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We discuss a new minimum density objective for spanning and Steiner tree constructions. This formulation is
motivated by the minimum-area layout objective, which is best achieved through balancing the usage of horizontal
and vertical routing resources. We present two efficient heuristics for constructing low-density spanning trees and
prove that their outputs are on average within small constants of optimal with respect to both tree cost and
density. Our proof techniques suggest a non-uniform lower bound schema which can afford tighter estimates of
solution quality for a given problem instance. Furthermore, the minimum density objective can be transparently
combined with a number of previous interconnection objectives (e.g., minimizing tree radius or skew) without
affecting solution quality with respect to these previous metrics. Extensive simulation results suggest that appli-
cations to VLSI global routing are promising.
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1 INTRODUCTION

n this paper, we address a new minimum density
objective for spanning and Steiner tree construc-

tions in the Manhattan plane. Our work is motivated
by the area minimization requirement inherent in the
global routing phase of VLSI layout (the global rout-
ing phase entails construction of spanning or Steiner
interconnection trees over prescribed pointsets, or
signal nets; see [20] for a survey). Traditionally, the
minimum-area objective has been approximately
captured by minimizing the total edgelength in the
tree" since wires have a fixed width and must be
routed at a fixed separation from each other, the total
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tree edgelength provides an obvious lo,wer bound on
the routing area that must be added to the layout.
However, the grid-based structure of integrated cir-
cuit routing resources provides additional informa-
tion for determining the impact of a given intercon-
nection topology on the chip area.

For the four-terminal signal net shown in Figure
1, the interconnection tree of Figure l(a) forces at
least three wires to cross the dashed line, meaning
that the horizontal dimension of the chip must in-
crease by enough to accommodate these three rout-
ing grids. (We adopt "routing grid" as a generic term
that is independent of layout methodology. The term
encompasses, e.g., vertical feedthroughs or horizon-
tal routing tracks in a channel [20].) In contrast, the
tree of Figure l(b) forces the horizontal chip dimen-
sion to grow by only one routing grid (however, the
vertical chip dimension will grow by two grids, as
indicated by the horizontal dashed line). In view of
manufacturing constraints on the maximum chip di-
mension, the most effective layouts are generally
those which are roughly square, and this suggests
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Ca) (b)

FIGURE A four-terminal signal net for which the tree on the left increases the required layout dimension by three routing grids,
while the tree on the right requires only two routing grids.

balancing the horizontal and vertical routing require-
ments induced by the interconnection tree. As a re-
sult, we formulate the Minimum Density Intercon-
nection Tree problem as follows.
A signal net N {Pl, P2, Pn} is a set of n

points, or terminals, in the Manhattan plane. (Note
that in discussing related formulations, we will oc-
casionally find it necessary to distinguish a single
source terminal of the net, with the remaining ter-
minals being sinks.) An interconnection tree of a net
N, denoted T(N), is a tree which spans N. The cost
of a tree edge is the Manhattan distance between its
endpoints, and the cost of a routing tree is the sum
of the costs of its edges. A line properly intersects an
edge if it intersects the edge at a single point which
is not an endpoint of the edge.

Definition: The density of an interconnection tree
is the maximum number of tree edges that can be
properly intersected by a horizontal o.r vertical line
in the plane (Figure 2).

Definition: For a given net N, the minimum density
of N is the minimum density achievable by an inter-
connection tree T(N), and a minimum density inter-
connection tree is any T(N) that achieves this mini-
mum density.

Minimum Density Interconnection Tree (MDIT)
Problem: Given a net N, construct a minimum den-
sity interconnection tree T(N) with minimum cost.
Our density criterion recalls the notion of trees

with "low stabbing number," which are used in the
computational geometry literature to speed up dy-
namic "ray shooting" queries [1, 8, 13, 14, 24]. How-
ever, our work differs from these computational ge-
ometry results in several important respects. First,
spanning trees with low stabbing number minimize
the number of tree edges that can be intersected by
a line of any orientation, while our MDIT formu-
lation is concerned only with horizontal or vertical
intersecting lines. While the low stabbing number
formulation is more general, it is also much more
difficult to solve: we achieve bounds that are tighter
by a logarithmic factor, and our algorithms are con-
siderably simpler as well as more efficient than those
achievable through naive adaptation of previous con-
structions. Second, methods from the computational
geometry literature do not bound the tree cost in
addition to bounding the tree density; our methods
minimize both parameters simultaneously and are
thus much more relevant to VLSI routing applica-
tions. Finally, we address the case when Steiner
points are allowed, enabling considerably tighter
bounds on both density and tree cost.

(a) (b) (c)
FIGURE 2 (a) Example of a signal net, along with (b) an interconnection tree with density 3, and (c) a minimum density tree
with density 2.
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We also note an attractive feature of the MDIT
heuristics presented below, namely, their "compat-
ibility" with existing VLSI routing objectives. The
three most prominent interconnection tree criteria
in the current literature are all "performance-
driven," i.e., they are aimed at improving the max-
imum speed at which a digital system may be clocked:

1. Minimizing the total cost o the interconnection
tree corresponds to the well-studied minimum
rectilinear Steiner tree problem [4, 19, 21, 25,
28]. The total tree cost contributes a significant
portion of the RC delay as well as routing area
[61.

2. Minimizing the maximum source-sink path-
length in the tree corresponds to the "bounded-
radius, bounded-cost" spanning tree formula-
tion which has been treated in [2, 9, 10, 11].
The minimum-radius criterion more accurately
captures delay considerations when intercon-
nect resistance dominates driver output resis-
tance, as in multi-chip module substrate or sub-
micron IC interconnects [6, 15, 26, 27].

3. Minimizing the maximum pathlength skew, i.e.,
difference in source-sink pathlengths, captures
both the clock skew minimization problem as
well as the "min-max" timing constraints which
arise in global routing of very high-performance
designs. These formulations have been treated
in such recent works as [7, 17, 18, 23].

We make note of these existing formulations be-
cause our proposed algorithms for minimum-density
interconnection trees afford unique multiple opti-
mizations wherein up to three competing objectives
may be optimized simultaneously. As a result, the
area minimization objective of minimum-density
routing can be attained without sacrificing perfor-
mance-driven criteria. In particular, the discussion
below describes how tree cost, radius, and density
can be simultaneously optimized; we also show how

tree cost, skew and density can be simultaneously
addressed.
The remainder of this paper is organized as fol-

lows. In Section 2, we give two efficient heuristic
constructions for minimum density interconnection
trees, along with several simple variants. Section 3
establishes a number of performance bounds: we
show that our methods have good performance in
that on average they produce interconnection trees
with both cost and density bounded by constant fac-
tors from their optima. Section 4 integrates the
minimum density objective with current perfor-
mance-driven objectives in order to achieve "triple
optimizations," and Section 5 concludes with exper-
imental results as well as several directions for future
research.

2 HEURISTICS FOR MINIMUM
DENSITY INTERCONNECTION TREES

Without loss of generality, the following discussion
will assume that all terminal coordinates lie inside
the unit square (the input can alWays be scaled to
meet this condition).

2.1 The COMB Construction for Spanning and
Steiner Trees

Our first basic algorithm sorts the terminals by in-
creasing x-coordinate (ties are broken to favor the
larger y-coordinate), and then partitions the termi-
nals of net N into /-// vertical strips, each con-
taining v/n terminals (Figure 3a). (Note that our
discussion implicitly assumes use of the floor and
ceiling functions as appropriate; this does not affect
any of our asymptotic results.) We then connect all
the terminals of each strip into a path, in order of
decreasing y coordinate (Figure 3b). We complete
the routing topology by connecting the terminals with

(a) (b) (c)
FIGURE 3 Execution of the COMB spanning tree construction on a net of size n 16.
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Algorithm: COMB
Input: a net N, containing IN[ = n terminals
Output: a low-density low-cost interconnection tree spanning N
1’ Partition N into vertical strips each containing x/ terminals

2: Connect in monotone y-order the terminals within each strip
3: Connect in monotone x-order the bottom terminals of all strips
4: Output resulting spanning tree

FIGURE 4 Algorithm COMB: heuristic minimum-density spanning tree construction.

lowest y coordinate in each strip, in order from left
to right (Figure 3c). This algorithm is described in
Figure 4. The complexity of this algorithm, which
we call COMB, is clearly dominated by the parti-
tioning/sorting step (Step 1 of Figure 4), and is there-
fore O(n log n).

If the introduction of Steiner points is allowed in
constructing the interconnection tree, we can reduce
the worst-case density as well as the worst-case cost
of our construction via the following method: (i) par-
tition the net N into V// vertical strips, each
containing terminals (Figure 5a); (ii) within
each strip, connect the terminals in the strip to a
central spine, i.e., a vertical line which passes
through the median terminal of the strip when the
terminals are sorted by x-coordinate (Figure 5b);
then (iii) join all the spines using segments of a single
horizontal line (Figure 5c). This variant, which we
call COMB_ST, is described in Figure 6 and has
complexity O(n log n), again reflecting the complex-
ity of the partitioning/sorting step.

2.2 A Chain-Peeling Method

A different, "chain-peeling" approach to density
minimization iteratively computes and superposes
chains or antichains (i.e., sets of terminals through
which a staircase routing exists). More precisely, a
chain is a sequence of terminals with coordinates that
are monotone nondecreasing in both x and y; an
antichain has coordinates monotone nondecreasing
in x and monotone nonincreasing in y. According to
Dilworth’s theorem [12], every partially ordered set
of size n must contain either a chain or an antichain
of size at least /-.
Our chain-peeling method, which we call PEEL

(Figure 7), efficiently detects a maximal chain or an-
tichain and then removes it from the net; the process
is iterated over the remaining terminals until the net
has been covered. Each chain contributes at most one
to the overall density, and the chains/antichains can
be joined together into a tree (Step 7 of Figure 7)
without increasing the density further (see Theorem

I0

I

(a) (b) (c)
FIGURE 5 Execution of the COMB_ST Steiner tree construction on a net of size n 16. Note that density 3 is achieved by
the construction, while the COMB construction yielded density 5 for the same instance.

Algorithm: COMB_ST

Input: a net N, containing IN[ = n terminals
Output: a low-density low-cost Steiner tree connecting N
1" Partition N into vertical strips each containing V/ terminals
2: Connect the terminals within each strip to a central spine
3: Connect the bottoms of all spines
4: Output resulting Steiner tree

FIGURE 6 Algorithm COMB_ST: heuristic minimum-density Steiner tree construction.
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Algorithm: PEEL
Input: a net N, containing [N[ = n terminals
Output: a low-density low-cost tree spanning N
1: S=N
2: T=
3: While S 1 Do
4: C- maximum chain or antichain of S
5: T= Tt.JC
6: S=S-C
7" Join all chains/antichains in T and output resulting tree

FIGURE 7 Algorithm PEEL produces a low-density tree by iteratively computing maximum chains or antichains, then joining them
into an interconnection tree.

3.6 below). The PEEL method is attractive because
it escapes such pathological examples as that of Fig-
ure 8, where COMB or COMB_ST will yield density
an unbounded factor greater than that of PEEL. We
show in Section 3.1 that the time complexity of PEEL
is O(n3/2 log log n).

3 PERFORMANCE BOUNDS

Both the density and the total tree cost of our con-
structions are on average only small constant factors
away from optimal.

3.1 Density Bounds

For a net N of n terminals, a lower bound of
f(/-n) can easily be established for the worst-case
minimum density of the spanning tree T(N). More-
over, we can show @(Vn) expected density for the
minimum density interconnection tree over N.

Theorem 3.1 A net N containing the n distinct grid
points of the (/- 1) (/- 1) grid cannot be
spanned b__,v an interconnection tree having density less
than [(X/n + 1)/2].

Proof: In the square array, there are 2(/- 1)
horizontal and vertical lines between the rows and
columns of terminals. For the tree T(N) to be corn
nected, each tree edge must cross at least one hor-
izontal or vertical line. Hence, there are at least
n 1 line crossings, and the pigeonhole principle
implies that at least one of the lines is crossed [(n
1)/(2(/-- 1))] [(/- + 1)/2] times.

The next theorem requires the following lemma"

Lemma 3.2 If n indistinguishable balls are indepen-
dently placed at random into n indistinguishable
boxes, (1 l/e) n boxes are expected to be non-
empty.

Proof: The probability of a given ball ending up in
a given box B is 1/n, and so the probability of the
ball missing box B is 1 1/n. By the independence
of the placements, the probability that all n balls miss
box Bi is (1 1/n)". Therefore, as n increases, the
probability that any given box remains empty is
limn__,(1 1/n) 1/e. By linearity of expectation,
it follows that a constant fraction 1/e of the n boxes
are expected to remain empty, proving the lemma.

Theorem 3.3 For n terminals chosen randomlyfrom
a uniform distribution in the unit square, the mini-

(a) (b) (c)
FIGURE 8 Illustration (a) of class of examples on which PEEL (b) performs an unbounded factor better than either COMB (c) or
COMB_ST. The connecting edges between the strips (Step 3 of COMB) are not shown in (c). For points in an "X" configuration,
PEEL will always yield a constant density 2, while COMB or COMB_ST density will grow as the square root of n.
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(a) (b)

FIGURE 9 Expected minimum density of a net: (a) the unit
square is partitioned into n congruent cells; (b) each non-empty
cell contains some terminal p; which contributes at least one edge
e, that crosses a cell boundary.

mum density interconnection tree has expected density
o(x n).
Proof: Partition the unit square into n identical
square cells, each of size 1// by 1//, using
2-n 2 vertical and horizontal lines (Figure 9a).
If we regard cells as "boxes" and terminals as "balls"
then by Lemma 3.2 the expected number of cells
containing at least one terminal is (1 i/e) n. For
the spanning tree to be connected, each of these non-
empty cells must contain at least one terminal Pi
which has an incident tree edge ej that crosses a
boundary of the cell (Figure 9b). By the pigeonhole
principle, at least one of the horizontal or vertical
lines will intersect ((1 I/e) n)/(2-n 2) > (1

i/e) /-n/2 tree edges, yielding the (V) lower
bound on the expected minimum density. Since our
algorithms always yield interconnection trees with
density O(/-) (see the following sequence of re-
suits), the expected minimum routing density for a
net of n terminals uniformly chosen in the unit square
is 0(V/-). if]

Interestingly, the proof schema of Theorem 3.3
suggests a computational lower bound for individual

instances of the MDIT problem, as follows. Given a
net N, select integers and ] and partition the unit
square into an by ] (not necessarily uniform) rec-
tangular grid such that the greatest number P of the
resulting i. ] rectangles contain terminals (see Figure
10). By the pigeonhole principle (recall the proof of
Theorem 3.3), this induces an immediate lower
bound of [(P- 1)/((/- 1) + (1- 1))l [(P-
1)/(i + 2)] on the minimum routing density of
N. Various schemes can be used to find a partition
which maximizes the quantity (P-._ 1)/(i + j 2):
for example, one could place =X/n horizontal lines
such that at most terminals lie between each
consecutive pair of horizontal lines, and then place
the j vertical lines using a similar criterion. It
is open whether there exists a polynomial-time al-
gorithm which computes a rectangular partition that
maximizes (P 1)/_(i + j 2), even for fixed/and

j (e.g., j X/n). Experimental data indicates
that this simple computational lower bound can be
useful for small net sizes; details are presented in
Section 5.
We now establish the density bounds for our heu-

ristics.

Theorem 3.4 Algorithm COMB constructs a span-
ning tree with density

Proof: Since each strip contains no more than
X/ terminals, a vertical line passin,z_through any
strip cannot intersect more than V’2n tree edges.
Since any given horizontal line cannot intersect more
than two edges within a strip (one edge from Step 2
and one from Step 3 in Figure 4), the maximum
horizontal density is 2 /-/’v/ ’-. Thus, the
density of the COMB output is at most -.
Theorem 3.5 Algorithm COMB_ST constructs a
Steiner tree with density <- X/-/V + 1.

Proof: In the construction of Figure 5, a strip can
contain at most --n// terminals on each side of its
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(a) (b) (c)
FIGURE 10 Computing a non-uniform lower bound on the density. For the net in (a), a uniform partition of the unit square into
16 squares of size 1/4 each, shown in (b), yields 11 non-empty cells which imply a density lower bound of [(11 1)/((4 1) +
(4 1))] 2. On the other hand, the non-uniform partition shown in (c) yields 14 non-empty cells, which imply an improved density
lower bound of [(14- 1)/((4- 1) + (4- 1))| 3.
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spine, so no vertical line can intersect more than
--n// of the edges created in Step 2 of Figure 6.
No horizontal line can intersect any of the -//
vertical spines more than once. Thus, the density of
the COMB_ST output is at most -// + 1, when
we consider the edges added to join the spines to-
gether (Step 3).
A density bound for the chain-peeling algorithm

PEEL follows from the following two lemmas,
namely, (i) at most O(/-) chains or antichains will
be "peeled" during the construction, and (ii) these
chains/antichains can be connected to form a single
component which has density at most the number of
chains/antichains.

Theorem 3.6 Algorithm PEEL constructs a Steiner
tree with density <- 2. V-.
Proof: We first show that PEEL computes at most
2 chains and/or antichains. Let ai denote the
number of points remaining after we have peeled off
chains and/or antichains. Assume that the algo-

rithm stops when we have peeled off k chains and/
or antichains, i.e., a 0. We want to show that k
-< 2 /-n. According to Dilworth’s Theorem [12],
the size of the (i + 1)-th chain/antichain is at least
-ai. Thus, a+ <- ai X/-ii. Moreover, it is easy to

verify that X/x X/ -< X/2 1/2. Therefore,

To complete the proof, we need to show the chains
and antichains can be "joined" into a spanning tree
without increasing density. This can be accomplished
by extending each chain to the top-right corner of
the unit square and each anti-chain to the top-left
corner; this clearly will not increase total density be-
yond k (see Figure 11). A simple case analysis shows
that the set of chains can then be connected to the
set of antichains with no further increase in density,
yielding the overall density bound of 2 /. V3

Note that when the chains and antichains are joined
into a Steiner tree as described in the proof, the tree
density will always be exactly the total number of
chains and antichains since a horizontal line near the
top of the square will cut all (extended) chains and
antichains. Clearly, lower density constructions
might be attainable; however, our experimental re-
sults of Section 5 use this simple "joining" construc-
tion for Step 7 of the PEEL algorithm.
A result of Hunt and Szymanski [16] shows that

the maximum chain or antichain in a pointset can be
computed in O(n 19_g log n) time. Since PEEL re-
quires at most O(Vn) iterations, its time complexity
is bounded by O(n3/2 log log n).

3.2 Cost Bounds

1

This implies that k -< 2. (-a0 v/-a-) 2. /-.

FIGURE 11 Combining chains into a low-density tree.

Probabilistic arguments show that on average, all of
our algorithms will produce interconnection trees
with low cost.

Theorem 3.7 For n terminals distributed arbitrarily
in the unit square, algorithm COMB constructs a
spanning tree with cost <- 2/ /-.

Proof: In the COMB construction, the sum of the
vertical components of the edges within each strip is
bounded by 1 (the height of each strip is one unit).
Thus, the sum of the vertical components of all rout-
ing tree edges introduced in Step 2 of Figure 4 is
bounded by X/-/X/. Furthermore, the vertical com-
ponents of edges introduced in Step 3 also sum to at
most /-/X/. To bound the sum of horizontal com-
ponents, note that if we pick an arbitrary edge from
within each strip, these /-/X/ edges have total
horizontal span bounded by 1. The horizontal com-
ponents of all tree edges from Step 2 thus contribute
at most 1 to the tree cost, and since the edges
added in Step 3 have total horizontal span -< 1, we
obtain the bound of 2X/. /-. U]

Theorem 3.8 For n terminals distributed arbitrarily
in the unit square, algorithm COMB_ST constructs
a Steiner interconnection tree with cost <- X/ + 1.
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Proof: In the COMB_ST construction, the vertical
spines contribute at most /-// to the tree cost.
As in the proof of Theorem 3.7, if we pick an ar-
bitrary pair of horizontal edges in each strip, one
from either side of the spine, the total cost of these
edges is <-1, so the sum of horizontal edge compo-
nents is at most /2 /V. Finally, the hor-
izontal connector which joins the spines (Step 3 of

Unre

6) has cost -<1, and the desired bound of
+ 1 follows. E]

Theorem 3.9 For n terminals distributed arbitrarily
in the unit square, algorithm PEEL constructs a Stei-
her tree with cost <- 4 X/-.

Proof: According to Theorem 3.6, PEEL con-
structs at most 2 X/n chains and antichains, which
are extended and then joined to yield a Steiner tree
over the net N. Each extended chain or antichain
can have cost at most 2, yielding the desired
bound.

Theorem 3.10 For n terminals chosen randomly
from a uniform distribution in the unit square, the
expected minimum spanning tree cost is O(X/-n).
Proof: While this claim is a consequence of results
in the theory of subadditive functionals in the Lp
plane [5, 22], we present the following simple proof.
Again, we partition the unit square into an array of
n square cells, each of size 1/ by 1/-. Recall
that the expected number of cells that will contain
at least one terminal is (1 l/e) n. In any in-
terconnection tree T(N), each terminal will have at
least one incident tree edge, and this edge must cross
the boundary of the cell. It is easy to show that the
expected distance from a terminal to the nearest side
of its containing cell is lower-bounded by some con-
stant times the length of the side of the cell (in the
Manhattan norm, this constant is -). We therefore
have an f(-) bound on the expected total cost of
the interconnection tree. Since our COMB algorithm
always yields a spanning tree with cost O(X/-), the
minimum spanning tree cost for a set of n terminals
uniformly distributed in the unit square is O(-) on
average.

From these results, we have:

Corollary 3.11 For n terminals chosen randomly
from a uniform distribution in the unit square, the
algorithms COMB, COMB_ST and PEEL all con-
struct trees which on average have both density and
cost bounded by constants times optimal.

As noted in Section 1, our notion of density is
related to the computational geometry concept of

"low stabbing number" which seeks spanning trees
having few intersections with lines of any orientation
[8, 13]. Welzl [24] has proved that there always exists
a spanning tree with stabbing number O(X), but
his method is both complicated and less efficient
(having greater than cubic time complexity). Edels-
brunner et al. [14] have shown that 12(X/-) is a lower
bound for the stabbing number of a pointset; our
Theorems 3.1 and 3.3 show that this lower bound
holds even when only horizontal and vertical stab-
bing lines are allowed, and moreover establish an
average case 12(X/-) density lower bound. The au-
thors of [14] also give three spanning tree construc-
tions with low stabbing number, trading off between
space, stabbing number, and the use of randomiza-
tion. These methods obtain bounds on stabbing num-
ber ranging from O(n(1/2+’)) to O(n 1/2. polylog), and
typically run in O(n3) time and O(n2) space. By con-
trast, our algorithms guarantee O(n/2) density, and
run in O(n log n) time and O(n) space. Finally, Agar-
wal [1] showed that there always exists a family of
O(log n) trees such that for an arbitrary given line,
one of the trees will have a stabbing number
of O(V/-n); this family can be computed in time
O(tl 3/2 "polylog). However, this is not very useful
for VLSI routing, where the goal is to find a single
tree with good density. In general, since the MDIT
formulation restricts the orientation of the stabbing
lines, our algorithms are more space- and time-effi-
cient, and have better performance bounds. We are
also able to address the case of low-density Steiner
trees, while previous work on trees with low stabbing
number could address only spanning constructions.

4 TRIPLE OPTIMIZATION

For practical VLSI routing applications, it is often
desirable to minimize more than one objective func-
tion at once. However, this is difficult: it is unusual
for even two competing measures to be treated ef-
fectively (e.g., the simultaneous tree radius and tree
cost minimization of [11]). In this section, we show
that the minimum-density objective is "compatible"
with existing performance-driven routing objectives,
so that we may simultaneously address up to three
separate routing tree measures.

4.1 Minimizing Skew, Density, and Total
Wirelength

Recall from Section 1 that construction of an inter-
connection tree with minimum difference among the
various source-sink pathlengths captures both mini-
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Algorithm: CLOCK
Input: a net N, containing IN[ = n terminals
Output: A low pathlength skew tree topology T
1: T=$
2: P=N
3: While IPI > 1 Do
4: M the edges of the optimal geometric matching over P
5: P
6: For (p,p) M Do
7: T = the subtree of T rooted at p
8: T2 = the subtree of T rooted at p
9: p- a point lying between p and/92 on the line

containing p and p, such that p minimizes skew
of the tree T t.J T2 t.J { (p, p), (p, p2) ) rooted at p

10: P’ = P’U
11: T = Tt.J {(p,p), (p,p)}
12: P = P plus a possible unmatched node if IPI is odd
13: clock routing tree T
14: root of T single remaining point in P

FIGURE 12 Matching-based, minimum-skew clock tree construction of [18].

mum-skew clock routing [3] and global routing with
min-max timing constraints. The work of [18] gives
a general interconnection scheme that achieves ex-
tremely small pathlength skews, while keeping the
total wirelength on average within a constant factor
of optimal, and always bounded by O(Vn). This
clock routing construction of [18], which we refer to
as CLOCK, begins with a forest of n isolated ter-
minals, each of which is considered to be a (trivial)
tree. An optimal geometric matching on these n
points yields n/2 segments, each of which defines a
tree with two nodes. A tree is rooted at its balance
point, i.e., the point that minimizes the pathlength
skew to the leaves of its two subtrees. Trees continue
to be paired up by geometric matching of their roots,
so that at each level of the construction, only half as
many points are matched as in the previous level.
Thus, after [log n] matching iterations, a complete
tree topology is obtained. Figure 12 formally details
the CLOCK algorithm.

In order to construct clock routing trees with low
density, we construct a low-density geometric match-
ing via the following variant of algorithm COMB:
partition the net into /--n/ strips ofX/ terminals
each and connect the terminals of each strip from
top to bottom as before (Figure 13a). However, in-
stead of connecting the bottom terminals of all strips,
connect the terminals in a serpentine fashion, i.e.,
alternate between connecting the bottoms and tops
of adjacent pairs of strips as shown in Figure 13b.
Arguments similar to those in Section 3 show that
this procedure (which we call COMB_SERP) will
connect all of the terminals in a single long path
topology that has both total cost and overall den-
sity simultaneously bounded by O(V) in the worst
case.
Taking only every other edge of the tour produced

by COMB_SERP will constitute a geometric match-
ing (Figure 13c) having both total cost and overall
density simultaneously bounded by O(/-). We may

I

Io

(a) (b) (c)
FIGURE 13 (a) Partitioning a net into strips/chains; (b) a serpentine tour with low density and low average cost; and (c) an embedded
geometric matching which also has low density and low average cost.
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iteratively use such matchings within the CLOCK
algorithm of [18] to yield clock routing trees that
simultaneously address three competing objectives:
pathlength skew, total wirelength, and density. In
particular, the latter two quantities are both bounded
on average by constants times optimal, which follows
from the fact that at each level of the tree construc-
tion, only half as many points are being matched as
in the previous iteration. For example, the density
of the resultin_ock tree will be bounded by
O(’k/--) + O(V’n/2) + O(’k/--) + O(’k/-n).
The time complexity of this construction is O(n log
n) since it is dominated by the serpentine matching
algorithm.

4.2 Minimizing Radius, Density, and Total
Wirelength

In [11], a method was proposed to uniformly trade
off total routing tree cost with tree radius (i.e., the
longest source-sink pathlength in the tree), and si-
multaneously optimize both parameters to within
constants times optimal in the worst case. This
"bounded-radius, bounded-cost" (BRBC) construc-
tion [11] starts with a low-cost tour of the net ter-
minals (e.g., a depth-first tour of a minimum span-
ning tree), and then augments this tour by adding
shortest paths to the source from certain regularly
spaced locations along the this tour. The precise cost/
radius tradeoff obtained by BRBC depends on a
user-specified parameter e -> 0. The algorithm re-
turns the shortest-paths tree over the resulting aug-
mented graph. Figure 14 formally details the BRBC
construction [11].

We can combine the minimum density objective
with the cost/radius tradeoff of the BRBC algorithm
to obtain another "triple optimization." Specifically,
we may execute the BRBC algorithm with an initial
tour L (Step 3 of Figure 14) that is based on, e.g.,
the spanning tree constructed by COMB_SERP in-
stead of the minimum spanning tree; recall from Sec-
tion 4.1 that the COMB_SERP output has total cost
and density both bounded by O(-). Aside from
this choice of initial traversal, the remainder of the
construction proceeds exactly as in [11] and thus has
O(n2) time complexity.
The resulting BRBC spanning tree will have

radius bounded by (1 + e) from optimum in the worst
case, cost bounded by (1 + 2/e) 2/-, and
density bounded by (1 + 4/(e. R)) -, where
R -< 2 is the distance from the source to the farthest
sink. This can be seen as follows. The density of the
combined COMB_SERP/BRBC construction is
bounded by the sum of (the density of the
COMB_SERP tree Q), plus the number of shortest
paths to the source taken during the traversal of Q
in the BRBC algorithm (since any shortest path is
necessarily monotone, it cannot contribute more
than 1 to the density). The latter quantity is deter-
mined by noting that the depth-first tour of Q has
length equal to twice the COMB tree cost 2/, and
that BRBC adds shortest paths to the source at in-
tervals of at least e. R along the traversal of Q. Thus,
the density of the overall construction is given_y

2--(e R) (1 + 4/(e-R)). V2n."- + 2
Recalling the/n)12( lower bounds for expected cost
and density, we see that this construction will on
average yield cost, density, and radius within con-
stant factors of their respective optimal values. In-

Algorithm: BRBC
Input: a net N, containing IN[- n terminals,

source s N, and a real parameter e > 0
Output: a tree T with radius < (1 + e). R

2and cost < (1 + ). cost(MST).
1’ R= radius of N
2: Q- MST(N) minimum spanning tree over N
3: L- depth-first tour of Q
4: S=O
5: Fori-lto ILl-1 Do
6: S- S + dist(Li, Li+t)
7" IfS > e. R Then
8" Q -QU{(s, Li+)}
9" S-O
10: T = shortest path tree of Q

FIGURE 14 BRBC algorithm of [11], which computes a bounded-radius spanning tree T for a net N, with source s N and radius
R, using parameter e (we use dist(Li, Li+l) tO denote the edge cost between two consecutive points in the depth-first tour L). T will
have radius at most (1 + e) R, and cost at most (1 + 2/e) cost(MST(N)).



MINIMUM DENSITY INTERCONNECTION TREE 167

TABLE
Tree Density Statistics for Minimum Spanning Tree and For the Three Heuristic Constructions

MST COMB_SERP PEEL COMB_ST COMB_ST/LB
Net
Size Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max

3 1.69 2 1.69 2 1.69 2 1.00
5 2 2.57 4 2 2.70 3 2 2.00 2 2 2.00
7 2 2.97 5 2 3.64 4 2 2.66 3 3 3.00
10 2 3.82 6 3 3.54 5 2 3.08 4 3 3.00
15 3 4.35 6 3 4.29 5 3 3.93 5 3 3.00
20 4 4.98 8 4 4.80 5 4 4.76 6 4 4.00
30 4 5.99 8 5 5.89 7 5 5.88 7 5 5.00
50 5 7.11 10 6 7.36 9 7 7.85 9 6 6.00
100 7 9.48 12 9 10.95 13 10 11.48 13 8 8.00
300 12 14.59 17 15 17.55 21 19 20.69 22 13 13.00

1.00 1.00 1.00
2 1.00 1.36 2.00
3 1.00 1.97 3.00
3 1.50 1.54 3.00
3 1.50 1.50 1.50
4 1.33 1.85 2.00
5 1.67 1.85 2.50
6 1.50 1.97 2.00
8 2.00 2.00 2.00
13 1.86 2.08 2.17

Averages are taken over 100 instances for each net size. The rightmost columns give the ratio of
COMB_ST density to the instance-wise computational lower bound of Section 3.1" for small net sizes in
particular, the closeness of the COMB_ST result to this simple lower bound is encouraging.

deed, the radius is within a constant factor of optimal
in the worst case as well.

5 RESULTS AND CONCLUSIONS

We have implemented the COMB_SERP variant
of the COMB algorithm (see Section 4.1), the
COMB_ST and the PEEL algorithms using ANSI C
for both the Macintosh and Sun Sparc environments.
The code is available from the first-listed author upon
request. Results are presented in Tables I and II. For
each pointset cardinality, each algorithm was exe-
cuted on 100 pointsets randomly chosen from a uni-
form distribution in the unit squre. Table I reports
the minimum, average, and maximum densities of
the resulting interconnection trees. Note that for al-

Net
gorithm PEEL, we simply report the number of Size
chains and antichains computed by the algorithm;

3
this gives the spanning tree density when we use the 5
simple joining method described in the proof of 7

10Theorem 3.6. The tree cost of PEEL will be some-
15

what higher than shown in Table II since we report 20
the sum of chain/antichain costs, but not the extra 30

edgelength needed to join the chains together. 50
100

The data indicates that the average density of the 300
tree produced by the COMB_SERP algorithm is on
par with the density of the simple minimum spanning Net

tree. However, the density of the minimum spanning Size

tree has markedly higher variance, and in the worst 3
5case can be as large as O(n). Thus, the COMB or 7

COMB_SERP constructions may have practical util- 0
ity due to their predictable performance. The aver- 15

age density of the trees produced by the COMB_ST 20
30

algorithm is considerably better than the average 50
density of the corresponding minimum spanning 100

trees" for example, with signal nets of size 10, 300

COMB_ST yields trees with average density 3.00,
in contrast to average minimum spanning tree density

3.82. For n 10, this 21% decrease in average
density is achieved with a corresponding 21% in-
crease in the tree cost over the MST cost, shown in
Table II. Note that there is essentially no variance
in the density of the COMB_ST output.
As discussed in Section 3, for a given net N, any

partition of the unit square into an by j rectangular
grid, such that P of the resulting .] rectangles con-
tain terminals of N (Figure 10), induces a lower
bound [(P 1)/(i + j 2)] on the minimum routing
density of N. Recall that a simple version of this

TABLE II
Tree Cost Statistics

MST COMB_SERP

Min Ave Max Min Ave Max

417
804
1322
1781
2296
2766
4107
5190
7481
13850

1103.66 2227 466 1210.13 2561
1658.39 2554 1010 2154.82 4233
2039.34 2983 1520 2851.53 4427
2662.36 3462 2287 3682.77 4766
3224.41 4045 2663 4692.03 6465
3789.89 4558 3819 5265.67 6567
4651.00 5403 5524 6841.33 8529
5945.47 6668 7542 8708.12 10177
8384.32 8887 11630 12519.36 13487
14318.99 14865 20357 21118.83 21839

PEEL COMB_ST

Min Ave Max Min Ave Max

86
758
770
1595
2562
2871
4873
7447
12552
26123

736.72 1577 366 1164.96 1882
1495.57 2481 1063 2260.09 3229
1852.91 3209 1992 3009.31 4141
2776.06 4080 2307 3224.01 3974
3721.27 5071 3143 4216.83 4941
4720.69 6350 3692 4823.63 5649
6318.27 8085 5594 6570.46 7740
9298.73 11629 7070 8029.99 8945
14717.75 16579 10390 11083.93 11911
28960.44 31549 17963 18681.10 19614
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lower bound schema places - horizontal lines
so as to leave at most terminals between con-
secutive lines, and then places vertical lines
using the same criterion. A comparison of the
COMB_ST density versus the results of this com-
putational lower bound are given in the rightmost
three columns of Table I (note that any fractional
computational lower bound values are rounded up
to the nearest integer, since density takes on only
integer values). The lower bound can be used to
assessing algorithm quality on an instance-wise basis;
in particular, we see that the performance ratio for
COMB_ST is quite good despite the simplicity of the
lower bound.

In conclusion, we have proposed a new spanning
and Steiner tree formulation based on a minimum
density criterion. We have also presented several ef-
ficient heuristics for constructing low-density routing
trees. The average performance of all our algorithms
has been shown to be within constant factors of op-
timal in terms of both tree cost and density. Our
techniques can be used to unify the new density cri-
terion with previous "performance-driven" intercon-
nection objectives in order to achieve simultaneous
optimization of up to three separate and competing
interconnection tree measures. Extensive simula-
tions indicate that our constructions are effective in
practice, and hold promise for balanced-resource
routing applications in VLSI layout.

It is still an open question whether there exists a
polynomial-time algorithm that constructs a routing
tree with both cost and density bounded by constants
times optimal in the worst case. It is also unknown
whether the MDIT problem is NP-complete. Recall
that the chain-peeling method, PEEL, holds some
promise in the sense that there exist examples where
it outperforms COMB and COMB_ST by a factor
of O(/-) (Figure 8); we conjecture that PEEL can
be shown to yield worst-case density that is within a
small constant factor of optimal. Indeed, we offer
two closely related conjectures" (i) that the minimum
density of a spanning tree over net N is at least the
minimum of the number of chains or the number of
antichains needed to cover N; and (ii) the PEEL
algorithm will use at most two times the minimum
possible number of chains/antichains that cover N.
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