
1552 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Hier-RTLMP: A Hierarchical Automatic Macro
Placer for Large-Scale Complex IP Blocks

Andrew B. Kahng , Fellow, IEEE, Ravi Varadarajan, Student Member, IEEE,
and Zhiang Wang , Student Member, IEEE

Abstract—In a typical RTL to GDSII flow, floorplanning or
macro placement is a critical step in achieving decent quality
of results (QoR). Moreover, in today’s physical synthesis flows
(e.g., Synopsys Fusion Compiler or Cadence Genus iSpatial),
a floorplan.def with macro and IO pin placements is typi-
cally needed as an input to the front-end physical synthesis.
Recently, with the increasing complexity of IP blocks, and in
particular with auto-generated RTL for machine learning (ML)
accelerators, the number of macros in a single RTL block can
easily run into the several hundreds. This makes the task of
generating an automatic floorplan (.def) with IO pin and macro
placements for front-end physical synthesis even more critical
and challenging. The so-called peripheral approach of forcing
macros to the periphery of the layout is no longer viable when
the ratio of the sum of the macro perimeters to the floorplan
perimeter is large, since this increases the required stacking depth
of macros. In this article, we develop a novel multilevel physical
planning approach that exploits the hierarchy and dataflow
inherent in the design RTL, and describe its realization in a new
hierarchical macro placer, Hier-RTLMP. Hier-RTLMP borrows
from traditional approaches used in manual system-on-chip
(SoC) floorplanning to create an automatic macro placement for
use with large IP blocks containing very large numbers of macros.
Empirical studies demonstrate substantial improvements over
the previous RTL-MP macro placement approach (Kahng et al.,
2022), and promising post-route improvements relative to a
leading commercial place-and-route tool.

Index Terms—Dataflow, macro placement, physical design
(EDA), RTLDriven.

I. INTRODUCTION

IN TODAY’S design flows, macro placement is typically
performed by expert human designers. The resulting floorplan,
with placed macros and pin locations, is used for both front-
end physical synthesis and back-end P&R flows. The human
designers use their knowledge of the RTL dataflow and
perform grouping of the memories based on functionality,
along with tiling of the macro groups. Historically, due to

Manuscript received 21 April 2023; revised 24 August 2023 and
25 November 2023; accepted 27 November 2023. Date of publication
22 December 2023; date of current version 23 April 2024. This work
was supported in part by the Defense Advanced Research Projects Agency
under Grant IDEA HR0011-18-2-0032 and Grant RTML FA8650-20-2-
7009. This article was recommended by Associate Editor L. Behjat.
(Corresponding author: Zhiang Wang.)

Andrew B. Kahng is with the Department of Computer Science and
Engineering and the Department of Electrical and Computer Engineering,
University of California at San Diego, La Jolla, CA 92093 USA (e-mail:
abk@ucsd.edu).

Ravi Varadarajan and Zhiang Wang are with the Department of Electrical
and Computer Engineering, University of California at San Diego, La Jolla,
CA 92093 USA (e-mail: rvaradarajan@ucsd.edu; zhw033@ucsd.edu).

Digital Object Identifier 10.1109/TCAD.2023.3346284

routing blockages within macros, macro tiling is typically
done along the periphery of the floorplan outline. Such a
peripheral methodology works quite well as long as the
floorplan outline is not too large and the number of macros is
limited, such that macro tiling/stacking depth does not become
excessive. Peripheral placement can also be essential when
routing resources over macros is limited, e.g., when the total
number of routing layers is small. Grouping and tiling of
macros further improves power planning and the layout of the
power grids in the block.

However, today’s nanometer-era technology nodes have
given rise to back-end-of-line stacks with more layers, and
auto-generated RTL designs with complex logical hierarchies
and a large numbers of macros. In this modern context, the
peripheral approach is neither feasible (due to increased stack-
ing depth) nor optimal (due to a large penalty in wirelength
from not following the dataflow topology). In this article,
we describe Hier-RTLMP, which solves these challenges by
allowing macros to migrate to the core of the floorplan, while
preserving the use of macro grouping and tiling to ease power
grid generation.

Conceptually, we transform the logical hierarchy to a
physical hierarchy and define outlines for the modules in
the physical hierarchy (i.e., physical clusters). Macros are
then automatically tiled along the internal boundaries of given
physical cluster outlines. Hier-RTLMP is scalable to large RTL
design blocks because its physical hierarchy can have multiple
levels, based on size thresholds for physical clusters at each
level in terms of both area and number of macros. Essentially,
Hier-RTLMP mimics and extends the approach of an expert
back-end designer in creating high-quality, routable floorplans.
Our contributions are summarized as follows.

1) We propose Hier-RTLMP, that extends RTL-MP [51]
to handle large designs with complex RTL hierarchy
and even hundreds of macros. Hier-RTLMP is able to
tile macro groups in the core area of the floorplan.
This enables high-quality outcomes for designs with
large numbers of macros, unlike a pure peripheral macro
placement approach that would see excessive stacking
depth and destruction of the design dataflow. In addition,
the tiling of macro groups in Hier-RTLMP allows for
grouping of macros with similar functional interactions
along with efficient power grid generation.

2) We develop an autoclustering engine that transforms
the logical hierarchy to a physical hierarchy. Unlike
RTL-MP [51] where the physical hierarchy is a sin-
gle level, Hier-RTLMP’s autoclustering engine creates
a multilevel physical hierarchy of physical clusters.
This enables handling of large RTLs with hundreds of
macros, and allows for placement of macros within the
core area.

1937-4151 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4490-5018
https://orcid.org/0000-0002-6669-9702

KAHNG et al.: Hier-RTLMP: A HIERARCHICAL AUTOMATIC MACRO PLACER 1553

3) We develop a novel shaping engine that determines
the allowable shapes of a given cluster in the physical
hierarchy based on the contents of its child clusters and
the outline of its parent cluster. A unique two-stage,
bottom-up / top-down process is used to determine the
allowable shapes for the clusters before macro placement
at each level. Our macro placer performs placement and
shaping of the clusters in the physical hierarchy, level
by level.

4) Extensive empirical studies using Cadence Innovus
(v21.1) P&R, to validate floorplan routability and down-
stream power, performance, and area (PPA) metrics,
confirm advantages of Hier-RTLMP. Hier-RTLMP has
been tested on both open-source and industrial large
designs, and compared against a 2021 release of a state-
of-the-art commercial macro placer and our previous
work RTL-MP [51]. Hier-RTLMP outperforms the com-
mercial macro placer and RTL-MP for almost all the
testcases: a) compared to the commercial macro placer,
Hier-RTLMP achieves much better timing metrics [worst
negative slack (WNS) and total negative slack (TNS)]
measured post-detailed route and b) compared to RTL-
MP, we extend Hier-RTLMP to handle complex designs
with hundreds of macros on which RTL-MP fails, and
reduce runtime by 13× relative to RTL-MP for testcases
which RTL-MP can handle.

5) Our implementation is based on the open-source
OpenROAD project infrastructure with permissive open-
sourcing of Hier-RTLMP. Experimental runscripts [54]
are available in the OpenROAD project [49] and the
MacroPlacement project [50].

The remainder of this article is organized as follows.
Section II reviews related work on macro placement.
Section III describes the outline of our approach. Section IV
details implementation of multilevel autoclustering, which
transforms the RTL logical hierarchy into the physical hierar-
chy. Section V describes the generation of allowable shapes for
physical clusters, which applies bottom-up analysis along with
Section VI describes the macro placement engine. Section VII
describes experimental results, and Section VIII concludes this
article and outlines future research directions.

II. RELATED WORK

Broadly, previous works on floorplanning and macro
placement can be classified into packing-based methods,
analytical methods and, in the recent past, machine learning
(ML) and reinforcement learning-based methods. Packing-
based methods rely on the representation of the physical
relationships among modules in the floorplan along with
iterative-perturbative techniques to optimize them. Analytical
approaches use numerical methods to optimize a floorplan lay-
out directly. Both of these approaches optimize a customized
cost function that captures area, congestion and timing.

Most macro placers in the research literature focus on
legal placement of macros, and optimizing wirelength and/or
routability—without considering design features, such as
design hierarchy, macro regularity, dataflow, macro guidance,
pin access, and notch area avoidance. On the other hand,
chip experts do pay attention to these design features to
produce high-quality macro placements. To automatically gen-
erate a competitive, closer to human-quality macro placement,
some recent works have begun to consider these features.

TABLE I
COMPARISON WITH PREVIOUS METHODS. COLUMNS 2–8,

RESPECTIVELY, INDICATE THE USE OF DESIGN HIERARCHY; USE OF

REGULAR PLACEMENT OF MACROS; USE OF DATAFLOW AND/OR TIMING;
HANDLING OF MACRO GUIDANCE (PREFERRED LOCATION OR REGIONS);
HANDLING OF PIN ACCESS; HANDLING OF MACRO BLOCKAGES AND/OR

PREPLACED MACROS; AND HANDLING OF NOTCHES. COLUMN 9
INDICATES THE USE OF MULTILEVEL HIERARCHY TO

PLACE MACROS IN THE CORE AREA

References [28], [29], [30], [31], [34], [35], [38], [39], [44],
and [45] utilize design hierarchy to guide macro placement.
References [21], [22], [23], [24], [25], [31], [34], and [35]
exploit dataflow and/or timing information to improve the
quality of macro placement. References [29], [30], [31],
[34], [35], [40], [41], [42], and [43] reduce macro dis-
placement to honor the macro guidance given by placement
prototyping, and [33], [36], [39] consider geometrical con-
straints directly. References [29], [30], [31], [39], [40], [41],
[42], and [43] can handle macro blockages and/or preplaced
macros. Chang et al. [43] and Hsu et al. [44], [45] tried to
avoid notches during macro placement to improve routability.
Lin et al. [30] and Chang et al. [43] paid special attention to
the effect of regular placement of macros. However, none of
these previous works provides for all of the above features.

While our recent work, RTL-MP [51], exploits dataflow
inherent in the logical hierarchy and provides many of the
above desirable features, it still has limitations. A major
drawback of RTL-MP is that it is not scalable: when there
are hundreds of macros, its strategy of forcing the macros to
the periphery to avoid routability issues incurs high quality of
result (QoR) penalties.

Finally, we note that the Google Brain reinforcement
learning-based approach to macro placement [24] has stimu-
lated a great deal of interest across academia and industry. As
part of a broad discussion of the method and its replication,
macro-heavy open-source benchmark designs in open enable-
ments, along with implementations of missing or binarized
code elements from [55], have been released via a public
GitHub repository [50]. We apply Hier-RTLMP to the
Ariane-133 (NG45, GF12) testcase from [50] in Section VII
below. Table I summarizes the main differences between our
Hier-RTLMP method and previous works.

III. OUR APPROACH

A distinguishing aspect of our approach is that: 1) we
extract the dataflow inherent in the RTL description and
2) automatically map the RTL logical hierarchy to a multilevel
physical hierarchy by performing hierarchical clustering based
on the size (numbers of standard cells and macros) of each
logical module. The logical-to-physical hierarchy mapping
can be one to many: a single physical hierarchy cluster can
group together multiple logical modules from different levels
of the logical hierarchy, while a single logical module can

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

1554 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Fig. 1. Illustrated example of a hierarchical floorplan scheme. (a) Logical
hierarchy TL. (b) Physical hierarchy TP. In this example, the logical module
C is small and contains a limited number of instances. As a result, c3 is
classified as a leaf cluster. Any cluster within c3 (c9, c10, c11, and c12) is not
included in the final TP. (c) Placed clusters in TP after visiting root cluster.
(d) Placed clusters in TP after visiting c1 cluster. (e) Placed clusters in TP
after visiting c2 cluster. (f) Placed clusters in TP after visiting c7 cluster,
where c7 is dissolved into c13 and c14. The placement of clusters is done in
a preorder DFS (depth-first search) manner.

be split into multiple physical clusters. Similar to logical
hierarchy, the physical hierarchy can also be unbalanced. The
logical modules at the same level of the logical hierarchy may
belong to physical clusters at different levels of the physical
hierarchy. We use the following terminology, some of which
was previously introduced in [51].

1) The logical hierarchy (TL) is the original RTL hierarchy.
Fig. 1(a) shows an example of logical hierarchy TL.
Each node in TL represents a logical module in the
netlist.

2) The physical hierarchy (TP) is the result of autoclus-
tering and defines the physical clusters. The physical
hierarchy can have multiple levels and is not necessarily
balanced. Fig. 1(b) shows an example of the physical
hierarchy TP.

3) A physical cluster (c) is a module in the physical
hierarchy. It can contain other physical clusters. In
Fig. 1(b), c1, c2, c3, c4, c5 + c6, c7, c8, c13, c14 are the
physical clusters. The top level of the design is the root
physical cluster.

4) A macro is a hard IP block, such as an SRAM block,
which is predesigned and has a fixed layout. When
placing a macro, we can change its location and orien-
tation (typically, by mirroring and 180◦ rotation, since
the orientation of poly gates cannot be changed) but we
cannot change anything inside it.

5) A standard-cell cluster is a physical cluster that contains
only standard cells.

6) A macro cluster is a physical cluster that contains only
macros.

Fig. 2. Hier-RTLMP flow.

7) A mixed cluster is a physical cluster that contains both
macros and standard cells.

8) A leaf cluster is a standard-cell cluster or a macro cluster
that does not have any children in the physical hierarchy
TP. In Fig. 1(b), c3, c4, c5 + c6, c8, c13 and c14 are the
leaf clusters.

9) A bundled pin is the physical abstraction of a group of
pins within the same boundary. All the pins belonging
to a given bundled pin have the same physical location
as the bundled pin.

Hier-RTLMP is built on top of the open-source OpenROAD
infrastructure [26], [49] and works with the components within
the OpenROAD flow, as shown in Fig. 2. Our previous work,
RTL-MP [51], partitions the top-level design into a set of
leaf clusters, resulting in a single level of physical hierarchy.
A known weakness of RTL-MP is that the single level of
hierarchy makes it very difficult to generate decent macro
placements for large, complex designs with hundreds of
macros. In contrast, Hier-RTLMP’s multilevel physical hier-
archy framework effectively scales the complexity of design
blocks that can be handled, and incorporates tiling of macro
groups along the periphery of physical clusters so as to honor
the dataflow and produce a top-level floorplan with macros in
the core area as needed.

The fundamental idea of Hier-RTLMP is that we first create
a multilevel physical hierarchy, then shape and place the
clusters in the physical hierarchy, one level at a time in a
preorder depth-first search manner. An overview of our Hier-
RTLMP algorithm is presented in Algorithm 1. The input is a
synthesized hierarchical gate-level netlist and a floorplan.def
file that contains the block outline (width canvas.width and
height canvas.height), fixed IO pin or pad locations, along with
macros that have been placed beforehand, if applicable. The
output is a floorplan.def file that has legal macro placements
for macros and region constraints for standard-cell clusters.
Hier-RTLMP first converts the logical hierarchy TL of the
netlist into a physical hierarchy TP (Section IV). Then, Hier-
RTLMP determines the allowable shape functions for each of
the clusters in a two-phase bottom-up and top-down manner
(Section V). Finally, Hier-RTLMP works top-down from the
root physical cluster in a preorder depth-first search manner,
and shapes and places the child clusters (Section VI).

IV. MULTILEVEL AUTOCLUSTERING

In this section, we describe the multilevel autoclustering
approach. Section IV-A gives an overview, and Section IV-B
provides a detailed explanation of how we perform autoclus-
tering at each level.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

KAHNG et al.: Hier-RTLMP: A HIERARCHICAL AUTOMATIC MACRO PLACER 1555

Algorithm 1: Hier-RTLMP
Input: Hierarchical netlist N, Placed IO pins (or PAD)

block outline (canvas.width, canvas.height)
Output: High-quality floorplan FN with fixed macro placements

1 initialize the floorplan FN with canvas.width and canvas.height
2 update the positions of placed IO pins in FN
3 convert the logical hierarchy TL of N to the physical hierarchy TP

(Section IV)
4 calculate the rough shape functions for each cluster in a bottom-up

manner (Section V)
5 cp ← root cluster in TP
6 clusters← cp.GetChildren()

7 adjust the possible shape functions for clusters based on the outline of
cp (Section V)

8 place clusters within the outline of cluster cp (Section VI)
9 update the positions of clusters in FN

10 for leaf cluster cf ∈ clusters do
11 place the macros in leaf macro cluster cf (Section VI)
12 end
13 for cluster c ∈ cp.GetChildren() do
14 cp ← c; repeat Lines 5–15
15 end
16 return FN

A. Overview and Algorithm

In today’s design flows, expert human designers utilize clus-
tering as an essential preprocessing step for macro placement.
In this step the structural netlist representation of the design
is converted to a clustered netlist in which the nodes are
clusters and nets are bundled connections between the clusters.
The clustering step is typically done by users interactively
and in a top-down manner, by analyzing logical hierarchy,
dataflow, connections between macros, IO pins, and critical
timing paths [48]. Such analysis helps the user to understand
the structure of the design and the dataflow, which provides
insights into the ideal locations of the various clusters and
macros. While it is useful for users to perform clustering
manually and understand the physical implications of the
design, it is also important to have an autoclustering engine
that can fully and automatically generate meaningful clusters.
This is especially true for designs produced by automatic
RTL generators for ML applications; these can have complex
RTL structures with long, inscrutable auto-generated module
names. We therefore perform autoclustering based on the
logical hierarchy of the design, connection signatures of
clusters, and timing hops or indirect connections between
macros and IO pins as outlined in RTL-MP [51]—and extend
this to create a multilevel physical hierarchy.

The multilevel autoclustering engine in Hier-RTLMP
extends the autoclustering engine in RTL-MP [51] to support
multiple levels of physical hierarchy. It is essential for
handling very large RTL blocks with multiple hundreds of
macros. Moreover, the intermediate levels of physical hier-
archy help preserve the global dataflow and allow for the
placement of macros within the core of the floorplan. The
multilevel autoclustering engine first converts logical hierarchy
TL to physical hierarchy TP through a one-to-one mapping,
i.e., transforming each logical module into a physical cluster
directly. It then decides which clusters to merge and which
clusters to dissolve level by level. Conceptually, peer clusters
are merged if their individual sizes are below the minimum
size threshold for the current level and if they have similar
connection patterns to other clusters. A cluster is dissolved
into its child clusters if its size is greater than the maximum
size threshold for the current level.

Algorithm 2: Multilevel Autoclustering
Input: Hierarchical netlist N, Placed IO pins, Maximum depth of the

physical hierarchy tree num_level
Output: Physical hierarchy TP (depth ≤ num_level)

1 construct the logical hierarchy TL by traversing N
2 convert TL to the physical hierarchy TP by mapping each logical

module in TL to a physical cluster TP
3 divide each block boundary into num_segment segments and create a

bundled pin for each segment to represent the preplaced IO pins
(pads) lying on that segment

4 model each bundled pin as a child cluster of root cluster root of TP
5 cp ← root; level_id← 1
6 while level_id <= num_level and level_id > 0 do
7 single-level autoclustering(cp, level_id) (Section IV-B)
8 for each child cluster c of cp do
9 cp ← c; level_id← level_id + 1

10 repeat the while loop [Lines 6–13]
11 end
12 level_id← level_id − 1
13 end
14 for each leaf cluster that is a mixed cluster, break it into a standard-cell

cluster and a macro cluster
15 for each leaf cluster that is a macro cluster, mark its macros as

single-macro macro clusters and group them based on connection
signature. Then, for each newly formed macro cluster with macros of
different sizes, break it down and group its macros based on their sizes

16 update connections between clusters by adding virtual connections
between macro clusters and corresponding standard-cell clusters

17 update connections between clusters by adding virtual connections
between clusters based on information flow and number of (latch)
hops

18 return physical hierarchy TP

In contrast to fully following the logical hierarchy, the
operations of merging small peer clusters and dissolving large
clusters enable us to extract the dataflow and functionality
of the RTL. For example, some designs may have all the
macros in a single logical module, even if these macros have
completely different functionalities and connect to different
standard-cell logical modules. Other designs could have the
contents of a bus fabric, which connect to different sections of
the block, in the same module of the logical hierarchy. In both
these cases, it is obvious that fully following the logical hier-
archy to create physical clusters will lead to suboptimal results
from both the timing and congestion perspectives. However,
the operations of merging and dissolving enable the multilevel
autoclustering engine in Hier-RTLMP to effectively handle
such scenarios from a physical floorplanning perspective.

The algorithm for multilevel autoclustering is shown in
Algorithm 2. The entire autoclustering algorithm can be
divided into the following steps.

Step 1 [Lines 1–2]: We create the logical hierarchy TL
by traversing the hierarchical netlist in a preorder
depth-first search manner. We then transform the
logical hierarchy TL to the physical hierarchy TP
based on a one-to-one mapping of each logical
module to a physical cluster, i.e., TP = TL. This
one-to-one mapping between logical modules and
physical clusters allows us to follow the log-
ical hierarchy during the process of dissolving
and merging physical clusters at each level. In
the example of Fig. 1(a), each logical module is
mapped to a physical cluster directly, such as B/G
to c8 and C/H/J to c11.

Step 2 [Lines 3–4]: We create bundled pins by dividing
each boundary edge evenly into num_segment seg-
ments, and assigning each bundled pin to the center

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

1556 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

of its corresponding segment (Section VII discusses
the effect of num_segment). Each bundled pin is
treated as a physical cluster without physical area,
and is added as a child cluster of the root node
in the physical hierarchy TP. A design may have
thousands of IO pins. The bundled pin model
can reduce the connection complexity significantly,
while preserving the connections between clusters
and IO pins and the affinity of clusters to related
segments of boundaries in the floorplan.

Step 3 [Lines 5–13]: We transform the physical hierarchy
TP in a preorder depth-first search manner. At each
level, we create current-level clusters by breaking
down the clusters from the parent level based on
the size thresholds (the number of standard cells
and the number of macros in a cluster) of the
current level (see Section IV-B for details). After
this step, we have a physical hierarchy TP with
a depth less than or equal to num_level. In the
example of Fig. 1, after Steps 1–3, we convert the
logical hierarchy TL in Fig. 1(a) into the physical
hierarchy TP (num_level = 3) in Fig. 1(b).

Step 4 [Line 14]: Each leaf cluster that is a mixed cluster,
is broken into a standard-cell cluster and a macro
cluster. Separating into standard-cell clusters and
macro clusters makes it easier to calculate the shape
function for all the clusters (Section V). We also
add a virtual weighted connection between each
macro cluster and its corresponding standard-cell
cluster to bias the macro placer to place them
together.

Step 5 [Line 15]: For each macro cluster, we mark each
of its macros as a single-macro macro cluster
(that is, a macro cluster consisting of only one
macro) and group these single-macro macro clus-
ters based on connection signatures (Section IV-B).
This regrouping of macros ensures that macros that
have (near-) identical physical connectivity to other
clusters are grouped together irrespective of where
their instantiations occur in the logical hierarchy.
If a newly formed macro cluster has macros with
different footprints, we break it down and regroup
macros within it based on the footprints of the
macros, which ensures that all the macros in the
same macro cluster have the same shape. Grouping
macros based on identical footprints enables better
tiling of macros in macro groups with less wasted
whitespace, thereby achieving regular placement of
macros.

Step 6 [Line 17]: We add virtual connections between
clusters to capture the timing criticality between
the clusters and to handle multiple pipeline stages
in timing connections between clusters. The phys-
ical distances between components on critical
timing paths should be minimized to improve
performance. One approach is to determine all
the critical timing paths (e.g., having negative
slack) and overlay them on clusters. This is time-
consuming and unnecessary since delay and slack
calculation are not accurate at the floorplan stage.
In this work, we use an approach similar to that
of [34], [35] and define virtual (indirect) connec-
tions as

Fig. 3. Virtual connections between clusters. Black arrows represent real
connections and yellow arrows represent virtual connections. The virtual
connections represented by yellow arrows can help capture critical timing
paths between Clusters A, B, and C. In RTL-MP, there is a virtual connection
only between macro cluster A and macro cluster C. In Hier-RTLMP, the
virtual connections between all the clusters are captured.

virtual_connections(A, B) = information_flow(A, B)

2num_hops

(1)

where information_flow corresponds to connec-
tion bitwidth and num_hops is the length of
the shortest path of registers between clusters.
However, unlike the Dataflow_Affinity defined
in [34] and [35], we use a more aggressive decay-
ing factor as in [23] and [24] to capture the most
important indirect connections. If the register
distance (num_hops) between clusters is greater
than num_hop_thr (default = 4), then no virtual
connection is added. Also, in most designs, IO
pins are registered before connecting to macros. It
is important to capture this affinity during macro
placement to ensure that the macros are placed
close to “connected” IO pins. By treating each
bundled pin as a cluster without physical area,
indirect connections from primary inputs and to
primary outputs can also be taken into account. As
shown in Fig. 3, in contrast to RTL-MP [51] which
ignores the indirect connections between standard-
cell clusters, Hier-RTLMP considers the indirect
connections for all types of clusters (standard-
cell clusters, macro clusters, mixed clusters and
IOs), thus capturing the timing-critical paths more
effectively. To more easily stop the calculation of
indirect connections when the num_hops is larger
than num_hop_thr, we start with all the macros
and IO pins, and traverse the sequential graph in
a breath-first search manner. Here, we cannot use
the topological order because the sequential graph
of the netlist may contain cycles. Here, vertices of
the sequential graph consist of all the flip-flops,
macros and IO pins, and each edge in the sequential
graph represents a directed combinational path,
i.e., sequential adjacency in the netlist.

B. Single-Level Autoclustering

At each level of the autoclustering process, we first create
current-level clusters by breaking down the clusters from
the parent level based on the size threshold of the current
level, then merge small peer clusters and dissolve large
clusters through traversing the logical hierarchy. We define
four parameters related to the size threshold as described
in [51]: max_num_inst and min_num_inst, the maximum and

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

KAHNG et al.: Hier-RTLMP: A HIERARCHICAL AUTOMATIC MACRO PLACER 1557

minimum number of standard-cell instances in a cluster;
and max_num_macro and min_num_macro, the maximum
and minimum number of macros in a cluster. The Hier-
RTLMP flow takes num_level (the maximum depth of physical
hierarchy tree) and level_ratio (the ratio of size threshold
between the current level and its parent level) as inputs.1

Then, the size threshold of each level decays exponentially
as the level_id increases. For example, max_num_inst of level
level_id is the total number of instances of the design divided
by level_ratiolevel_id.

After determining the size threshold for the current level,
we can create current-level clusters by breaking down the
parent clusters from the upper level. Since we have created our
physical hierarchy TP through a one-to-one mapping of each
logical module to a physical cluster (Algorithm 2), we can
further merge small peer clusters and dissolve large clusters
through traversing the logical hierarchy.

In the example of Fig. 1, logical modules A, B, C, A/D,
A/E, A/L, B/F, and B/G in logical hierarchy TL, respectively,
correspond to physical clusters c1, c2, c3, c4, c5, c6, c7, and c8
in physical hierarchy TP. Here, cluster c7 which corresponds
to logical module B/G is between the minimum, maximum
size thresholds of level 2, but larger than the maximum size
threshold of level 3. Hence, c7 is dissolved into clusters c13 and
c14 using a partitioner. Clusters c5 and c6 which correspond to
logical modules A/E and A/L are smaller than the minimum
size threshold of level 3. Hence, c5 and c6 are merged into
cluster c5+c6. Cluster c3 which corresponds to logical module
C is within the size thresholds of level 3. Hence, c3 is a leaf
cluster, and any cluster within c3 (c9, c10, c11 and c12) is not
included in the final TP.

The detailed algorithm is presented in Algorithm 3 and the
entire single-level autoclustering algorithm can be divided into
the following steps.

Step 1 [Line 1]: Determine the size thresholds for the cur-
rent level, including max_num_inst, min_num_inst,
max_num_macro and min_num_macro.

Step 2 [Lines 4–5]: If the parent cluster cp is a leaf
cluster,2 and its size is larger than the threshold
for the current level, we recursively call the open-
source partitioner TritonPart [49] in min-cut mode
to bipartition the cluster cp into child clusters that
meet the size threshold (number of standard cells)
for the current level. Each instance in cluster cp
is treated as a vertex. Here, we do not need to
consider the size threshold for number of macros
because the macros will be grouped separately later
[Algorithm 2 Line 15].

Step 3 [Lines 6–18]: We handle each child cluster of
parent cluster cp based on the size thresholds in
a preorder depth-first search manner. During this
step, we break down each large cluster (number of

1num_level is 2 by default, and level_ratio is 10 by default. On the one
hand, the number of clusters at each level should be small enough such that
Hier-RTLMP can effectively place clusters level by level. On the other hand,
the size of leaf clusters should not be too large, such that the “bundled pin”
for each cluster is still accurate enough for capturing connectivity. With this
in mind, based on studies of multiple designs in different technology nodes,
the default values of num_level and level_ratio are, respectively, set to 2 and
10. We also always set min_num_inst and min_num_macro, respectively, to
max_num_inst/2 and max_num_macro/2.

2Actually in this case, cp is flat, i.e., this cluster consists of standard cells
and macros directly instead of other logical modules.

Algorithm 3: Single-Level Autoclustering
Input: Parent cluster cp, Level id level_id

1 determine size thresholds for current level
2 children← cp.GetChildren()

3 initialize an empty cluster list new_children
4 if children.size() == 0 then
5 new_children← recursively call TritonPart to bipartition cp until

the number of standard cells in each child cluster is less than
max_num_inst

6 else
7 initialize an empty cluster list candidate_clusters
8 for each cluster c ∈ children do
9 if c.num_macro > max_num_macro or

c.num_std_cell > max_num_inst then
10 cp ← c; repeat Lines 2–18
11 else if c.num_macro < min_num_macro and

c.num_std_cell < min_num_inst then
12 candidate_clusters.push_back(c)
13 else
14 new_children.push_back(c)
15 end
16 end
17 merge clusters in candidate_clusters based on connection signature
18 end
19 cp.SetChildren(new_children)

macros > max_num_macro or number of standard
cells > max_num_inst) according to the logical
hierarchy,3 and merge the small clusters (number
of macros < min_num_macro and number of stan-
dard cells < min_num_inst) based on connection
signature. Here, the connection signature is the
connection topology of a cluster with respect to the
other clusters in the physical hierarchy TP, which
calibrates the connection similarity of clusters.
More specifically, for a cluster c and a thresh-
old εnet, the connection signature conn_hash(c) of
cluster c with respect to clusters {c1, c2, . . . , cn}
(termed as reference clusters) is a vector of size n
such that

conn_hash(c)[i] =

⎧
⎪⎨

⎪⎩

1 if the number of nets between
c and ci is larger than εnet,

0 otherwise.

The threshold εnet (default = 50)4 is introduced to remove
spurious effects of common global nets such as scan or
reset signals.5 The intuition behind merging clusters with
the same connection signature is that clusters with similar
connection patterns would want to stay together in the floor-
plan. Moreover, the small clusters being merged satisfy the
following two criteria: 1) they belong to the same logical
module and 2) they have similar bus structures, i.e., the number
of nets connecting to any reference cluster should be similar.

3Since we have created our physical hierarchy TP through one-to-one
mapping of each logical module to a physical cluster (Algorithm 2), the logical
hierarchy has been encoded into the physical hierarchy TP.

4Our empirical studies have shown that εnet should not be set based on
the Rent parameter of the design and the current level. The purpose of εnet
is to ensure the connection patterns are contributed by signal bits instead of
common global nets. Our empirical studies for, e.g., Ariane (NG45) (Table IV)
show that, setting εnet = 40 worsens TNS from −55 to −125 ns, while TNS
remains at −55 ns with εnet = 60.

5All multiple-pin nets are decomposed using a directed star model.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

1558 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Fig. 4. Example of merging clusters based on connection signature.
{cs1 , cs2 , cs3 , cs4 } are the candidate clusters to be merged. c7 is the least
common ancestor and pLCA = {root, c2, c7} the shortest path between root
node TP and c7. {c1, c3, c6} are the reference clusters. Notably, cluster cs1
only connects to cluster c6, and cluster cs2 and cluster cs3 have the same
connection signature. Thus, cs1 and c6 will be merged into one cluster cs1+c6,
and cs2 and cs3 will be merged into one cluster cs2+ cs3, as indicated by red
ellipses in (b). Shown in the figure: physical hierarchy TP (a) before merging;
(b) during merging; and (c) after merging.

Algorithm 4: Merge Clusters Based on Connection
Signature

Input: Candidate clusters {cs1 , ..., csk }
1 find the least common ancestor vLCA of {cs1 , ..., csk } in tree TP
2 find the shortest path pLCA between root node of TP and vLCA
3 reference_clusters = {}
4 for each node v ∈ pLCA do
5 if v�=vLCA then
6 for each node u ∈ v.children() do
7 if u �∈ pLCA then
8 reference_clusters.append(u)

9 end
10 end
11 end
12 end
13 calculate the connection signatures of {cs1 , ..., csk } with respect to

reference_clusters
14 for each cluster c ∈ {cs1 , ..., csk } do
15 if c connects to only one of the reference clusters then
16 merge c with that reference cluster
17 end
18 end
19 merge remaining clusters in {cs1 , ..., csk } with the same connection

signature
20 update tree TP

In contrast to RTL-MP [51], we extend the calculation of
connection signature to a multilevel context. Details are given
in Algorithm 4. The entire process is illustrated with the exam-
ple shown in Fig. 4. In this example, {cs1 , cs2 , cs3 , cs4} are the
candidate clusters to be merged. First, we find the least com-
mon ancestor of {cs1 , cs2 , cs3 , cs4}, i.e., c7 [Line 1]. Second,
we determine the shortest path PLCA = root, c2, c7 between
root node and c7 [Line 2]. Third, we traverse PLCA and
identify all the reference clusters {c1, c3, c6} [Lines 3–12]. We
then calculate the connection signatures of {cs1 , cs2 , cs3 , cs4}
with respect to {c1, c3, c6} [Line 13]. Fourth, if a candidate
cluster connects to only one of the reference clusters, we
merge the candidate cluster with that reference cluster directly

[Lines 14–18]. As shown in the figure, if cluster cs1 only
connects to cluster c6, we will merge cs1 with c6. Finally,
we merge remaining candidate clusters having the same
connection signature and update the physical hierarchy tree
TP [Lines 19–20]. For example, if cluster cs2 and cs3 have the
same connection signature, we will merge cs2 and cs3. The
final physical hierarchy is shown in Fig. 4(c). As shown in
the figure, the final physical hierarchy is different from the
original logical hierarchy: 1) there are physical clusters in the
physical hierarchy that correspond to multiple logical modules
in the logic hierarchy and 2) the physical hierarchy tree Tp
is unbalanced and has a different structure from the logical
hierarchy.

V. SHAPE FUNCTIONS FOR CLUSTERS

Shape function calculation [19] determines the allowable
rectangular shapes for each cluster. In RTL-MP [51], the
physical hierarchy has a single level, and all clusters are
leaf clusters; shape functions are continuous for standard-cell
clusters and discrete for macro clusters. In contrast, in Hier-
RTLMP, shape functions are calculated for all the intermediate
levels of the physical hierarchy, leading up to the root, using a
two-step process. First, shape functions are initially calculated
bottom-up from leaf clusters. Second, once the shape functions
for all clusters in the physical hierarchy have been calculated,
they are further refined before the top-down macro placement
of the clusters, starting from the root cluster. Conceptually,
during bottom-up determination of the shape functions, we still
do not know the outline nor the IO pin locations for the parent
cluster. During the top-down macro placement of the physical
clusters, starting from the root cluster (i.e., the top-level
design), both the outline and the IO pin locations are fixed.
Hence, the shape functions of child clusters can be further
refined to better accommodate the parent cluster’s outline
and IO pin locations. This enables improved convergence and
outcomes (runtime and QoR) during the macro placement of a
given parent cluster. The remainder of this section gives details
of how cluster shape functions are determined.

Recall from Section III above that there are standard-cell,
macro, and mixed types of clusters.

1) A standard-cell cluster (containing only standard cells)
has fixed area and continuous aspect ratio within given
lower and upper bounds. As shown in Fig. 5, the shape
function of a standard-cell cluster is a continuous curve.

2) A macro cluster (containing only macros) can have
different areas and discrete aspect ratios. As shown in
Fig. 5, the shape function of a macro cluster is a set of
discrete points.

3) A mixed cluster (containing both macros and standard
cells) has fixed area and piecewise-continuous aspect
ratios. As shown in Fig. 5, the shape function of a mixed
cluster (red trace) is a piecewise-continuous curve.

We calculate the shape functions of clusters in a “�-shaped”
multilevel manner, i.e., following the traditional multilevel
paradigm. This enables Hier-RTLMP to dynamically adjust
the possible shapes for each cluster, based on the placement
(Section VI).6 The overall shape function calculation can be
divided into two stages, which, respectively, perform coarse
shaping and fine shaping, as follows.

6In our implementation, each shape of a cluster is rectangular and
represented by a pair of values (width, height).

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

KAHNG et al.: Hier-RTLMP: A HIERARCHICAL AUTOMATIC MACRO PLACER 1559

Fig. 5. Example shape curves for standard-cell, macro, and mixed cluster
types, during coarse (stage 1) and fine (stage 2) shaping. The blue line
represents the shape curve of a standard-cell cluster during fine (stage
2) shaping; the two red dots and two segments of red lines, respectively,
represent the shape curves of a mixed cluster during coarse (stage 1) and fine
(stage 2) shaping; and the two black dots represent the shape curve of a macro
cluster during coarse (stage 1) shaping.

Coarse Shaping (Stage 1): During coarse shaping, we
determine the rough shape function for each cluster in a
bottom-up manner, which means the shapes of a cluster are
based on the tilings of all its child clusters. This method
of bottom-up calculation for shape functions guarantees that
the determined shape of a macro or mixed cluster is always
large enough to accommodate the tilings of all the included
macros. Coarse shaping consists of the following steps.
First, the shape of a standard-cell cluster is constrained by
a user-specified parameter min_ar (default value = 0.33),
i.e., the aspect ratio of a standard-cell cluster is in the range
[min_ar, (1.0/min_ar)]. Second, for the shape function of
a macro cluster, we use Simulated Annealing to calculate
possible macro tilings, which have minimum area and can
fit into the floorplan. Third, for the shape function of a
mixed cluster, we ignore the area of standard cells, and use
Simulated Annealing to calculate possible tilings of its child
clusters. As applied in this phase, the Sequence Pair-based
annealing supports four solution perturbation (move) operators
with respective probabilities 0.3, 0.3, 0.3, and 0.1.

1) Op1: Swap two clusters in the first sequence.
2) Op2: Swap two clusters in the second sequence.
3) Op3: Swap two clusters in each of both sequences.
4) Op4: Change the shape of a cluster by randomly picking

one shape from its available shapes.
The details of Simulated Annealing are as follows: the

number of moves per iteration is 500; the total number of
iteration is 200; the initial acceptance probability is 0.9;
and the minimum temperature is 1e10. Here, we also force
the aspect ratio of a mixed cluster to be within the range
[min_ar, (1.0/min_ar)] if there are multiple available possible
tilings. As shown in Fig. 5, after coarse shaping we know
the shape functions for macro clusters, and the discrete
approximation of the shape functions for mixed clusters, for
the entire physical hierarchy.

Fine Shaping (Stage 2): Fine shaping is done in a top-
down manner, starting from the root cluster, and before the
macro placement of each given cluster to dynamically adjust
the possible shapes of each of the child clusters. At this stage,
we refine the possible shapes of each cluster based on the fixed
outline and location of its parent cluster. For the root cluster,
which is the top-level block, the fixed outline and the IO pin

Algorithm 5: Fine Shaping
Input: Physical hierarchy tree TP, Placed parent cluster cp,

Target utilization util,
Target dead space t_dead_space,
Minimum aspect ratio min_ar

1 avail_area← cp.GetOutlineArea()

2 avail_area −= area occupied by placement blockages
3 for cluster c ∈ cp.GetChildren() do
4 if c is a macro cluster then
5 abandon the shapes which cannot fit into cp
6 avail_area −= c.GetArea()

7 end
8 if c is a mixed cluster then
9 abandon the shapes which cannot fit into cp

10 shapes← c.GetShapes()
11 area← the minimum area of possible shapes
12 area← area+ c.GetStdCellArea()/util
13 initialize an empty list aspect_ratios
14 for each shape in shapes do
15 ar = [shape.height

area/shape.height ,
area/shape.width

shape.width]
16 aspect_ratios.push_back(ar)
17 end
18 c.SetArea(area)

19 c.SetAspectRatios(aspect_ratios)
20 avail_area −= area
21 end
22 end
23 if cp.GetStdCellArea() == 0.0 then
24 return true
25 end
26 if avail_area ≤ 0.0 then
27 return false
28 end

29 inflat_ratio = cp.GetStdCellArea()

avail_area∗(1−t_dead_space)
30 for each child standard-cell cluster c of cp do
31 if c is a tiny cluster then
32 c.SetArea(0.0)

33 end
34 else
35 c.SetArea(

c.GetArea()
inflat_ratio)

36 c.SetAspectRatios([min_ar, 1.0
min_ar])

37 end
38 end
39 return true

locations are the input constraints, usually derived from the
starting floorplan.def file. Details are given in Algorithm 5.
First, we remove the area occupied by placement blockages
from the available area of parent cluster cp [Lines 1–2].
Second, for each macro cluster, we abandon the shapes that
cannot fit into the outline of parent cluster cp [Lines 4–7].
Third, for each mixed cluster, we inflate the area of standard
cells based on the target utilization util, then convert the
discrete shapes into continuous shapes (see the example in
Fig. 5) by adding the area of standard cells [Lines 8–21].
Fourth, we check if there is enough empty space for standard-
cell clusters [Lines 26–28]. Finally, we inflate the area of
standard cells based on target dead space t_dead_space. Here,
we ignore the area of tiny clusters which only have tens of
standard cells [Lines 29–38]. The target dead space controls
the amount of whitespace in the floorplan.

Conceptually, the larger the t_dead_space and util (the
smaller the area of mixed clusters and standard-cell clusters),
the easier it is to generate a valid macro placement that
optimizes wirelength, but this may cause significant routing
issues. In order to avoid high congestion, physical clusters
with higher macro density usually require lower utilization.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

1560 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Thus, in contrast to all previous works, we dynamically inflate
the area of standard cells in mixed clusters and standard-
cell clusters based on target utilization util and target dead
space t_dead_space, respectively. Furthermore, since it is
difficult to find universal values of target utilization util and
target dead space t_dead_space parameters that succeed for
all designs, we sweep these two parameters within given user-
specified computing resource and runtime constraints, and
pick the best floorplan obtained from the given budget of
trials. More specifically, for each target utilization util, we
sweep the target dead space t_dead_space parameter. The
sweeping stops when the current shape functions for clusters
result in a valid placement of clusters; in our experiments,
this occurs within 10 to 30 trials. The runtime reported in
Section VII includes the total runtime of all the trials. The
runtime analysis in Section VII also suggests that the runtime
overhead of sweeping the target dead space t_dead_space and
target utilization util is not significant.

VI. HIERARCHICAL MACRO PLACEMENT

In this section, we describe our approach to top-down
hierarchical macro placement. Section VI-A describes how we
place and shape the physical clusters, one level at a time, in
a preorder depth-first search manner. Section VI-B describes
how we determine the location and orientation of macros in
each leaf macro cluster.

A. Placement of Clusters

We shape and place the physical clusters, one level at a
time, in a preorder depth-first search manner starting from the
root cluster. Before the placement of clusters at each level, we
first determine the shape functions for all clusters based on
the outline and location of the parent cluster (Fine Shaping
in Section V). For example, in Fig. 1, before we place and
shape clusters c7 and c8, we adjust the shape functions of c7
and c8 based on the outline and location of their parent cluster
c2. We then calculate the connections between clusters, IO
pins and other clusters of the parent level. The other clusters
of the parent level are the reference clusters described in
Section IV-B. The actual IO pins are modeled by the bundled
pins along the block boundary, as described in Section IV.
At the top level (i.e., root cluster of TP), there are no other
clusters of the parent level. Below the top level, i.e., when we
are working on the physical clusters at intermediate levels of
the physical hierarchy, the outlines and locations of clusters
of the parent level have already been calculated, and behave
like fixed terminals. For example, in Fig. 1, when we place
clusters c13 and c14, other clusters of the parent level (c1, c3
and c8) behave like fixed terminals. In our implementation,
we assume that the bundled pin of each cluster is at the
center of the cluster. We use Sequence Pair [14] to represent
a given (floorplanned) arrangement of clusters, and Simulated
Annealing [27] to optimize a heuristic cost function. Further,
we adopt “multistart” scheme to improve the performance of
Simulated Annealing and we set the number of threads to 10 in
our experiments. As applied in this phase, the Sequence Pair-
based annealing supports four solution perturbation (move)
operators with respective probabilities 0.3, 0.3, 0.3, and 0.1.

1) Op1: Swap two clusters in the first sequence.
2) Op2: Swap two clusters in the second sequence.
3) Op3: Swap two clusters in each of both sequences.

4) Op4: Resize a cluster. For standard-cell clusters and
mixed clusters, we use the same resizing algorithm as
in [6]. for macro clusters, we randomly pick one shape
of its shapes.

To improve the QoR of the floorplan, we handle the
following constraints as RTL-MP does.7

1) Fixed Outline: All clusters should be placed within
the fixed outline. At the top level (root cluster of the
physical hierarchy TP), the outline is the block boundary
defined in the input.def file. Below the top level, for
an intermediate level physical cluster, the outline is
determined by the shape and location of its parent
cluster.

2) Peripheral Bias: To take routing blockages (e.g., due
to internal routing within macros) into account, leaf
clusters with macros should be pushed to peripheries
of the boundary. This simplifies the routing process by
reducing congestion in the center region.

3) Blockage: Instances including both macros and standard
cells should not overlap with placement blockages. Since
preplaced macros can be treated as placement blockages,
our macro placer can also handle preplaced macros.

4) Guidance: All clusters should be placed near specified
regions if users provide such constraints. The cluster’s
guidance is determined by the bounding box that encom-
passes the guidance for all constituent macros. We do
not consider the guidance for macros or clusters during
multilevel autoclustering.

5) Notch Avoidance: A decent floorplan should avoid dead
space which cannot be used effectively by P&R tools.

6) Pin Access: Macros should be kept from blocking the
access of IO pins.

In summary, the final cost function of our macro placer is

cost = α × Area+ β ×WL+ γ × poutline

+ ζ × pbias + η × pblockage

+ θ × pguidance + λ× pnotch (2)

where Area is the area of the current floorplan, WL is the
wirelength (HPWL), poutline is the penalty for violating the
fixed outline constraint, pbias is the penalty to promote macro
peripheral bias, pblockage is the penalty for pin access and
macro blockage, pguidance is the penalty for macro guidance,
pnotch is the penalty for notch regions, and α, β, γ , ζ , η,
θ and λ are the corresponding weights. Area, WL, poutline,
pbias, pblockage, pguidance, and pnotch are all normalized by
the corresponding initial value. The default values of these
weights are available in [62], and the effects of tuning these
weights are studied in Section VII.

B. Placement of Macros

After the placement of clusters, we know the position and
shape for each cluster. We next determine the location and
orientation of macros in each leaf macro cluster, one macro
cluster at a time. For a given macro cluster A, we extract the
connections between macros in A and in other clusters. Here,
other clusters behave like fixed terminals. We use Sequence
Pair [14] to represent macro placement in A and Simulated
Annealing [27] to optimize the cost function. We use four

7Detailed algorithms for handling these constraints are given in [51]. And
the implementation is available in [62].

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

KAHNG et al.: Hier-RTLMP: A HIERARCHICAL AUTOMATIC MACRO PLACER 1561

TABLE II
BENCHMARKS. THE CLOCK PERIODS FOR TESTCASES IMPLEMENTED IN

GF12 ARE NOT SPECIFIED, TO PROTECT FOUNDRY IP. Min_AR AND

Max_AR, RESPECTIVELY, DENOTE THE MINIMUM AND MAXIMUM

ASPECT RATIOS OF MACROS WITHIN THE TESTCASE. Area Ratio
REFERS TO THE RATIO BETWEEN THE MAXIMUM AND

MINIMUM AREAS OF MACROS IN THE TESTCASE

solution perturbation (move) operators in the annealing, with
respective probabilities 0.3, 0.3, 0.3, and 0.1.

1) Op1: Swap two macros in the first sequence.
2) Op2: Swap two macros in the second sequence.
3) Op3: Swap two macros in each of both sequences.
4) Op4: Flip all the macros.

The cost function used in this step is

cost = α × Area+ β ×WL+ γ × poutline + θ × pguidance (3)

where Area is the area of the current macro packing, WL is
the wirelength (HPWL), poutline is the penalty for violating
the fixed-outline constraint, pguidance is the penalty for macro
guidance, and α, β, γ and θ are corresponding weights.

VII. EXPERIMENTAL VALIDATION

Hier-RTLMP is implemented with approximately 12K
lines of C++ with a Tcl command line interface on
top of the OpenROAD [26], [49] infrastructure.8 We have
validated our macro placer using multiple designs, includ-
ing Ariane [57], BlackParrot (Quad-Core) [58], MemPool
Group [59], Tabla09 [52], Tabla01 [52], and Arm Cortex-A53
(CA53), in both open NanGate45 (NG45) and commercial
GlobalFoundries 12 nm (GF12) enablements. Tabla09 and
Tabla01 are ML accelerators generated by an open-source
ML hardware generator [52]. We use the bsg_fakeram [56]
memory generator to generate SRAMs for NanGate45 enable-
ment. The commercial GlobalFoundries 12nm enablement is a
commercial foundry 12-nm technology (13 metal layers) with
cell library and memory generators from a leading IP provider.
Table II summarizes information about our designs.

To show the effectiveness of our macro placer, the following
three scenarios are evaluated and compared.9

1) Comm: Macro placement is performed using a 2021
release of a state-of-the-art commercial P&R tool
(unnamed due to EULA restrictions) with its latest
macro placement option.

2) RTL-MP: Macros are placed by our previous work, RTL-
MP [51].

3) Hier-RTLMP: Results are obtained using our new macro
placer.

8We make public with permissive open-source license all source code
at [62].

9Reference [31] has reported an excellent dataflow-driven macro placer.
Unfortunately, no testcases or executables can be released by their group.
Our previous work [51] also tried to compare against the original mixed-size
placer (TritonMacroPlacer, or tmp) in OpenROAD, but the tool was unable
to generate legal floorplans for many of our designs.

TABLE III
METRICS OF Comm, RTL-MP, AND Hier-RTLMP FOR DESIGNS IN

COMMERCIAL GF12 ENABLEMENTS. WE HIGHLIGHT THE BEST VALUES

OF TIMING METRICS IN BLUE BOLD FONT. DATA POINTS

FOR GF12 ARE NORMALIZED

TABLE IV
METRICS OF Comm AND Hier-RTLMP FOR DESIGNS IN OPEN NG45 AND

COMMERCIAL GF12 ENABLEMENTS. WE HIGHLIGHT THE BEST VALUES

OF TIMING METRICS IN BLUE BOLD FONT. DATA POINTS

FOR GF12 ARE NORMALIZED

Our experiments use the following flow.
1) We first synthesize the design using a state-of-the-

art commercial synthesis tool, preserving the logical
hierarchy.

2) Next, we determine the core size of the testcase, and
place all the IO pins according to the determined core
size using a manually developed script. The utilization
for each testcase is presented in Table II.

3) Then, the macros are placed using different methods
(Comm, RTL-MP, and Hier-RTLMP).

4) Finally, all standard cells are placed, and all nets are
routed, using Cadence Innovus v21.1. Our scripts for
power delivery network generation and standard-cell
placement and routing are similar to those publicly
visible in the MacroPlacement GitHub repository [50].

A. Comparison ofHier-RTLMP With Other Macro Placers

Tables III and IV show the experiment results after com-
pletion of post-routing optimization (postRouteOpt) starting
from different macro placers’ solutions on our testcases. All
the macro placers are executed using their default param-
eter settings. The effect of parameter tuning is discussed
in Section VII-C. Rows represent designs, enablements and
macro placement flows; columns give metrics of number of
standard cells, total routed wirelength, power, WNS, TNS,
and turnaround time for a single run. The metrics in GF12
are normalized to protect foundry IP: 1) standard-cell area
is normalized to core area; 2) wirelength and power are
normalized to the Comm result; and 3) timing metrics (WNS,
TNS) are normalized to the clock period which we leave
unspecified. In all experiments that we report, we allow Hier-
RTLMP to sweep the target dead space t_dead_space from
0.05 to 1.0 with step 0.05, and target utilization util from 0.25

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

1562 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Fig. 6. Macro placements generated by Comm, RTL-MP, and Hier-RTLMP.
(a) CA53 (GF12)/Comm. (b) CA53 (GF12)/RTL-MP. (c) CA53 (GF12)/Hier-
RTLMP. (d) Ariane (GF12)/Comm. (e) Ariane (GF12)/RTL-MP. (f) Ariane
(GF12)/Hier-RTLMP.

to 1.0 with step 0.1. To reduce the runtime of t_dead_space
and util sweeping, we set the number of threads to 10.

As noted in Section V, the parameter sweep stops with the
first valid placement of clusters (in practice, within 10 to 30
trials). The turnaround time for a single run reported includes
the total runtime of all the trials (see Section VII-D for detailed
runtime analysis).10 Hier-RTLMP outperforms the commercial
macro placer and RTL-MP for almost all the testcases.

Compared to RTL-MP: Table III shows that Hier-RTLMP
reduces runtime compared to RTL-MP by at least 13×. For
CA53 (GF12), Hier-RTLMP generates worse results than RTL-
MP. However, Hier-RTLMP can achieve similar TNS through
applying autotuning enhancement (see Section VII-C). For
Ariane (GF12), Hier-RTLMP generates better results than
RTL-MP. The corresponding layouts of CA53 (GF12) and
Ariane (GF12) are presented in Fig. 6.

Compared to Commercial Macro Placers: Table IV shows
that Hier-RTLMP achieves much better timing in terms of
WNS and TNS within similar or less runtime.11 Besides,

10A single run means running the corresponding macro placer once, without
any parameter sweeping or autotuning.

11RTL-MP fails on Table IV testcases for two reasons: 1) its database is not
fully compatible with the NanGate45 technology node and 2) its capability is
limited to single-level autoclustering (see Section IV), which prevents it from
handling testcases with hundreds of macros.

Hier-RTLMP can identify the dataflow of design and place
macros following the dataflow. For example, for the Tabla09
design, Fig. 7(b) shows the layout for the macro placement
generated by Hier-RTLMP and Fig. 7(c) shows the placement
for the child clusters of the root (top-level) cluster. At the root
level of the physical hierarchy, five clusters are mixed clusters
containing both macros and standard cells. There is one IO
cluster containing memories (mem, yellow rectangle), and four
functional units each of which is an individual mixed cluster
(PU0 to PU3, red rectangles). The standard-cell clusters at
the top level, which are “tiny clusters” (Section V), contain
muxing logic that processes the IOs and interfaces with the
four functional units. As can be seen from Fig. 7(b), the
placement follows the dataflow with the IO cluster close to
the IOs and the standard-cell cluster in the middle of the four
functional unit clusters. The black lines in Fig. 7(c) show the
bundled net connections. The Tabla01 design has a similar
architecture as Tabla09, but with eight functional units (PU0 to
PU7). The results are presented in Fig. 7(d)–(f). The layouts
for Mempool (GF12) are presented in Fig. 7(g) and (h).

B. Effect of Timing Awareness

Hier-RTLMP captures the multiple stages of timing paths
between clusters through adding virtual connections between
clusters (Section IV-A). Fig. 8 shows the effect of varying
the threshold of num_hops (the length of the shortest path of
registers between paths) in (1), which affects the computation
of timing-related virtual connections between clusters. Here,
we use Ariane (NG45), CA53 (GF12) and BlackParrot (GF12)
as our testcases, and sweep num_hops_thr across values
{0, 1, 2, 3, 4, 5}, where num_hops_thr = 0 means that no
multiple stages of timing paths are considered. We can see
that num_hops_thr = 4 (default value) gives consistently good
results in terms of postRouteOpt TNS.

C. Ablation Study and Autotuning Enhancement

We now discuss the effect of tuning parameters on Hier-
RTLMP. There are two common approaches for tuning
parameters: 1) ablation study, i.e., sweeping the value of
one parameter, the remaining parameters being fixed at their
default values and 2) autotuning, i.e., applying optimization
algorithms like Bayesian optimization [37] to tune multiple
parameters simultaneously and figure out the “optimal” param-
eter combination. In this work, we study both approaches and
show the possible PPA improvement contributed by parameter
tuning. In the following parameter tuning experiments, we
use Ariane (NG45) and CA53 (GF12) as our testcases, and
tune the parameters num_segment (φ) (Section IV-A) and
boundary_weight (ζ) (3). The range of num_segment (φ) is
[1, 10], and the range of boundary_weight (ζ) is [0, 50). Both
num_segment and boundary_weight are integers, thus there are
possible 500 configurations in the search space.12

Ablation Study: We sweep num_segment (φ) values
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and boundary_weight (ζ) values
{0, 5, 10, 15, 20, 25, 30, 35, 40, 45}. The best values of φ
and ζ , noted as φ∗ and ζ ∗, respectively, are shown in
Table V.

Autotuning: We apply the hyperparameter tuning tool
Tune [37] to autotune parameters φ and ζ . An appropriate loss

12Strictly speaking, boundary_weight (ζ) can be any non-negative real
number.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

KAHNG et al.: Hier-RTLMP: A HIERARCHICAL AUTOMATIC MACRO PLACER 1563

Fig. 7. Macro placements generated by Comm and Hier-RTLMP. (a) Tabla09 (GF12)/Comm. (b) Tabla09 (GF12)/Hier-RTLMP. (c) Tabla09 (GF12) dataflow.
(d) Tabla01 (GF12)/Comm. (e) Tabla01 (GF12)/Hier-RTLMP. (f) Tabla01 (GF12) dataflow. (g) MemPool (GF12)/Comm. (h) MemPool (GF12)/Hier-RTLMP.

Fig. 8. Effect of the threshold num_hops_thr applied for timing closure
in (1).

function is needed to guide the search process [37]. In our use
of Tune, we define the loss function as

WL_norm = 1

|nets|
∑

net

length(net)

core.width+ core.height
(4)

TNS_norm = TNS/clock_period (5)

Cong = avg_cong_hor + avg_cong_ver (6)

cost = wl ·WL_norm− wt · TNS_norm+ wc · Cong

(7)

where wirelength (WL_norm), TNS (TNS_norm) and con-
gestion (Cong) are all collected after clock tree synthesis,
core.width and core.height are, respectively, width and height
of the fixed outline (Section VI), and avg_cong_hor and
avg_cong_ver are, respectively, the horizontal and vertical
congestion reported by Cadence Innovus 21.1.13 wl, wt, and

13During the autotuning process, for each configuration (φ, ζ), we run
Hier-RTLMP to generate a macro placement, and follow this with standard-
cell placement and clock tree synthesis using Cadence Innovus 21.1.

TABLE V
EFFECTS OF ABLATION STUDY AND AUTOTUNING FOR ARIANE (NG45)

AND CA53 (GF12). WE HIGHLIGHT THE BEST VALUES OF TIMING

METRICS IN BLUE BOLD FONT. DATA POINTS

FOR GF12 ARE NORMALIZED

we are corresponding weights to adjust the values of WL_norm,
TNS_norm, and Cong so that they contribute equally to the
final cost. Specifically, for Ariane (NG45), wl, wt, and we
are, respectively, set to 1.0, 0.1, and 1.0, while for CA53
(GF12), the corresponding values are, respectively, set to
100, 0.1 and 100. The number of trials allowed to Tune
affects QoR: more trials achieve better QoR at the cost of
longer tuning time. In our experiments, we set the number
of trials to 10 and 50, denoted as autotune10 and autotune50,
respectively. We use five threads to obtain an acceptable tuning
walltime equal to 2 (autotune10) or 10 (autotune50) times
that of a single Hier-RTLMP run, without any undue CPU
needs. The best configurations with respect to loss function
found by autotune10 and autotune50, noted as autotune∗10 and
autotune∗50, respectively, are shown in Table V. Fig. 9 shows
the design space explored by autotune50. The corresponding
best postRouteOpt layouts are presented in Fig. 10.

D. Runtime Analysis

From Table III, we can see that Hier-RTLMP is much faster
than RTL-MP. The profiling result for our macro placer on

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

1564 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Fig. 9. Design space explored by the autotune50. (a) Design space
explored for Ariane (NG45). The best configuration (num_segment φ = 4,
boundary_weight ζ = 24) is highlighted in blue circle. (b) Design space
explored for CA53 (GF12). The best configuration (num_segment φ = 7,
boundary_weight ζ = 15) is highlighted in blue circle.

Fig. 10. postRouteOpt layouts corresponding to autotune∗50, i.e., the best
results from autotuning with 50 trials. (a) Ariane (NG45). (b) CA53 (GF12).

Fig. 11. Runtime profiling of Hier-RTLMP on BlackParrot (GF12), Tabla01
(GF12), and MemPool (GF12).

the Tabla01 (GF12) is shown in Fig. 11. We can see that the
runtime of sweeping the target dead space t_dead_space and
target utilization util (Section V) is not significant.

VIII. CONCLUSION AND FUTURE WORK

In this work, we propose Hier-RTLMP, which extends RTL-
MP to support multilevel physical hierarchy and hierarchical
macro placement. Extensions to Hier-RTLMP that we are
currently exploring include the following.

1) More intelligent selection of intermediate modules of the
logical hierarchy as hierarchical physical clusters based
on dataflow and functionality, as well as user tagging of
logical modules as hierarchical clusters.

2) Fine tuning of the utilization setting for standard-cell
clusters based on the structural complexity, to reduce
sweeps and runtime.

3) Autotuning of the cost function based on the level of the
physical hierarchy and the contents of clusters, to better
preserve dataflow.

4) Enhancing the autoclustering engine to simultaneously
identify the appropriate groupings of macros and the
clusters of standard cells that “stay together” through
the backend flow.

5) Addition of new infrastructure to automatically back-
track up the hierarchy to redo a floorplan placement at
a higher-level physical cluster, based on metrics from a
lower-level physical cluster.

REFERENCES

[1] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning: Enabling
hierarchical design,” IEEE Trans. Very Large Scale Integr. (VLSI),
vol. 11, no. 6, pp. 1120–1135, Dec. 2003.

[2] R. Bruck, K.-H. Temme, and H. Wronn, “FLAIR-a knowledge-based
approach to integrated circuit floorplanning,” in Proc. Int. Workshop
Artif. Intell. Ind. Appl., 1988, pp. 194–199.

[3] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B*-trees: A
new representation for non-slicing floorplans,” in Proc. 37th DAC, 2000,
pp. 458–463.

[4] W. Choi and K. Bazargan, “Hierarchical global floorplacement using
simulated annealing and network flow area migration,” in Proc. DATE,
2003, pp. 1104–1105.

[5] J. Cong, M. Romesis, and J. R. Shinnerl, “Fast floorplanning by look-
ahead enabled recursive bipartitioning,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 25, no. 9, pp. 1719–1732, Sep. 2006.

[6] T.-C. Chen and Y.-W. Chang, “Modern floorplanning based on B∗-
tree and fast simulated annealing,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 25, no. 4, pp. 637–650, Apr. 2006.

[7] T.-C. Chen, Y.-W. Chang, and S.-C. Lin, “A new multilevel frame-
work for large-scale interconnect-driven floorplanning,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 2, pp. 286–294,
Feb. 2008.

[8] G. Chen, W. Guo, H. Cheng, X. Fen, and X. Fang, “VLSI floorplanning
based on particle swarm optimization,” in Proc. 3rd Int. Conf. Intell.
Syst. Knowl. Eng., 2008, pp. 1020–1025.

[9] C.-C. Hu, D.-S. Chen, and Y.-W. Wang, “Fast multilevel floorplanning
for large scale modules,” in Proc. ISCAS, 2004, pp. 205–208.

[10] B. H. Gwee and M. H. Lim, “A GA with heuristic-based decoder for
IC floorplanning,” Integration, vol. 28, no. 2, pp. 157–172, 1999.

[11] Z. He et al., “Learn to floorplan through acquisition of effective local
search heuristics,” in Proc. 38th ICCD, 2020, pp. 324–331.

[12] J. Lu et al., “ePlace-MS: Electrostatics-based placement for mixed-
size circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 34, no. 5, pp. 685–698, May 2015.

[13] M.-C. Kim, N. Viswanathan, C. J. Alpert, I. L. Markov, and S. Ramji,
“MAPLE: Multilevel adaptive placement for mixed-size designs,” in
Proc. ISPD, 2012, pp. 193–200.

[14] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module
placement based on rectangle-packing by the sequence-pair,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 15, no. 12,
pp. 1518–1524, Dec. 1996.

[15] R. H. J. M. Otten, “Automatic floorplan design,” in Proc. 19th DAC,
1982, pp. 261–267.

[16] K.-H. Temme and R. Bruck, “Chip-architecture planning based on
expert knowledge,” in Proc. Int. Workshop Artif. Intell. Ind. Appl., 1998,
pp. 188–193.

[17] J. Z. Yan and C. Chu, “DeFer: Deferred decision making enabled fixed-
outline floorplanner,” in Proc. 45th DAC, 2008, pp. 161–166.

[18] Y. Zhan, Y. Feng, and S. S. Sapatnekar, “A fixed-die floorplanning
algorithm using an analytical approach,” in Proc. ASP-DAC, 2006,
pp. 771–776.

[19] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical Design:
From Graph Partitioning to Timing Closure, 2nd ed. Berlin, Germany:
Springer, 2022.

[20] A. B. Kahng, “Classical floorplanning harmful?” in Proc. ISPD, 2000,
pp. 207–213.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

KAHNG et al.: Hier-RTLMP: A HIERARCHICAL AUTOMATIC MACRO PLACER 1565

[21] D. H. Kim and S. K. Lim, “Bus-aware microarchitectural floorplan-
ning,” in Proc. ASP-DAC, 2008, pp. 204–208.

[22] M. Ekpanyapong, J. R. Minz, T. Watewai, H.-H. S. Lee, and S. K. Lim,
“Profile-guided microarchitectural floorplanning for deep submicron
processor design,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 25, no. 7, pp. 1289–1300, Jul. 2006.

[23] A. Mirhoseini et al., “Chip placement with deep reinforcement learn-
ing,” 2020, arXiv:2004.10746.

[24] A. Mirhoseini et al., “A graph placement methodology for fast chip
design,” Nature, vol. 594, pp. 207–212, Jun. 2021.

[25] V. Nookala, Y. Chen, D. J. Lilja, and S. S. Sapatnekar,
“Microarchitecture-aware floorplanning using a statistical design of
experiments approach,” in Proc. 42nd DAC, 2005, pp. 579–584.

[26] A. B. Kahng and T. Spyrou, “The OpenROAD project: Unleashing
hardware innovation,” in Proc. GOMACTech, 2021, pp. 1–6.

[27] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science vol. 220, no. 4598, pp. 671–680, 1983.

[28] J.-M. Lin, S.-T. Li, and Y.-T. Wang, “Routability-driven mixed-size
placement prototyping approach considering design hierarchy and indi-
rect connectivity between macros,” in Proc. 56th DAC, 2019, pp. 1–6.

[29] J.-M. Lin, Y.-L. Deng, Y.-C. Yang, J.-J. Chen, and Y.-C. Chen, “A novel
macro placement approach based on simulated evolution algorithm,” in
Proc. ICCAD, 2019, pp. 1–7.

[30] J.-M. Lin, Y.-L. Deng, S.-T. Li, B.-H. Yu, L.-Y. Chang, and T.-W. Peng,
“Regularity-aware routability-driven macro placement methodology for
mixed-size circuits with obstacles,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 27, no. 1, pp. 57–68, Jan. 2019.

[31] J.-M. Lin, Y.-L. Deng, Y.-C. Yang, J.-J. Chen, and P.-C. Lu, “Dataflow-
aware macro placement based on simulated evolution algorithm for
mixed-size designs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 29, no. 5, pp. 973–984, May 2021.

[32] J. K. Ousterhout, “Corner stitching: A data-structuring technique for vlsi
layout tools,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 3, no. 1, pp. 87–100, Jan. 1984.

[33] X. Tang and D. F. Wong, “FAST-SP: A fast algorithm for block place-
ment based on sequence pair,” in Proc. ASP-DAC, 2001, pp. 521–526.

[34] A. Vidal-Obiols, J. Cortadella, J. Petit, M. Galceran-Oms, and
F. Martorell, “RTL-aware dataflow-driven macro placement,” in Proc.
DATE, 2019, pp. 186–191.

[35] A. Vidal-Obiols, J. Cortadella, J. Petit, M. Galceran-Oms, and
F. Martorell, “Multi-level dataflow-driven macro placement guided by
RTL structure and analytical methods,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 40, no. 12, pp. 2542–2555, Dec. 2021.

[36] J. Z. Yan, N. Viswanathan, and C. Chu, “An effective floorplan-guided
placement algorithm for large-scale mixed-size design,” ACM Trans.
Des. Autom. Electron. Syst., vol. 19, no. 3, pp. 1–25, 2014.

[37] “Tune.” Accessed: 2023. [Online]. Available: https://docs.ray.io/en/
latest/tune/index.html

[38] Y.-L. Chuang, G.-J. Nam, C. J. Alpert, Y.-W. Chang, J. Roy, and
N. Viswanathan, “Design-hierarchy aware mixed-size placement for
routability optimization,” in Proc. ICCAD, 2010, pp. 663–668.

[39] T.-C. Chen, P.-H. Yuh, Y.-W. Chang, F.-J. Huang, and T.-Y. Liu,
“MP-trees: A packing-based macro placement algorithm for modern
mixed-size designs,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 27, no. 9, pp. 1621–1634, Sep. 2008.

[40] Y.-C. Liu, T.-C. Chen, Y.-W. Chang, and S.-Y. Kuo, “MDP-trees: Multi-
domain macro placement for ultra large-scale mixed-size designs,” in
Proc. 24th ASP-DAC, 2019, pp. 557–562.

[41] Y.-F. Chen, C.-C. Huang, C.-H. Chiou, Y.-W. Chang, and C.-J. Wang,
“Routability-driven blockage-aware macro placement,” in Proc. 51st
DAC, 2014, pp. 1–6.

[42] C.-H. Chiou, C.-H. Chang, S.-T. Chen, and Y.-W. Chang, “Circular-
contour-based obstacle-aware macro placement,” in Proc. ASP-DAC,
2016, pp. 172–177.

[43] C.-H. Chang, Y.-W. Chang, and T.-C. Chen, “A novel damped-wave
framework for macro placement,” in Proc. ICCAD, 2017, pp. 504–511.

[44] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, T.-C. Chen, and Y.-W. Chang,
“Routability-driven placement for hierarchical mixed-size circuit
designs,” in Proc. DAC, 2013, pp. 1–6.

[45] M.-K. Hsu et al., “NTUplace4h: A novel routability-driven place-
ment algorithm for hierarchical mixed-size circuit designs,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 12,
pp. 1914–1927, Dec. 2014.

[46] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, “Electronic design
automation: Synthesis, verification, and test,” in The Morgan Kaufmann
Series in Systems on Silicon. Amsterdam, The Netherlands, Elsevier Sci.,
2009.

[47] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in
Proc. 23rd DAC, 1986, pp. 101–107.

[48] Team VLSI. “Floorplan strategies for macro dominating blocks.” 2014.
[Online]. Available: https://www.teamvlsi.com/2021/02/floorplan-
strategies-for-macro.html

[49] “The OpenROAD project.” Accessed: 2023. [Online]. Available: https:
github.com/The-OpenROAD-Project/OpenROAD

[50] “TILOS AI institute, Macroplacement repository.” Accessed:
2023. [Online]. Available: https://github.com/TILOS-AI-Institute/
MacroPlacement

[51] A. B. Kahng, R. Varadarajan, and Z. Wang, “RTL-MP: Toward practical,
human-quality chip planning and macro placement,” in Proc. ISPD,
2022, pp. 3–11.

[52] H. Esmaeilzadeh et al., “VeriGOOD-ML: An open-source flow for
automated ML hardware synthesis,” in Proc. ICCAD, 2021, pp. 1–7.

[53] “Birds-of-a-feather session: Open-source EDA and benchmarking sum-
mit.” DAC, 2022. [Online]. Available: https://open-source-eda-birds-of-
a-feather.github.io/

[54] D. Junkin (Cadence Design Syst. Comput. Softw. Co., San Jose, CA,
USA). Supporting the Scientific Method for the Next Generation of
Innovators: DAC-Birds-of-a-Feather Presentation. (2022). [Online].
Available: https://open-source-eda-birds-of-a-feather.github.io/doc/
slides/BOAF-Junkin-DAC-Presentation.pdf

[55] “Google research circuit training.” Accessed: 2023. [Online]. Available:
https://github.com/google-research/circuit_training

[56] “BSG black-box SRAM generator repo.” Accessed: 2023. [Online].
Available:https://github.com/jjcherry56/bsg_fakeram

[57] “Ariane RISC-V CPU repo.” Accessed: 2023. [Online]. Available:
https://github.com/openhwgroup/cva6

[58] “BlackParrot repo.” Accessed: 2023. [Online]. Available:https://github.
com/black-parrot/black-parrot

[59] “MemPool repo.” Accessed: 2023. [Online]. Available:https://github.
com/pulp-platform/mempool

[60] P. Liao, S. Liu, Z. Chen, W. Lv, Y. Lin, and B. Yu, “DREAMPlace
4.0: Timing-driven global placement with momentum-based net weight-
ing,” in Proc. DATE, 2022, pp. 939–944.

[61] A. Agnesina et al., “AutoDMP: Automated DREAMPlace-based macro
placement,” in Proc. ISPD, 2023, pp. 149–157.

[62] “Hier-RTLMP.” Accessed: 2023. [Online]. Available:https://github.com/
The-OpenROAD-Project/OpenROAD/tree/master/src/mpl2

[63] M. Fogaça, A. B. Kahng, E. Monteiro, R. Reis, L. Wang, and M. Woo,
“On the superiority of modularity-based clustering for determining
placement-relevant clusters,” Integration, vol. 74, pp. 32–44, Sep. 2020.

Andrew B. Kahng (Fellow, IEEE) received
the Ph.D. degree in computer science from the
University of California at San Diego, La Jolla, CA,
USA, in 1989.

He is a Distinguished Professor with the
Department of Computer Science and Engineering
and the Department of Electrical and Computer
Engineering, University of California at San Diego.
His interests include IC physical design, the design-
manufacturing interface, large-scale combinatorial
optimization, AI/ML for EDA and IC design, and
technology roadmapping.

Ravi Varadarajan (Student Member, IEEE) is cur-
rently pursuing the Ph.D. degree with the University
of California at San Diego, La Jolla, CA, USA.

His research interests include physical design
implementation and methodologies.

Zhiang Wang (Student Member, IEEE) received the
M.S. degree in electrical and computer engineering
from the University of California at San Diego, La
Jolla, CA, USA, in 2022, where he is currently
pursuing the Ph.D. degree.

His current research interests include partitioning,
placement methodology, and optimization.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 13,2024 at 08:32:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

