
0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

TritonRoute-WXL: The Open Source Router with
Integrated DRC Engine

Andrew B. Kahng, Fellow, IEEE,
Lutong Wang, Student Member, IEEE, and Bangqi Xu, Student Member, IEEE

Abstract—Routing is a crucial stage in a modern design
automation tool flow for advanced technology nodes. Works in
the recent open literature tend to divide routing into separate
global routing and detailed routing steps without addressing
the correlation issues (e.g., local nets) between these two steps.
In this work, we present TritonRoute-WXL, a unified global-
detailed router capable of delivering DRC-clean routing solutions
in commercial sub-16nm technologies. The major contributions
of TritonRoute-WXL include an end-to-end routing framework
that closely connects global routing and detailed routing, and
an improved detailed routing flow. With a code release under
a permissive open source license, TritonRoute-WXL achieves
unparalleled solution quality in terms of detailed routing and
global-detailed routing as compared to known best solutions from
all published academic routers.

I. INTRODUCTION

Routing is a crucial stage in a modern design automation
tool flow for advanced technology nodes. A new advanced
technology node enablement comes with increasingly complex
design rules. These complex design rules introduce ever-
greater challenges to routing, especially detailed routing. The
key element for detailed routing to comprehend such complex
design rules is a design rule check (DRC) engine. Although
design rule checking has been studied for more than thirty
years, to the best of our knowledge, a comprehensive docu-
mentation of implementation in the context of advanced-node
detailed routing is still missing. Moreover, for detailed routing
in advanced technology nodes, incremental capability of a
DRC engine is highly desired due to the nature of per-net
ripup-and-reroute in detailed routing.

More complex design rules along with the decreasing
feature sizes in new technology nodes make standard cell
design more challenging as well. For older technology nodes,
intra-cell connections are routed mostly at or below the first
metal layer (M1). For most of the standard cell pins, they
are preferred to be accessed by vias. However, for complex
logical cells (e.g., Flip-Flops) in advanced technology nodes,
standard cell designers increase the usage of M2. Some of
such M2 usage forms standard cell pins which are intended
to be accessed by planar (i.e., in-plane) wires. The resulting

A. B. Kahng is with the Departments of Computer Science and Engineering,
and of Electrical and Computer Engineering, University of California at San
Diego, La Jolla, CA, 92093 USA (email: abk@ucsd.edu).

B. Xu is with the Department of Electrical and Computer Engineering,
University of California at San Diego, La Jolla, CA, 92093 USA (e-mail:
bangqixu@ucsd.edu).

L. Wang is with Cadence Design Systems, San Jose, CA, 95134 USA (e-
mail: lutong@cadence.com).

mix of via accesses and planar accesses for standard cell pins
introduces extra challenges for global routing and detailed
routing correlation in terms of routing resource modeling.

The VLSI routing problem is commonly divided into two
separate stages, global routing and detailed routing. Although
both global routing and detailed routing problems have been
extensively studied for decades, the connection and/or cor-
relation between global routing and detailed routing is still
an open question in the published literature. The two-stage
(i.e., global routing and detailed routing) approach greatly
simplifies the routing problem based on the assumption that
the global routing has a near perfect routing resource model
that correlates with detailed routing. Therefore, in practice it
is essential to have an accurate routing resource model that
well reflects multiple aspects of routing resource in detailed
routing, including routing tracks, pin access, design rules, etc.

Another benefit of dividing the routing problem into two
separate subproblems is that it enables academic researchers
to focus on a specific subproblem. Various academic contests
have strongly spurred academic research activities. The ISPD-
2007 [21] and ISPD-2008 [20] global routing contests, along
with the recent ICCAD-2019 global routing contest [9], have
stimulated research efforts on global routing. The ISPD-
2018 [19] and ISPD-2019 [16] initial detailed routing contests
have stimulated academic efforts on detailed routing.

A drawback of separating global routing and detailed rout-
ing research is that almost no academic works attempt to
present an end-to-end routing flow. Hence, application of aca-
demic routing works to real-world IC physical design (P&R) is
extremely difficult. Moreover, direct application of academic
routing works to industrial benchmarks in sub-65nm nodes
can commonly leave unacceptable amounts of design rule
violations (DRCs). Even for academic contest benchmarks,
existing known best routing solutions from academic routers
can still have hundreds, if not thousands, of DRCs, which is
far from “DRC converged” from an industry perspective. We
further note that most contest-based academic global routing
works model routing resources based on adjacent global rout-
ing cell (GCell) edges rather than the GCells themselves. Such
routing resource modeling approach is straightforward for a
contest. However, a GCell edge-based resource model makes
considering the impact of local nets and pin accessibility
difficult, since it only captures inter-GCell routing resource.

Given the above, a capable, end-to-end routing flow is very
meaningful for the field to (i) bridge the gap between academic
research efforts and industrial technology needs, and (ii)
enable further academic research works (e.g., placement) that

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

can be directly evaluated with a usable routing flow instead
of academic contest-centric evaluation metrics. Towards this
end, in this paper we present TritonRoute-WXL, an open-
source router for advanced VLSI technologies with integrated
DRC engine. Our main contribution is an end-to-end routing
framework that aims to narrow the gap between academia and
industry. Highlights of our work are summarized as follows.

• We propose an end-to-end routing framework. Our pro-
posed framework is capable of well-correlating global
routing (GR) and detailed routing (DR) to achieve faster
routing convergence.

• We build an integrated design rule check engine that
provides design rule check capability and enables further
routing optimization with its incremental capability.

• We present a global routing resource model that compre-
hends various detailed routing aspects to achieve better
DR convergence.

• We present an improved detailed routing methodology
that is capable of achieving faster DR convergence as
compared to existing detailed routing methodologies.

• Our router is capable of delivering DRC clean routing
solutions for 15 out of the 20 ISPD-2018 and ISPD-2019
benchmark suite testcases. For the remaining, testcases,
we still reach an unparalleled level of DRCs (<20).

• To the best of our knowledge, we provide the first and the
only free and open source software (FOSS) router which
is capable of delivering DRC-clean routing solution in
sub-16nm technology nodes.

The remainder of this work is organized as follows. Sec-
tion II provides a brief overview of previous works in the
open literature. Section III presents our overall routing flow.
Section IV details our global routing methodology. Section V
presents our geometry based design rule check engine (DRC
engine). Section VI presents our improved detailed routing
flow. Section VII presents our experimental results using the
official ISPD-2018 and ISPD-2019 benchmark suites. Sec-
tion VIII concludes our work.

II. PREVIOUS WORKS

We classify relevant previous works on routing into three
categories: (i) fundamental routing algorithms, and recent
developments in (ii) global routing, and (iii) detailed routing.
Fundamental routing algorithms. Lee’s algorithm [13] is
the first breadth-first maze search algorithm that guarantees to
find a minimum-cost path for a two-terminal routing problem
if such a path exists. A* search [22], and its bi-directional
form [24], perform maze search focusing the direction towards
the destination, hence reducing the effort to find the minimum-
cost path. Kahng et al. [12] survey more recent developments
in conventional and fundamental routing algorithms.
Recent developments in global routing. Many works have
been developed based on the ISPD-2007 [21] and ISPD-
2008 [20] global routing contests. NCTU-GR 2.0 [15], NTHU-
Route 2.0 [4], NTUgr [5] and FastRoute 4.0 [30] adopt
similar flow of (i) projecting 3D routing problems into 2D
routing problems, (ii) routing decomposed multi-pin nets and
(iii) performing layer assignment to obtain 3D GR solutions.

FGR [26] performs global routing on a 3D graph based
on Discrete Lagrange Multiplier. GRIP [27] applies integer
programming to solve the global routing problem. MGR [29]
adopts a multi-level approach to more efficiently explore the
large routing solution space. The recent ICCAD-2019 global
routing contest [9] evaluates a global routing solution by
assessing the corresponding detailed routing solution, to accu-
rately capture routability from a detailed routing perspective.
CUGR [17], the contest’s winning global router, performs
a detailed routability-driven 3D global routing based on a
probabilistic resource model.

Many works explore machine learning techniques, based
on global routing information, to predict the outcomes of
subsequent detailed routing stage. Qi et al. [25] and Zhou
et al. [31] build multivariate regression models. Chan et
al. [3] adopts support vector machine for DRC distribution
prediction. Xie et al. [28] train a fully convolutional network
for such prediction. Recently, Chen et al. [6] propose a
fully convolutional network-based plug-in to optimize global
routing solutions, thus reducing post-route DRCs.
Recent developments in detailed routing. The ISPD-
2018 [19] and ISPD-2019 [16] initial detailed routing con-
tests have stimulated new academic efforts to address the
detailed routing problem, using industrial detailed challenges
and benchmarks. Kahng et al. [12] survey recent ISPD contest-
based works on detailed routing, and present a detailed router
that adopts a region-based ripup-and-reroute methodology with
comprehensive cost scheme for design rule awareness. We per-
form routing in DRC-safe, non-overlapping regions in parallel
in our present work. Gonçalves et al. [10] present an interval
based path search algorithm with design rule awareness.

III. FLOW

In this section, we describe our global-detailed routing flow.
As shown in Figure 1, our router takes industry-standard
LEF and DEF files as inputs. Based on the input LEF and
DEF files, we first set up the design database. Next, we
perform preparation steps to generate essential data for routing.
Then, we perform pin access analysis. Importantly, both global
routing and detailed routing are based on the same pin access
information. We next perform global routing followed by track
assignment. Finally, we perform detailed routing to obtain a
routed DEF. As compared to [12], the global routing step is
new and the detailed routing step is significantly improved
thanks to the optimizations enabled by our DRC engine.

Fig. 1: Overall global-detailed routing flow.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

IV. GLOBAL ROUTING

In this section, we describe our global routing flow that
operates on the GCells level. As shown in Figure 2, we first set
up the congestion map using our GCell-based routing resource
modeling. Next, we perform initial global routing which
consists of (i) Steiner tree construction and (ii) iterative pattern
routing. Then, we perform 2D ripup-and-reroute to resolve 2D
congestions. After that, we perform layer assignment to obtain
an initial 3D global routing solution. Finally, we perform 3D
ripup-and-reroute to refine the 3D global routing solution.

Fig. 2: Global routing flow.

A. Routing resource modeling

We now describe our routing resource modeling that we use
to analyze the routing resource of the design and set up the
initial congestion map considering (i) routing tracks, (ii) design
rules and (iii) pin accesses. In the global routing context,
routing resource is usually abstracted with two concepts–
supply and demand. As pointed out in [2], the edge capacity
model that is widely used in the ISPD global routing contest-
based works ignores the impact of local nets. In this work, we
associate both supply and demand to the GCell itself, so as
to enable a unified resource model that considers both global
nets and local nets in terms of routing wire and pin access.
We use a GCell size of 15×15 M1 track pitch in this work.

1) Supply: The conventional method of obtaining the sup-
ply of a GCell is to simply count the number of routing
tracks within the GCell. In most cases, the supply can be
calculated by dividing the size of the GCell by track-to-track
pitch. However, such calculation can be optimistic due to its
unawareness of design rules. For a given routing layer, the
via to the upper routing layer can have a wide enclosure.
Dropping such a via can block its neighboring routing tracks as
shown in Figure 3. Therefore, for routing layers (e.g., Metal6
in Figure 3) that use such via with wide enclosure, the supply
needs to be adjusted based on the track-to-via pitch which is
the minimum spacing required between the enclosure and a
neighboring routing wire.

Fig. 3: Illustration of optimism in supply calculation for routing layer with
wide via enclosure.

2) Demand: Demand of a GCell consists of a static part and
a dynamic part. The static part has two sources–fixed objects
(i.e., pin shapes and obstacles) and pin accesses. For each fixed
object, it creates one demand for each routing track which the
fixed object overlaps or is too close to, because essentially
the track is blocked by the fixed object. For each pin, its pin
access creates an additional half unit of demand because if (a)
the pin is connected to another pin within the same GCell, we
consider that the two pins together consume one track for their
local connection; or if (b) the pin is connected to the outside of
the GCell, we consider that there is a virtual boundary pin at
the GCell boundary whereby the pin takes an outgoing route
from the GCell. Hence the pin and the virtual pin together
create one demand. Note that the pessimism in routing layers
with pin accesses allows more flexibility for detailed routing
to resolve pin access-related violations.

To better correlate global routing and detailed routing in
terms of the routing resource consumed by pin access, we
introduce a variable viaAccessLayer. If the access point is at
the viaAccessLayer, the pin access creates demand on its upper
layer as it indicates a via access; otherwise, the pin access
creates demand on the current layer. We refer readers to [11]
for more details of our pin access methodology.

The dynamic part of a GCell demand is purely contributed
by routing wires that intersect with the given GCell. Following
the idea of virtual boundary pin at GCell boundary, each time
a routing wire intersects with a GCell, it creates a boundary
pin. Therefore, a routing wire that routes through a GCell
creates two boundary pins, and in total creates one demand
(i.e., routing resource of one track).

Figure 4 illustrates our unified resource model. Figure 4(a)
shows the layout within a GCell that consists of two routing
wires and a cell pin. Figure 4(b) illustrates the corresponding
resource model. For M1, a total of three units of demand
consist of two static units from pin shapes and one dynamic
unit from boundary pins. For M2, the via access to the M1
pin contributes half a unit of dynamic demand and the routing
wire contributes one unit of dynamic demand.

Fig. 4: Illustration of unified routing resource model: (a) the layout of a pin
and a routing wire inside a GCell; and (b) the corresponding modeled routing
resource with boundary pins and via access.

3) Blocked GCell: For the GCells that have greater static
demands as compared to their supplies, we consider that such
GCells are blocked. Blocked GCells are associated with a very
large cost so that they should be avoided if possible.

We set up the initial congestion map in 3D view and
obtain a corresponding 2D congestion map based on the 3D
congestion map. For each GCell, we project the supplies and
demands from all routing layers to the 2D plane. A GCell is
considered as blocked if all of its corresponding GCells in the
3D congestion map are blocked.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

B. Initial global routing

The initial global routing consists of (i) Steiner tree con-
struction and (ii) iterative pattern routing. We use FLUTE [7]
to obtain a Steiner tree topology with low wirelength for each
net. For the non-colinear edges from FLUTE, we perform
iterations of L-shape pattern routing to minimize congestion.

C. 2D ripup-and-reroute

Considering the limited solution space from L-shape pat-
tern routing, it is likely to have overflow after initial global
routing. To deliver a solvable problem for layer assignment,
we perform three outer iterations of 2D ripup-and-reroute to
resolve overflow in the 2D view.

1) Region-based ripup-and-reroute: In each outer iteration,
we partition the design into non-overlapping, 200×200-GCell-
sized clips. For each clip, we create a GR worker that performs
two inner iterations of ripup-and-reroute to resolve overflow.
We shift the clips in different iterations with offsets of 0, -70
and -150 GCells to enable optimization at clip boundaries.

Algorithm 1 details our flow within a GR worker. Each
GR worker takes a congestion threshold variable congThres
as input. A congestion threshold variable congThres of 0.8
indicates that any GCell whose demand exceeds 80% of its
supply is considered as having overflow. Line 2 initializes the
worker database from the global database, including the netlist
within the worker and a local congestion map. Lines 3–11
perform maxIter iterations of ripup-and-reroute. Within each
iteration, Lines 4–10 iterate over all nets within the worker. If
a given net routes through any GCell that has overflow, Line
6 increments history cost counter for all of the overflowed
GCells that the given net routes through. Line 7 rips up the
given net and updates the local congestion map accordingly.
Line 8 reroutes the given net. Note that during reroute, the path
search algorithm (details are as given in [12]) has the freedom
to alter the topology of the given net in order to mitigate
congestion. Line 12 writes back to the global database. We
gradually decrease congThres from 1.0 to 0.8.

Algorithm 1 Global routing flow

1: Input: congestion threshold congThres
2: WorkerDBInit()
3: while currIter < maxIter do
4: for all net ∈ nets do
5: if hasCongestion(net, congThres) then
6: addHistoryCost(net)
7: ripupNet(net)
8: routeNet(net)
9: end if

10: end for
11: end while
12: DBCommit()

2) Routing cost: We use five types of costs: wirelength
cost, congestion cost, history cost, blockage cost and over-
flow cost. Different cost components have their own use cases.
Wirelength cost helps A* to minimize the overall wirelength
when there is no congestion. Congestion cost helps A* to avoid
congestion. History cost helps A* to avoid regions that have
or had overflow. Blockage cost prevents A* from reaching
a blocked GCell. Overflow cost helps differentiate among
GCells that have demands close to their supplies. The overall

cost of routing from GCell i to GCell i+1 is the wirelength
between GCell i to GCell i+1, weighted by cost function
in Equation 1. The overall relation among wirelength cost,
congestion cost and history cost is inspired by [18].

costtot(i) = 1 + w1 · costcong + w2 · costhist+
w3 · costblock + w4 · costoverflow (1)

costcong(i) =
demand(i)/(supply(i) + 1)

(1 + esupply(i)−demand(i))
(2)

costhist(i) = histCnt(i) · costcong(i) (3)

costoverflow(i)=

�
1, if demand(i) ≥ supply(i)

0, otherwise
(4)

We adopt similar congestion cost function from [17]. The
idea behind the congestion cost function is to allow very
small cost when the demand is low and to noticeably increase
the congestion cost as the demand approaches the supply.
Variations of the congestion cost function with similar idea are
seen in [4] [15] [26]. We adopt similar history cost from [18]
and we use a history cost counter histCnt and increment the
counter each time an overflow is encountered. The history cost
counter histCnt is decayed (i.e., multiplied by a fractional
value less than one) after each iteration. The weights of
the cost components are chosen to achieve the following
order for a blocked and overflowed GCell: w1 · costcong <
w2 · costhist < w4 · costoverflow � w3 · costblock.

D. Layer assignment and 3D ripup-and-reroute

We adopt a simplified version of dynamic programming
based layer assignment from [8]. We sort nets that need layer
assignment using the score function from Equation 5 as a
“flexibility” measurement which is similar to the one in [30].

Score(net) =
HPWL(net)

|pins(net)| (5)

Note that although an overflow-free 3D routing solution
can be constructed based on an overflow-free 2D routing
solution using layer assignment [26], layer assignment solution
refinement is usually still desired to further improve the
solution quality. Unlike the iterative reassignment approach in
previous works (e.g., [8]), we perform 3D ripup-and-reroute
in smaller regions. The benefit of region-based 3D ripup-and-
reroute is that optimizations can be performed in parallel for
improved scalability. For 3D ripup-and-reroute, we partition
the design into 10×10-GCell-sized clips for local optimization.

V. GEOMETRY-BASED DESIGN RULE CHECK ENGINE

In this section, we describe our integrated, geometry-based
design rule checker (GC).

A. Geometry Objects

A geometry object refers to a specific type of 2D Manhat-
tan shape(s). The basic Manhattan shapes include Segment,
Rectangle and Polygon (with holes). In this work, we use
these four basic shapes as follows.
Polygon edge: the edge of a polygon. A polygon edge consists
of two consecutive points in the exterior (or interior) ring of
a polygon, represented by using the segment geometry type.
Each polygon edge is tied to the two polygon corners which
are the endpoints of the polygon edge.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

Polygon corner: the corner of a polygon. A polygon corner
is composed of two consecutive polygon edges. Each corner
is tied to the two polygon edges which it is connected to.
Max rectangle: a maximal rectangle inside a polygon. For
a given rectangle, the unique max rectangle is itself. In a
polygon, there can be more than one max rectangles.
Polygon set: the union of polygons. The resulting polygon
set holds zero or more disjoint polygons, with or without
holes. The polygon set supports polygon boolean operations
(intersecting and merging).

B. Design Rules

The (industry-standard) LEF syntax [34] seen in the ISPD-
2018 [19] and the ISPD-2019 [16] benchmark suites is summa-
rized in Table I, where each italic word indicates a numerical
value. Note the separate metal and cut layer rules.

TABLE I: Design rules.
// metal layer
WIDTH defaultWidth ;
[MINWIDTH minWidth ;]
SPACINGTABLE
PARALLELRUNLENGTH {length} ...
{WIDTH width {spacing} ...} ... ;

[SPACING minSpacing SAMENET [PGONLY] ;]
[MINSTEP minStepLength [MAXEDGES maxEdges] ;]
[SPACING eolSpacing ENDOFLINE eolWidth WITHIN eolWithin
[PARALLELEDGE parSpace WITHIN parWithin [TWOEDGES] ;] ...
[CORNERSPACING

{CONVEXCORNER | CONCAVECORNER} [EXCEPTEOL eolWidth]
{WIDTH width SPACING spacing ;} ...] ... ;

// cut layer
{SPACING cutSpacing [CENTERTOCENTER]
[ADJACENTCUTS numCuts WITHIN cutWithin [EXCEPTSAMEPGNET]
| PARALLELOVERLAP
| AREA cutArea] ;}...

[SPACING cutSpacingSN [CENTERTOCENTER] SAMENET ;]

Minimum width rule specifies the minimum width for
a polygon. After slicing a polygon into rectangles (in both
directions), the length along the slicing direction of any sliced
rectangle must be greater than or equal to minWidth. If this rule
is not specified, then we automatically generate one minimum
width rule per metal layer using the defaultWidth. Figure 5
shows polygon slicing and the critical dimension to check
against minWidth.

Fig. 5: Minimum width: (a) polygon sliced vertically; and (b) polygon sliced
horizontally.

Metal short rule specifies the short violation between two
max rectangles of different nets if the two max rectangles
overlap.

Non-sufficient-metal overlap rule specifies the minimum
diagonal length in case of metal overlaps. If two max rectan-
gles of the same net overlap, then the overlapping rectangle
(i.e., the intersection) must have diagonal length greater than
or equal to minWidth, as shown in Figure 6.

Fig. 6: Non-sufficient-metal overlap.

Parallel run length (PRL) spacing rule specifies the width-
and parallel run length-dependent spacing between two max
rectangles. If the maximum width of the two max rectangles is
greater than width, and the parallel run length is greater than
length, then the spacing between the two max rectangles must
be greater than or equal to spacing. The first spacing value
is the minimum spacing for a given width even if the PRL is
not met. If SAMENET spacing is specified, then the spacing
between the two max rectangles must be greater than or equal
to the minimum of spacing and minSpacing. If PGONLY
is specified, then minSpacing is only used if the two max
rectangles belong to the same power or ground net. Figure 7
illustrates the spacing for both positive and negative PRLs.

Fig. 7: Parallel run length spacing: (a) positive PRL; and (b) negative PRL.

Minimum step rule specifies the shortest polygon edge
length. The polygon edge length must be greater than or equal
to minStepLength. If MAXEDGES is specified, then up to
maxEdges consecutive edges that are less than minStepLength
is allowed. A maxEdges value of 0 is equivalent to not
specifying MAXEDGES.

End-of-line (EOL) spacing rule specifies the spacing from
an EOL edge to the exterior of the polygon. An EOL edge
is a polygon edge that is shorter than eolWidth. The spacing
to the exterior of a polygon must be greater than or equal to
eolSpacing anywhere within (less than) eolWithin, as shown in
Figure 8(a). If PARALLELEDGE is specified, then the rule is
applied only if there is a parallel edge (or, two parallel edges
if TWOEDGES is specified) that is (are) less than parSpace
away, and is (are) also less than parWithin from the EOL edge,
and eolWithin beyond the EOL edge, as shown in Figure 8(b).

Fig. 8: End-of-line spacing: (a) illustration of eolWidth, eolWithin and eolSpac-
ing; and (b) illustration of parWithin and parSpace.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

Corner spacing rule specifies the spacing from a cor-
ner to the exterior of a polygon. CONVEXCORNER (resp.
CONCAVECORNER) specifies that the rule only applies to
convex (resp. concave) corners. EXCEPTEOL specifies that if
the corner is connected to an EOL edge that is shorter than
eolWidth, then the rule does not apply. For the spacing table
lookup, corner spacing rule works in a similar way as for
PRL spacing rule except that (i) the rule only applies for non-
positive PRL values and (ii) the width only account for the
exterior of a polygon.

Cut short rule specifies a short if the two cuts overlap.
Cut spacing rule specifies the minimum spacing between

two cuts. If CENTERTOCENTER is specified, then cutSpac-
ing and cutWithin are calculated from cut center to cut center;
otherwise, these values are calculated from cut edge to cut
edge. If ADJACENTCUTS is specified, then the rule is applied
only if there are numCut cuts that are less than cutWithin
distance. If EXCEPTSAMEPGNET is specified, then the rule
is applied only if the two cuts are not on the same power or
ground net. If PARALLELOVERLAP is specified, then the
rule is applied only if the two cuts have a parallel run length
greater than 0. If AREA is specified, then the rule is applied
only if any of the two cuts is greater than or equal to cutArea.
If SAMENET is specified, then spacing between the two cuts
must be greater than or equal to the minimum of cutSpacing
and cutSpacingSN.

C. Data structure
In this subsection, we describe the data structures in GC.

Fig. 9: DRC engine data structure of layout information.

1) Data Structure: Figure 9 shows the data structure of
layout information for design rule checking. On the top level,
the layout information is organized per net, then organized per
layer. Metal layer and cut layer are organized differently.

For the layout information of a net on a metal layer, we
initialize two polygon sets. Polygon set (fixed) is generated
by applying the boolean OR operation to non-router-created
shapes. Polygon set (routing) is generated similarly from
router-created shapes. We then merge the two polygon sets
into one set, and decompose it into disjoint polygons. Each
disjoint polygon holds all of its max rectangles, polygon edges
and corners. Each max rectangle, polygon edge or polygon
corner is marked with either fixed status or routing status. As
long as the max rectangle, polygon edge or polygon corner
can be derived from polygon set (fixed), the shape is marked
as fixed, otherwise it is marked as routing.

For the layout information of a net on a cut layer, since
each cut is supposed to be disjoint and rectangular, we skip
the merging and decomposition steps. Each cut directly forms
a polygon, holding one max rectangle, four polygon edges and
four polygon corners. Overall, since polygon sets, polygons,
max rectangles, polygon edges and polygon corners are all
represented using vertex coordinates, the memory footprint is
linear in the number of vertices of all geometries.

2) Region Query: After initialization of data structures, we
build region queries for max rectangles and polygon edges.
Note that we do not need a separate region query for polygon
corners because polygon corners can be queried based on
polygon edges.

Given a layer number and a bounding box, the region query
engine returns all touching max rectangles (or polygon edges).
For fast operation, the region query engine only handles
rectangular geometry objects, instead of polygons. In this
work, we use R-trees from Boost for region query.

D. Design Rule Checking and Filtering Flow

We now describe the design rule checking and filtering
flow. Given an input design database, along with a specified
bounding box and layer range, our design rule checking flow
first initializes the necessary data structures to hold physical
layout information. Next, we perform design rule checking and
output detailed-routing-fixable design rule violation markers.
A marker consists of a violation bounding box, layer number,
net(s) and type.
Input: design database, along with specified bounding box and
layer range in which to perform design rule checking
Constraints: design rules
Output: detailed-routing-fixable design rule violation markers

The underlying open-source shape engines (e.g., Boost R-
tree, which we use) are well-optimized, and further improve-
ment of such shape engines is beyond the scope of this work.
For each rule checking algorithm we present below, each early
return statement indicates the filtering process, where a match
to the rule does not necessarily result in a violation (corner
case), or the violation is non-fixable.

1) Metal Spacing: Metal spacing rules consist of short
rules, non-sufficient-metal overlap rules and parallel run
length spacing rules. The rule checking starts with a max
rectangle m.

Algorithm 2 Check metal spacing

1: Input: max rectangle m
2: N ← queryMaxRectangles(m, maxDist)
3: for all n �= m in N do
4: if isOverlap(m, n) then
5: if getNet(m) = getNet(n) then
6: checkNSMetal(m, n)
7: else
8: checkMetalShort(m, n)
9: end if

10: else
11: checkPRL(m, n)
12: end if
13: end for

In Algorithm 2, given m, we first query all neighboring max
rectangles within maxDist that could possibly cause design
rule violations. For each max rectangle pair (m, n), if m and

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

n overlap and belong to the same net, we check non-sufficient
metal overlap in Line 6 (details described in Algorithm 4);
if m and n overlap but belong to different nets, we check
metal short in Line 8 (details described in Algorithm 3);
otherwise, we check parallel run length spacing in Line 11
(details described in Algorithm 5).

Algorithm 3 Check metal short

1: Input: max rectangles m, n
2: shortRect ← getIntersection(m, n)
3: if isFixed(m) AND isFixed(n) then
4: return
5: end if
6: if isCoveredByPin(shortRect) AND isBlockage(m, n) then
7: return
8: end if
9: if not hasRouterCreatedShapes(shortRect) then

10: return
11: end if
12: addMarker(MetalShort)

Algorithm 3 describes the methodology to check short. Line
2 gets the bounding box of metal intersection. In Lines 3–5,
we skip the non-fixable violation if both max rectangles are
fixed. Lines 6–8 deal with a special handling in LEF where
metal short with blockage is allowed if it occurs fully within
a cell pin, as shown in Figure 10. In Lines 9–11, we skip the
non-fixable violation if router-created shapes do not intersect
with the short region.

Fig. 10: Metal short filter: short area is within pin.

Algorithm 4 describes the methodology to check non-
sufficient-metal overlap. Line 2 gets the overlapping metal
bounding box. Lines 3–5 check if there is sufficient metal
overlap. In Lines 6–8, we skip the corner case if any max
rectangle has a width less than minWidth because such max
rectangle is purely the result of polygon decomposition, and
does not fully cover any router-created, or non-router-created
shapes. In this work, minWidth-related violations are captured
by minWidth rule checking in Algorithm 6. Note that minWidth
rule checking is based on sliced rectangles instead of max
rectangles. In Lines 9–11, we skip the corner case if the
two max rectangles are covered by a 3rd max rectangle. The
3rd max rectangle must be of the same net and wider than
minWidth to serve as a bridge. Figures 11(a) and (b) illustrate
the above two cases.

Algorithm 4 Check non-sufficient metal overlap

1: Input: max rectangles m, n
2: nsRect ← getIntersection(m, n)
3: if diagLen(nsRect) ≥ minWidth then
4: return
5: end if
6: if width(m) < minWidth OR width(n) < minWidth then
7: return
8: end if
9: if hasValid3rdObj(nsRect) then

10: return
11: end if
12: addMarker(NonSufficientMetalOverlap)

Fig. 11: Non-sufficient-metal overlap filters: (a) max rectangles narrower than
minWidth; and (b) two max rectangles bridged by a 3rd max rectangle.

Algorithm 5 describes the methodology to check parallel
run length spacing. Lines 2 and 3 get the actual and required
spacing. Depending on whether the two max rectangles are
of the same net, or at least one of them is a blockage,
the required spacing value can be overridden by same-net
spacing or minimum spacing. Lines 4–6 check if parallel
run length spacing is satisfied. In Lines 7–9, we skip the
non-fixable violation if both max rectangles are fixed. Line
10 calculates the generalized intersection, i.e., the bounding
box formed by the parallel run length and the spacing of
the two disjoint max rectangles. In Lines 11–13, we skip the
corner case if the generalized intersection does not overlap
with specific number(s) of valid polygon edges. If the spacing
direction is diagonal, then any polygon edge is valid; otherwise
only polygon edges orthogonal to the spacing direction are
valid. Figure 12(a) shows two same-net max rectangles (light
green and light blue) decomposed from a single polygon, with
spacing smaller than the required spacing. We skip the corner
case because in the orthogonal direction of spacing, there is
no polygon edge overlapping with the generalized intersecting
region. In Lines 14–17, we skip the non-fixable violation
because non-router-created shapes exclusively contribute to
the violation. For example, in Figure 12(b), we skip the non-
fixable violation if no area in the darker green or blue region
is exclusively from polygon set (routing).

Algorithm 5 Check parallel run length spacing

1: Input: max rectangles m, n
2: actVal ← getActualSpacing(m, n)
3: reqVal ← getRequiredSpacing(m, n)
4: if actVal ≥ reqVal then
5: return
6: end if
7: if isFixed(m) AND isFixed(n) then
8: return
9: end if

10: prlRect ← getIntersection(m, n)
11: if not hasPolyEdge(prlRect) then
12: return
13: end if
14: maxWidth ← getMaxWidth(m, n)
15: if not hasExclusiveRouterCreatedShapesWithin(prlRect, maxWidth) then
16: return
17: end if
18: addMarker(ParallelRunLengthSpacing)

Fig. 12: Parallel run length spacing filters: (a) no valid (vertical) polygon
edges overlapped with the generalized intersection, given horizontal spacing
direction; and (b) spacing violation contributed exclusively from non-router-
created shapes.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

2) Metal Shape: Metal shape rules consist of minimum
width and step. Algorithm 6 describes the design rule checking
for minimum width. In Lines 2–11, given a polygon, we first
slice the polygon vertically and check each sliced polygon
separately. Lines 4–6 check whether the shape satisfies the
minimum width. In Lines 7–9, we skip the non-fixable viola-
tion if the sliced rectangle does not overlap with router-created
shapes. We repeat the above with slicing in the horizontal
direction.

Algorithm 6 Check minimum width (vertical slicing)

1: Input: polygon m
2: N ← slicePolygon(m, vertical)
3: for all n in N do
4: if ySpan(n) ≥ minWidth then
5: return
6: end if
7: if not hasRouting(n) then
8: return
9: end if

10: addMarker(MinimumWidth)
11: end for

Algorithm 7 describes the design rule checking for mini-
mum step. A minimum step consists of consecutive shorter-
than-minStepLength edge(s) between two different not-shorter-
than-minStepLength edges of a polygon. In Lines 2–16, we
get the first and last polygon edges that are larger than
minStepLength, with all intermediate edges shorter than min-
StepLength. In Lines 17–19, we skip the corner case if the
first and last edges are the same. In Lines 20–22, we check
whether the number of short edges is allowed. In Lines 23–25,
we skip the non-fixable violation if the bounding box of short
edges does not intersect with router-created shapes.

Algorithm 7 Check minimum step

1: Input: polygon edge e
2: if length(e) < minStepLength then
3: return
4: end if
5: initializeBBox(bbox, endPoint(e))
6: beginEdge ← e
7: numEdges ← 0
8: while beginEdge �= nextEdge(e) do
9: e ← nextEdge(e)

10: updateBBox(bbox, endPoint(e))
11: if length(e) < minStepLength then
12: numEdges ← numEdges +1
13: else
14: break
15: end if
16: end while
17: if e = beginEdge then
18: return
19: end if
20: if numEdges <= maxEdges then
21: return
22: end if
23: if not hasRouterCreatedShapes(bbox) then
24: return
25: end if
26: addMarker(MinimumStep)

3) End-of-Line Spacing: Algorithm 8 describes the design
rule checking for end-of-line spacing. Lines 2–4 check whether
the input edge is an EOL edge. Lines 5–7 check if there
exists parallel edge(s) in case the rule contains the PARAL-
LELEDGE statement. Lines 8–18 check all potential EOL
spacing violations between the EOL edge and an opposite edge
on the exterior side of the polygon. In Lines 11–13, we skip the

corner case if the generalized intersection of the EOL edge
and the opposite edge contains any shape. In Lines 14–16,
we skip the non-fixable violation if none of the EOL edge,
opposite edge, or parallel edge(s), if any, are from router-
created shapes. Figure 13 shows an EOL violation between
two non-router-created shapes, given only the existence of a
parallel edge from a router-created shape.

Algorithm 8 Check end-of-line spacing

1: Input: polygon edge e
2: if len(e) ≥ eolWidth then
3: return
4: end if
5: if not hasParallelEdge(e) then
6: return
7: end if
8: E ← queryPolygonEdge(e, eolWithin, eolSpacing)
9: for all e’ in E do

10: eolRect ← getIntersection(e, e’)
11: if not isEmpty(eolRect) then
12: return
13: end if
14: if not hasRouterCreatedShapes(e) then
15: return
16: end if
17: addMarker(EndOfLineSpacing)
18: end for

Fig. 13: End-of-line spacing violation between a non-router-created EOL
edge, and a non-router-created opposite edge, given the existence of a parallel
edge from a router-created shape.

4) Cut Spacing: Check cut spacing follows a similar high-
level procedure as shown in Algorithm 2 to first identify
neighboring cuts, and then to identify whether two neighboring
cuts potentially short or violate cut spacing. Algorithm 9
describes the design rule checking if the two cuts do not
short. In Lines 2–6, we check whether the cuts satisfy the
spacing. Lines 7–9 skip the non-fixable violation if both cuts
are fixed. In Lines 10–12, we check whether the layout satisfies
ADJACENTCUTS/PARALLELOVERLAP/AREA conditions
(if specified).

Algorithm 9 Check cut spacing

1: Input: cuts m, n
2: actVal ← getActualSpacing(m, n)
3: reqVal ← getRequiredSpacing(m, n)
4: if actVal ≥ reqVal then
5: return
6: end if
7: if isFixed(m) AND isFixed(n) then
8: return
9: end if

10: if not hasAdjCuts(m) OR not hasParallelOverlap(m, n) OR not hasArea(m, n) then
11: return
12: end if
13: addMarker(CutSpacing)

5) Corner Spacing: Algorithm 10 describes the design
rule checking procedure for corner spacing. Lines 2–4 check
whether the input corner c has the same corner type specified
in the rule. Lines 5–7 check whether the input corner connects
to an edge that meets the EOL exception condition. Line 8

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

queries all max rectangles which potentially have violation
with c. For all queried max rectangles, Lines 10–12 check
whether each max rectangle is overlapped with c or the max
rectangle has positive PRL with c. In lines 13–15, we skip the
max rectangle if both the max rectangle and c are fixed. Lines
16–22 compare required spacing value and actual spacing
value, and add a DRC marker for corner spacing accordingly.

Algorithm 10 Check corner spacing

1: Input: polygon corner c
2: if c.type �= cornerType then
3: return
4: end if
5: if len(c.prevEdge) < eolWidth OR len(c.nextEdge) < eolWidth then
6: return
7: end if
8: N ← queryMaxRectangles(c, maxDist)
9: for all n in N do

10: if isOverlap(c, n) OR hasPositivePRL(c, n) then
11: continue
12: end if
13: if isFixed(c) AND isFixed(n) then
14: continue
15: end if
16: prlRect ← getIntersection(c, n)
17: reqVal ← getRequiredSpacing(n.width)
18: actVal ← maxXY(prlRect)
19: if actVal ≥ reqVal then
20: continue
21: end if
22: addMarker(CornerSpacing)
23: end for

E. Incremental DRC Checking Capability

Due to the net-by-net nature of ripup-and-reroute, it is
desired for the DRC engine have incremental capability to
update and check after the routing of a given net is modified.
Incremental capability of a DRC engine can further enable
optimizations in routing (e.g., our queue-based ripup-and-
reroute strategy, via swapping, etc.). In our work, incremental
DRC checking for a modified net can be achieved by (i)
updating the layout data structure of the modified net in the
DRC engine; and (ii) perform DRC checking and filtering for
the modified net only, which can be achieved by skipping
DRC checking if the input object(s) of Algorithms 2–9 does
not belong to the modified net. In the following, we denote
incremental DRC checking of a net with “GC(net)” and denote
DRC checking for all nets with “GC()”.

VI. IMPROVED RIPUP-AND-REROUTE IN DETAILED
ROUTING

We now present our improved ripup-and-reroute methodol-
ogy in detailed routing. We first illustrate potential inefficiency
in existing ripup-and-reroute flow. We then describe our queue-
based ripup-and-reroute flow that improves DRC convergence.

A. Inefficiency in existing ripup-and-reroute flow

Use of ripup-and-reroute to resolve DRC can rely heavily
on net ordering. Figure 14 illustrates potential inefficiency in
resolving DRC in a 2D routing scheme. If net0 is always
routed before net1, it takes seven iterations to explore routing
solutions with DRC if the DRC does not provide sufficient cost
(part (a) of the figure), before a DRC-clean solution is found

(part (b)). In a real-world scenario, the interactions among
different nets are much more complicated than in Figure 14.
Hence, simple net ordering heuristics (e.g., shuffling) may
not efficiently converge to a feasible solution. Figure 14(a)
illustrates how ripup-and-reroute flows in our [12] and other
previous works suffer from being only aware of the short
violation between net0 and net1, while leaving unutilized the
fact that net0 is routed before net1. The latter is a key piece
of information that can help improve DRC convergence.

Fig. 14: Illustration of DRC convergence depending on net ordering: (a) seven
routing solutions with DRC and (b) a DRC-clean routing solution.

B. Queue-based ripup-and-reroute flow

In this work, we propose a queue-based ripup-and-reroute
flow to improve efficiency of ripup-and-reroute, thus improv-
ing DRC convergence and runtime. Rather than relying on
ordering a certain number of nets and rerouting them in a
batch followed by a full design rule check on all objects, we
introduce an incremental route-and-check flow, based on the
use of a FIFO queue and the capability shown in Section V-E.
Each net is rerouted and design rule-checked incrementally.
When we pop a net from the queue, we perform either (1)
rerouting and incremental design rule checking or (2) design
rule checking only. If new violations are found related to the
popped net, we push relevant nets back to the queue. Each
net in the queue is designated for a task that is either (1) or
(2). Each element in the queue is a 3-tuple that contains a
net, associated with (i) task type (type (1) is true since it does
perform reroute), and (ii) number of times that the net has
been rerouted when it is pushed to the queue. Note that if
this number does not match the actual number of times that
a net has been routed, we will skip routing the net. The next
paragraphs discuss details of our ripup-and-reroute queue.

To illustrate how we push nets to the queue, we introduce
the concept of aggressor and victim. Recall that in the
Figure 14, net0 is routed first. When net1 is being routed,
net1 attempts to avoid DRC, but the detour cost is so large
that net1 routes across net0. In this case, we consider net0
as the aggressor and net1 as the victim because net0 invades
the solution space where net1 can achieve DRC-clean routing
solution. Therefore, the aggressor should be ripped up and
rerouted next and the victim should be DRC checked after the
aggressor is rerouted. In general, after a certain net is routed,
if the net has any violation with other nets, the net that is
lastly routed is considered as the victim and the other nets are
considered as the aggressors. We first push all aggressors for
task (1), then push the victim for task (2).

We describe the queue-based ripup-and-reroute flow in
Algorithm 11. Line 2 first initializes the worker database. Line
3 initializes the ripup-and-reroute queue with existing DRC

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

markers. Line 4 adds the marker cost for all input markers.
In Line 5–20, we perform iterative ripup-and-reroute until the
queue is empty. Lines 6–8 obtain the information of the front
element of the queue. Line 9 pops the front element. Lines 10–
16 rip up and reroute the net and decays marker costs only
if the net is set for reroute and it has not been rerouted more
than maxIter times. Line 17 performs incremental DRC check
for the net. For the DRC markers associated with the net,
Line 18 adds the marker cost and Line 19 updates the queue
accordingly. Line 21 performs DRC check for all nets in the
worker and Line 22 commits the routing from the worker.

Algorithm 11 Queue-based routing flow

1: Input: database, DRC markers markers
2: WorkerDBInit()
3: queue.update(markers)
4: addMarkerCost(markers)
5: while queue.size() do
6: net = queue.front.net
7: isRoute = queue.front.isRoute
8: numReroute = queue.front.numReroute
9: queue.pop front()

10: if isRoute and numReroute < maxIter then
11: ripupNet(net)
12: subObjCost(net)
13: routeOneNet(net)
14: addObjCost(net)
15: decayMarkerCost()
16: end if
17: netMarkers = GC(net)
18: addMarkerCost(netMarkers)
19: queue.update(netMarkers)
20: end while
21: GC()
22: DBCommit()

We illustrate the operation of a ripup-and-reroute queue
in Figure 15 with three two-pin nets to be routed in 2D.
Each figure shows the layout and the corresponding elements
in the queue before a net is to be routed. Each net has an
associated counter to keep track of the number of times that
the net has been routed. Such a counter prevents a net from
being (i) routed more than the number of allowed ripup-and-
reroute iterations (i.e., maxIter); and (ii) routed unnecessarily
for a DRC that has already been addressed (see Figures 15(e)
and (f), for example). Figure 15(a) shows that the three
nets are initially routed in the order of net0, net1 and net2.
Figure 15(b) illustrates the layout and queue after net0 is
routed. Figure 15(c) shows that after net1 is routed, there
is a short violation between net0 and net1. Considering that
net0 is routed before net1, net0, as the aggressor, is pushed
to the back of the queue for rerouting. net1, as the victim, is
pushed to the back of the queue for DRC checking. Similarly,
Figure 15(d) shows that after net2 is routed, net2 has a short
violation with net0. Therefore, net0 is pushed to the back of
the queue for rerouting and net2 is pushed to the back of
the queue for DRC checking. Figure 15(e) shows that after
net0 is rerouted, both of the two short violations are resolved
and DRC checking from net1 does not detect new violations.
Figure 15(f) shows that when net0 is popped from the queue,
the routing is skipped because net0 has been routed twice
while the routing counter indicates that net0 is pushed to the
queue for routing when it was routed only once. At this point,

the last two elements in the queue are popped without pushing
new elements to the queue. Therefore, the routing for the three
two-pin nets are completed.

Fig. 15: Illustration of ripup-and-reroute queue on three two-pin nets.

C. Ripup-and-reroute queue update

Algorithm 12 describes the procedure to populate the ripup-
and-reroute queue based on a given list of DRC markers. Lines
2–3 initialize a uniqueAggressors set and a uniqueVictims
set. Pushing redundant element into the queue can cause
exponential increase in size of the queue. Lines 4–9 iterates
all DRC markers, obtain the aggressors and the victim of each
marker, and update the two aforementioned sets accordingly.
Lines 10–12 push all unique aggressors involved in DRC
markers to the queue for ripup-and-reroute. Lines 13–15 push
all victims of the markers to the queue for DRC checking.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

Algorithm 12 Update ripup-and-reroute queue

1: Input: ripup-and-reroute queue queue, DRC markers markers
2: uniqueAggressors = ∅
3: uniqueVictims = ∅
4: for all marker ∈ markers do
5: for all aggressor ∈ marker.getAggressors() do
6: uniqueAggressors.insert(aggressor)
7: end for
8: uniqueVictims.insert(marker.getVictim())
9: end for

10: for all aggressor ∈ uniqueAggressors do
11: queue.push back(<aggressor, true, 0>)
12: end for
13: for all victim ∈ uniqueVictims do
14: queue.push back(<victim, false, 0>)
15: end for

VII. EXPERIMENTS

We implement our router in C++ with LEF/DEF parser [34]
and Boost C++ libraries [32]. We enable multi-threading with
OpenMP [35]. We perform experiments using the ISPD-2018
and ISPD-2019 benchmark suites [16][19] with overall 20
testcases in 65nm, 45nm and 32nm technology nodes, with
up to 899K standard cells and 895K nets. Compared to the
ISPD-2018 benchmark suite, the ISPD-2019 benchmark suite
includes more advanced routing rules which make the testcases
more challenging and closer to real-world routing problems.
We summarize the benchmark information in Table II. Ad-
ditionally, we perform an experiment with a foundry 14nm
technology node and a commercial 14nm library.

TABLE II: Benchmark information [16][19].

Benchmark #std #blk #net #pin #layer Tech.
ISPD-2018

ispd18 test1 8879 0 3153 0 9 45nm
ispd18 test2 35913 0 36834 1211 9 45nm
ispd18 test3 35973 4 36700 1211 9 45nm
ispd18 test4 72094 0 72401 1211 9 32nm
ispd18 test5 71954 0 72394 1211 9 32nm
ispd18 test6 107919 0 107701 1211 9 32nm
ispd18 test7 179865 16 179863 1211 9 32nm
ispd18 test8 191987 16 179863 1211 9 32nm
ispd18 test9 192911 0 178857 1211 9 32nm
ispd18 test10 290386 0 182000 1211 9 32nm

ISPD-2019
ispd19 test1 8879 0 3153 0 9 32nm
ispd19 test2 72094 4 72410 1211 9 32nm
ispd19 test3 8283 4 8953 57 9 32nm
ispd19 test4 146442 7 151612 4802 5 65nm
ispd19 test5 28920 6 29416 360 5 65nm
ispd19 test6 179881 16 179863 1211 9 32nm
ispd19 test7 359746 16 358720 2216 9 32nm
ispd19 test8 539611 16 537577 3221 9 32nm
ispd19 test9 899341 16 895253 3221 9 32nm
ispd19 test10 899404 16 895253 3221 9 32nm

In the following, based on the ISPD-2018 and ISPD-
2019 benchmark suites, we perform (i) DRC convergence
comparison between detailed routing (DR) results with and
without ripup-and-reroute queue, (ii) comparison between our
DR work and known best DR solutions from all published
academic detailed routers, (iii) DRC convergence comparison
between our global routing solutions and contest global routing
solutions, and (iv) comparison between our global-detailed
routing flow and the other academic global-detailed routing
flow. We perform additional detailed routing experiment with
a RISC-V processor [23] in 14nm. All experiments are per-
formed using eight threads on an Intel Xeon 2.4GHz server.

A. Queue-based ripup-and-reroute DRC convergence study

In this subsection, we compare the detailed routing based
on ISPD-2018 and ISPD-2019 benchmark testcases using
our detailed router with and without the ripup-and-reroute
queue enablement that is described in Section VI-B. For the
version that is without ripup-and-reroute queue, we use the
ripup-and-reroute strategy in [12] while keeping every other
aspect the same as the version using ripup-and-reroute queue.
For this experiment, we set a runtime limit of 24 hours.
Table III gives the wirelength, via count, DRC count and
runtime comparisons. We can observe that with the ripup-
and-reroute queue, we are able to converge on DRC (i.e.,
#DRC ≤ 50) for all testcases. Moreover, for testcases where
both versions converge on DRC, ripup-and-reroute queue can
reduce runtime by an average of 33.5% (up to 85.4%). Since
the detailed routing runtime is closely proportional to the
overall number of ripup-and-reroutes, the queue-based ripup-
and-reroute strategy’s more adaptive control on net ordering
can achieve DRC convergence more efficiently.

B. DR comparison to known best solutions

In this subsection, we compare our detailed routing (DR)
solution to the known best DR solutions from all published
academic detailed routers based on ISPD-2018 and ISPD-
2019 benchmark testcases. We determine the known best DR
solutions based on the DRC evaluation result from the official
ISPD-2019 contest evaluator, which is more comprehensive
as compared to the ISPD-2018 contest evaluator. Therefore,
for all ISPD-2018 benchmark testcases, the known best DR
solutions are from TritonRoute (TR) [12]. For all ISPD-2019
benchmark testcases, the known best DR solutions are from
Dr. CU 2.0 (CU) [14]. Table IV gives the wirelength, via count,
DRC count and runtime comparisons. We achieve DRC-clean
routing solutions for 16 testcases and reach near-DRC-clean
(<5) routing solutions for the remaining testcases. For 19 out
of the 20 testcases, we complete detailed routing faster than the
known best solution. Overall, we achieve an average of 99.93%
(up to 100%) DRC reduction with an average of 30.36% (up
to 83.69%) runtime reduction.

Fig. 16: Detailed routing runtime breakdown.
We now discuss the runtime and multithread scalability of

our current work. For runtime study, Figure 16 illustrates the
breakdown of the overall detailed routing runtime of four parts
– initialization, routing, design rule checking and others. For
multithread scalability study, we measure both single-thread
and eight-thread runtime and calculate the eight-thread (8T)
speedup. Table IV gives the multithread speedup comparison.
We can observe that our work can achieve an average of
5.35× (up to 6.31×) 8T speedup. Note that TritonRoute
(TR) [12] does not have multithreading support and Dr. CU
2.0 (CU) [14] has multithreading capability.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

TABLE III: Detailed routing comparison of wirelength, via count, DRC count and runtime between TritonRoute-WXL (TR-WXL) and TritonRoute (TR).

Benchmark Wirelength (µm) Via count DRC count Runtime (s)
TR-WXL TR TR-WXL TR TR-WXL TR TR-WXL TR

ispd18 test1 86440 86533 35406 35466 0 0 23 33
ispd18 test2 1572819 1573641 359982 360246 0 0 171 278
ispd18 test3 1751762 1752728 355758 356233 0 0 352 1757
ispd18 test4 2621560 2623393 723918 725856 4 10 1428 9762
ispd18 test5 2763875 2766182 889397 891318 0 0 452 538
ispd18 test6 3551801 3555372 1369517 1372596 0 0 683 875
ispd18 test7 6475058 6481683 2228504 2235910 0 0 1337 1479
ispd18 test8 6503655 6510428 2245489 2252179 0 1 1226 1454
ispd18 test9 5433658 5439825 2238810 2244617 0 0 1106 1528
ispd18 test10 6760047 6768788 2419830 2432820 1 927 1652 86400
ispd19 test1 63151 63194 37194 37246 0 1 84 93
ispd19 test2 2470886 2471332 787289 790438 0 0 1053 1289
ispd19 test3 82414 82538 63852 64532 0 1 221 488
ispd19 test4 3001424 3007376 1046033 1073473 0 0 539 3121
ispd19 test5 474240 474846 165477 166581 0 0 55 64
ispd19 test6 6537203 6537793 1928030 1930705 3 2 2138 2934
ispd19 test7 12157089 12159501 4511435 4516760 0 0 4003 5324
ispd19 test8 18694589 18696221 6980714 6977429 0 0 5463 7125
ispd19 test9 28280152 28281276 11581559 11574769 0 0 8846 12167
ispd19 test10 27957631 27955832 11711427 11699849 2 12 9827 13842

TABLE IV: Detailed routing comparison of wirelength, via count, DRC count, runtime and eight-thread (8T) runtime speedup between TritonRoute-WXL
(TR-WXL) and known best (K.B.) detailed routing solution. Runtime (s) is obtained with eight threads. For 8T speedup (×) over 1T, note that ispd18 test1–
ispd18 test10 results are from [12] without multithreading support and ispd19 test1–ispd19 test10 results are from [14] with multithreading capability.

Benchmark Wirelength (µm) Via count DRC count Runtime (s) 8T speedup (×)
TR-WXL K.B. TR-WXL K.B. TR-WXL K.B. TR-WXL K.B. TR-WXL K.B.

ispd18 test1 86440 86025 35406 32912 0 0 23 61 4.14 1.00
ispd18 test2 1572819 1570651 359982 319855 0 17 171 614 5.95 1.00
ispd18 test3 1751762 1750028 355758 319456 0 142 352 824 4.70 1.00
ispd18 test4 2621560 2620890 723918 695901 4 326 1428 1866 2.77 1.00
ispd18 test5 2763875 2763186 889397 831775 0 2 452 1722 5.83 1.00
ispd18 test6 3551801 3557744 1369517 1241673 0 8 683 2682 5.79 1.00
ispd18 test7 6475058 6482066 2228504 2041794 0 13 1337 5023 5.66 1.00
ispd18 test8 6503655 6513278 2245489 2062997 0 6 1226 4916 6.25 1.00
ispd18 test9 5433658 5442527 2238810 2049839 0 5 1106 4378 5.89 1.00
ispd18 test10 6760047 6769942 2419830 2226243 1 1681 1652 10129 5.02 1.00
ispd19 test1 63151 64258 37194 36797 0 183 84 118 4.07 2.91
ispd19 test2 2470886 2496133 787289 811080 0 10475 1053 1260 6.02 4.52
ispd19 test3 82414 84216 63852 65501 0 667 221 56 3.62 3.03
ispd19 test4 3001424 3049119 1046033 1031333 0 2612 539 1328 5.34 3.76
ispd19 test5 474240 478046 165477 153504 0 450 55 115 5.00 5.25
ispd19 test6 6537203 6606659 1928030 1998487 3 8441 2138 2213 6.11 5.19
ispd19 test7 12157089 12255810 4511435 4833913 0 32067 4003 5288 6.27 4.97
ispd19 test8 18694589 18847259 6980714 7365292 0 20213 5463 7401 6.22 4.86
ispd19 test9 28280152 28539077 11581559 12249476 0 36729 8846 10166 6.31 4.79
ispd19 test10 27957631 28217821 11711427 12544541 2 36930 9827 10665 5.96 4.83

C. GR-based DR convergence study

In this subsection, we compare the detailed routing conver-
gence for all ISPD benchmark testcases. Using our detailed
router, we perform detailed routing based on (i) our global
routing solutions and (ii) ISPD GR solutions. Note that the
ISPD Contest GR solutions are produced from a commer-
cial routing tool [16][19]. The Contests include both high-
quality solutions, which “contains DRC-free solution strictly
within the GR solution”, and low-quality solutions, which “has
congestion issue that needs detailed routing to escape from
the GR solution to fix DRC violations”. Table V shows the
detailed routing results from the two sets of global routing
solutions. We can observe that compared to the ISPD contest
GR solutions, our GR solutions enable faster DR convergence

for 16 out of the 20 ISPD testcases while maintaining a
similar final DRC count. Note that although our GR solutions
yield less wirelength and more via count for most testcases as
compared to the ISPD GR solutions, the DR solutions based
on our GR solutions achieve (avg. 1.10%) less wirelength and
(10.93%) less via count for the four largest testcases. Overall,
the faster convergence based on our GR solutions suggests the
importance of correlation between global routing and detailed
routing. Our results suggest that using consistent routing data
(e.g., pin access location, pin access layer, etc.) is essential to
improve global-detailed routing convergence.

D. GR-DR flow comparison
In this subsection, we compare our global-detailed routing

flow to an academic global-detailed routing flow composed of

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

TABLE V: Detailed routing comparison of wirelength, via count, DRC count and runtime of TritonRoute-WXL (TR-WXL) based on TritonRoute-WXL GR
solutions and ISPD (ISPD) contest GR solutions.

Benchmark Wirelength (µm) Via count DRC count Runtime (s)
TR-WXL ISPD TR-WXL ISPD TR-WXL ISPD TR-WXL ISPD

ispd18 test1 85473 86440 35944 35406 0 0 20 23
ispd18 test2 1561031 1572819 368689 359982 0 0 152 171
ispd18 test3 1748277 1751762 366529 355758 0 0 634 352
ispd18 test4 2608384 2621560 740861 723918 0 4 328 1428
ispd18 test5 2739911 2763875 898203 889397 0 0 422 452
ispd18 test6 3517814 3551801 1396604 1369517 0 0 588 683
ispd18 test7 6419424 6475058 2282448 2228504 0 0 1306 1337
ispd18 test8 6450911 6503655 2362445 2245489 2 0 1379 1226
ispd18 test9 5387783 5433658 2343351 2238810 0 0 1004 1106
ispd18 test10 6826702 6760047 2565965 2419830 0 1 1540 1652
ispd19 test1 62910 63151 38524 37194 0 0 52 84
ispd19 test2 2460555 2470886 864450 787289 2 0 834 1053
ispd19 test3 82209 82414 63958 63852 0 0 184 221
ispd19 test4 3405837 3001424 1177000 1046033 0 0 2002 539
ispd19 test5 491124 474240 154285 165477 0 0 74 55
ispd19 test6 6513294 6537203 2060740 1928030 0 3 1795 2138
ispd19 test7 12042594 12157089 3895912 4511435 1 0 3768 4003
ispd19 test8 18493958 18694589 6426055 6980714 0 0 4474 5463
ispd19 test9 27964407 28280152 10673809 11581559 1 0 7205 8846
ispd19 test10 27608084 27957631 10038232 11711427 11 2 8639 9827

TABLE VI: Global-detailed routing comparison of wirelength, via count, DRC count and runtime between TritonRoute-WXL (TR-WXL) flow and CUGR-
and-Dr. CU 2.0 (CU) flow.

Benchmark Wirelength (µm) Via count DRC count Runtime (s)
TR-WXL CU TR-WXL CU TR-WXL CU TR-WXL CU

ispd18 test1 85473 85737 35944 35231 0 1554 24 13
ispd18 test2 1561031 1559703 368689 365203 0 19207 167 143
ispd18 test3 1748277 1753358 366529 361170 0 20718 653 201
ispd18 test4 2608384 2634776 740861 727706 0 865 395 494
ispd18 test5 2739911 2753732 898203 927063 0 897 507 1038
ispd18 test6 3517814 3559424 1396604 1388121 0 720 671 785
ispd18 test7 6419424 6488953 2282448 2289149 0 831 1503 2114
ispd18 test8 6450911 6549767 2362445 2346013 2 897 1600 2057
ispd18 test9 5387783 5436327 2343351 2341125 0 212 1093 1416
ispd18 test10 6826702 6811827 2565965 2496257 0 1279 1730 2378
ispd19 test1 62910 64101 38524 40687 0 126 55 116
ispd19 test2 2460555 2500531 864450 842725 2 9500 876 1349
ispd19 test3 82209 83901 63958 66492 0 491 190 98
ispd19 test4 3405837 2994923 1177000 917094 0 2677 3756 3081
ispd19 test5 491124 481224 154285 138834 0 492 300 320
ispd19 test6 6513294 6629404 2060740 2190998 0 3223 1920 2180
ispd19 test7 12042594 12243117 3895912 4073497 1 19578 3987 5381
ispd19 test8 18493958 18721818 6426055 6830217 0 13463 4754 7458
ispd19 test9 27964407 28301705 10673809 11394780 1 27058 7645 10290
ispd19 test10 27608084 28047248 10038232 10331459 11 32292 9181 10297

CUGR and Dr. CU 2.0. Table VI shows the global-detailed
routing comparison of wirelength, via count, DRC count and
runtime between TritonRoute-WXL and CUGR-and-Dr. CU
2.0 flows. We can observe that TritonRoute-WXL consistently
achieves considerably lower DRC count with comparable, if
not better, wirelength and via count. Meanwhile, for 15 out of
the 20 ISPD testcases, TritonRoute-WXL completes routing
with shorter runtimes. Overall, TritonRoute-WXL achieves
routing solutions with an average of 99.99% (up to 100%)
fewer DRCs with similar average wirelength, via count and
runtime compared to the CUGR-and-Dr. CU 2.0 flow.

E. Detailed routing a RISC-V core in 14nm
We perform a detailed routing experiment by integrating our

detailed router with OpenROAD physical design tool flow [1]
in a 14nm foundry technology node using a commercial 14nm
library. We perform our experiment using a global routed
RISC-V core [23] (517K instances; runtime 20361 sec). The

result confirms that our router is capable of delivering DRC-
clean routing result in the sub-16nm commercial context.
Figure 17 shows the layout of the routed design.

Fig. 17: Illustration of DRC-clean routing of a RISC-V core in 14nm.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3079268, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

14

VIII. CONCLUSION AND FUTURE WORK

In this work, we present TritonRoute-WXL, an open source
router. For detailed routing, with an integrated design rule
check engine along with the optimizations enabled by the DRC
engine in detailed routing, we deliver DRC-clean detailed
routing solutions for 16 of the 20 ISPD contest benchmark
testcases. This translates to an average of 99.93% reduction of
DRCs as compared to known best detailed routing solutions
from all published academic detailed routers, along with
an average runtime reduction of 30.36%. Besides fulfilling
the future works in [12], we present an end-to-end global-
detailed routing flow. For global-detailed routing, compared to
the other academic global-detailed routing flow, TritonRoute-
WXL achieves an average of 99.99% reduction of DRCs.
Our preliminary study also shows that TritonRoute-WXL is
capable of delivering DRC-clean routing solution for sub-
16nm foundry technology nodes. Our future research direc-
tions include (i) more sophisticated global routing net ordering
and (ii) topology control during ripup-and-reroute in global
routing.

IX. ACKNOWLEDGMENTS

We thank Dr. Wen-Hao Liu for providing valuable feedback.

REFERENCES

[1] T. Ajayi, V. A. Chhabria, M. Fogaca, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta, S. Reda,
M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W. Swartz, L.
Wang, Z. Wang, M. Woo and B. Xu, “Toward an Open-Source Digital
Flow: First Learnings from the OpenROAD Project”, Proc. DAC, 2019,
pp. 76:1-76:4.

[2] C. J. Alpert, M. D. Moffitt, G. J. Nam, J. A. Roy and G. Tellez, “What
Makes a Design Difficult to Route”, Proc. ISPD, 2014, PP. 7-12.

[3] W.-T. J. Chan, P.-H. Ho, A. B. Kahng and P. Saxena, “Routability
Optimization for Industrial Designs at Sub-14nm Process Nodes Using
Machine Learning”, Proc. ISPD, 2017, pp. 15-21.

[4] Y.-J. Chang, Y.-T. Lee and T.-C. Wang, “NTHU-Route 2.0: A Fast and
Stable Global Router”, Proc. ICCAD, 2008, pp. 338-343.

[5] H.-Y. Chen, C.-H. Hsu and Y.-W. Chang, “High-Performance Global
Routing with Fast Overflow Reduction”, Proc. ASP-DAC, 2009, pp. 582-
587.

[6] J. Chen, J. Kuang, G. Zhao, D. J.-H. Huang and E. F. Y. Young, “PROS:
A Plug-In for Routability Optimization Applied in The State-of-The-Art
Commercial EDA Tool using Deep Learning”, Proc. ICCAD, 2020, pp.
1-8.

[7] C. Chu and Y. Wong, “FLUTE: Fast Lookup Table Based Rectilinear
Steiner Minimal Tree Algorithm for VLSI design”, IEEE Trans. on CAD
27(1) (2008), pp. 70-83.

[8] K.-R. Dai, W.-H. Liu and Y.-L. Li, “NCTU-GR: Efficient Simulated
Evolution-Based Rerouting and Congestion-Relaxed Layer Assignment
on 3-D Global Routing”, IEEE Trans. on VLSI 20(3) (2012), pp. 459-
472.

[9] S. Dolgov, A. Volkov, L. Wang and B. Xu, “2019 CAD Contest:
LEF/DEF Based Global Routing”, Proc. ICCAD, 2019, pp. 1-4.

[10] S. M. M. Gonçalves, L. S. da Rosa and F. de S. Marques, “SmartDR:
Algorithms and Techniques for Fast Detailed Routing with Good Design
Rule Handling”, ACM Trans. on DAES 26(2) (2020), article 9.

[11] A. B. Kahng, L. Wang and B. Xu, “The Tao of PAO: Anatomy of a Pin
Access Oracle for Detailed Routing”, Proc. DAC, 2020.

[12] A. B. Kahng, L. Wang and B. Xu, “TritonRoute: The Open Source
Detailed Router”, IEEE Trans. on CAD (2020).

[13] C. Y. Lee, “An Algorithm for Path Connections and Its Applications”,
IRE Trans. on Electro. Comp. 10(3) (1961), pp. 346-365.

[14] H. Li, G. Chen, B. Jiang, J. Chen and E. F. Y. Young, “Dr. CU 2.0:
A Scalable Detailed Routing Framework with Correct-by-Construction
Design Rule Satisfaction”, Proc. ICCAD, 2019, pp. 1-7.

[15] W.-H. Liu, W.-C. Kao, Y.-L. Li and K.-Y. Chao, “NCTU-GR 2.0:
Multithreaded Collision-Aware Global Routing with Bounded-Length
Maze Routing”, IEEE Trans. on CAD 32(5) 2013, pp. 709-722.

[16] W.-H. Liu, S. Mantik, W.-K. Chow, Y. Ding, A. Farshidi and G. Posser,
“ISPD 2019 Initial Detailed Routing Contest and Benchmark with
Advanced Routing Rules”, Proc. ISPD, 2018, pp. 140-143.

[17] J. Liu, C.-W. Pui, F. Wang and E. F. Y. Young, “CUGR: Detailed-
Routability-Driven 3D Global Routing with Probabilistic Resource
Model”, Proc. DAC, 2020.

[18] L. McMurchie and C. Ebeling, “Pathfinder: A Negotiation-Based
Performance-Driven Router for FPGAs”, Proc. ISFPGA, 1995, pp. 111-
117.

[19] S. Mantik, G. Posser, W.-K. Chow, Y. Ding and W.-H. Liu, “ISPD 2018
Initial Detailed Routing Contest and Benchmarks”, Proc. ISPD, 2018,
pp. 140-143.

[20] G.-J. Nam, C. Sze and M. Yildiz, “The ISPD Global Routing Benchmark
Suite”, Proc. ISPD, 2008, pp. 156-159.

[21] G.-J. Nam, M. Yildiz, D. Z. Pan and P. H. Madden, “ISPD Placement
Contest Updates and ISPD 2007 Global Routing Contest”, Proc. ISPD,
2007, pp. 167.

[22] N. J. Nilsson, “State-Space Search Methods”, in Problem-Solving Meth-
ods in Artificial Intelligence, McGraw-Hill Book Co., 1971, pp. 43-79.

[23] D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao,
C. Zhao, Z. Azad, S. Canakci, B. Veluri, T. Guarino, A. J. Joshi, M.
Oskin and M. B. Taylor, “BlackParrot: An Agile Open Source RISC-V
Multicore for Accelerator SoCs”, IEEE Micro 40(4) (2020), pp. 93-102.

[24] I. Pohl, “Bi-Directional Search”, Machine Intelligence (1971), pp. 127-
140.

[25] Z. Qi, Y. Cai and Q. Zhou, “Accurate Prediction of Detailed Routing
Congestion using Supervised Data Learning”, Proc. ICCD, 2014, pp.
97-103.

[26] J. A. Roy and I. L. Markov, “High-Performance Routing at the Nanome-
ter Scale”, IEEE Trans. on CAD 27(6) 2008, pp. 1066-1077.

[27] T.-H. Wu, A. Davoodi and J. T. Linderoth, “GRIP: Scalable 3D Global
Routing using Integer Programming”, Proc. DAC, 2009, pp. 320-325.

[28] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen and
J. Hu, “RouteNet: Routability Prediction for Mixed-Size Designs using
Convolutional Neural Network”, Proc. ICCAD, 2018, pp. 1-8.

[29] Y. Xu and C. Chu, “MGR: Multi-Level Global Router”, Proc ICCAD,
2011, pp. 250-255.

[30] Y. Xu, Y. Zhang and C. Chu, “FastRoute 4.0: Global Router with
Efficient Via Minimization”, Proc. ASP-DAC, 2009, pp. 576-581.

[31] Q. Zhou, X. Wang, Z. Qi, Z. Chen, Q. Zhou and Y. Cai, “An Accurate
Detailed Routing Routability Prediction Model in Placement”, Proc.
ASQED, 2015, pp. 119-122.

[32] B. Schäling, The Boost C++ Libraries, 2nd ed., XML Press, 2014.
[33] TritonRoute-WXL: The Open Source Router with Integrated DRC

Engine. https://www.github.com/ABKGroup/TritonRoute-WXL
[34] LEF/DEF reference 5.7. http://www.si2.org/openeda.si2.org/projects/

lefdefnew
[35] OpenMP Architecture Review Board, “OpenMP Application Program

Interface, Version 4.0”.

Andrew B. Kahng photo and bio not available.

Lutong Wang received the Ph.D. degree in electrical
and computer engineering from the University of
California at San Diego, La Jolla, in 2019. He is
currently with Cadence Design Systems, Inc. His
research interests include physical design implemen-
tation and DFM methodologies.

Bangqi Xu received the BSEE degree from the
University of Michigan, Ann Arbor, MI, USA in
2015 and the M.S. in ECE from the University of
California at San Diego, La Jolla, in 2017. He is
currently pursuing the Ph.D. degree at the University
of California at San Diego, La Jolla. His interests in-
clude detailed placement, routing methodology and
optimization.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 21,2021 at 20:46:15 UTC from IEEE Xplore. Restrictions apply.

