob-
lems. Given an ML architectural configuration (x1,x2, . . . ,xn), the logical hierarchy graph

(LHG) of the RTL netlist, the target clock frequency and the floorplan utilization, two subproblems
are as follows.

— Problem 1: predict power, performance, and area for the backend implementation of a
combination of architectural and backend configurations.

— Problem 2: predict system-level runtime and energy over a set of benchmark workloads.

To solve above two problems, we build two learning-based prediction frameworks:

— The first predicts power, performance, and area:

(P , feffective,A) = MLModel({x1,x2, . . . ,xn ;LHG, ftarget,util}). (1)

— The second predicts system-level runtime and energy:

(T ,E) = MLModel({x1,x2, . . . ,xn ;LHG, ftarget,util}). (2)

For Equation (1), we train three separate models to predict each of power, performance and area.
For Equation (2), we train two separate models to predict system-level runtime and energy.

We propose to leverage the RTL netlist produced by the ML hardware generator, together with
architectural and backend features (ftarget, util ), as a strategy to enhance performance of our ML
model. We apply the GCN modeling, which is adept at extracting relevant features from a graph.
We generate an LHG from the RTL netlist, and incorporate this as an additional input into our
GCN model, alongside the architectural and backend features.

4.2 Design Space Exploration

Next, we define the problem of design space exploration. Specifically, for a given target workload,
our objective is to find the optimal architectural and backend configuration, which minimizes the
cost function:

(E + α ×A), (3)

while satisfying the following constraints:

— total power (P ) is less than the specified maximum power Pmax (P < Pmax ),
— runtime (R) is less than the specified maximum runtime Rmax (R < Rmax ),
— energy (E) and area (A) belongs to the Pareto front of (E, A) ((E,A) ∈ Pareto Front(E,A)).

Here, α is a user-specified parameter and can be set to any positive real value. A higher value of α
will prioritize area cost and a lower value will prioritize energy cost. In the experimental evaluation
of our approach, when the energy is on the order of mJ and the chip area is on the order of mm2,
we set α = 1 (as in VTA). Similarly, when the energy is on the order of μJ and the chip area is on
the order of μm2, we set α = 0.001 (as in Axiline).

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:8 H. Esmaeilzadeh et al.

Fig. 2. Our ML-based full-stack optimization framework for machine learning accelerators.

5 OVERVIEW OF OUR APPROACH

In this section, we first outline a broad overview of our framework. Figure 2 presents our
overall framework, designed to optimize PPA and system-level metrics for ML accelerators. Here,
color-coded boxes are used to indicate constant inputs, automated scripts, automated tool flows,
and model training and cost optimization. Our framework consists of two parts, data generation
and model training, followed by the use of the trained model for design space exploration. As
shown in Figure 2, our overall framework works as follows. (1) We start by sampling architectural
configurations for a given architectural and backend configurations space and generate RTL
using RTL generators (see Section 5.1 for different ML accelerator platforms). (2) We then sample
backend configurations, conduct SP&R and collect PPA information. We next run system-level
simulation with the specified RTL and PPA information and capture the system-level metric
data (Section 5.2 describes our sampling method). (3) We use the collected PPA and system-level
metrics, along with the backend and architectural configurations, to train three backend ML
models for PPA prediction and two system-level ML models for energy and runtime prediction.
We use a two-stage model approach for ML model training and inference (see Section 5.3 for
ML models and Section 5.4 for the two-stage model approach). (4) For a given workload, we use
these trained models along with MOTPE to minimize energy and chip size while meeting power
and runtime requirements (see Section 5.5 for DSE). (5) We identify the Pareto front for energy
and area metrics, and apply Equation (3) to determine the optimal backend and architectural
configurations.

In the following subsections, we cover platforms and simulators, introduce sampling methods,
discuss various ML models, present the two-stage model, and outline our design space exploration
strategy.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:9

5.1 Demonstration Platforms and Simulators

We demonstrate our approach on the accelerator engines from four parameterizable open-source
ML hardware generators.

TABLA [26] implements non-DNN ML algorithms such as linear regression, logistic regression,
support vector machines (SVMs), backpropagation, and recommender systems.

GeneSys [9] executes DNNs using an M × N systolic array for GEMM operations such as convo-
lution, and an N × 1 SIMD array for vector operations such as ReLU, pooling, and softmax.

Axiline [9, 40] builds hard-coded implementations of small ML algorithms (e.g., SVM, logistic/
linear regression) for training and inference.

VTA [3, 28] is a DNN accelerator where a compute module includes a GEMM core for convolution,
along with a 2D array of PEs. VTA is integrated with Apache TVM [5], a deep learning compiler
stack.

Integrating system simulations with backend data. tThe simulators are integrated with
the backend analyses, where they receive PPA characteristics generated by our SP&R flow. The
simulators used in our study are obtained from the GitHub repository of the VeriGOOD-ML
project [41] and VTA hardware design stack [43]. For a specific hardware configuration point,
provided as an input, the PPA characteristics feed the simulator with data such as the clock
frequency, energy per access for each of the on-chip buffers, and dynamic and leakage power of
systolic and SIMD hardware components, or GEMM and ALU hardware components. The perfor-
mance statistics provided by the simulator are combined with these backend data from the SP&R
flow to produce end-to-end runtime, energy, and power for execution of a given ML algorithm.

5.2 Sampling Method

Sampling is a very important step for data generation. Improper sampling leads to an unbalanced
dataset, resulting in poor performance of the trained models. Moreover, sampling techniques can
help reduce the number of data points needed to train a model without degrading the performance.
In this work, we have studied three sampling techniques, including (i) Latin Hypercube sampling,
(ii) low-discrepancy sequence using Sobol, and (iii) LDS using Halton.

Latin Hypercube sampling. LHS divides the parameter space into equally spaced intervals along
each dimension and then randomly selects points in the intervals such that each interval is selected
exactly once. During the sampling process, we maximize the minimum pairwise distance of the
sampled points.

LDS using Halton. An LDS, also known as a quasi-random sequence, is a sequence of points in a
multi-dimensional space that exhibits more uniform and evenly distributed patterns, as compared
to random sequences. These sequences are generated using deterministic algorithms that carefully
distribute points across the space to minimize undesirable patterns. The Halton [30] sequence relies
on unique prime number bases to generate uniformly distributed samples.

LDS using Sobol. The Sobol [30] sequence is also an LDS that utilizes primitive polynomials and
bitwise operations to generated uniformly distributed samples. In the case of a high-dimensional
parameter space, the Sobol sequence is expected to exhibit a more uniform distribution with a
smaller sample size than the Halton sequence.

We use the scikit-optimize package [13] to generate samples for all three sampling methods.
Both LHS and LDS yield superior results compared to random sampling, particularly when deal-
ing with smaller sample sizes. One of the benefits of LHS is its ability to uniformly sample from
the parameter space with a smaller sample size than LDS. However, a limitation of LHS is that
to increase the number of samples, one needs to regenerate all the samples and cannot reuse the

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:10 H. Esmaeilzadeh et al.

previously sampled data points. This is because adding new points to existing LHS samples dis-
rupts the LHS property of maximizing the minimum pairwise distance between sampled points.
However, LDS, which generates samples from a sequence, only needs to extend the sequence to
generate new samples. This feature allows LDS to utilize previously sampled data points when the
sample size is increased. In our experiments below (Section 7), we sample backend configuration
util and ftarget for all designs, and architectural configuration size and number of cycles for Axiline
designs.

5.3 ML Models

In our framework, we employ a range of regression models. A brief description of each model is
as follows.

— Gradient Boosted Decision Trees (GBDT) utilize multiple decision trees as weak
predictors. New trees are added sequentially to minimize the loss function during the
training process.

— Random Forest (RF) also uses decision trees, but trains each tree independently using
random samples of data. The final decision is generated based on voting over a set of trees
or by averaging the predictions generated by each tree.

— Artificial Neural Network (ANN) is a biologically inspired model consisting of multiple
neuron or node layers: an input layer, one or more hidden layers, and an output layer with
single node. The output of any node is a linear transformation of the outputs from the
previous layer, followed by a non-linear or linear activation function. The single node in
the output layer generates a scalar value corresponding to one target metric. We train five
different ANN models for predicting power, performance, area, system-level runtime, and
energy, respectively.

— Stacked Ensemble uses multiple “base learner” algorithms to outperform each of the indi-
vidual base learners. Training entails (i) training of multiple base learners (e.g., RF and GBDT
models); and (ii) training of a second-level “meta learner” to find the optimal combination
of the base learners as the stacked ensemble model. Theorem 1 in Reference [17] proves
that the stacked ensemble model will asymptotically perform as well as the best learner.

— Graph Convolutional Network performs convolution operations on graphs to capture
structural dependencies and relationships inherent within the data. This is accomplished
by iteratively propagating and aggregating information throughout the graph, enabling the
model to learn from and adapt to the complex interconnected structure of the input data.

We train GBDT, RF, and ANN models using the open-source platform H2O [42]. H2O enables
fast, distributed, in-memory, and scalable machine learning-based model training. In Section 7.3,
we provide a detailed step-by-step guide on how to train GBDT, RF, ANN, and Stacked Ensemble
models. We train GCN using PyTorch [32] and PyTorch Geometric [11]. In Section 6, we provide a
detailed step-by-step guide on how to generate graphs, and in Section 7.3, we outline the process
for training the models.

5.4 Two-stage Model

Design space exploration seeks an optimal implementation of an accelerator for a specified
workload, to achieve better backend PPA and system metrics. To explore the design space more
efficiently, we pay more attention to a region of interest in the design space, i.e., the region that
contains the “optimal” implementation. Figure 3 gives an example of how to determine the ROI.
In the example, we use the Axiline platform to generate two accelerators (Design-I and Design-II)
with different configurations, to implement a recommender system algorithm. Here the size,

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:11

Fig. 3. Illustration of the region of interest (ROI). (a) Energy versus runtime. The ROI is the pink region.

(b) Runtime versus target clock frequency. Again, the ROI is the pink region. (c) Target clock frequency

versus effective clock frequency. The ROI is the region where ftarget = feffective. ROI is defined for each design

individually. Here, the ROI for Design-I and Design-II happens to be exactly the same, although this is not

always expected.

number of cycles, number of units, and bit width for Design-I are, respectively, 9, 7, 8, and 8,
while for Design-II they are 17, 4, 5, and 16. We run full SP&R flows for these two accelerators
under 21 different ftarget values, and compute corresponding energy and runtime system metrics.
Figure 3(a) shows energy versus runtime of Design-I and Design-II for different ftarget. The data
show a typical division of the design space into three regions: (i) region of runtime where we can
reduce the runtime at the cost of increasing energy; (ii) region of balance where we can achieve
lowest energy without introducing too much runtime overhead; and (iii) region of energy where
the energy will also increase when the runtime increases. In our work, we set the ROI to be the
region of balance, which is defined for each design. To visualize the ROI in terms of ftarget, we show

plots of runtime versus ftarget in Figure 3(b).2 We observe that the ROI excludes both extremely
high and low ftarget. Then, by examining feffective versus ftarget (Figure 3(c)), we further characterize
the ROI in terms of the difference between ftarget and feffective: post-routed designs tend to have
smaller negative slacks at higher ftarget and larger positive slacks at lower ftarget. Given the above,
we define our ROI in terms of the difference between ftarget and feffective, as follows:

ROI =
{
ftarget |abs

(
feffective − ftarget

)
≤ ϵ × ftarget

}
. (4)

The ROI for Axiline, VTA, and TABLA designs is identified by the data points situated between the
red and blue lines in Figure 4. In Figure 4(a), for Axiline designs, we observe that for ftarget values
between 0.4 and 0.7, many data points lie above the red line, i.e., outside the ROI. This indicates

2 We emphasize that in Figure 3, we do not compare the ROI of Design-I and Design-II but only provide these as examples

of ROI. Although Figure 3 shows identical ROI, such similarity is not typical. The ROI can vary between different designs.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:12 H. Esmaeilzadeh et al.

Fig. 4. Effective clock frequency vs. target clock frequency plot for (a) Axiline, (b) VTA, and (c) TABLA designs

on GF12 enablement. In this context, the floorplan utilization is not the same for all ftarget values; it ranges

from 0.4 to 0.9 for Axiline and 0.2 to 0.6 for TABLA, GeneSys and VTA. For more details, see Figure 7.

that some of these data points fall on the left boundary of the ROI for different Axiline designs.
Similarly, the right boundary of the ROI appears to range from 1.7 to 2.2 GHz. This exemplifies
how the ROI can vary and may have different ranges for different designs.

We include floorplan utilization as a separate knob to control chip area. We observe that
high utilization significantly impairs the outcomes of the backend P&R tool, leading to poor
PPA. Figure 4(a) presents the feffective vs. ftarget plot for the Axiline design on GF12. For ftarget

values of 1.03 and 1.33 GHz, the floorplan utilization hovers around 90%, which results in poor
postRouteOpt performance for most of the Axiline designs. Additionally, when the ftarget is very
high, the P&R tool struggles to achieve the desired performance, resulting in a poor feffective.
Conversely, when ftarget is very low, the tool yields a higher feffective than ftarget. These extreme
ftarget values are also undesirable as the outcomes from the P&R tool for these frequencies tend
to vary significantly, making them challenging to model accurately. So, these data points are
considered as outliers, since they do not correspond to relevant design points, and since their
inclusion in the training dataset deteriorates the performance of the model.

We modify the two-stage inference model proposed in Reference [10] into a two-stage model
based on the ROI definition above. The goal is to efficiently detect outliers and prevent them from
impacting the performance of the model. As shown in Figure 5, the two-stage model functions as
follows. (1) First, we generate classification labels for all training data points, each corresponding
to a different design configuration, using Equation (4) to assess whether they fall within the ROI.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:13

Fig. 5. Training and inference using the Two-stage model.

(2) Next, we train a binary classification model to identify the data points that are within the ROI.
(3) Subsequently, we train our models to predict PPA and system-level metrics, focusing only on
the data points within the ROI. (4) During inference, we use the trained classification model to
determine if the data points are within the ROI. (5) If the data points are within the ROI, then we
apply the trained backend and system-level models to predict PPA and system-level metrics; if not,
these data points are excluded. In Equation (4), ϵ is a parameter used to define the size of the ROI.
For smaller ML accelerators such as Axiline, where the deviation of the feffective from the ftarget is
generally small, we set ϵ to 0.1. For larger ML accelerators such as GeneSys, VTA, and TABLA,
where the deviation of feffective from ftarget tends to be larger, we set ϵ to 0.3.

5.5 Design Space Exploration

In our methodology, we utilize the above two-stage model for DSE of both architectural and
backend configurations. During this DSE process, for a given runtime and power constraints, our
initial step involves the identification of the Pareto front for area and energy. This is accomplished
via the MOTPE. Subsequently, the optimal configuration is selected according to a user-specified
cost function.

MOTPE-based DSE. MOTPE [31] is a sequential model-based optimization technique. It itera-
tively builds a surrogate model to predict performance and gather additional data informed by
this model. The estimator constructs distributions of good (G) and bad (B) samples, categorizing
samples based on their relative position in the objective space with respect to the current Pareto
front. Before forming these internal distributions, the algorithm collects multiple random samples.
It utilizes a non-parametric multivariate density estimation model, commonly referred to as the
Parzen window, to construct these distributions. Subsequently, the MOTPE selects the sample that
maximizes the G/B ratio, which ensures superior sampling efficiency. A significant advantage
of MOTPE is its capacity to handle both discrete and continuous-valued parameters, thereby
facilitating its application across a broad range of optimization scenarios. When conducting
DSE of ML accelerators, backend parameters such as floorplan utilization and target clock
frequency are continuous in nature, whereas architectural parameters such as the number of
processing units and processing elements are discrete. This makes the MOTPE-based optimization
well suited for our DSE problem. For a given workload, runtime, and power constraints, we
use the MOTPE-based DSE approach to find the Pareto front for area and energy. Utilizing
the cost function provided in Equation (3), we then select the best design configuration of
the ML accelerator. Identifying the Pareto front allows us to understand the tradeoffs among
different metrics, which is independent of user-specified weight in the cost function (i.e., α in
Equation (3)).

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:14 H. Esmaeilzadeh et al.

Fig. 6. (a) Logical hierarchy graph generation flow. (b) Example of logical hierarchy graph of an Axiline design.

Here, nodes with the same color correspond to the building blocks with the same functionality. (c) Details

of node features.

6 GRAPH GENERATION

ML accelerators exhibit a high degree of modularity in their design. For different architectural
configurations, the ML hardware generators leverage various building blocks to generate the
RTL netlist. We extract information about these building blocks and their connections from the
RTL netlist. A graph representation of the connection between these building blocks is utilized
in training our GCN models, which helps enhance model performance. For the GCN model,
we extract the LHG from the RTL netlist. The specifics of the logical hierarchy graph are as
follows.

Logical hierarchy graph. As the name suggests, the LHG represents the logical hierarchy tree of
the design for a given architectural configuration. Each module instantiation in the RTL netlist is
mapped to a node in the LHG. Each undirected edge connects a parent module to its sub-module.
All the leaf modules are the building blocks of the ML hardware generator. Figure 6(a) depicts the
flow of generating an LHG for a given architectural configuration.

— We first generate the RTL netlist for a given architectural configuration, using an RTL
generator such as VTA, GeneSys, TABLA, or Axiline.

— Next, we transform the RTL netlist into a structural netlist, referred to as a generic netlist,
using Cadence Genus 21.1.

— Using Pyverilog [36, 38], we generate the abstract syntax tree (AST) of the generic netlist.
— From the AST, we extract node features and generate the LHG using Algorithm 1.

The generic netlist serves as a structural representation of the RTL netlist, composed of Verilog
primitives like or , and , and inv for combinational logic, as well as dedicated modules such as
flip-flops and latches for sequential logic. We generate and parse the AST of the generic netlist
using Pyverilog [36, 38]. Algorithm 1 displays the detailed steps of LHG generation, as follows:

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:15

ALGORITHM 1: Generate Logical Hierarchy Graph from AST.

Input: AST, TopModuleName

Output: Logical hierarchy graph G

1 Parse AST using Pyverilog and create a list of unique modules

2 Extract features for each module and create a reference node list

3 Update the list of child nodes in the reference node list

4 G ← Empty Graph; id ← 0; pid ← −1

5 AddNodeToGraph(refNode of TopModule, G, pid , id)

6 return G
Procedure: AddNodeToGraph

Input: refNode, G, pid , id
Output: id – is the node count of the updated graph G

1 G .addNode(id, re f Node)

2 node_id ← id ; id ← id + 1

3 if pid � −1 then

4 G .addEdдe(pid,node_id)

5 end

6 for subModuleNode in re f Node .subModuleList do

7 id ← AddNodeToGraph(subModuleNode,G,node_id, id)

8 end

9 return id

— Lines 1 and 2 generate a list of unique modules from the input AST, extracts features for each
module and creates a re f Node list. These features include the counts of input and output
signals, the average number of input and output bits, the count of combinational cells, flip-
flops, memories, and the average number of inputs per combinational cell.

— Line 3 updates the name of submodules, listing them as child nodes in the re f Node list.
— Lines 4–6 initialize an empty graph, then the AddNodeToGraph procedure is used to create

the LHG for a given TopModuleName .

The details of AddNodeToGraph procedure is as follows:

— Lines 1–5 add a node to the graph based on the input re f Node . If the re f Node is not the
top module, then the procedure also adds an edge to connect it to its parent node.

— Lines 6–8 add all the subModuleNode of the input re f Node to the graph.

The advantage of using a generic netlist instead of the RTL netlist is that we can directly extract the
number of combinational cells and the flip-flop count for each module, which is not possible with
the AST generated directly from the RTL. During the synthesis process, the RTL netlist is mapped
to a specific design library based on the given Synopsys Design Constraints. In contrast, during
the generic netlist generation process, the RTL netlist is transformed to a structural format. So,
the time taken to generate the generic netlist is significantly less than the synthesis runtime. For
example, for a GeneSys design with 900K instances, the synthesis process takes 222 min, whereas
the generic netlist generation process only takes 72 min.

Once we have all the node features, we instantiate the graph and utilize the AddNodeToGraph

procedure to create the LHG. The AddNodeToGraph procedure initially adds the node corre-
sponding to the top module, then uses depth-first search to add the node corresponding to the
submodule. When adding the node corresponding to a submodule, it also creates an edge between
the parent module and the submodule to ensure connectivity. Figure 6(b) shows the logical
hierarchy graph of an Axiline design.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:16 H. Esmaeilzadeh et al.

The number of nodes in an LHG, even for a very large ML accelerator with millions of instances,
amounts to only a few thousand. For example, a GeneSys design with 900K instances has around
3,000 nodes in its LHG graph. The LHG graph represents the logical hierarchy tree, so the number
of edges is one less than the number of nodes. Therefore, a high instance count does not pose
any hindrance. Moreover, we opt to use graph convolutional layers such as GCNConv and Graph-

Conv, over simple GNN layers such as GraphSAGE, because graph convolutional layers possess
the capability to extract global features from the graph. Considering that the node count of the
LHG is relatively low, on the order of thousands, the use of graph convolutional layers enables the
efficient training of our models. We can thus navigate the large-scale structure of ML accelerators
while maintaining a computationally tractable model. In Section 7.3, we include the details of the
training process for the GCN model, and in Section 8, we discuss the performance of the model.

7 EXPERIMENTAL SETUP

In this section, we describe our experimental setup, which encompasses (i) the method of data
generation; (ii) the separation of data into training and testing sets for the prediction of PPA along
with system-level metrics for unseen backend and unseen architectural configurations; and (iii) the
detailed steps involved in different model training procedures.

7.1 Data Generation

We divide the data generation process into three substeps: (i) sampling of architectural parameters
and RTL netlist generation; (ii) sampling of backend parameters; and (iii) PPA and system-level
metric data generation.

Sampling of architectural parameters and RTL netlist generation. All platforms, namely,
TABLA, GeneSys, VTA, and Axiline, are parameterizable, with corresponding tunable architectural
parameters shown in Table 1. We use a variety of strategies to generate multiple configurations
for each platform. Prior works on DNN accelerators based on systolic arrays [14, 29] and vector
dot-products [3] report architectural parameters such as array dimension, data bitwidth, on-chip
buffer size and off-chip bandwidth. For GeneSys and VTA, we use such insights from prior works
to guide our choice of architectural parameters. We proportionally scale buffer size and bandwidth
parameters based on array dimensions. For each array dimension, we select other architectural
parameters by changing ratios of the buffer sizes, to to exercise various data reuse tradeoffs in
DNNs. For example, a larger WBUF facilitates more weight reuse while a larger OBUF biases
a design toward more on-chip reduction of the partial sums. For TABLA, we explore multiple
configurations using variations of the structures shown in Reference [26]. For Axiline, we use
Latin Hypercube Sampling for integer architectural parameters, such as dimension and number of
cycles, thus achieving uniform coverage in each dimension, and we simply enumerate all the com-
binations for all other remaining architectural parameters. In Section 8.1, we conduct a detailed
analysis of the impact of various sampling methods and sample sizes on the prediction of unseen
architectural configurations, specifically for the Axiline design. In Section 8.3, we show that our
model underperforms when the testing dataset falls outside the range of the training dataset.
Therefore, it is essential to ensure that the range of training dataset covers the testing dataset.

Sampling of backend parameters. As mentioned in Section 4, we incorporate the floorplan
utilization as another backend parameter alongside the target clock frequency. This allows for
the prediction of chip area. If we were to separately sample the target clock period and floorplan

3The benchmark parameter, used by TABLA and Axiline to decide the target ML algorithm, is not an architectural

parameter.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:17

Table 1. Architectural Parameters and Benchmarks for Four Design Platforms

Platforms Feature Candidate Values Description

TABLA

PU 4, 8 # processing units

PE 8, 16 # processing engines in each PU

bitwidth 8, 16 bit width of internal bus

input bitwidth 16, 32 bit width of IO bus

benchmark3 recommender systems
ML algorithms

backpropagation

GeneSys

weight data width 4 – 8 (integer) bit width of weight data (bit)

activation data width 4 – 8 (integer) bit width of input activation data (bit)

accumulation width 32 (integer) bit width of output accumulation (bit)

WBUF capacity 16 – 256 (integer) size of weight buffer (KB)

IBUF capacity 16 – 128 (integer) size of input buffer (KB)

OBUF capacity 128 – 1024 (integer) size of output buffer (KB)

SIMD VMEM capacity 128 – 1024 (integer) size of vector memory in VMEM (KB)

WBUF AXI data width 64 – 256 (integer) AXI bandwidth for the WBUF (bits/cycle)

IBUF AXI data width 128 – 256 (integer) AXI bandwidth for the IBUF (bits/cycle)

OBUF AXI data width 128 – 256 (integer) AXI bandwidth for the OBUF (bits/cycle)

SIMD AXI data width 128 – 256 (integer) AXI bandwidth for the VMEM (bits/cycle)

VTA

weight data width 8 (integer) bit width of weight data (bit)

activation data width 8 (integer) bit width of input activation data (bit)

accumulation width 32 (integer) bit width of output accumulation (bit)

WBUF capacity 16 – 256 (integer) size of weight buffer (KB)

IBUF capacity 16 – 128 (integer) size of input buffer (KB)

OBUF capacity 32 – 512 (integer) size of output buffer (KB)

off-chip bandwidth 64 – 512 (integer) total external bandwidth (bits/cycle)

Axiline

benchmark3
SVM, linear regression,

ML algorithmslogistic regression,

recommender systems

bitwidth 8, 16 bit width for computation units

input bitwidth 4, 8 bit width for initial inputs

size 5 – 60 (integer)
dimension of inner product stage or

SGD stage (both are the same)

num of cycles 1 – 25 (integer)
number of cycles required for stages

1 or 3 to process one input vector

utilization and enumerate all configurations, then it would significantly inflate the total number of
configurations and be highly inefficient. Thus, we employ LHS to sample backend configurations.
The performance of a chip is directly proportional to the clock frequency, while it is inversely
proportional to the clock period. So, we sample from the target clock frequency space during
backend parameter sampling. We then convert the frequency to the target clock period for the
SP&R data generation. Figures 7(a) and 7(b) show the backend configurations sampled for Axiline,
and for TABLA, GeneSys and VTA designs. We sample 30 backend configurations (ftarget, util )
for training and 10 for testing. We conduct ftarget sweeps and set the ftarget range to ensure that
the worst slack is less than 200 ps and more than −200 ps. For the util sweep, we set the upper
boundary at the highest floorplan utilization that leads to a DRC count less than 100, and set the
lower boundary at a difference of 0.4 to 0.5 from the upper boundary. Figure 4 presents how feffective

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:18 H. Esmaeilzadeh et al.

Fig. 7. Backend configurations sampled using Latin hypercube sampling. Blue dots correspond to the train-

ing dataset and red dots correspond to the testing dataset.

varies with ftarget for Axiline, TABLA and VTA designs. Based on the results of these sweeps, for
Axiline, we sample floorplan utilization from 40% to 90% and target clock frequency from 0.4 to
2.2 GHz. For the macro-heavy TABLA, GeneSys and VTA designs, we sample floorplan utilization
from 20% to 60% and target clock frequency from 0.2 to 1.5 GHz.

PPA and system-level metric data generation. After sampling the architectural configurations,
generating the RTL, and sampling the backend configurations, we run commercial synthesis,
place and route, and collect post-route optimization PPA metrics. We execute the logic synthesis
using Synopsys Design Compiler R-2020.09, generating the synthesized netlist. We then carry out
place and route using Cadence Innovus 21.1 to capture the post-route optimization PPA metrics.
All of our tool scripts are available in the VeriGood-ML GitHub repository [44]. For macro-heavy
designs, we employ Innovus’ concurrent macro placer to automatically place all the macros. We
conduct all of our studies using the GLOBALFOUNDRIES 12LP (GF12) enablement. For Axiline,
we also generate PPA metrics on the open enablement NanGate45 [45] to demonstrate the adapt-
ability of our framework across different platforms. Once we have the post-route optimization
database, we run simulations to capture the system-level runtime and energy metrics. Here, we
set the workloads to be the widely-used ResNet-50 and MobileNet-v1 networks for the GeneSys
and VTA designs, respectively. The workload of each TABLA or Axiline design is determined by
its benchmark parameter (see Table 1). For the training and testing of the ML model, we generate
around 9800 data points for Axiline across both NG45 and GF12 enablements, and approximately
400, 320, and 190 data points for TABLA, VTA, and GeneSys, respectively.

7.2 Dataset Separation

After data generation, we divide the data into training and testing datasets. Our model is trained
and tested using two distinct types of datasets, categorized based on backend and architectural
configurations. These are referred to as the unseen backend dataset and the unseen architectural

dataset. In the subsequent subsections, we first explore the significance of having a separate vali-
dation dataset rather than solely depending on cross-validation. We then delve into the details of
the unseen backend dataset and the unseen architectural dataset.

Preference for validation dataset over cross-validation. We find that one of the primary
causes of the poor performance of the ANN model in our previous study [10] is related to the use of
cross-validation. Using cross-validation does not necessarily ensure adequate coverage of the de-
sign space, despite the fact that the complete training dataset has this property. This leads to a bias

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:19

in the model that develops during the training process, which results in high μAPE and MAPE. As
mentioned in Section 7.2, by separately sampling a validation dataset that provides a thorough cov-
erage of the design space, we achieve a substantial improvement in the performance of the model
on the testing dataset. During hyperparameter tuning, we employ the validation dataset to select
the best hyperparameters and then deploy them on the testing dataset for evaluation. We apply
this approach to the model training of Axiline designs. However, for TABLA, GeneSys, and VTA
designs, generating the RTL netlist for different architectural configurations requires significant
manual effort. Although using a validation dataset offers additional benefits, due to the substantial
manual effort required, we have chosen to employ fivefold cross-validation for these designs.

Unseen backend dataset. As the name implies, the training and testing datasets encompass en-
tirely different sets of backend configurations, though the architectural configurations within both
datasets remain the same. We sample 30 data points for training and 10 for testing, making sure
there is no overlap between any of these datasets. This distinct sampling helps to ensure coverage
of the entire backend design space. Figure 7 displays the backend configurations sampled for Ax-
iline, TABLA, GeneSys and VTA for training, and testing with GF12 enablement. For Axiline, an
additional 10 data points are sampled for model validation during the training process.

Unseen architectural dataset. In this case, the training and testing datasets comprise entirely of
different sets of architectural configurations, while the backend configurations remain consistent
across both datasets. Just as with unseen backend configurations, we ensure no overlap between
the training and testing datasets. For the Axiline design, the training dataset contains 24 config-
urations, while the validation and testing datasets each consist of 10 configurations. Again, we
separately sample all three (i.e., training, validation, and testing) datasets using LHS to help en-
sure a coverage of each dataset over the architectural design space. Section 8.1 discusses in detail
the impact of sampling training configurations using different methods for varying sample sizes.

For Axiline, architectural configurations are sampled separately for training and testing, en-
suring that both datasets uniformly cover the design space. Effective performance of the trained
model on the test dataset suggests that the model will be reliable during DSE. However, for TABLA,
GeneSys, and VTA, the substantial manual effort required to generate RTL necessitates a random
division of the dataset into a 4:1 training-to-testing ratio, based on architectural configurations.

7.3 Model Training

In this work, we train and evaluate a total of 200 ML models, spanning four platforms (Axiline,
TABLA, GeneSys, and VTA), five metrics (power, performance, area, energy, and runtime), five
types of machine learning models (GBDT, RF, ANN, Stacked Ensemble, and GCN) and two datasets
(unseen backend and unseen architectural). We tune the hyperparameters of each model except
GCN, using the H2O package and a random discrete search method. Table 2 presents the hyperpa-
rameters of each machine learning model type that we tune, and for other parameters, we use the
default values unless mentioned otherwise. In the following subsections, we delve into the detailed
steps of hyperparameter tuning for each model.

Training of GBDT and RF. We use H2O and adopt the same strategy to train both the GBDT and
RF models. Hyperparameter tuning using H2O random discrete [4] grid search is executed in two
stages. In the first stage, we set the number of trees to a very large value (500 for RF and 300 for
XGB) and tune the remaining hyperparameters. From the best hyperparameter configuration, we
find the best max_depth to narrow down the search space for max_depth. For RF, we also reduce
the search space formtries . The range formax_depth is reduced to bestmax_depth±3. For RF, we
retain themtries value determined in the first stage. In the second stage, we conduct another round
of hyperparameter search with the updated search space formax_depth in both RF and GBDT and

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:20 H. Esmaeilzadeh et al.

Table 2. Tuned Hyperparameters for GBDT, RF, and ANN

Model Parameters Type Range Description

GBDT
n_estimator integer [20–500] # gradient boosted trees

max_depth integer [2–20] maximum tree depth

RF

n_estimator integer [50–1000] # decision trees in the forest

mtries enum [1–total feature count] # features considered for best split

max_depth integer [5–100] max tree depth

ANN

num_layer integer [3–9] # hidden layers

num_node enum [8, 16, 32] nodeCount input in Algorithm 2

act_func enum [Tanh, Rectifier, Maxout] activation function

GCN

conv_layer enum [GraphConv, GCNConv] type of graph convolutional layer

num_conv_layer integer [2–6] # convolutional layers

num_fc_layer integer [2–9] # fully connected layers

batch_size integer [16, 32, 64] training batch size

lr float [10−2–10−5] learning rate

formtries in RF. During the random discrete search process, we choose the model with the lowest
Root-mean-square Error (RMSE), computed using Equation (5) on the validation dataset of size
n. In this equation, yactual represents the actual value of the target metric, and ypr edicted is the
value predicted by the trained model. This optimized model is then applied to the testing dataset.
During hyperparameter tuning with random discrete grid search, we set the wall time to 300 s for
each stage. Therefore, the overall model training time of the GBDT and RF models is limited to 600
s or less:

RMSE =

√√
1

n

n∑
i=1

(yactual − ypr edicted )2. (5)

Training of ANN. For the ANN model, determining an effective hidden layer configuration is cru-
cial. In previous work [10], hidden layer configurations are generated such that all hidden layers
have identical node configurations, which leaves further room for improvement. The key idea in
our present work is to map the features to a higher dimensional space and then gradually reduce
them to a smaller dimension. This allows the model to extract complex representations and make
the data more separable. To achieve this, we apply Algorithm 2 to create the hidden layer config-
urations. In Algorithm 2, nodeCount represents the count of nodes in the first hidden layer, and
hLayerCount denotes the total number of hidden layers. The values minP and maxP are used to
constrain the minimum and maximum number of nodes in the hidden layer, respectively, to 2minP

and 2maxP :

— Lines 2 and 3 calculate expMaxP . The value 2expMaxP represents the expected maximum
number of nodes in the hidden layer.

— Lines 4–6 update expMaxP if the expected maximum node count is fewer than the number
of input nodes.

— Lines 7–12 determine, respectively, the number of layers where the node count will increase,
decrease, and remain constant at 2expMaxP .

— Lines 13–17 calculate the node count for each layer and return the layer configuration.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:21

ALGORITHM 2: Generation of hidden layer configurations.

Input: nodeCount, hLayerCount, minP = 2, maxP = 7

Output: layer – ith element of the list is the number of nodes in the ith hidden layer.

1 Function getNodeConfig(nodeCount, hLayerCount, minP, maxP):

2 P = ceil(loд2(nodeCount);

3 expMaxP =min((hLayerCount +minP + P)/2,maxP);

4 if expMaxP ≤ P then

5 expMaxP = P + 1;

6 end

7 incrP = expMaxP − P ;

8 decrP =min(expMaxP −minP + 1,hLayerCount − incrP);

9 sameP = 0;

10 if hLayerCount > incrP + decrP then

11 sameP = hLayerCount − incrP − decrP ;

12 end

13 layer = [];

14 Add 2P to layer incrP times while increasing P by 1;

15 Add 2P to layer sameP times;

16 Add 2P to layer decrP times while decreasing P by 1;

17 return layer ;

Our algorithm consistently uses a power of two for the node count in each hidden layer, which
is more resource-efficient. We employ the parameter values provided in Table 2 to generate all the
configurations for the hidden layers. We perform the hyperparameter search for these hidden layer
configurations and the set of activation functions presented in Table 2. During model training, we
leverage adaptive learning rates. The model exhibiting the lowest RMSE value (Equation (5)) on the
validation dataset is selected. We carry out this hyperparameter tuning of ANN models using the
H2O random discrete [4] grid search. The selected model is then applied to the testing dataset for
evaluation. During hyperparameter tuning, we use the default batch size of 1 and set the number of
epochs to 500. The size of the training dataset is on the order of several thousands, so employing a
batch size of 1 does not slow down the training process. We implement an early stopping criterion:
if there is no improvement in the validation dataset for 20 consecutive iterations, the training
process is stopped. During the hyperparameter search, the wall time is set to 600 s. Therefore, the
overall training time of the ANN model is limited to 600 s or less.

Training of Stacked Ensemble. We employ the stacked ensemble model of H2O, where we use
the trained models of GBDT, RF and ANN as base learners, with linear regression acting as meta
learner. Here, only the top seven models from the hyperparameter search process of GBDT, RF,
and ANN are chosen as the base learners.4 This approach ensures a sufficient degree of variation
in the selection of base learners, while filtering out the poorly performing models.

Training of GCN. We have implemented the GCN model using PyTorch and PyTorch Geomet-
ric. The GCN architecture used to train our model is depicted in Figure 8. For both the graph
convolutional layers and the fully connected layers, we use the ReLU activation function. The con-
volutional layers generate node embeddings, and we then employ the GlobalMeanPool function
that computes the average of all the node embeddings, i.e.,

4Our background studies empirically suggest that choosing the top seven models gives the best results.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:22 H. Esmaeilzadeh et al.

Fig. 8. Configuration of the GCN architecture used for backend PPA and system-metric prediction.

Fig. 9. t-SNE plot of the graph embedding generated by the trained GCN models for (a) TABLA, (b) VTA,

and (c) Axiline designs. Here, the data points highlighted with same color represent the same architectural

configuration, but with different backend configurations.

GlobalMeanPool(X) =
1

N

N∑
i=1

Xi . (6)

The GCN models incorporate not only architectural and backend features but also extract
features from LHGs. Given that ML accelerators are inherently modular and have shared building
blocks, this enables the GCN models to produce more insightful embeddings for PPA and
system-level metric predictions. Figure 9 shows the t-SNE plot of the graph embeddings generated
for TABLA, VTA, and Axiline designs. Here, different colors are used to plot graph embeddings
of different architectural configurations. In the t-SNE plot, we see clear distinctions between
different architectural configurations. Since the PPA and system-level metrics differ for these
configurations, it indicates that the GCN models are well-trained.

Following the generation of graph embeddings, we input them into the fully connected layer to
produce the final predictions. The configuration of the fully connected layer is generated using the
дetNodeConf iд function, with the graph embedding size and the number of fully connected layers
serving as inputs, corresponding to nodeCount and hLayerCount , respectively. While training our
model, we employ the mean absolute percentage error (μAPE) loss, defined as

μAPE =
1

n

n∑
i=1

				yactual − ypr edicted

yactual

				 × 100. (7)

Throughout the training of the GCN model, we utilize the Adam [16] optimizer with decaying
learning rate; decaying factor is set to 0.7 with a patience of 5. We also implement early stopping

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:23

if no improvement in the model’s performance on the validation dataset is observed for 20 consec-
utive epochs. Upon completion of the training, the model exhibiting the lowest validation error is
chosen for testing on the test dataset.

We employ the HyperOptSearch function of Ray Tune [23] to automatically optimize various
parameters such as the type of graph convolutional layer, the number of convolutional layers, the
number of fully connected layers, the batch size, and the learning rate as shown in Table 2. The
best configuration is determined based on the following loss function,5 which captures both the
average and worst-case performance:

loss = μAPE + 0.3 ×MAPE. (8)

During the training of our GCN model, we set the number of epochs to 400. However, most of
the runs complete earlier due to the early stopping mechanism. We have observed that with 100
samples, the total runtime of Ray Tune is approximately 1,800 s.

8 EXPERIMENTAL RESULTS

In this section, we present our experimental results. First, we show the performance of our model
using various sampling methods and sample sizes. We then demonstrate the performance of the
model for unseen backend and architectural configurations. Next, we study our model performance
for limited training dataset. Finally, we utilize the trained model for the DSE of Axiline and VTA
designs.

8.1 Assessment of Sampling Methods and Sample Sizes

The selection of an appropriate sampling method and sample size is crucial, as a poor choice may
result in non-uniform sampling. This can subsequently lead to the development of biased models
or necessitate a larger volume of data points to achieve the desired performance. To identify the
appropriate sampling method and sample size, we train our models using data obtained from
various sampling techniques and a range of sample sizes. Figure 10 presents the design configu-
rations of Axiline generated using LHS, Sobol sequence, and Halton sequence. Subsequently, we
assess the performance of the trained models on unseen test configurations, capturing the mean
absolute percentage error (μAPE) and maximum absolute percentage error (MAPE). Additionally,
we compute standard deviation of APE (STD APE) on the test configurations to measure stability
of model performance on unseen configuration across the architectural parameter space. A
smaller value of STD APE indicates stable model performance on the unseen configurations.

Table 3 shows the performance of different ML models for Axiline-SVM on the testing dataset
when the training data is sampled using Latin Hypercube Sampling, Sobol Sequence, and Halton
Sequence with sample sizes of 16, 24, and 32. For a given sample size and machine learning model,
we use bold font to indicate the result of the top-performing sampling method. From Table 3, we
make the following observations.

— Consistent with expectations, across all sampling methods, an increase in sample size leads
to a decrease in both μAPE and STD APE, thus indicating an improvement in model perfor-
mance.

— When considering smaller sample sizes, the GCN models demonstrate superior results in
terms of both STD APE and MAPE in comparison to other models.

— In 12/24 instances, LHS yields superior results in terms of μAPE, and in 10/24 instances,
in terms of both MAPE and STD APE, in comparison to other sampling techniques. Over-

5In our experiments with the GCN model, the value of μAP E varies within the range [0–20], whereas MAP E varies in

the range [0–60]. To ensure both μAP E and MAP E on the same scale, we use a weight of 0.3 (20/60 ≈ 0.3) for MAP E .

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:24 H. Esmaeilzadeh et al.

Fig. 10. Axiline architectural configurations (size and number of cycles) sampled using (a) Latin Hypercube

Sampling, (b) Sobol Sequence, and (c) Halton Sequence. Blue, cyan, and red dots, respectively, denote training,

validation, and testing configurations.

all, LHS demonstrates better performance than either the Sobol or Halton methods. Conse-
quently, we choose to use LHS in experiments reported below.

— The model’s performance, across all metrics, does not exhibit substantial improvements
when the sample size is increased from 24 to 32. Hence, for the experiments reported be-
low, we maintain a sample size of 24.

To summarize: in the remaining portion of our experiments, we employ LHS with a sample size of
24 to generate the training dataset for Axiline designs.

8.2 ML Model Assessment

We now present the results of our model’s performance for predicting backend PPA metrics, and
system-level runtime and energy for both unseen backend and architectural configurations, over
a set of benchmark workloads. Our performance evaluation is based on μAPE, MAPE, and STD
APE. The latter helps us understand how consistently our model performs on the testing dataset.

Results for unseen backend configurations. Table 4 presents the performance of the ML model
for unseen backend configurations in predicting post-SP&R PPA and system-level metrics for
TABLA, Genesys, VTA, and Axiline designs, implemented on GF12 and/or NG45. For the ROI
classification task, all models for the GF12 implementation achieve at least 96% accuracy and an
F1 score of 0.97. For the Axiline NG45 implementation, all models achieve at least 94% accuracy
and an F1 score of 0.96. These results demonstrate the excellent performance of our models in

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:25

Table 3. ML Model Performance on Unseen Architectural Configurations for Different Sampling

Methods and Sample Sizes

Sampling Details
ML Model

Power System-Energy

Method Size μAPE STD APE MAPE μAPE STD APE MAPE

LHS

16

GBDT 20.37 13.14 84.16 32.65 25.68 88.69

RF 17.63 10.01 57.00 36.58 23.28 78.84

ANN 2.67 1.31 23.02 4.36 2.95 28.13

GCN 2.96 0.45 15.89 3.06 0.99 13.92

24

GBDT 13.20 8.07 58.63 15.25 9.92 65.02

RF 14.76 12.29 84.38 14.38 12.07 68.17

ANN 1.80 0.54 15.83 3.44 2.26 21.73

GCN 3.00 0.91 15.38 2.71 0.74 16.21

32

GBDT 13.61 6.07 59.70 9.75 6.69 48.34

RF 12.06 6.73 44.10 21.88 20.00 84.68

ANN 2.03 0.70 13.24 4.00 3.65 31.51

GCN 2.57 0.70 15.99 2.20 0.66 19.92

Sobol

16

GBDT 18.02 15.64 72.16 28.19 16.12 82.50

RF 22.58 15.07 75.50 39.63 15.15 85.97

ANN 3.18 1.52 20.67 5.16 2.15 24.11

GCN 3.24 0.94 18.03 3.32 0.87 22.39

24

GBDT 14.31 10.65 80.92 34.14 33.93 99.20

RF 18.32 13.78 73.92 29.41 19.15 89.63

ANN 2.70 1.31 27.40 5.19 2.45 22.21

GCN 2.51 1.05 15.89 2.62 0.69 15.85

32

GBDT 14.95 9.98 37.90 21.45 16.52 34.89

RF 16.06 12.74 33.85 25.84 27.19 46.02

ANN 2.39 1.00 25.07 2.59 1.46 21.31

GCN 2.58 0.72 18.03 2.14 0.72 18.87

Halton

16

GBDT 19.28 15.32 80.90 48.54 43.57 85.08

RF 21.46 18.24 88.02 49.52 79.62 85.01

ANN 4.07 2.57 37.25 9.22 8.23 60.09

GCN 3.81 1.46 18.38 4.31 1.30 18.38

24

GBDT 12.80 7.80 69.04 26.27 16.46 79.35

RF 13.15 10.63 49.89 20.57 12.01 61.67

ANN 1.94 0.57 13.31 3.01 2.50 32.13

GCN 2.65 0.40 17.07 2.51 0.71 16.38

32

GBDT 8.88 3.80 32.64 27.48 24.46 95.76

RF 11.46 7.65 40.66 21.48 13.39 58.25

ANN 2.27 0.59 21.03 2.44 1.08 18.07

GCN 2.74 0.58 19.73 2.71 0.84 15.98

Here, the standard deviation of AP E (STD AP E) represents the variation in AP E across all different test

configurations. A smaller value of STD AP E indicates stable performance on unseen architectural configurations.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:26 H. Esmaeilzadeh et al.

Table 4. Performance of ML Models for Unseen Backend Configurations

Design ML Model
Performance Power Area System-Energy System-Runtime

μAPE MAPE μAPE MAPE μAPE MAPE μAPE MAPE μAPE MAPE

TABLA

GF12

Ensemble 2.82 11.00 2.28 9.51 1.25 6.33 0.93 3.53 3.84 14.55

GCN 2.75 11.56 2.18 8.94 0.54 5.64 0.93 5.39 3.03 11.82

GeneSys

GF12

Ensemble 8.38 24.36 6.45 22.02 1.00 3.04 1.80 5.37 6.45 17.86

GCN 6.00 20.59 7.28 15.81 0.49 1.30 1.80 5.11 5.83 15.51

VTA

GF12

Ensemble 2.79 14.57 2.67 11.94 1.15 4.35 2.36 10.43 4.07 12.04

GCN 2.16 12.21 2.18 7.77 0.66 4.02 2.46 6.92 2.31 8.53

Axiline

GF12

Ensemble 0.70 8.50 2.44 28.53 1.46 20.99 9.15 95.32 1.05 8.30

GCN 3.06 49.65 1.52 22.69 1.82 16.09 2.68 37.83 1.39 25.56

Axiline

NG45

Ensemble 3.15 23.61 7.68 54.21 1.39 8.81 8.91 75.83 5.16 31.31

GCN 4.74 36.25 5.19 29.98 3.03 13.48 4.97 25.07 4.59 55.06

Table 5. Performance of ML Models for Unseen Architectural Configurations

Design ML Model
Performance Power Area System-Energy System-Runtime

μAPE MAPE μAPE MAPE μAPE MAPE μAPE MAPE μAPE MAPE

TABLA

GF12

Ensemble 3.68 32.51 4.11 17.11 3.99 16.05 4.62 18.63 6.03 24.10

GCN 5.79 21.74 5.34 14.00 3.76 12.81 3.93 13.80 5.20 23.63

GeneSys

GF12

Ensemble 6.32 14.82 7.26 15.23 2.75 8.09 11.96 19.78 6.28 20.27

GCN 6.97 13.11 5.39 15.10 2.12 4.08 4.32 8.88 7.65 17.81

VTA

GF12

Ensemble 2.99 12.58 11.19 28.99 6.65 17.01 9.10 18.41 2.87 10.50

GCN 2.60 9.67 2.85 12.90 2.15 9.51 4.07 13.76 3.67 9.87

Axiline

GF12

Ensemble 0.61 6.48 2.55 22.45 1.31 5.68 7.17 47.20 1.29 7.74

GCN 2.92 28.74 2.86 29.34 1.88 9.82 2.34 29.21 2.98 2971

Axiline

NG45

Ensemble 3.33 27.29 5.97 48.34 2.81 17.25 7.21 49.81 4.75 22.63

GCN 4.57 35.68 5.55 36.38 3.77 16.26 12.88 86.2 5.85 51.21

identifying whether data points belong to the ROI. In Table 4, the best-performing model based
on μAPE for each design and each metric is highlighted in bold. Based on this table and for these
models, we make the following observations.

— The best-performing ML model achieves a μAPE of less than 6.5% and a MAPE of less than
30% for PPA prediction. For Axiline-NG45, the system-level energy prediction using the GCN
model yields the highest MAPE. Upon investigating the model, we find that the STD APE
on the testing dataset is 4.81.

— The best-performing ML model achieves a μAPE of less than 5% and aMAPE of less than 38%
for system-level metric prediction. For Axiline-NG45, the system-level runtime prediction
using the ensemble model yields the highest MAPE. Upon investigating the model, we find
that the STD APE on the testing dataset is 4.18.

As shown in Figure 7, we sample our test dataset so that it covers the design space uniformly.
High accuracy and low μAPE on the test dataset suggests that our training dataset is large enough.
Table 6 in Appendix A details the performance of GBDT, RF, and ANN models for unseen backend
configurations.

Results for unseen architectural configurations. Table 5 shows the performance of the ML
model for unseen architectural configurations in predicting post-SP&R PPA and system-level met-
rics for TABLA, Genesys, VTA, and Axiline designs, implemented on GF12 and/or NG45. For the
ROI classification task all the models for GF12 implementation achieve at least 95% accuracy and

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:27

Fig. 11. Sampled train, validation, and test data points for extrapolation experiment. Here, size and number

of cycles are the architectural parameters for Axiline design.

0.97 F1 score. This indicates that models are performing very well in determining whether the data
points belong to the ROI. In Table 5, the best-performing model based on μAPE for each design and
each metric is highlighted in bold. Based on this table and for these models, we make the following
observations.

— The best-performing ML model achieves a μAPE of less than 7% and a MAPE of less than
37% for backend PPA prediction. For Axiline-NG45, the power prediction using the GCN
model yields the highest MAPE. Upon examining the model, we find that the STD APE on
the testing dataset is 4.49.

— The best-performing ML model achieves a μAPE of less than 8% and a MAPE of less than
50% for system-level metric prediction. For Axiline-NG45, the system-level energy prediction
using the Ensemble model yields the highest MAPE. Upon investigating the model, we find
that the STD APE on the testing dataset is 7.07.

For some unseen architectural configurations, we observe MAPE values higher than 30%. How-
ever, further investigation reveals smaller standard deviation values for the APE. This indicates
that our model delivers reliable results for most of the data points. Table 7 in Appendix A details
the performance of GBDT, RF, and ANN models for unseen architectural configurations. We also
observe that for both unseen backend and unseen architectural configuration datasets, the GCN
model outperforms other models in most scenarios. In instances where it is not the best model, it
still yields results very similar to those of the best-performing model.

8.3 Effect of Limited Training Dataset

We have additionally studied the performance of our model in terms of extrapolation. To put it
more precisely, we study how well our model performs when the test data points fall outside the
range of the training dataset. For this experiment, we sample architectural configurations of the
Axiline design as displayed in Figure 11, where the blue, red, and cyan data points correspond to
training, testing, and validation data, respectively. For each architectural configuration, we run
30 SP&R jobs to prepare the training, testing, and validation datasets. We observe that the model
performs poorly on the validation dataset and produces similar poor results for the testing dataset,
confirming the limitations of the ML model we use for dataset extrapolation.

However, our training dataset covers the architectural design space for Axiline and backend de-
sign space for all accelerators, including GeneSys, VTA, TABLA, and Axiline. The count of features
handled by the Axiline design is computed as num_cycles × size . The Axiline designs are expected
to handle up to 800 features [41] and our sample space already covers up to 900 features. As seen in
Figure 4, the feffective does not change for higher ftarget, indicating that we have effectively covered

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:28 H. Esmaeilzadeh et al.

Fig. 12. Design space exploration of the Axiline-SVM designs. (a) Energy, runtime, and area metrics of the

explored data points. Data points highlighted in red fail to meet the ROI, power, and runtime criteria. (b) Area

vs. energy plot for the explored data points. Data points highlighted in blue belong to the Pareto front.

the backend design space. Therefore, even though the models fail to produce satisfactory results
for the extrapolation dataset, it is not considered a drawback. Our training’s configuration space
includes the entire design space, eliminating the need for the model to function outside the scope
of the training configurations.

8.4 DSE with Trained ML Models

We now apply our trained models for DSE on two different platforms: Axiline and VTA. We apply
the MOTPE method and our trained models for the DSE of the ML accelerator, with the objective
of minimizing chip area and system energy. We also employ an additional flag during the DSE
process to indicate whether the explored data points fulfill design configuration, runtime, and
power requirements. The specifics of these two DSE experiments are as follows.

DSE of Axiline-SVM in NG45 enablement. We optimize the implementation of an accelerator
that executes the SVM algorithm with 55 features. The flow is as follows.

— We select a range for architectural and backend parameter configurations.
— For the given set of configurations, we carry out DSE using MOTPE and trained models,

capturing energy, runtime, total power, and chip area for the sampled configurations.
— We identify the best configuration that minimizes Equation (3) when α is 0.001.
— For the best configuration, we generate the RTL netlist, run SP&R and collect the actual

backend and chip parameters.

During the DSE process, we vary size from 10 to 51, num_cycle from 5 to 21, ftarget from 0.3 to
1.3, and floorplan utilization from 0.4 to 0.8. Figure 12(a) displays the predicted runtime, area, and
energy plot for all the data points sampled during the DSE process. The data points highlighted
with red dots do not meet the ROI, power and runtime requirements. We then identify the best
configuration that minimizes Equation (3). Figure 12(b) presents Pareto front of area versus energy
plot. For ground truth analysis, we also generate the RTL netlist and run SP&R for each of the top
three configurations, and confirm that the predicted metrics for these top three configurations are
within 7% of post-SP&R values.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:29

Fig. 13. Backend design space exploration of a VTA design. (a) Energy, runtime, and area metrics of the

explored data points. Data points highlighted in red fail to meet the ROI, power, and runtime criteria. (b) Area

vs. energy plot for the explored data points. Data points highlighted in blue belong to the Pareto front.

DSE of VTA design in GF12 enablement. We also apply our the DSE method to optimize
the backend configuration for the VTA design. The process is the same as outlined above for
Axiline-SVM, except we only vary ftarget from 0.3 to 1.3 and floorplan utilization from 0.25 to 0.55.
Figure 13(a) displays the predicted runtime, area, and energy plots for all the data points sampled
during the DSE process. The data points marked with red dots do not meet the ROI, power, and
runtime requirements. We identify the best configuration that minimizes Equation (3) when α is 1.
We adjust these values, because the units of energy and runtime in Figure 13(a) differ from those
in Figure 12(a). Figure 13(b) presents Pareto front of area versus energy plot. Running SP&R on
the top three backend configurations identified from the DSE confirms that the predicted metrics
for these top three configurations are within 6% of the post-SP&R values.

9 CONCLUSION

We introduce a physical-design-driven, ML-based framework that consistently predicts backend
PPA and system metrics with an average 7% or less prediction error for the ASIC implementation
of two deep learning accelerator platforms: VTA and VeriGOOD-ML, in both a commercial 12 nm
process and a research-oriented 45 nm process. The framework integrates several ML modeling
aspects, including a focus on the “region of interest,” a novel two-stage approach, and the em-
ployment of logical hierarchy graphs for a GCN model, enabling efficient model-guided MOTPE-
based automated searches over vast accelerator architecture and backend configuration spaces
for a given workload or ML algorithm. We extensively validate our framework on multiple ML
accelerator platforms.

APPENDIX

A ML MODEL ASSESSMENT

In this Appendix, we present the performance of GBDT, RF, and ANN models, along with the
Ensemble model and GCN model, for predicting PPA, as well as system-level energy and runtime
for TABLA, GeneSys, VTA, and Axiline designs on GF12 or Nangate45 enablement. Table 6 details
the model performance for unseen backend configurations, while Table 7 showcases the model
performance for unseen architectural configurations.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



68:30 H. Esmaeilzadeh et al.

Table 6. Performance of ML Models for Unseen Backend Configurations

Design ML model
Performance Power Area System-energy System-runtime

μAPE MAPE μAPE MAPE μAPE MAPE μAPE MAPE μAPE MAPE

TABLA

GF12

GBDT 3.09 14.02 2.88 11.94 0.78 3.02 1.22 5.15 3.44 13.28

RF 6.13 29.43 3.58 12.15 2.59 10.55 1.83 5.08 6.17 20.39

ANN 3.21 11.05 2.88 13.36 0.24 0.93 0.85 2.73 3.14 17.15

Ensemble 2.82 11.00 2.28 9.51 1.25 6.33 0.93 3.53 3.84 14.55

GCN 2.75 11.56 2.18 8.94 0.54 5.64 0.93 5.39 3.03 11.82

GeneSys

GF12

GBDT 7.16 22.74 8.57 26.41 3.93 12.82 1.50 7.03 6.76 20.15

RF 11.04 23.52 8.48 18.29 3.25 7.46 1.56 7.60 8.99 34.54

ANN 6.50 15.49 5.26 17.93 0.84 2.27 2.80 7.80 6.40 18.46

Ensemble 8.38 24.36 6.45 22.02 1.00 3.04 1.80 5.37 6.45 17.86

GCN 6.00 20.59 7.28 15.81 0.49 1.30 1.80 5.11 5.83 15.51

VTA

GF12

GBDT 2.75 13.38 2.84 12.75 1.90 13.14 1.89 8.27 2.84 12.18

RF 5.67 35.31 4.57 28.02 2.66 12.64 2.07 7.58 4.68 24.74

ANN 2.29 14.00 2.05 8.59 0.89 3.85 7.29 24.37 2.47 10.54

Ensemble 2.79 14.57 2.67 11.94 1.15 4.35 2.36 10.43 4.07 12.04

GCN 2.16 12.21 2.18 7.77 0.66 4.02 2.46 6.92 2.31 8.53

Axiline

GF12

GBDT 0.77 5.24 2.20 14.70 2.74 13.59 1.34 12.31 1.15 8.87

RF 6.55 36.06 3.79 29.70 3.50 16.94 1.32 13.00 7.53 91.34

ANN 0.78 8.69 2.78 28.19 2.21 53.32 4.46 77.34 1.29 13.16

Ensemble 0.70 8.50 2.44 28.53 1.46 20.99 9.15 95.32 1.05 8.30

GCN 3.06 49.65 1.52 22.69 1.82 16.09 2.68 37.83 1.39 25.56

Axiline

NG45

GBDT 3.56 22.73 7.01 33.61 2.60 12.62 6.43 51.06 3.95 36.78

RF 4.56 30.57 9.38 45.35 3.70 13.38 6.92 41.56 4.21 44.36

ANN 3.48 25.40 8.48 83.22 1.93 25.85 7.04 51.25 6.60 45.50

Ensemble 3.15 23.61 7.68 54.21 1.39 8.81 8.91 75.83 5.16 31.31

GCN 4.74 36.25 5.19 29.98 3.03 13.48 4.97 25.07 4.59 55.06

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.



Open-source ML-based Full-stack Optimization Framework 68:31

Table 7. Performance of ML Models for Unseen Architectural Configurations

Design ML model
Performance Power Area System-energy System-runtime

μAPE MAPE μAPE MAPE μAPE MAPE μAPE MAPE μAPE MAPE

TABLA

GF12

GBDT 3.24 33.06 3.87 19.03 3.42 9.01 8.86 19.15 3.83 18.99

RF 5.16 38.01 9.76 46.62 11.25 40.13 10.59 21.30 5.67 27.41

ANN 5.78 32.70 5.22 20.02 2.30 5.70 2.97 10.25 6.02 24.94

Ensemble 3.68 32.51 4.11 17.11 3.99 16.05 4.62 18.63 6.03 24.10

GCN 5.79 21.74 5.34 14.00 3.76 12.81 3.93 13.80 5.20 23.63

GeneSys

GF12

GBDT 6.54 20.86 5.82 15.99 2.94 8.52 6.37 11.65 12.23 28.41

RF 8.73 22.57 9.34 18.66 3.69 9.57 14.89 22.00 17.37 34.38

ANN 6.55 19.86 3.82 15.36 2.06 3.80 3.47 9.11 10.73 28.90

Ensemble 6.32 14.82 7.26 15.23 2.75 8.09 11.96 19.78 6.28 20.27

GCN 6.97 13.11 5.39 15.10 2.12 4.08 4.32 8.88 7.65 17.81

VTA

GF12

GBDT 4.96 19.31 4.04 11.83 24.74 38.07 7.58 18.79 6.94 20.39

RF 3.00 9.81 12.96 33.34 18.05 53.58 7.15 16.43 5.67 13.52

ANN 2.52 14.09 3.08 11.84 2.19 6.66 10.61 22.16 4.39 12.70

Ensemble 2.99 12.58 11.19 28.99 6.65 17.01 9.10 18.41 2.87 10.50

GCN 2.60 9.67 2.85 12.90 2.15 9.51 4.07 13.76 3.67 9.87

Axiline

GF12

GBDT 0.62 7.18 11.53 74.19 10.29 41.78 16.61 82.95 2.19 19.83

RF 0.63 5.41 15.95 77.38 13.24 57.18 21.8 90.34 2.12 12.86

ANN 0.72 8.64 2.24 21.98 1.20 7.85 4.24 29.85 1.08 9.72

Ensemble 0.61 6.48 2.55 22.45 1.31 5.68 7.17 47.20 1.29 7.74

GCN 2.92 28.74 2.86 29.34 1.88 9.82 2.34 29.21 2.98 2971

Axiline

NG45

GBDT 3.45 27.48 5.98 56.62 2.79 13.40 23.33 90.79 5.54 30.13

RF 3.18 26.96 6.30 41.31 3.00 16.90 21.54 93.74 5.77 35.33

ANN 3.37 27.19 6.57 59.76 1.86 13.81 9.30 77.10 5.04 25.56

Ensemble 3.33 27.29 5.97 48.34 2.81 17.25 7.21 49.81 4.75 22.63

GCN 4.57 35.68 5.55 36.38 3.77 16.26 12.88 86.2 5.85 51.21

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Steven M. Burns and Anton A. Sorokin from Intel
Labs.

REFERENCES

[1] A. Agnesina, K. Chang, and S. K. Lim. 2020. VLSI placement parameter optimization using deep reinforcement learning.

In Proceedings of the International Conference on Computer-Aided Design (ICCAD’20). 1–9.

[2] C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, and M. D. F. Wong. 2021. BOOM-Explorer: RISC-V BOOM microarchitecture design

space exploration framework. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’21).

[3] S. Banerjee, S. Burns, P. Cocchini, A. Davare, S. Jain, D. Kirkpatrick et al. 2020. A highly configurable hardware/

software stack for DNN inference acceleration. Retrieved from https://arXiv:2111.15024

[4] J. Bergstra and Y. Bengio. 2012. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 10 (2012),

281–305.

[5] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan et al. 2018. TVM: An automated end-to-end optimizing

compiler for deep learning. In Proceedings of the USENIX Conference on Operating Systems Design and Implementation

(OSDI’18). 578–594.

[6] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. 2017. Eyeriss: An energy-efficient reconfigurable accelerator for deep

convolutional neural networks. IEEE JSSC 52, 1 (2017), 127–138.

[7] C. K. Cheng, C. Holtz, A. B. Kahng, B. Lin, and U. Mallappa. 2023. DAGSizer: A directed graph convolutional network

approach to discrete gate sizing of VLSI graphs. ACM TODAES 28, 4 (2023), 1–31.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.

https://arXiv:2111.15024


68:32 H. Esmaeilzadeh et al.

[8] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Y. Young, and Z. Zhang. 2018. Fast and accurate estimation of quality of

results in high-level synthesis with machine learning. In Proceedings of the Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM’18). 129–132.

[9] H. Esmaeilzadeh, S. Ghodrati, J. Gu, S. Guo, A. B. Kahng, J. K. Kim et al. 2021. VeriGOOD-ML: An open-source

flow for automated ML hardware synthesis. In Proceedings of the International Conference on Computer-Aided Design

(ICCAD’20). 1–8.

[10] H. Esmaeilzadeh, S. Ghodrati, A. B. Kahng, J. K. Kim, S. Kinzer, S. Kundu et al. 2022. Physically accurate learning-

based performance prediction of hardware-accelerated ML algorithms. In Proceedings of the ACM/IEEE Workshop on

Machine Learning for CAD (MLCAD’22).

[11] M. Fey and J. E. Lenssen. 2019. Fast graph representation learning with PyTorch geometric. In Proceedings of the

International Conference on Learning Representations (ICLR’19).

[12] H. Genc, S. Kim, A. Amid, A. H.-Ali, V. Iyer, P. Prakash et al. 2021. Gemmini: Enabling systematic deep-learning

architecture evaluation via full-stack integration. In Proceedings of the Design Automation Conference (DAC’21).

769–774.

[13] T. Head, MechCoder, G. Louppe, I. Shcherbatyi, A. Fabisch et al. 2018. scikit-optimize/scikit-optimize: v0.5.2, Zenodo.

http://doi.org/10.5281/zenodo.1207017

[14] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa et al. 2017. In-datacenter performance analysis

of a tensor processing unit. In Proceedings of the Annual International Symposium on Computer Architecture (ISCA’17).

1–12.

[15] A. B. Kahng, B. Lin, and S. Nath. 2015. ORION3.0: A comprehensive NoC router estimation tool. IEEE Embed. Syst.

Lett. 7, 2 (2015), 41–45.

[16] D. P. Kingma and J. Ba. 2014. Adam: A method for stochastic optimization. In Proceedings of the International Conference

on Learning Representations (ICLR’14).

[17] M. J. van der Laan, E. C Polley, and A. E. Hubbard. 2007. Super learner. Stat. Appl. Genet. Mol. Biol. 6, 1 (2007). https:

//doi.org/10.2202/1544-6115.1309

[18] F. Last and U. Schlichtmann. 2021. Feeding hungry models less: Deep transfer learning for embedded memory PPA

models. In Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD (MLCAD’21). 1–6.

[19] W. Lee, Y. Kim, J. H. Ryoo, D. Sunwoo, A. Gerstlauer, and L. K. John. 2015. PowerTrain: A learning-based calibration

of McPAT power models. Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED’15).

189–194.

[20] F. Li, Y. Wang, C. Liu, H. Li, and X. Li. 2022. NoCeption: A fast PPA prediction framework for network-on-chips using

graph neural network. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE’22).

[21] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. 2009. McPAT: An integrated power, area,

and timing modeling framework for multicore and manycore architectures. In Proceedings of the Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’09).

[22] S. D. Manasi, F. S. Snigdha, and S. S. Sapatnekar. 2020. NeuPart: Using analytical models to drive energy-efficient

partitioning of CNN computations on cloud-connected mobile clients. IEEE TVLSI 28, 8 (2020), 1844–1857.

[23] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. 2018. Tune: A research platform for distributed

model selection and training. Retrieved from https://arxiv.org/abs/1807.05118

[24] Z. Lin, J. Zhao, S. Sinha, and W. Zhang. 2020. HL-Pow: A learning-based power modeling framework for high-level

synthesis. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC’20). 574–580.

[25] Y.-C. Lu, W.-T. Chan, V. Khandelwal, and S. K. Lim. 2022. Driving early physical synthesis exploration through end-

of-flow total power prediction. In Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD (MLCAD’22).

[26] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim et al. 2016. TABLA: A unified template-

based framework for accelerating statistical machine learning. In Proceedings of the IEEE International Symposium on

High-Performance Computer Architecture (HPCA’16), 2016, 14–26.

[27] S. D. Manasi, F. S. Snigdha, and S. S. Sapatnekar. 2018. NeuPart: Using analytical models to drive energy-efficient

partitioning of CNN computations on cloud-connected mobile clients. IEEE TVLSI 28, 8 (2018), 1844–1857.

[28] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng et al. 2019. A hardware–software blueprint for flexible deep

learning specialization. IEEE Micro 39, 5 (2019), 8–16.

[29] S. D. Manasi and S. S. Sapatnekar. 2021. DeepOpt: Optimized scheduling of CNN workloads for ASIC-based systolic

deep learning accelerators. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC’21).

235–241.

[30] H. Niederreiter. 1988. Low-discrepancy and low-dispersion sequences. J. Number Theory 30, 1 (1988), 51–70.

[31] Y. Ozaki, Y. Tanigaki, S. Watanabe, and M. Onishi. 2020. Multiobjective tree-structured parzen estimator for compu-

tationally expensive optimization problems. In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO’20).

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.

http://doi.org/10.5281/zenodo.1207017
https://doi.org/10.2202/1544-6115.1309
https://arxiv.org/abs/1807.05118


Open-source ML-based Full-stack Optimization Framework 68:33

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan et al. 2019. PyTorch: An imperative style, high-

performance deep learning library. In Proceedings of the Neural Information Processing Systems.

[33] P. Sengupta, A. Tyagi, Y. Chen, and J. Hu. 2022. How good is your verilog RTL code? A quick answer from machine

learning. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’22).

[34] Y. S. Shao, B. Reagen, G. -Y. Wei, and D. Brooks. 2014. Aladdin: A Pre-RTL, power-performance accelerator simula-

tor enabling large design space exploration of customized architectures. In Proceedings of the Annual International

Symposium on Computer Architecture (ISCA’14). 97–108.

[35] E. Tabanelli, G. Tagliavini, and L. Benini. 2021. DNN is not all you need: Parallelizing non-neural ML algorithms on

ultra-low-power IoT processors. Retrieved from https://arxiv.org/abs/2107.09448

[36] S. Takamaeda-Yamazaki. 2015. Pyverilog: A python-based hardware design processing toolkit for verilog HDL. In

Applied Reconfigurable Computing. Springer, 451–460.

[37] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. 2002. Orion: A power-performance simulator for interconnection networks.

InProceedings of the Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’02). 294–395.

[38] S. Williams and M. Baxter. 2002. Icarus verilog: Open-source verilog more than a year later. Linux J. (July 2002).

Retrieved from https://www.linuxjournal.com/article/6001

[39] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang et al. 2020. AutoDNNchip: An automated DNN chip predictor

and builder for both FPGAs and ASICs. In Proceedings of the Conference on Field Programmable Gate Arrays (FPGA’20).

40–50.

[40] Z. Zeng and S. S. Sapatnekar. 2023. Energy-efficient hardware acceleration of shallow machine learning applications.

In Proceedings of the Conference on Design, Automation, and Test in Europe (DATE’23).

[41] VeriGood-ML. Retrieved from https://github.com/VeriGOOD-ML/public

[42] AutoML: Automatic Machine Learning. Retrieved from https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html

[43] VTA Hardware Design Stack. Retrieved from https://github.com/pasqoc/incubator-tvm-vta

[44] GitHub repository: “VeriGOOD-ML: Verilog Generator, Optimized for Designs for Machine Learning”. Retrieved from

https://github.com/VeriGOOD-ML/public

[45] NanGate45 PDK. Retrieved from https://eda.ncsu.edu/freepdk/freepdk45/

Received 22 August 2023; revised 4 January 2024; accepted 13 March 2024

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 4, Article 68. Publication date: July 2024.

https://arxiv.org/abs/2107.09448
https://www.linuxjournal.com/article/6001
https://github.com/VeriGOOD-ML/public
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://github.com/pasqoc/incubator-tvm-vta
https://github.com/VeriGOOD-ML/public
https://eda.ncsu.edu/freepdk/freepdk45/

