
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

Enhanced Optimal Multi-Row Detailed Placement
for Neighbor Diffusion Effect Mitigation in

Sub-10nm VLSI
Changho Han, Member, IEEE, Andrew B. Kahng, Fellow, IEEE,

Lutong Wang, Student Member, IEEE, and Bangqi Xu, Student Member, IEEE

Abstract—Layout-dependent effect (LDE) causes variation in
device performance as well as mismatch in model-hardware
correlation (MHC) in sub-10nm nodes. In order to effectively
explore the power-performance envelope for IC design, cell
libraries must provide cells with different diffusion heights,
leading to neighbor diffusion effect (NDE) due to inter-cell
diffusion height change (diffusion steps). Special filler cells can
protect against steps to functional cells, but with non-trivial
area overhead. In this work, we develop dynamic programming-
based single-row and multi-row detailed placement optimizations
that optimally1 reduce inter-cell diffusion steps to mitigate the
impacts of NDE. Compared to previous works, our algorithms
are capable of exploring richer solution spaces as they support
cell flipping, relocating and reordering across cell rows; we also
consider cell displacement, flipping and wirelength costs. Notably,
to our knowledge, our multi-row dynamic programming-based
optimization algorithm is the first to optimally handle inter-
row cell relocating and reordering. We also explore various
metaheuristic configurations to further improve the solution
quality. Last, we develop a timing-aware approach, which is
capable of creating intentional steps that can potentially improve
the drive strength of critical cells.

Index Terms—detailed placement, multi-row detailed place-
ment, dynamic programming, neighbor diffusion effect, timing-
aware.

I. INTRODUCTION

In advanced technology nodes, device behavior no longer
depends on independent geometrical parameters [6]. Due to
aggressive device scaling, lithography limitations and process
complexity, layout-dependent effect (LDE) arises from the
proximity of devices, and significantly affects device perfor-
mance. An important type of LDE is neighbor diffusion effect
(NDE) [1], where the horizontal spacing between diffusion
regions changes the performance of transistors. Figure 1(a) il-
lustrates different diffusion spacing caused by diffusion height
changes between four transistors. If the heights of neighboring

C. Han is with Samsung Electronics Co., Ltd., Hwaseong-si, Gyeonggi-do,
South Korea (email: changho1.han@samsung.com).

A. B. Kahng is with the Departments of Computer Science and Engineering,
and of Electrical and Computer Engineering, University of California at San
Diego, La Jolla, CA, 92093 USA (email: abk@ucsd.edu).

L. Wang and B. Xu are with the Department of Electrical and Computer
Engineering, University of California at San Diego, La Jolla, CA, 92093 USA
(e-mail: {luw002, bangqixu}@ucsd.edu).

Copyright c© 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

1The optimality is in terms of maximum diffusion step reduction, for given
displacement range, reordering range and cell variants. Additionally, the above
range definitions, including the definition of the ordering of cells, depend on
assumptions described in Section IV and Section V.

diffusion regions are different, there is a diffusion step, e.g.,
transistor T2 has a diffusion step to each of T1 and T3.

More specifically, the drive strength (i.e., Ion) and the
leakage power (i.e., Ioff) of a transistor fin is a function of
the horizontal spacing to the adjacent diffusion regions of the
transistor fin. Since NDE changes the electrical characteristics
of transistors, it affects the power, performance and area of
designs [1]. For example, Figure 1(a) shows the transistor fins
A and B with the spacings to their neighboring diffusion area,
i.e., dA and dB , respectively. As dA and dB are different,
Ion and Ioff of the two transistor fins are different (e.g.,
Ioff (A) = f(dA) 6= Ioff (B) = f(dB)) due to the change
in Vt [1]. For example, given a single inverter with a diffusion
step next to the PFET and a diffusion step next to the NFET,
the impacts to the two devices in combination result in higher
leakage.

In this work, we use a bimodal assumption to simplify the
NDE problem: for a given transistor, either of two leakage
values holds, depending on whether the diffusion region on
the nearest neighboring site of the transistor has full height
(that is, same or larger height), or less height, compared to
the transistor’s diffusion height. The leakage difference for
the above two cases is linear with #steps, e.g., a diffusion
height difference of two steps results in 2× leakage difference
compared to that of one step. In a conventional place-and-route
flow, intra-cell NDE (i.e., NDE effect within a standard cell) is
captured by library characterization since the diffusion shapes
within a cell are pre-determined. However, it is difficult to
capture inter-cell NDE since neighboring diffusion shapes are
determined by detailed placement. Thus, in general, library
characterization always assumes existence of a full-height
neighboring diffusion region on standard cell boundaries,
which causes miscorrelation between the model (i.e., library)
and the hardware (i.e., actual diffusion shapes at standard
cell boundaries and their device leakage impacts) in a design.
Minimizing diffusion steps in detailed placement is a key idea
toward reduction of model-hardware miscorrelation.

With aggressive device scaling, the diffusion step not only
causes NDE, but also induces a increase in the process
complexity due to the limited resolution of conventional
193i lithography. In advanced nodes, the diffusion shapes of
transistors are merged and patterned as a single polygon;
the transistors are then separated by using diffusion breaks
(which are achieved by applying diffusion cuts) [24], as shown
in Figure 1(a). Figure 1(b) illustrates the desired pattern of

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

Fig. 1. (a) Diffusion step and fin spacing, (b) desired pattern, (c) actual
diffusion region showing corner rounding, and (d) diffusion breaks (after
diffusion cuts applied).

a single polygon to generate the diffusion regions of four
transistors. The actual pattern of the polygon (showing corner
rounding in lithography) is shown in Figure 1(c). Figure 1(d)
illustrates the final printed diffusion layout with diffusion cuts.
At the boundaries of diffusion where diffusion steps exist, fin
shapes and diffusion shapes are distorted due to the corner
rounding phenomena. A distorted and/or sharp-angled end of
a fin may cause an increase in electrical field, resulting in gate
oxide breakdown [20]. Further, such distorted diffusion shapes
change the diffusion height and fin length, which can cause
dramatic shifts in threshold voltage (Vt), or even device failure
in sub-10nm nodes.2 This Vt shift has negative impact on
design performance and quality. For example, Vt variation can
cause setup time and/or hold time violations in a design. As a
result, the maximum frequency that the design can achieve is
reduced, or the design can even fail with hold time violations
due to ultra-low Vt which cannot be recovered.

For a motivating study, we define a (inter-cell NDE-induced)
cell failure to occur if the boundary transistor has a >100mV
Vt shift compared to the average Vt for all transistors.
According to [28], the failure rate of a transistor with a
diffusion step is twice as high as a transistor without a
diffusion step (base failure rate). The solid lines in Figure 2
show the yield vs. (initial) number of diffusion steps (∼
#cells) with different base failure rates. We assume #steps is
approximately proportional to #cells, which holds for testcases
in Section VI. The dashed lines in Figure 2 show the projected
yield for the same chip if we can reduce 90% of diffusion
steps. In our preliminary study, more than 60% of standard
cells (cell-boundary transistors) have inter-cell diffusion steps.
For a relatively small design block VGA (85% utilization
in an N7 (7nm design enablement), 69K cells and 50K
diffusion steps initially), we assume a base failure rate of
1ppm and can achieve 3.6% yield improvement by removing
90% of diffusion steps. For a commercial design with multiple
hundreds of millions of cells and diffusion steps, if we assume
a more realistic 1ppb base failure rate, then we can achieve
∼3% yield improvement by removing 90% of diffusion steps.3

In light of this, minimizing diffusion steps helps to recover the

2According to our collaborator [28], there can be >150mV Vt shift in the
10LPE node.

3Based on guidance from our collaborator [28], after scaling to account for
our small testcase sizes, we assume a base failure rate of 1ppm for each step
in our experiments with small design blocks. See Table IV in Section VI.

Fig. 2. Initial (Init.) and projected (Opt.) yield assuming 90% inter-cell step
reduction for various base failure rate.

yield of designs by reducing Vt (and thus speed) variation of
transistors.
Current limitations and our approach. In order to re-
duce diffusion steps, special non-functional filler cells are
instantiated between functional cells [17] as we elaborate in
Section III-A below. However, opportunities for step-reducing
filler cell insertion are limited given a fixed layout, and this
approach (effectively similar to cell padding) is expensive in
terms of area. Other works [5] [16][21][26] propose graph-
algorithmic or dynamic programming methods to resolve
complex design rules in advanced nodes. However, the solution
spaces considered are typically limited due to the assumption
of (ordered)-single-row placement.4 Recent works [15][23] on
multi-row detailed placement involve heuristic approaches, and
no advanced-node rules are considered. Han [7] propose an
optimal single-row and double-row dynamic programming for
detailed placement optimization, allowing cell reordering with
support of double-height cells.

In this paper, we extend our previous single-row and double-
row detailed placement framework [7] with HPWL-awareness
and with multi-row detailed placement optimization. Our main
contributions are summarized as follows.
• We extend the optimal single-row dynamic programming-

based approach [7] to an HPWL-aware version. The pro-
posed approach minimizes and balances diffusion steps
and HPWL cost. Our proposed algorithm is capable of
all types of cell movements – i.e., cell variants, relocating,
and reordering (i.e., P-reordering with P > 2).

• We propose a new multi-row dynamic programming, with
support of movable, and fully-reorderable, multi-height
cells, including reordering between multi-height cells.
Inter-row cell moving within each optimization window
(in multiple of rows) is intrinsically supported that further
improves solution quality.

• We propose metaheuristics to use both single-row HPWL-
aware optimization and multi-row optimization to achieve
better solution quality.

• We extend our formulation to a potential timing-aware
optimization that leads to 6× increase in intentional
steps around timing-critical cells to improve the timing
performance.

4Lin et al. [16] propose a P-reordering problem. However, only 2-
reordering (i.e., neighbor cell switching) is presented. We describe our
methodology to handle the P-reordering problem in Section III.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

• We improve the solution quality over [7] by achieving
up to 98% inter-cell diffusion step reduction compared to
90% achieved in [7], while consuming similar runtime.

The remainder of this paper is organized as follows.
Section II reviews related works. Section III describes the
problem formulation and dynamic programming-based single-
row detailed placement methodology. Section IV describes
the double-row detailed placement flow. Section V describes
the multi-row detailed placement flow. In Section VI, we
describe our experimental setup and results. Section VII gives
conclusions and directions for ongoing work.

II. PREVIOUS WORK

We classify relevant previous works on detailed placement
into three categories: (i) detailed placement for advanced
nodes, (ii) mixed cell-height placement, and (iii) NDE-aware
detailed placement.
Detailed placement for advanced nodes. To support complex
design rules introduced in advanced nodes, the objectives of
detailed placement have changed from classical objectives
(e.g., wirelength reduction [9][10][11][13][14][19]) in recent
years. The works of [16][21][26] resolve triple-patterning
issues. Yu et al. [26] propose shortest path and dynamic
programming algorithms to solve the ordered single row
(OSR) placement. Tian et al. [21] develop a weighted partial
MAX SAT approach to solve the OSR problem. Lin et al. [16]
propose a local reordered single row refinement (LRSR) and
implement a 2-reordering (i.e., neighboring cell switching)
approach using a unified graph model. Du and Wong [5] apply
a shortest-path algorithm supporting flipping and 2-reordering
to address the drain-drain abutment problem in FinFET-based
cell placement. The works of [3][8] propose mixed integer
linear programming (MILP)-based methods to comply with
drain-drain abutment, minimum implant area and minimum
oxide jog length rules, and to increase vertical M1 connections.
Mixed cell-height placement. Wu et al. [23] propose a pairing
technique to handle double-height cells for detailed placement.
Their method simply groups or inflates cells so that all
cells become double-height cells, after which a conventional
detailed placer can be used. Recently, Lin et al. [15] have
proposed a chain move scheme along with a nested dynamic
programming-based approach to support multiple cell-height
placement. They first perform chain moves to save wirelength
cost. On top of this, dynamic programming is applied to solve
the nested shortest path problem. Other techniques [4] are
developed to support non-integer-ratio (e.g., mixture of 8T and
12T cells) mixed cell-height placement.
NDE-aware placement. Ou et al. [18] perform NDE-aware
analog placement by modifying and integrating a compact
model for NDE into an existing analog placement algorithm.
Oh et al. [17] develop special filler cells to mitigate NDE.

Han et al. [7] (which this work builds on) propose to
resolve the NDE problem in detailed placement stage. Inter-
cell diffusion steps are minimized by trying to match the
diffusion heights of neighboring cells. If two neighboring cells
have different diffusion heights, special filler cells can be
inserted to reduce diffusion steps. [7] proposes single-row and

double-row dynamic programming optimizations that support
cell relocating, reordering and flipping as well as double-height
cells. They support reordering between single-height cells, and
between a single-height cell and a double-height cell, but not
between two double-height cells.

In summary, many works such as [5][16][21][26] propose
graph or dynamic programming models to resolve complex
design rules in advanced nodes. However, their solution
spaces are limited by the assumption of (ordered)-single-
row placement. Two recent works [15][23] on multi-row
detailed placement give heuristic approaches, but no advanced
node rules are considered. Our previous work [7] proposes
dynamic programming-based methods to optimize single-row
and double-row placements, systematically supporting cell
reordering and double-height cells. However, the dynamic
programming formulation cannot be extended to support more
than two rows, and the formulation cannot support reordering
between two double-height cells. Notably, our work advances
over [7], and is distinguished from previous approaches, in
several ways. (i) We formulate an optimal (HPWL-aware)
single-row and multi-row dynamic programming-based ap-
proach to minimize a cost function that includes diffusion
steps. (ii) We support a richer set of cell movements than in
previous works – i.e., flipping, relocating and reordering – via
a systematic methodology to handle P-reordering with P > 2.
Specifically, our multi-row approach intrinsically supports
inter-row cell relocation. (iii) Our formulation supports multi-
height cells with movable, and fully-reorderable, multi-height
cells.

III. SINGLE-ROW OPTIMIZATION

In this section, we describe the problem statement and
our dynamic programming formulation for single-row detailed
placement.

Single-Row Optimization Problem. Given an initial legalized
single-row placement, perturb the placement to minimize inter-
cell diffusion steps.

Inputs: A legalized single-row placement, available cell vari-
ants, and cost function of a diffusion step.
Output: Optimized single-row detailed placement with mini-
mized overall cost (including inter-cell diffusion steps).
Constraints: Maximum displacement range, maximum re-
ordering range, availability of cell flipping.

A. Filler Cell and Step Costs

TABLE I
COST FOR ONE DIFFUSION step.

Spacing (sites) 0 1 2 3 4+
Cost 1 +∞ 1 1 0

Table I describes inter-cell diffusion step cost. For each pair
of adjacent cells, if there are zero, two or three empty sites in
between, the cost is equal to the number of inter-cell diffusion
steps; if there are at least four empty sites in between, the
cost is always zero. That is, with four or more empty sites we
can always assume proper filler cell insertions resulting in no
inter-cell diffusion steps. Figure 3 shows an example of filler

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

cell insertion between two functional cells that have different
diffusion heights at edges that face each other. If the two
functional cells have fewer than four empty sites in between,
filler cells can only match one of the diffusion heights. As
a result, there always exists at least one diffusion step that
affects one of the two functional cells. However, with a spacing
of four or more sites, a legal diffusion height transition can
always be achieved by one or more contiguous filler cell(s).
Thus, the filler cell(s) can match both the diffusion heights of
the two functional cells. In a relevant advanced technology,
the minimum filler cell width is two placement sites due to
process limitations. Therefore, adjacent functional cells must
abut, or have at least two empty sites between them, in order
to insert a filler cell [28]. In our implementation, we avoid
single-site spacings by assigning infinite cost to such scenarios,
as indicated in Table I. Even though our optimization does
not explicitly allocate white space, the dynamic programming
(presented later in Sections III, IV and V) itself can utilize
/ change the local white space distribution by cell relocating
and cell reordering within specified ranges. Filler cell cost is
explicitly included in our dynamic programming cost calcula-
tion, such that our optimization is aware of both whitespace
and filler insertion as it trades off between (i) abutting two
cells without filler insertion at the cost of diffusion steps, and
(ii) leaving four placement sites for a proper filler insertion in
an effort to minimize the diffusion steps between neighboring
cells.

Fig. 3. Filler insertion between cell A and B, given different spacings.

B. Notations

Table II shows notations used in our formulation. For each
cell ck, cell index k is its (left-to-right) sequentially ordered
position in the initial placement. Given a set of cells (C) in
a row of an initial placement, the leftmost cell is c1, and the
rightmost cell is c|C|.

For each ck, we define cell variants (v) which correspond
to different cell orientations and cell layouts with the same
functionality. To minimize #diffusion steps, we can use several

TABLE II
NOTATIONS.

Notation Meaning
C set of cells in a window of initial placement
ck kth cell in the left-to-right ordered initial

placement i.e., k is the cell index
v a cell variant

wk,v width of ck with a variant v
[−x∆, x∆] horizontal displacement range

xk absolute x-coordinate of ck in the initial
placement, in units of placement sites

l displacement from the initial placement,
in units of placement sites

[−r, r] reordering range
i number of placed cells
j position shift from the initial placement
s placement status array

d[i][j][v][l][s] minimum cost when i cells are placed
with case (j,v,l,s)

The notations below apply only to multi-row optimization
[−y∆, y∆] vertical displacement range

yk absolute y-coordinate of ck in the initial
placement, in units of rows

m number of rows in an optimization window
b row index in an optimization window
db for the bth row, db is the distance between the

rightmost boundary of bth row, and the
rightmost boundary of all rows in the
optimization window

D distance array of db in an optimization window
(i.e. [d0...dm−1])

tb for bth row, type of the rightmost cell
(e.g., 2-fin, 3-fin or 4-fin)

T type array of tb in an optimization window
(i.e., [t0...tm−1])

{D,T} boundary condition
[D][T] forming boundary condition {D,T}

d[i][j][v][l][s] minimum cost when i cells are placed,
[D][T] forming boundary condition {D,T}

variants of a cell with the same functionality, for which layouts
have different diffusion heights. In our experiments below, v =
0 indicates the cell orientation in the initial placement, and
v = 1 indicates the flipped (i.e., mirrored about the y-axis)
cell orientation. wk,v is the width of cell ck with variant v, in
units of placement sites. Flipping a cell does not change the
set of sites that the cell occupies.

We define the displacement range [−x∆, x∆] as the con-
straint that a cell cannot move more than x∆ sites from
its initial placement. We use xk to denote the initial right
x-coordinate of ck, in units of placement sites. Thus, ck
can be placed with its right x-coordinate in the interval
[xk − x∆, xk + x∆]. We use l to denote the displacement
(in sites) from the initial cell placement (i.e., l ∈ [−x∆, x∆]).
For the cells on the boundary of the die, we make sure that the
displacement range will not extend beyond the die boundary.

We support cell reordering with a reordering range
[−r, r], i.e., given r, in the placement solution ck can
have a new sequentially ordered position within the range
k − r, k − r + 1, . . . , k + r.

In our dynamic programming, we place one cell at a time
from left to right, and the index i is used to indicate that i
cells have been placed. Given a cell reordering range [−r, r],
cells ck with k < i − r are placed, i − r ≤ k ≤ i + r may
or may not be placed, and k > i + r are not placed. For the
2r + 1 cells such that i − r ≤ k ≤ i + r, we use a binary
array s to denote the placement status of each cell. Here, s
is a binary array of size (2r + 1), i.e., s ∈ {0, 1}2r+1. Each
bit in the array indicates whether the corresponding cell is

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

Fig. 4. Illustration of six placement solutions with three legal states given
i = 4 and r = 1.

placed or not. For example, if we have six cells c1 to c6,
i = 4 and r = 1, then s captures the placement status of the
(2 ·1+1 = 3) cells c3, c4 and c5. s = [0, 1, 1] means that c3 is
not placed, while c4 and c5 are placed. Figure 4 illustrates six
placement solutions with three legal states when i = 4. In this
example, c1 and c2 must be placed and c6 must not be placed.
We note that the indices of s correspond to k (position in the
initial placement), but not the final position. For example, s[0]
always represents the status for c3, and s[2] always represents
the status for c5, regardless of the actual sequence of positions,
as shown in Figure 4(b). Also, when we have placed i cells,
since cells with index k < i − r must be placed, we must
have placed i− (i− r− 1) = r + 1 cells that have cell index
i − r ≤ k ≤ i + r. Thus, at all times, a legal status array s
has exactly r + 1 elements equal to 1. In the above example,
s always has 1 + 1 = 2 elements equal to 1.

Given i, to identify the last placed cell ck (that is, the ith

cell to have been placed), we define the position shift as j,
where k = i + j. For example, in Figure 4(c), given i = 4,
the position shift j = −1 tells that the last placed cell is c3,
since 3 = 4 + (−1).

At the heart of our dynamic programming recurrence, we
use d[i][j][v][l][D][T][s] to represent the minimum cost when
i cells have been placed. Note that in single-row case, the
dimensions of D and T are both zero. Therefore, the dynamic
programming array can be reduced to d[i][j][v][l][s]. From this
array, we can obtain the last placed cell ck, where k = i+ j.
We can also tell the variant v in use, the displacement l, and
the status s for cell ck. We define the above as case (j, v, l, s),
with i implicitly given, for simplicity. Therefore, we complete
the row placement once we reach i = |C|, and we obtain the
optimal solution by finding the minimum cost among all cases
of i = |C|. In our implementation, we store a pointer for each
entry in the DP array so that the optimized placement can be
traced back from d[|C|][j][v][l][s] all the way to d[0][j][v][l][s].

C. Dynamic Programming Formulation

Algorithm 1 describes our dynamic programming (DP)
procedure for single-row placement in detail. Line 2 initializes
the DP solution array. Lines 3–13 describe the main algorithm.
Starting with placing the first cell, the algorithm incrementally
adds (places) cells next to the current partial placement solu-
tion. Procedure getNext() returns a list of legal next cells and
the respective status of each of these cells. Along with legal
(j′, s′) from Line 5, Line 6 checks all possible cases (v′, l′)

considering placement legality and displacement constraints,
as shown in Equation (1). Lines 7–9 update the minimum cost
for the case (j′, v′, l′, s′) when we place the i′ = (i+1)st cell.
In Lines 14–17, we obtain the minimum cost among all legal
cases when i = |C|, and Line 18 returns the minimum cost
for the current row.

xi+j + l + wi+j,v ≤ xi′+j′ + l′ (1)

The function cost(i
′,j′,v′,l′

i,j,v,l) calculates the cost as a weighted
sum of (i) diffusion step cost, (ii) displacement cost, and (iii)
cell variant cost, as shown in Equation (2). The diffusion step
cost is calculated as total #inter-cell diffusion steps between
the ith and (i′)th placed cells. The displacement cost is equal
to the absolute value of l′. In this work, we assume that
the given initial placement solution has adequate quality in
terms of various metrics, including but not limited to pin
accessibility, global routability, etc. Thus, we simplify other
optimization objectives as one “displacement minimization”
objective. As noted above, in this work we assume two cell
variants: original orientation and flipped orientation. We set
the variant cost to one if a cell is flipped (v′ = 1), and
zero otherwise. Two weighting factors α and β (β can be
seen as supplementing α by capturing an equivalence between
cell flipping and displacement) are used to balance the three
cost terms. We describe experiments regarding the impact of
weighting factors in Section VI.

cost(i
′,j′,v′,l′

i,j,v,l) = coststep + α · costdisp + α · β · costvar
(2)

Algorithm 2 details our methodology to obtain next status.
That is, given the binary status array for i, we construct the
status array for i′ = i + 1. Line 2 initializes the list of next
available (cellIndex, status) combinations. In Line 3, we first
shift the status array for i one bit to the left to obtain the cell
placement status for i′ = i+1. Then, Lines 4–9 check whether
cell ci′−r must be placed as the (i′)th cell. If we do not place
ci′−r as the (i′)th cell, then cell ci′−r will be placed out of its
reordering range. Thus, we set s[−r] = 1 and return so that
we make sure to choose ci′−r as the (i′)th cell. Lines 10–16
check whether any binary indicator s[m] is equal to zero. If
so, ci′+m could be the next legally placed cell. In such a case,
we add (m,nextStatus) to the list.
D. HPWL-Aware Optimization

We mitigate the wirelength impact of single-row step opti-
mization by modifying the cost function. Specifically, we add
a ∆HPWL cost component to the function cost(i

′,j′,v′,l′

i ,j ,v ,l), as
shown in Equation (3).

cost(i
′,j′,v′,l′

i,j,v,l) = coststep + α · costdisp+

α · β · costvar + γ · cost∆HPWL

(3)

We calculate the cost∆HPWL by summing up the ∆HPWL
contribution of cell ck over all nets incident to ck, in the same
way as in [13]. cost∆HPWL captures the impact of a cell’s
placement on bounding box sizes of incident nets. We use
a new weighting factor γ to balance the four cost terms. We
describe experiments regarding the impact of weighting factors
in Section VI.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

Algorithm 1 Dynamic programming (single-row)
1: Initialize for all legal cases (j, v, l, s)
2: d[0][j][v][l][s]← 0, d[i][j][v][l][s]← +∞, (0 < i ≤ |C|)
3: for all i = 0 to |C| − 1 do
4: for all d[i][j][v][l][s] 6= +∞ do
5: for all (j′, s′) ∈ getNext(s) do
6: for all (v′, l′) do
7: i′ = i + 1

8: t← d[i][j][v][l][s] + cost(i
′,j′,v′,l′

i ,j ,v ,l)

9: d[i′][j′][v′][l′][s′]← min (d[i′][j′][v′][l′][s′], t)
10: end for
11: end for
12: end for
13: end for
14: finalCost←∞
15: for all (j, v, l, s), i = |C| do
16: finalCost← min (d[|C|][j][v][l][s], finalCost)
17: end for
18: Return finalCost

Algorithm 2 Procedure getNext (single-row)
1: Inputs: s
2: Initialize nextList← ∅
3: s← shiftLeft1Bit(s)
4: if s[−r] = 0 then
5: s[−r]← 1
6: nextStatus← s
7: nextList← nextList ∪ {(−r, nextStatus)}
8: Return nextList
9: end if

10: for all m ∈ [−r, r] do
11: if s[m] = 0 then
12: nextStatus← s
13: nextStatus[m]← 1
14: nextList← nextList ∪ {(m,nextStatus)}
15: end if
16: end for
17: Return nextList

IV. DOUBLE-ROW OPTIMIZATION

In this section, we briefly revisit the double-row detailed
placement optimization presented in [7]. We give the problem
statement addressed in [7], and explain limitations in double-
row optimization compared to the multi-row optimization that
we describe below in Section V.
Double-Row Optimization Problem. Given an initial legal-
ized double-row placement with double-height cells, perturb
the placement within each row to minimize inter-cell diffusion
steps.
Inputs: Legalized double-row placement, available cell vari-
ants, and cost function of a diffusion step.
Output: Optimized double-row detailed placement with min-
imized overall cost (including inter-cell diffusion steps).
Constraints: Maximum displacement range, maximum re-
ordering range, availability of cell flipping.

We note the following two limitations with regard to this
problem statement.
Limitation 1. Single-height cells cannot move across rows.

In double-row optimization, the double-height cell effec-
tively breaks the two rows into separate optimization regions,
wherein we invoke single-row optimization separately for each
of the two rows. Thus, in the double-row optimization of [7],
single-height cells cannot be relocated to the other row.
Limitation 2. The relative positions among double-height cells
are fixed.

For two double-height cells A and B, if A is initially
to the left of B (xA < xB), then we require that in our

final placement, cA remains to the left of cB . We note that
we still allow reordering between a single-height cell and a
double-height cell (thus, the double-height cells are partially
reorderable) so as to maximize the steps reduction.

Fig. 5. Illustrations of double-height cells in placement rows. (a) Separable
pairs of cell rows, reflecting power rail design of double-height cells in current
N10 libraries. (b) Non-separable pairs of cell rows.

In the next section, we describe a more generic multi-row
optimization without the above limitations. Due to the above
limitations compared to the multi-row optimization described
in Section V, as well as the page limit, we omit further details.
The complete double-row formulation can be found in [7].

V. MULTI-ROW OPTIMIZATION

In this section, we generalize from the single-row dy-
namic programming, and describe our approach for multi-row
detailed placement, with support of fully-reorderable multi-
height cells and inter-row cell relocating.
Multi-Row Optimization Problem. Given an initial legal-
ized multi-row placement, perturb the placement across the
multiple rows to minimize inter-cell diffusion steps.
Inputs: Legalized multi-row placement, available cell variants,
and yield cost function.
Output: Optimized multi-row detailed placement with mini-
mized overall cost (including inter-cell diffusion steps)
Constraints: Maximum horizontal displacement range, maxi-
mum vertical displacement range, maximum reordering range
and availability of cell flipping.

A. Preliminaries

Similar to double-row optimization, we optimize m con-
secutive rows together (as a single optimization window)
in multi-row optimization. In an optimization window, we
move the cells according to our algorithm assuming that cells
outside the window are fixed. Different windows are optimized
separately. However, compared to the double-row optimization
in Section IV, we do not require the relative positions among
double-height cells to be fixed. Instead, a double-height cell
can be reordered with another double-height cell as long as
they are within the reordering range. Moreover, in contrast
to Section IV’s double-row optimization, where a cell cannot
move outside its original cell row, here we allow a cell to move
freely within a given vertical displacement range (in units of
placement rows), enabling larger solution space to minimize
diffusion steps.

In single-row and double-row optimization, where only
intra-row relocating and reordering are allowed, the initial cell

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

ordering (ck in Table II) is defined within each row from
the initial (input) placement. To enable a unified multi-row
reordering range, with support of inter-row relocating and
reordering, we redefine the original cell ordering as follows:

Definition. Given an m-row initial (input) placement, cells
in all m rows are left-to-right ordered according to their
rightmost boundary, in a unified one-dimensional array, e.g.,
c1, c2, ..., ck. If cells in the initial placement have the same
x-coordinate for their right boundary, we break ties using y-
coordinate of their lower boundary.

Figure 6 shows an example of sequential cell ordering
for a two-row initial placement. We note that cells c4 and
c5 could have their positions exchanged in the ordering,
regardless of their left boundary. However, as mentioned, in
our implementation tie-breaking is by descending order of y-
coordinate.

Fig. 6. An example of multi-row cell ordering. Cells are sequentially ordered
(c1 to c6) according to the x-coordinate of their right boundary. Cells c4 and
c5 have the same right boundary x-coordinate, and thus could be switched in
the ordering.

With the above redefined cell ordering, reordering range
works the same way as in Section III. The new sequentially
ordered position is determined by the new x-coordinate (in
the final solution) of the right boundary of each cell. The
difference between the original and the new sequentially
ordered position should be always within the reordering range.
In the multi-row optimization, given the above redefined cell
ordering, our dynamic programming still seeks to place one
cell at a time, from left to right. The left-to-right placement
procedure then induces the following assumption:

Assumption. The x-coordinate of the right boundary of the
(i + 1)st cell must be greater than or equal to the right
boundary of the partial placement consisting of i cells (i.e.,
placement boundary).

Given the definition, the assumption does not reduce the
solution space. For example, in Figure 7, assuming a partial
placement of c2 and c1, if the 3rd cell to be placed is c3,
and we would like its right boundary to be to the left of
the placement boundary, then we can always get to such a
partial placement solution from a partial placement of c2 and
c3, followed by placement of c1.

Fig. 7. Illustration of the Assumption.

B. Formulation

Given the above assumption, our approach will find an
optimal placement solution for a given optimization window
of m rows containing multi-height cells. We illustrate the
multi-row dynamic programming-based detailed placement in
Figure 8(a). We use type array T = {t0, ..., tm−1} to describe
the type, i.e., 2-fin, 3-fin or 4-fin configuration, of the rightmost
cell in each row. Initially, each entry of T is an initial virtual
cell, indicating that the placement boundary for all rows is the
left boundary of the die, and that there will be no diffusion step
penalty applied to any type of cell immediately to the right of
this boundary. We also use distance array D = {d0, ..., dm−1}
to describe the shape of the placeable region as shown in
Figure 8(b). The subproblems solved in the DP are of form:
place |C| − i cells in the placeable region defined by a partial
placement with i cells.

Fig. 8. Illustration of DP in multi-row placement with m = 4.

We give a precise description of our multi-row dynamic
programming in Algorithm 3. Note that the numbers of entries
of distance array D and cell type array T are both m − 1
because the distance from the last placed cell to the placement
boundary is always zero, and the cell type of the last placed
cell can be retrieved by cell variant v. Lines 1-3 initialize the
DP solution array. Lines 4-15 describe the main algorithm.
Compared to single-row dynamic programming, we have one
more iteration over all placement rows in an optimization
window, subject to the maximum vertical displacement range
constraint. Effectively, the multi-row DP array is different from
single-row DP array in that it is capable of storing multiple
intermediate placement solutions given the same cell ordering
and horizontal displacement, as long as these solutions have
different type (T) or distance (D) arrays. Also, Line 11 updates
distance array D and cell type array T according to the choice
of placement row b′. Lines 16-19 obtain the optimal solution
among all legal cases when i = |C|, and Line 20 returns the
optimal solution for the current optimization window.

Multi-row optimization is not capable of being aware of
HPWL change in y direction and across different optimization
windows. Therefore, to prevent HPWL degradation, we add
additional displacement costs if a cell is moved out of the orig-
inal HPWL bounding box, with penalty coefficient γpenalty,
as shown in Equation (4).5 The term costhpwl is calculated as
the distance between the current cell and the original HPWL
bounding box, in units of placement sites.

cost = coststep + α · costdisp + γpenalty · costhpwl

+ α · β · costvar
(4)

5We pre-calculate all net bounding boxes (one-time effort) and only apply
the HPWL penalty if a cell is placed outside of its nets’ bounding boxes.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

Algorithm 3 Dynamic programming (multi-row)
1: Initialize costs for all legal cases (j, v, l, b,D, T, s)
2: d[0][j][v][l][b][D][T][s]← 0,
3: d[i][j][v][l][b][D][T][s]← +∞, (0 < i ≤ |C|)
4: for all i = 0 to |C| − 1 do
5: for all d[i][j][v][l][b][D][T][s] 6=∞ do
6: for all (j′, s′) ∈ getNext(s) do
7: for all (v′, l′, b′) do
8: i′ = i + 1

9: t← d[i][j][v][l][b][D][T][s] + cost(j
′,v′,l′,b′

i,j,v,l,b,D,T)

10: d[i′][j′][v′][l′][b′][D′][T ′][s′]←
min (d[i′][j′][v′][l′][b′][D′][T ′][s′], t)

11: Update(D,T)
12: end for
13: end for
14: end for
15: end for
16: finalCost←∞
17: for all (j, v, l, b,D, T, s) when i = |C| do
18: finalCost← min (d[|C|][j][v][l][b][D][T][s], finalCost)
19: end for
20: Return finalCost

VI. EXPERIMENTS

We implement our dynamic programming in C++ with
OpenAccess 2.2.43 [31] to support LEF/DEF [30], and with
OpenMP [33] to enable thread-level parallelism. We perform
experiments in an N7 FinFET technology with multi-height
triple-Vt libraries from a leading technology consortium. The
fin height information is not disclosed in our enablement.
Therefore, following guidance from [28], we randomly assign
fin heights (2, 3, or 4 fins) to each cell with 1:3:6 ratio for 2,
3 and 4 fins, respectively, as our default fin height assignment
methodology to match industrial designs at advanced nodes.
For example, a double-height cell will have four random fin
heights, i.e., for its left and right boundaries on the first
row, and its left and right boundaries on the second row.
Section VI-C further discusses the impact of alternative fin
height assignment methods.

We generate the bimodal leakage values from the NDE-
oblivious standard-cell Liberty file as follows [28]. Since NDE
only affects the boundary transistors for each cell, given a
leakage value of each standard cell from the Liberty file, we
first approximate the boundary transistor leakage value by
dividing the state-independent cell leakage by the cell width
(in units of contacted-poly pitch), e.g., if a cell (width = 3) has
a leakage value of three, then the boundary transistors have a
leakage value of one. Then, for each diffusion step, 52% of
boundary transistor leakage value is added to the cell leakage.
In the above example, the cell has a new leakage value of 3.52
(resp. 4.04) when there exists one step (resp. two steps).

We apply our detailed placement optimization to Arm
Cortex-M0 and four design blocks (AES, JPEG, VGA and
MPEG) from OpenCores [32]. Design information is sum-
marized in Table III. We synthesize designs using Synopsys
Design Compiler L-2016.03-SP4 [34], and perform place-
and-route using Cadence Innovus Implementation System
v15.2 [29]. We also apply our detailed placement optimiza-
tion to winning solutions from the ICCAD-2017 multi-deck
standard cell legalization contest [2]. All experiments are
performed with 8 threads on a 2.6GHz Intel Xeon server.

In the following, we show (i) the scalability and sensitivity,
i.e., impact of cell displacement range x∆, reordering range r,

TABLE III
DESIGN INFORMATION.

design #inst clkp
AES ∼12K 500ps
M0 ∼10K 500ps

JPEG ∼54K 500ps
VGA ∼69K 500ps

MPEG ∼14K 500ps

enabling of cell flipping f , and #rows per window m for the
multi-row implementation on runtime and quality of results
(QoR in terms of step reduction); (ii) impact of the weighting
factors, i.e., weighting factor α for cell displacement, weight-
ing factor β for cell flipping, and weighting factor γ for HPWL
on QoR; (iii) metaheuristics by combining single-row HPWL-
aware and multi-row optimization; (iv) our main results with
single-row, double-row and multi-row optimization for five
design blocks and three fin height assignment methodologies;
(v) performance improvement using intentional steps; and
(vi) our results with multi-row optimization for ICCAD-2017
benchmark [2].

A. Scalability/Sensitivity Study

In this subsection, we compare the impact of reordering
range and displacement range on the single-row (SR), double-
row (DR) and multi-row (MR) optimization. By default, we
use m = 2 in MR optimization (see Figure 10 and discussion
below). Following results of [7], cell flipping is enabled by
default for maximum step reduction.

Fig. 9. Sensitivity of runtime to (x∆, r, f) parameters.

To assess the scalability of our approach, we sweep (x∆, r),
i.e., maximum allowed cell displacement x∆ (in placement
sites) and maximum allowed one-sided reordering r, and study
the impact on runtime. In this experiment, we sweep x∆ from
0 to 15, and r from 0 to 2. A cell can freely move across 31
placement sites, and can have up to 5 different positions in
a placement window, if we set x∆ = 15 and r = 2. We set
(α, β) = (0, 0) as these parameters do not have any impact on
the complexity of our formulation. We use design block AES
for this study.6

Our study results are shown in Figure 9. We find that
the runtime generally grows quadratically with the number
of available placement sites per each cell. However, for cell

6To investigate the stability of our sensitivity studies and observations, we
also use (i) an alternative AES design implementation with slightly different
layout, and (ii) design block CORTEXM0DS. Results for (i) and (ii) are
consistent with the results that we report here.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

Fig. 10. Sensitivity of #steps to m in MR optimization.

Fig. 11. Sensitivity of #steps to (x∆, r, f) parameters.

reordering, there is a dramatic increase in runtime as r goes
up, e.g., we observe 12× runtime increase going from r = 1
to r = 2.

Also, compared to DR [7], our new MR implementation
with m = 2 rows per window is much more efficient in terms
of runtime. To investigate the impact of m (#rows in a window)
in MR, we compare the sensitivity of #steps in Figure 10 for
m = 2 and m = 3. Runs with m = 4 are not feasible due
to much larger memory consumption. We find that m = 2
actually gives better #steps than m = 3 using our N7 library,
because all multi-height cells have VSS power rails for their
cell boundaries, such that all multi-height cells are aligned per
two cell rows. Given the above observation, we use m = 2
for MR in all of the following experiments.

To assess the sensitivity to (x∆, r), Figures 11, 12 and 13
show #diffusion steps, HPWL and RWL respectively, as we
sweep (x∆, r). Since our algorithm only optimizes #diffusion
steps when (α, β) = (0, 0), here we see HPWL and RWL that
correspond to a best-case (minimized) #steps normalized to
initial design.

We see from Figure 11 that SR can only reduce #steps by up
to 80%, while DR and MR are able to reduce #steps by up to
99% given larger displacement range. Also, MR is consistently
better than DR, especially given a smaller displacement range.
Along with the runtime benefit of MR, we believe that the new
MR implementation surpasses both the solution quality and the
runtime efficiency of DR [7].

Moreover, for f = 1, there is only ∼0.6% benefit of using
r = 2 over r = 1, at the cost of 12× the runtime; this suggests
that r ≥ 2 may not offer significant benefit in reducing #steps.
In Figure 12 and Figure 13, HPWL and RWL increase linearly

Fig. 12. Sensitivity of HPWL to (x∆, r, f) parameters.

Fig. 13. Sensitivity of RWL to (x∆, r, f) parameters.

as x∆ goes up. Based on these studies, to balance solution
quality and runtime we apply (x∆, r) = (7, 1) in all of the
following experiments.

B. Study of Weighting Factors

In the following subsection, our default flow is MR opti-
mization, with two rows per window. We investigate impacts
of the weighting factors (α, γpenalty) for cell displacement and
HPWL penalty (γpenalty) on HPWL and #steps. We sweep α
and γpenalty from 0 to 1. We perform this experiment using
design block AES. The results are shown in Figure 14. We can
see that a non-zero displacement weight (α) and a non-zero
HPWL penalty (γpenalty) save HPWL while preserving most
of the step reduction benefits. Therefore, we apply α = 0.01
and γpenalty = 0.00001 in all following experiments.

For the single-row optimization, we also study the impact of
the HPWL weighting factor γ on HPWL and #steps. We sweep
γ from 0.00001 to 1 with a step size of 10×. We perform this
experiment using design block AES, with results shown in
Figure 15. The tradeoff between HPWL and #step is clear
when γ is in the range of [0.00001, 0.01]. We use γ = 0.0001
for the HPWL-aware single-row optimization.
C. Main Results

We apply our multi-row dynamic programming-based op-
timization to all our design blocks using the aforementioned
parameter settings, i.e., (x∆, r, f) = (7, 1, 1) and (α, β) =
(0.01, 1). Table IV shows the step reduction, runtime and
estimated yield improvement for all five design blocks using
multi-row optimization. We also report the impact on other
metrics, i.e., routed wirelength (RWL), worst negative slack
(WNS) and leakage power as reported by the place-and-route
tool [29].

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

Fig. 14. Impacts of weighting factors (α, γpenalty) on the tradeoff between
HPWL and #steps.

Fig. 15. Impact of weighting factor γ on the tradeoff between HPWL and
#steps.

We also investigate the impact of fin height assignment
methodologies. We apply three methodologies – (i) rand
randomly assigns fin heights according to probability ratio
1:3:6 for 2, 3, and 4 fins, respectively (See Section VI above);
(ii) Vt assigns fin heights according to their Vt property, with
HVT (resp. NVT and LVT) cells having probability ratio
1:1:0 (resp. 1:1:1 and 0:1:1) for 2, 3, and 4 fins; (iii) drive
assigns fin height according to their drive strength, with X0
(resp. X1 and others) cells having probability ratio 1:1:0 (resp.
1:1:1 and 0:1:1) for 2, 3, and 4 fins. The three methodologies
generate different fin height distributions, and thus help con-
firm the robustness of our optimization in broader scenarios.
The results are shown in Table IV. For all designs with the
default (rand) random fin height distribution, we achieve up
to 98.1% reduction in #steps at the cost of around 3.5%
RWL increase. The results also show that our optimization
has negligible impact on WNS and that we can slightly

improve the leakage. In addition, we perform a preliminary
yield estimation assuming 2ppm failure rate for each step, and
1ppm failure rate after we remove the step (recall Footnote 3).
Based on this assumption, we can see a yield improvement of
up to 4.56% for a design block of 69K instances. We note
that the yield improvement is expected to grow markedly with
the die size. A larger design of millions of instances may see
more benefits.

For Vt and drive distribution, the results show similar
step reduction percentage, demonstrating the robustness of
our optimization. Figure 16 shows the layouts of placements
before and after MR optimization.

We also investigate the improvement achieved by our multi-
row optimization over single-row, double-row optimization
and previous works. We compare multi-row (MR) optimization
to (i) single-row (SR) optimization (also to match [5][16]),
(ii) ordered double-row (ODR) optimization (to match [15]),
and (iii) double-row (DR) optimization. For (i), we use the
proposed methodology in Section III and fix the locations of
all multi-height cells. We note that our SR implementation
is equivalent to [5][16], supporting neighboring cell swapping
and cell flipping with the adaptation of NDE. In SR, we use the
same displacement range and reordering range as in DR, while
using the default HPWL weighting factor γ = 0.0001 (HPWL
weighting factor is not considered in the work of [7]). For
(ii), we simply run our DR optimization with zero reordering
range to achieve an ODR equivalent to [15]. For (iii), we use
the proposed methodology in Section IV. The comparisons
of #steps, routed wirelength (RWL) and runtime are shown
in Tables V, VI and VII, respectively. For design blocks with
fewer double-height cells, SR performance is competitive with
that of ODR. However, for design blocks with more double-
height cells, ODR is significantly better (up to 21% more step
reduction) than SR due to movable double-height cells. The
results show that DR effectively reduces the diffusion steps by
around half compared to SR, and by around 40% compared
to ODR. On average, DR has 11.6% more step reduction than
ODR, and 17.7% more than SR, with respect to the initial
number of diffusion steps. This suggests the importance of
supporting movable and reorderable double-height cells, as
there will be substantial benefits.

D. Metaheuristics

We have also explored several metaheuristics to assess (i)
the step reduction achievable by invoking multiple optimiza-
tion iterations, as well as (ii) potential improved tradeoffs
between step reduction and degradation from initial placement
(in terms of HPWL). First, we investigate the maximum step
reduction versus the number of iterations. To explore the
maximum benefits of step reduction, we invoke the multi-row
optimization several times. Since the multi-row optimization is
for every two rows, e.g., row 1 and 2 in a window, row 3 and
4 in the next window, we can shift the window by one row and
run again if we can further improve the solution quality. In our
experiments, we alternatively align / unalign the optimization
window with double-height cells, with aligned window in the
first iteration to encourage the movement of double-height
cells. We show the normalized number of diffusion steps and

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

TABLE IV
EXPERIMENTAL RESULTS FOR ALL DESIGN BLOCKS USING MULTI-ROW OPTIMIZATION.

Design Type Fin Height Distribution #steps RWL (µm) WNS (ns) Leakage (mW) Runtime Est. Yield
2 fin% 3 fin% 4 fin% Init Final (∆%) Init Final (∆%) Init Final Init Final (∆%) (sec) Impr. %

AES
rand 10.0 30.4 59.6 7973 152 (-98.1%) 31873 32995 (+3.5%) -0.013 -0.021 16.1 15.8 (-2.1%) 162.1 +0.71
Vt 48.3 47.8 3.9 6816 143 (-97.9%) 31874 32944 (+3.4%) -0.013 -0.020 16.6 15.8 (-4.9%) 81.5 +0.66

drive 47.5 46.6 5.9 7215 236 (-96.7%) 31874 32888 (+3.2%) -0.013 -0.018 16.1 15.8 (-2.0%) 109.9 +0.69

M0
rand 10.1 30.4 59.4 6588 243 (-96.3%) 27670 28728 (+3.8%) -0.043 -0.070 18.9 18.6 (-1.9%) 174.4 +0.22
Vt 49.3 48.6 2.1 5379 152 (-97.2%) 27674 28588 (+3.3%) -0.043 -0.111 19.5 18.6 (-4.5%) 74.1 +0.52

drive 46.3 45.6 8.0 6211 398 (-93.6%) 27669 28718 (+3.8%) -0.043 -0.051 19.1 18.6 (-2.6%) 64.5 +0.58

JPEG
rand 10.0 30.0 60.0 34760 656 (-98.1%) 101000 107699 (+6.6%) -0.319 -0.278 96.3 94.3 (-2.1%) 776.5 +3.50
Vt 48.2 48.6 3.3 29452 387 (-98.7%) 100997 106972 (+5.9%) -0.319 -0.274 98.8 94.4 (-4.4%) 403.2 +2.78

drive 44.0 44.5 11.5 36173 1291 (-96.4%) 101003 108103 (+7.0%) -0.323 -0.290 97.2 94.4 (-2.9%) 398.2 +3.30

VGA
rand 10.0 30.1 60.0 50766 6179 (-87.8%) 208155 217492 (+4.5%) -0.137 -0.080 208.3 205.1 (-1.5%) 713.3 +4.56
Vt 48.8 49.6 1.6 40743 3685 (-91.0%) 208155 216603 (+4.1%) -0.137 -0.069 213.4 205.5 (-3.7%) 536.8 +3.48

drive 42.1 42.8 15.1 57273 10871 (-81.0%) 208155 217664 (+4.6%) -0.137 -0.129 208.2 205.1 (-1.5%) 491.1 +4.24

MPEG
rand 9.9 30.5 59.6 9994 1367 (-86.3%) 38896 40594 (+4.4%) -0.005 -0.018 33.2 33.1 (-0.2%) 137.3 +0.87
Vt 49.6 49.4 1.0 7824 753 (-90.4%) 38882 40383 (+3.9%) -0.011 -0.026 33.2 33.1 (-0.3%) 68.6 +0.70

drive 43.1 43.1 13.8 10931 2145 (-80.4%) 38901 40649 (+4.5%) -0.005 -0.030 33.2 33.1 (-0.3%) 99.5 +0.86

TABLE V
COMPARISON OF DIFFUSION steps WITH SR (TO MATCH [5][16]), ODR (TO MATCH [15]) DR, MR AND METAHEURISTICS (META). DH%:= % OF

DOUBLE-HEIGHT CELLS.

Design DH% Init SR (to match [5][16]) ODR (to match [15]) DR MR Meta
AES 4.3% 7973 1395 (-82.5%) 1869 (-76.6%) 750 (-90.6%) 152 (-98.1%) 131 (-98.4%)
M0 8.4% 6588 1672 (-74.6%) 1742 (-73.6%) 842 (-87.2%) 243 (-96.3%) 179 (-97.3%)

JPEG 8.3% 34760 9731 (-72.0%) 8341 (-76.0%) 4555 (-86.9%) 656 (-98.1%) 473 (-98.6%)
VGA 24.8% 50766 27170 (-46.5%) 16405 (-67.7%) 11816 (-76.7%) 6179 (-87.8%) 5652 (-88.9%)

MPEG 23.0% 9994 5101 (-49.0%) 3444 (-65.5%) 2402 (-76.0%) 1367 (-86.3%) 1215 (-87.8%)
Avg. – -0.00% -64.9% -71.9% -83.5% -93.3% -94.2%

TABLE VI
COMPARISON OF ROUTED WIRELENGTH (RWL) WITH SR, ODR, DR, MR AND METAHEURISTICS (META).

Design Init SR ODR DR MR Meta
AES 31873 32517 (+2.02%) 32637 (+2.40%) 32898 (+3.22%) 32995 (+3.52%) 33065 (+3.74%)
M0 27670 28201 (+1.92%) 28271 (+2.17%) 28470 (+2.89%) 28728 (+3.82%) 28805 (+4.10%)

JPEG 101000 104562 (+3.53%) 104657 (+3.62%) 105550 (+4.50%) 107699 (+6.63%) 108173 (+7.10%)
VGA 208155 212186 (+1.94%) 212905 (+2.28%) 214169 (+2.89%) 217492 (+4.49%) 216856 (+4.18%)

MPEG 38896 39640 (+1.91%) 39799 (+2.32%) 39950 (+2.71%) 40594 (+4.37%) 40512 (+4.15%)
Avg. +0.00% +2.26% +2.56% +3.24% +4.57% +4.66%

TABLE VII
COMPARISON OF RUNTIME (SECONDS) WITH SR, ODR, DR, MR AND METAHEURISTICS (META).

Design SR ODR DR MR Meta
AES 32 8 59 162 348
M0 22 8 51 174 214

JPEG 325 50 344 776 2153
VGA 493 51 386 713 1658

MPEG 30 11 86 137 234

HPWL versus the number of optimization iterations (up to 8)
in Figure 17. Compared to one iteration, the second iteration
removes 45 out of 152 remaining steps after the first iteration,
while the remaining six iterations only reduce 13 more steps,
at the cost of increased HPWL.

Given the above observation, we seek to obtain a bet-
ter tradeoff between step reduction and HPWL. Since our
multi-row optimization is not HPWL-aware, we propose to
invoke both single-row and multi-row optimization with a
total “budget” of four iterations, to find the best four-iteration
sequence. We explore all possible optimization sequences
comprised of the following three configurations – (A) single-
row HPWL-aware; (B) multi-row aligned with double-height

cells; and (C) multi-row unaligned with double-height cells.
We report the optimized number of steps, along with HPWL,
in Figure 18. We can see that the configuration for the first
iteration largely determines the optimized number of steps.
The first iteration should be (B) to obtain better step reduction.
Also, the optimization should finish with (A) for better HPWL.
We report the metaheuristic results in Tables V, VI and VII.

E. Performance Improvement Using Intentional Steps
Similar in spirit to [12], we explore the possibility of im-

proving design performance with intentional steps – i.e., using
filler cells that create an intentional step to the neighboring
timing-critical functional cell so as to improve the timing

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

Fig. 16. Layouts of placements before (Init) and after (MR) our MR optimization. Red color indicates cell instances with diffusion steps and blue color
indicates cell instances without diffusion steps.

Fig. 17. #steps (normalized) and HPWL (normalized) vs. #iterations in
metaheuristic optimization.

of that functional cell.7 In the cost function, we use a third
weighting factor δ to represent the benefit of an intentional
step to a timing-critical cell. We sweep δ from 0 to -2 with a
step size of -0.1. We select 5% of all cells as timing-critical
cells and perform optimization using all design blocks. The
results are shown in Figure 19. We use orig.opt to represent
the results with δ = 0, and time.opt to represent the results
with δ = −0.3. Compared to δ = 0, we achieve up to 5×
increase in #filler-induced steps incident to timing-critical cells
when δ = −0.3, at the cost of slightly increased #non-filler-
induced steps to non-timing-critical cells. This translates to up

7An intentional inter-cell step may increase/decrease the drive strength of
the function cell. E.g., a step adjacent to a PFET may decrease the drive
strength while a step adjacent to an NFET may increase the drive strength.
Here, instead of using a filler cell to match diffusion heights for both the
NFET and the PFET of the function cell (to reduce #steps), we create a filler-
induced intentional step by matching the diffusion height for only the PFET,
thus increasing the drive strength for the NFET. We note that exact timing
and power impacts and tradeoffs will vary with STI processes.

Fig. 18. #steps vs. HPWL in metaheuristic optimization. Red (resp. green
and blue) dots represent metaheuristic iterations that start with configuration
A (resp. configuration B and configuration C).

to 2.13 steps per timing-critical cell after time.opt, compared
to 0.42 steps after orig.opt. Overall, we can still decrease
total steps by more than 70%, showing the effectiveness of
our algorithm. We note that as we add more intentional steps
to timing-critical cells, we leave a smaller solution space
for non-timing-critical cells. Thus, time.opt generates more
steps to non-timing-critical cells. We furthermore observe that
as δ decreases, the #intentional steps that we can achieve
approaches a limit, as shown in Figure 20. This may help set
expectations for benefits that might be derived from a more
comprehensive, timing-aware flow (which we leave for future
work).

F. ICCAD-2017 Benchmark Results

We apply our multi-row dynamic programming-based op-
timization to winning solutions from the ICCAD-2017 con-
test [2] only considering row and site alignments, but not

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

TABLE VIII
DESIGN INFORMATION AND EXPERIMENT RESULTS FOR ICCAD-2017 BENCHMARK [2]. DISTRIBUTION OF SINGLE-HEIGHT, DOUBLE-HEIGHT,

TRIPLE-HEIGHT AND QUADRUPLE-HEIGHT CELLS ARE SHOWN IN COLUMNS 1×H, 2×H, 3×H AND 4×H, RESPECTIVELY.

design #inst cell types % #steps Runtime
1×H 2×H 3×H 4×H Init Final (∆%) (sec)

des perf b md1 ∼11K 94.80 5.20 0.00 0.00 57806 3781 (-93.46%) 361.3
des perf b md2 ∼11K 90.47 6.02 2.01 1.50 70733 7494 (-89.41%) 232.8
edit dist 1 md1 ∼13K 90.31 6.12 2.04 1.53 74351 6019 (-91.90%) 420.9
edit dist a md2 ∼13K 90.31 6.12 2.04 1.53 76657 8074 (-89.47%) 417.8

fft 2 md2 ∼ 3K 89.62 6.56 2.18 1.64 22040 3789 (-82.81%) 53.2
fft a md2 ∼ 3K 89.57 6.59 2.19 1.65 10960 606 (-94.47%) 136.4
fft a md3 ∼ 3K 93.42 2.19 2.19 2.19 11631 372 (-96.80%) 78.1

pci bridge32 a md1 ∼ 3K 90.39 6.07 2.02 1.52 17284 1429 (-91.73%) 83.8
des perf 1 ∼11K 100.00 0.00 0.00 0.00 73202 3516 (-95.20%) 488.7

des perf a md1 ∼11K 95.66 4.34 0.00 0.00 64624 3060 (-95.26%) 307.3
des perf a md2 ∼11K 96.99 1.00 1.00 1.00 64346 4793 (-92.55%) 315.9
edit dist a md3 ∼13K 93.88 2.04 2.04 2.04 78560 11100 (-85.87%) 258.9

pci bridge32 a md2 ∼ 3K 85.51 7.08 4.05 3.37 21435 6235 (-70.91%) 71.2
pci bridge32 b md1 ∼ 3K 90.39 6.07 2.02 1.52 14988 1070 (-92.86%) 68.1
pci bridge32 b md2 ∼ 3K 96.97 1.01 1.01 1.01 13812 488 (-96.47%) 135.0
pci bridge32 b md3 ∼ 3K 94.94 1.01 2.02 2.02 14929 1193 (-92.01%) 84.2

considering constraints, including maximum cell movement,
cell edge spacing, pin access, pin shorts and fence regions
from the contest. The input legalized placements for all
benchmark testcases are from the first-place team’s solu-
tions in ICCAD-2017 contest, except pci bridge32 a md1
and pci bridge32 a md2, for which we use the second-place
team’s solutions (because the first-place team’s solutions for
these two testcases have cells placed outside of the die
boundary). We keep the same P/G alignment as in the input
placement. We apply rand fin height assignment methodology
with the above-mentioned 1:3:6 ratio for 2, 3 and 4 fins,
respectively. The results are shown in Table VIII. For all
ICCAD-2017 benchmark testcases, we achieve up to 96.8%
reduction in #steps.

VII. CONCLUSIONS

In this work, we have presented an optimal dynamic
programming-based single-/double-row detailed placement
methodology to minimize diffusion steps in sub-10nm VLSI,
for improved yield and mitigation of NDE. Our work achieves
several improvements as compared to previous works: (i) opti-
mal dynamic programming with support of a richer set of cell
movements, i.e., flipping, relocating and enhanced reordering;
(ii) optimal double-row dynamic programming with support
of movable and reorderable double-height cells; and (iii) a
novel performance improvement technique using intentional
steps. The proposed techniques achieve up to 98% reduction
of inter-cell diffusion steps, with scalable runtime and high
die utilization in an N7 node enablement. Open directions for
future research include (i) a more comprehensive timing-aware
optimization flow that is capable of addressing the NDE while
minimizing placement disturbance; (ii) extension to other
layout-dependent effect (LDE)-aware optimizations [25][27];
(iii) integration with other detailed placement objectives; and
(iv) speedup techniques with regard to the reordering range.

ACKNOWLEDGMENTS

We thank Kwangsoo Han and Hyein Lee for their contri-
bution in the work of [7].

Fig. 19. Comparison of #filler-induced steps and total #steps for all design
blocks before (orig.opt, δ = 0) and after (time.opt, δ = −0.3) using
intentional steps.

Fig. 20. Sensitivity of filler-induced steps to δ. Testcase: AES.

REFERENCES

[1] D. C. Chen, G. S. Lin, T. H. Lee, R. Lee, Y. C. Liu, M. F. Wang,
Y. C. Cheng and D. Y. Wu, “Compact Modeling Solution of Layout
Dependent Effect for FinFET Technology”, in Proc. ICMTS, 2015, pp.
110-115.

[2] N. K. Darav, I. S. Bustany, A. Kennings and R. Mamidi, “ICCAD-
2017 CAD Contest in Multi-Deck Standard Cell Legalization and
Benchmarks”, in Proc. ICCAD, 2017, pp. 867-871.

[3] P. Debacker, K. Han, A. B. Kahng, H. Lee, P. Raghavan and L. Wang,
“Vertical M1 Routing-Aware Detailed Placement for Congestion and
Wirelength Reduction in Sub-10nm Nodes”, in Proc. DAC, 2017, pp.
51:1-51:6.

[4] S. Dobre, A. B. Kahng and J. Li, “Mixed Cell-Height Implementation
for Improved Design Quality in Advanced Nodes”, in Proc. ICCAD,
2015, pp. 854-860.

[5] Y. Du and M. D. F. Wong, “Optimization of Standard Cell Based

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859266, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

14

Detailed Placement for 16nm FinFET Process”, in Proc. DATE, 2014,
pp. 1-6.

[6] J. V. Faricelli, “Layout-Dependent Proximity Effects in Deep Nanoscale
CMOS”, in Proc. CICC, 2010, pp. 1-8.

[7] C. Han, K. Han, A. B. Kahng, H. Lee, L. Wang and B. Xu, “Optimal
Multi-Row Detailed Placement for Yield and Model-Hardware Corre-
lation Improvements in Sub-10nm VLSI”, in Proc. ICCAD, 2017, pp.
667-674.

[8] K. Han, A. B. Kahng and H. Lee, “Scalable Detailed Placement
Legalization for Complex Sub-14nm Constraints”, in Proc. ICCAD,
2015, pp. 867-873.

[9] D. Hill, “Method and System for High Speed Detailed Placement of
Cells Within an Integrated Circuit Design”, US Patent 6370673, 2002.

[10] S.-W. Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard Cell
Placement”, in Proc. ICCAD, 2000, pp. 165-170.

[11] A. B. Kahng, I. L. Markov and S. Reda, “On Legalization of Row-Based
Placements”, in Proc. GLSVLSI, 2004, pp. 214-219.

[12] A. B. Kahng, P. Sharma and R. O. Topaloglu, “Exploiting STI Stress
for Performance”, in Proc. ICCAD, 2007, pp. 83-90.

[13] A. B. Kahng, P. Tucker and A. Zelikovsky, “Optimization of Linear
Placements for Wirelength Minimization with Free Sites”, in Proc. ASP-
DAC, 1999, pp. 241-244.

[14] S. Li and C.-K. Koh, “Mixed Integer Programming Models for Detailed
Placement”, in Proc. ISPD, 2012, pp. 87-94.

[15] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li,
C. J. Alpert and D. Z. Pan, “MrDP: Multiple-row Detailed Placement
of Heterogeneous-sized Cells for Advanced Nodes”, in Proc. ICCAD,
2016, pp. 1-8.

[16] Y. Lin, B. Yu, B. Xu and D. Z. Pan, “Triple Patterning Aware Detailed
Placement Toward Zero Cross-Row Middle-of-Line Conflict”, in Proc.
ICCAD, 2015, pp. 396-403.

[17] S.-K. Oh, “Standard Cell Library, Method of Using the Same, and
Method of Designing Semiconductor Integrated Circuit”, US Patent App,
US20160055283.

[18] H.-C. Ou, K.-H. Tseng, J.-Y. Liu, I.-P. Wu and Y.-W. Chang, “Layout-
Dependent-Effects-Aware Analytical Analog Placement”, IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 8, pp. 1243-
1254, Aug. 2016.

[19] M. Pan, N. Viswanathan and C. Chu, “An Efficient and Effective
Detailed Placement Algorithm”, in Proc. ICCAD, 2005, pp. 48-55.

[20] M. Tarabbia, A. Mittal and N. Hindawy, “Forming FinFET Cell with
Fin Tip and Resulting Device”, US Patent App, US20150137203.

[21] H. Tian, Y. Du, H. Zhang, Z. Xiao and M. D. F. Wong, “Triple Patterning
Aware Detailed Placement with Constrained Pattern Assignment”, in
Proc. ICCAD, 2014, pp. 116-123.

[22] C.-H. Wang, Y.-Y. Wu, J. Chen, Y.-W. Chang, S.-Y. Kuo, W. Zhu and
G. Fan, “An Effective Legalization Algorithm for Mixed-Cell-Height
Standard Cells”, in Proc. ASP-DAC, 2017, pp. 450-455.

[23] G. Wu and C. Chu, “Detailed Placement Algorithm for VLSI Design
with Double-Row Height Standard Cells”, IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 35, no. 8, pp. 1569-1573, Sep. 2016.

[24] R. Xie, K.-Y. Lim, M. G. Sung and R. R.-H. Kim, “Methods of Forming
Single and Double Diffusion Breaks on Integrated Circuit Products
Comprised of FinFET Devices and The Resulting Products”, US Patent,
US9412616, 2016.

[25] S. Yang, Y. Liu, M. Cai, J. Bao, P. Feng, X. Chen, L. Ge, J. Yuan, J.
Choi, P. Liu, Y. Suh, H. Wang, J. Deng, Y. Gao, J. Yang, X.-Y. Wang, D.
Yang, J. Zhu, P. Penzes, SC Song, C. Park, S. Kim, J. Kim, S. Kang, E.
Terzioglu, K. Rim and PR. C. Chidambaram, “10nm High Performance
Mobile SoC Design and Technology Co- Developed for Performance,
Power and Area Scaling”, in Proc. VLSI Technology, pp. T70-T71.

[26] B. Yu, X. Xu, J.-R. Gao, Y. Lin, Z. Lee, C. J. Alpert and D. Z. Pan,
“Methodology for Standard Cell Compliance and Detailed Placement
for Triple Patterning Lithography”, IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 34, no. 5, pp. 726-739, May 2015.

[27] P. Zhao, S. M. Pandey, E. Banghart, X. He, R. Asra, V. Mahajan, H.
Zhang, B. Zhu, K. Yamada, L. Cao, P. Balasubramaniam, M. Joshi, M.
Eller, F. Benistant and S. Samavedam, “Influence of Stress Induced CT
Local Layout Effect (LLE) on 14nm FinFET”, in Proc. VLSI Technology,
pp. T228-T229.

[28] Model-Hardware Correlation Team, Samsung Electronics Co., Ltd., Nov.
2016.

[29] Cadence Innovus User Guide, http://www.cadence.com
[30] LEF/DEF reference 5.7. http://www.si2.org/openeda.si2.org/projects/

lefdef
[31] Si2 OpenAccess. http://www.si2.org/?page=69
[32] OpenCores: Open Source IP-Cores, http://www.opencores.org

[33] OpenMP Architecture Review Board, “OpenMP Application Program
Interface, Version 4.0”.

[34] Synopsys Design Compiler User Guide, http://www.synopsys.com

Changho Han received his B.S. degree in electrical
and electronic engineering from KAIST, Daejeon,
South Korea, in 2001. He is a principal engineer
leading model-hardware correlation team in Sam-
sung Electronics.

Andrew B. Kahng is a professor at the Computer
Science Engineering Department and Electrical and
the Computer Engineering Department of the Uni-
versity of California at San Diego. His interests in-
clude IC physical design, the design-manufacturing
interface, combinatorial optimization, and technol-
ogy roadmapping. He received the Ph.D. degree in
Computer Science from the University of California
at San Diego.

Lutong Wang received the B.S. degree in mi-
croelectronics from Tsinghua University, Beijing,
China, in 2014 and the M.S. degree in electrical
and computer engineering from the University of
California at San Diego, La Jolla, in 2016. He is
currently pursuing the Ph.D. degree at the University
of California at San Diego, La Jolla. His research
interests include physical design implementation and
DFM methodologies.

Bangqi Xu received the B.S. degree in electrical
engineering from the University of Michigan, Ann
Arbor, MI, USA in 2015 and the M.S. degree in elec-
trical and computer engineering from the University
of California at San Diego, La Jolla, in 2017. He is
currently pursuing the Ph.D. degree at the University
of California at San Diego, La Jolla. His current
research interests include detailed placement, PDN
optimization and machine learning.

