
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

RePlAce: Advancing Solution Quality and
Routability Validation in Global Placement

Chung-Kuan Cheng, Fellow, IEEE, Andrew B. Kahng, Fellow, IEEE,
Ilgweon Kang, Member, IEEE, and Lutong Wang, Student Member, IEEE

Abstract— The Nesterov’s method approach to analytic place-
ment [27] [28] [29] has recently demonstrated strong solution
quality and scalability. We dissect the previous implementation
strategy of [29] and show that solution quality can be significantly
improved using two levers: constraint-oriented local smoothing,
and dynamic step size adaptation. We propose a new density
function that comprehends local overflow of area resources; this
enables a constraint-oriented local smoothing at per-bin granu-
larity. Our improved dynamic step size adaptation automatically
determines step size and effectively allocates optimization effort
to significantly improve solution quality without undue runtime
impact. Our resulting global placement tool, RePlAce, achieves
an average of 2.00% HPWL reduction over all best known
ISPD-2005 and ISPD-2006 benchmark results, and an average
of 2.73% over all best known MMS benchmark results, without
any benchmark-specific code or tuning. We further extend our
global placer to address routability, and achieve on average
8.50% to 9.59% scaled HPWL reduction over previous leading
academic placers for the DAC-2012 and ICCAD-2012 benchmark
suites. To our knowledge, RePlAce is the first work to achieve
superior solution quality across all the ISPD-2005, ISPD-2006,
MMS, DAC-2012 and ICCAD-2012 benchmark suites with a
single global placement engine.

I. INTRODUCTION

Placement is a fundamental, critical step in the physical
design of integrated circuits (ICs) [19]. Placement solution
quality directly impacts overall design quality of results (QoR)
with respect to timing closure, die utilization, routability, and
design turnaround time; these in turn affect the classic metrics
of operating frequency, yield, power consumption and cost.
Despite significant improvement in placement algorithms over
the past decades [31], efficient and effective placement remains
a challenging issue [2].

Among all academic placers, recent electrostatics-based
placement (ePlace) implementations [27] [28] [29] achieve
benchmark solutions that rank among the best known in terms
of half-perimeter wirelength (HPWL). ePlace is a flat, non-
linear analytical global placement engine with electrostatics-
based global-smooth density cost function and Nesterov’s
method nonlinear optimizer. The density cost function enables
effective movement of standard cells and macros over fixed

Manuscript received August 24, 2017.
C. K. Cheng and I. Kang are with the Department of Computer Science

and Engineering, University of California at San Diego, La Jolla, CA 92093,
USA (E-mail: ckcheng@ucsd.edu; igkang@ucsd.edu).

A. B. Kahng is with the Departments of Computer Science and Engineering,
and Electrical and Computer Engineering, University of California at San
Diego, La Jolla, CA 92093, USA (E-mail: abk@ucsd.edu).

L. Wang is with the Department of Electrical and Computer Engineering,
University of California at San Diego, La Jolla, CA 92093, USA (E-mail:
luw002@ucsd.edu).

instances, blockages and large macros. The density cost is
solved numerically by a fast Fourier transform (FFT) with
high accuracy and O(n logn) complexity. Nesterov’s method
provides accelerated convergence, with steplength dynamically
predicted via Lipschitz constant. A backtracking method ef-
fectively prevents steplength overestimation. ePlace is capable
of standard-cell placement [28], mixed-size placement [29],
and 3D-IC mixed-size placement [30]. Instance size differ-
ences between standard cells and macros are addressed by
an approximated nonlinear preconditioner. Yet despite these
and other previous efforts, our present work demonstrates
the availability of significant further improvement over best
known HPWL results for standard academic benchmarks.
Furthermore, ePlace [27] [28] [29] cannot produce routable
placements, e.g., for SUPERBLUE12 [39] ePlace routing
hotspots demand 211.73% of the routing supply (contrast this
with RePlAce’s RC value of 102.43% in Table VII). In Re-
PlAce, we add optimization of routability in global routing to
the Nesterov’s approach, achieving substantial scaled HPWL
improvements over previous leading academic placers for the
DAC-2012 [39] and ICCAD-2012 [40] benchmark suites.

Density function and density penalty factor. Conventional
global placement methodology seeks to minimize wirelength
subject to density constraints which mitigate instance overlaps.
The density constraints can be transformed to yield an uncon-
strained objective with a density penalty factor, as shown in
Equation (1). Previous nonlinear placers [6] [20] [28] apply
the density penalty factor globally across the entire placement
region, with the penalty factor increased proportionally [20]
[28], or at a constant rate [6], until the end of global place-
ment. Such approaches suffer from the “global” nature of
their iterations, which can overlook the fine-grain spatial and
temporal behavior of the placement procedure. In other words,
a globally-applied penalty factor can be insensitive to density
variations across the placement region, and a fixed schedule for
growth of the density penalty factor will not discern between
early and late stages of global placement. This can lead to
unnecessary suboptimality of solutions.

Routability-driven placement. Routability is a fundamen-
tal requirement of real-world global placement [1] [39] [40],
as the placement process must provide a routable placement
solution to the router. It is well-understood that the standard
minimum total HPWL placement objective at some point
becomes detrimental to routability. Previous works achieve
improved routability via (i) congestion estimation, and (ii)
congestion mitigation. Several works [4] [41] [44] are based on
placement properties (e.g., Rent’s parameter, pin density, net

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

overlapping, etc.), without considering actual routing. Proba-
bilistic estimations assume a uniform wire density model [37],
or pattern routing considering wire bends and vias [42]. More
recent and effective constructive estimations used in recent
routability-driven placers [10] [21] [23] are based on global
routers [16] [25] [35]. To mitigate congestion, the works
of [13] [17] [37] formulate a routability-driven objective func-
tion with multiple Lagrangian multipliers. The works of [9]
[10] [21] [23] implement cell inflation with local refinement,
or a rough legalizer during global placement, to spread over-
lapped instances. The DAC-2012 [39] and ICCAD-2012 [40]
routability-driven global placement benchmark suites are the
most recent academic evaluation frameworks that address the
routability issue at the global routing stage, and are widely
used to validate the performance of academic placers. Among
all published results for these two benchmark suites, [7]
[10] [13] [23] show leading-edge solution qualities in terms
of scaled HPWL, considering routing congestion (RC) as a
penalty factor to HPWL as defined in [39] [40]. A separate
body of work (e.g., [8] [14]) addresses the routing-driven
ISPD-2014 [45] and ISPD-2015 [3] benchmarks. However,
quality of results heavily depends on detailed placers that are
sensitive to details of technology and library cells, which is
beyond scope for a global placement framework such as ours.

In our present work, we achieve global placement solution
quality well beyond published (best known) results for the
ISPD-2005, ISPD-2006 and MMS benchmark suites via a
new constraint-oriented local-density function (RePlAce-ld),
and an improved dynamic step size adaptation (RePlAce-
ds, RePlAce-ldds). With extensions to support routability as
assessed in global routing (RePlAce-r), we achieve superior
solution quality on the DAC-2012 and ICCAD-2012 bench-
mark suites. Our contributions are summarized as follows.
• We propose a new constraint-oriented local-density func-

tion for mixed-size placement that incorporates (i) a
constraint-oriented local-density penalty factor for each
bin (i.e., local Lagrangian multiplier for each bin), and
(ii) a constraint-oriented local-density cost coefficient for
each instance. Combining the previous global density
function [29] with a new local density function that
comprehends local density overflow per bin1, we obtain a
global placement with constraint-oriented local smooth-
ing that achieves improved solution quality.

• We propose a methodology for density-penalty adapta-
tion via an improved dynamic step size adaptation that
automatically adjusts the density penalty factor based on
the HPWL curve (i.e., trajectory of HPWL cost versus
iteration count) observed in a trial placement procedure.2

Our improved dynamic step size adaptation applies more
fine-grained control at transition points on the HPWL
curve. Compared to a constant small step size, we obtain
better solution quality while saving runtime.

• We propose a layer-aware cell inflation technique, con-

1Density overflow for a given placement bin is defined as the total area of
instances inside the placement bin, minus the placement bin area.

2As we describe in detail below, a trial placement procedure is performed
initially to capture transition points on the HPWL curve; these transition
points inform the step size adaptation.

sidering per-layer pin blockages, and integrate the of-
ficial global router NCTU-GR [48] of the DAC-2012
and ICCAD-2012 benchmark suites for congestion es-
timation. We develop a simple but effective superlinear
cell inflation technique to mitigate global routing con-
gestion during global placement. Following the strategy
of recent leading works [9] [10], we further include
a post-placement optimization by [24]. By integrating
all our innovations to improve routability, our placer
delivers solution quality in terms of scaled HPWL that
substantially improves over previous leading academic
placers for the DAC-2012 and ICCAD-2012 benchmark
suites.3

The remainder of this paper is organized as follows. Sec-
tion II briefly states the fundamental placement problem for-
mulation. Section III introduces our constraint-oriented local-
density function that enables local smoothing. Section IV
describes our improved dynamic step size adaptation. Sec-
tion V describes our methodology to improve routability, with
congestion estimation by a global router and a cell inflation
technique. Section VI presents our experimental setups and
results. Section VII concludes the paper.

II. PLACEMENT OVERVIEW

Placement seeks to determine the location of instances
(e.g., standard cells and macros) while addressing optimization
objectives such as HPWL, routed wirelength, timing, power,
routability, etc. A placement solution is represented as v =
(x, y)T = (x1, x2, · · · , xn; y1, y2, · · · , yn)T , where (xi, yi) is
the physical location (of the origin, with orientation) of the ith

instance. We follow the basic notations in [29] and formulate
the placement objective function as shown in Equation (1).

min
v

f (v) = W (v)+λD(v) (1)

The wirelength objective W (v) is the HPWL of the de-
sign modeled with a weighted-average (WA) smoothing tech-
nique [12], while the density cost function D(v) addresses
instance overlap via an electrostatic analogy [29]. During
nonlinear optimization, a density penalty factor λ is gradually
increased to reduce overlap, at the cost of increased wirelength.

III. CONSTRAINT-ORIENTED LOCAL-DENSITY FUNCTION

We now describe our improvement of the previous
electrostatics-based density formulation in [27] [28] [29].

A. Necessity of Local Density Function

Scaling the density penalty factor in the placement objective
function is critical since this directly impacts the placement
solution quality. Like many other analytical placers [6] [11],
the previous ePlace implementations of [27] [28] [29] use the

3We use these benchmarks instead of the ISPD-2014 and ISPD-2015
benchmarks since our focus is on mitigating congestion reported by the global
router, along the lines of well-addressed, industry-formulated routability-
driven global placement contests [39] [40]. From a practical IC implementa-
tion flow (i.e., turnaround time) standpoint, global placement-based mitigation
of (global) routing congestion remains crucially important. In Section VI-C
below, a brief comparison between RePlAce and a leading-edge commercial
placer suggests that remaining “gaps” between academic research and industry
practice are potentially tractable in today’s university research context.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

density penalty factor λ, applied equally to every placement
grid or bin in each iteration, to balance wirelength and density
costs. However, in the present work, we make the motivating
observation that globally applying the density penalty factor
(i.e., applying a global Lagrangian multiplier) sacrifices wire-
length in less-overlapped bins to resolve more-overlapped bins,
resulting in unnecessary wirelength increase.

With this in mind, we propose a new local-density function
that comprehends locally overflowed (with respect to area re-
sources) bins; this enables constraint-oriented local smoothing
at a per-bin granularity. To help effective removal of overlaps
among placement instances, our local-density function (per
each bin) provides more repulsive forces4 for overflowed
bins, on the basis of the global-smooth density distribution
obtained by global-density function. This is beneficial since
the local-density function on top of the global-density function
effectively helps us restrain suboptimal wirelength increase
caused by global-density penalty factor λ. In this section, we
use the term global when we refer to a density penalty that is
applied equally throughout the layout, and local when we refer
to penalty factors or coefficients that are separately defined and
used at a per-bin granularity. We denote our new local-density
function as Dlocal(v), and the previous global-density function
of [27] [28] [29] as Dglobal(v).

With respect to Equation (1), we begin with D(v) =
Dglobal(v), and then add a further term Dlocal(v) to intro-
duce the local smoothing to our placement engine. The lo-
cal density function incorporates two innovations. First, we
formulate a constraint-oriented local-density penalty factor
ν j (i.e., local Lagrangian multiplier) per bin to spread cells
in highly overflowed regions by increased repulsive forces
(Section III-B). Second, we apply a constraint-oriented local-
density coefficient ∆i per instance i to the local-density function
(Section III-C). ∆i helps the instance i maintain a certain
amount of repulsive force induced from overflowed bins, even
as the instance i escapes from (i.e., is no longer contained in)
those overflowed bins.

B. Constraint-Oriented Local-Density Penalty for Each Bin b j

To enable the constraint-oriented local smoothing, we intro-
duce a local-density penalty factor ν j (i.e., local Lagrangian
multiplier) per each bin b j based on demands for area re-
sources. We formulate the local-density penalty factor ν j as

ν j = eα·(BinDemand j−BinCapacity j). (2)

In Equation (2), BinCapacity j and BinDemand j respectively
denote the area of bin b j and the total area of cells intersecting
b j. We define b j’s overflow as (BinDemand j−BinCapacity j).
The bin b j is overflowed if BinDemand j−BinCapacity j > 0.
α is a coefficient to weight the local-density cost function
as detailed in Equations (5) and (6) below; α starts at a
very small value, e.g., 1e-12 (empirically determined), and
gradually increases through the Nesterov’s optimization. When
a bin b j is overflowed, ν j has exponentially larger value,
generating larger repulsive force. Thus, cells in b j experience

4We note that in our electrostatic analogy, the gradient of the cost function
is the repulsive force from electric charges. We use “force” to refer to this
repulsive force due to electric charges.

Fig. 1: Density forces with (a) global density-penalty factor λ,
and (b) constraint-oriented local-density penalty factor ν j per
each bin. (Bin boundaries are indicated by black dotted lines.
Standard-cell instances are labeled i1, · · · , i5.) In (a), the global
λ is applied equally to all cells in the layout, helping to remove
overlap between i5 and Macro1. In (b), the local Lagrangian
multiplier ν j is applied, so that HPWL increases (from the
dotted to the solid blue rectangle) less than in (a).

(a) Local smoothing without local-density cost coefficient ∆i.

(b) Local smoothing with local-density cost coefficient ∆i.

Fig. 2: Local smoothing methods (a) without and (b) with
local-density cost coefficient ∆i. Figures are ordered from left
to right by iteration indices. Red arrows depict the repulsive
force component induced from the ν j. Blue arrows depict the
repulsive force component induced from the local-density cost
coefficient ∆i. Figure (b) shows the effect of a larger force to
spread cells from the overflowed bin b4.

larger force to be spread toward not-overflowed bins. When
b j is not overflowed, cells in b j experience small force. The
local-density penalty factor ν j is especially beneficial early in
the placement procedure since it guides cells to quickly find
their directions of movement.5

Figure 1 illustrates the benefit of the constraint-oriented
local-density penalty factor ν j. Each i represents a placement
instance (cell) belonging to the same (5-pin) net, and red
arrows indicate the repulsive force to spread cells. The faint
outlines show the previous locations of cells. To remove the
overlap between i5 and Macro1, in (a) the global density
function Dglobal(v) is applied to all cells, scaled uniformly
by the global density penalty factor λ, even though most
of the affected cells are not in the overflowed bins. The
repulsive forces induced by Dglobal(v) and λ cause a large

5Initial placement typically seeks only to minimize wirelength, which
results in a number of highly overflowed bins.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

HPWL increment, depicted by the transition between dotted
and solid blue rectangles. By contrast, in (b) the constraint-
oriented local-density penalty factor ν j separately scales the
magnitude of the repulsive force per each bin based on that
bin’s overflow, i.e., bins b2 and b4 have relatively larger ν j
to resolve overlaps. In this way, to achieve the same cell
spreading, the version with our local-density function could
use a smaller global Lagrangian multiplier (bins b1 and b3
experience smaller density force than in Figure 1(a)), resulting
in a smaller HPWL increment.

C. Local-Density Cost Coefficient ∆i per Each Cell i

With constraint-oriented local smoothing, per Equation (2),
cell i from an overflowed bin immediately loses much of its
repulsive force component after it escapes the overflowed bin.
Without sufficient repulsive force induced from the global
density function, the movement of cell i slows down if the
adjacent bin to which it moves is not overflowed. Furthermore,
the cell i can return to its previous, (formerly) overflowed
bin as a consequence of wirelength-induced attractive force,
causing undesired oscillation. In such a scenario, instances
(cells) are not effectively spread to resolve the cell overlap-
ping. To effectively achieve local smoothing via a local density
penalty factor without globally sacrificing HPWL, we propose
a new mechanism to maintain the repulsive forces generated
by the constraint-oriented local-density penalty factor ν j of
the overflowed bin b j.

Equation (3) gives the constraint-oriented local-density cost
coefficient, ∆i, per each cell i (ci, ci ∈ b j).6 ∆i is used to
multiplicatively scale the local density function Dlocal(v).

∆
iter+1
i = ∆

iter
i +β ·

max(Over f low j,0)
∑i Ai

(3)

Here, Ai is the area of cell i (ci) and iter is the index of the
iteration. We initialize ∆i = 0. With respect to the current over-
flow of bin b j, ∆i accumulates positive overflow normalized
by the total cell area in the design (i.e., ∑i Ai). β is a coefficient
to balance between global-density and local-density induced
forces. β initially takes on a very small value, e.g., 1e-13
(empirically determined), and gradually increases through the
Nesterov’s optimization.7 Using max(Over f low j,0) instead of
a constant encourages movement of only cells in overflowed
bins.8 Multiplicatively scaling the local-density function by
∆i prevents cell i from losing its local-density penalty factor
induced from the repulsive force, even as cell i moves out
of the overflowed bin b j. (See Equation (9) and Algorithm 1,
which we now describe.)

Figure 2 illustrates the advantage of multiplying by the
constraint-oriented local-density cost coefficient ∆i. Bin b4
is overflowed, while the other bins are not overflowed. Red
arrows depict the repulsive force component induced from the
local-density penalty factor ν j. In Figure 2(a), without ∆i, the
magnitude of force rapidly decreases after a cell i escapes

6We use the convention ci ∈ b j to indicate that cell i intersects bin b j .
7βiter+1 = co f ×βiter where co f is the step size defined in Section IV-A.

Overall, since β increases at the same rate as λ, ∆i still increases with
increasing #iterations.

8Replacing max(Over f low j,0) in Equation (3) with 1/5/10% constant
values, the resulting HPWLs are degraded by 0.38/0.40/0.49% on average.

TABLE I: Notations.
Term Description

i Index of the ith placement instance (cell), i = 1, ...,n
ci ith placement instance (cell), i = 1, ...,n
b j jth bin in the placement region
B A set of placement bins
qi Electric charge of the ith placement instance
φ j Electric potential at bin j
φi Electric potential at the location of ith placement instance
E Gradient of the potential φ, i.e., electric field
E j Electric field at bin j
Ai j Overlap area between ith placement instance and bin b j
λ Lagrangian multiplier for global density cost function
ν j Constraint-oriented local-density penalty factor of bin b j
∆i Local-density cost coefficient of the ith placement instance

from the overflowed bin b4, resulting in slower movements. In
Figure 2(b), the local-density cost coefficient ∆i compensates
the loss of the repulsive force component induced from the
overflowed bins. Blue arrows in Figure 2(b) indicate the
repulsive force components induced from the local-density
cost coefficient ∆i in each iteration.

D. Formulation: Local Density Function and Gradient

Table I summarizes our notations.9 Equation (4) shows the
global density function introduced in [29],

Dglobal(v) = ∑
i

Dglobal
i (v) = ∑

i
qiφi(v), (4)

where qi is the electric charge and φi is the potential of cell
i. Dglobal(v) is equal to D(v) in Equation (1).

To achieve local smoothing, we add the local-density
function Dlocal(v) as a further term to our placement ob-
jective function. Using the constraint-oriented local-density
penalty factor ν j, we formulate the new local-density function
Dlocal(v) as

Dlocal(v) = ∑
b j∈B

ν jDlocal
j (v) = ∑

b j∈B
ν j

(
∑

ci∈b j

Ai jqiφ j

)
, (5)

where Ai j is the overlapped area between cell i and bin b j, qi
is again the electric charge of cell i, and φ j is the local electric
potential of bin b j.

Our new placement objective function f (v) incorporates the
global density function Dglobal(v) of Equation (4) and the local
density function Dlocal(v):

min
v

f (v) = W (v)+λDglobal(v)+Dlocal(v) (6)

By differentiating Equation (6), we obtain the force to
spread instances (cells and macros). Equation (7) gives the
gradient of the global density function Dglobal(v) described
in [29]. Equation (8) gives the gradient of the local density
function Dlocal(v)

∂Dglobal(v)
∂xi

= qi
∂φi

∂xi
= qiEi(v), (7)

9φ j and E j are the electric potential and field at bin j, respectively. They
are calculated using the existing charge density (from current placement of
all instances) by FFT. Due to the discrete nature of FFT, the electric potential
and field has a discrete value at per-bin granularity. Thus, Ei for instance i is
E j where instance i is at bin j.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

Algorithm 1 Local-Density Cost Function
1: Procedure LocalDensityCostFunction(ci)
2: Initialize ∆i ← 0;
3: for all b j (b j ∩ ci 6= 0) do
4: over f low j ← BinDemand j−BinCapacity j ;
5: if over f low j > 0 then
6: ∆i += β× over f low j

total cell area ;
7: end if
8: LDCosti += ∆i×Gradient j(ci ∈ b j);
9: end for

10: return Gradienti;
11: Procedure Gradient j(ci ∈ b j)
12: calculate Gradient j [29];
13: return Gradient j ;

∂Dlocal(v)
∂xi

= ∑
b j∈B

α
∂BinDemand j

∂xi
ν j ∑

k 6=i,k∈b j

Ak jqkφ j

+ ∑
b j∈B

ν j

(
∂Ai j

∂xi
qiφ j + ∑

k 6=i,k∈b j

Ak jqkE j

)
,

(8)

where E is the electric field.
Costi in Equation (9) determines the cell i’s movement,

comprehending both the global density distribution and the
local overflowed region.

Costi =
∂W (v)

∂xi
+λ

∂Dglobal(v)
∂xi

+∆i
∂Dlocal(v)

∂xi
(9)

Algorithm 1 describes the procedure to obtain the local-
density cost, LDCosti. Line 2 initializes ∆i = 0. We store
the electric potential information at a per-bin granularity, so
we first calculate Gradient j to compute LDCosti (Line 8 and
Lines 11-13). Based on cell/charge/energy distribution of the
previous iteration, we calculate Gradient j by using FFT [29]
(Lines 11-13). In Lines 5-7, we add the normalized over f low j
of the bin b j (ci ∈ b j) to ∆i when the bin b j is overflowed. In
Line 8, we obtain LDCost i after multiplying by ∆i.

E. Additional Details and Illustration

Figures 3(a)-(e) contrast the mixed-size global placement
for NEWBLUE1 [43], by ePlace-MS [29] (left-side images)
and the constraint-oriented local-density function equipped
RePlAce-ld (right-side images).10 Red and green dots repre-
sent standard cells and filler cells, respectively. Blue rectan-
gles are movable macros. RePlAce-ld encourages faster cell
spreading in overflowed regions by virtue of the repulsive
force induced from the local density function. Figures 3(a)-
(c) show the mixed-size global placement stage (mGP) with
movable standard cells and macros. The figures show how
ePlace-MS [29] fails to move the largest macro due to lack of
force, while RePlAce-ld moves the largest macro toward the
boundary of the layout. After mGP, we execute a simulated
annealing-based (SA-based) macro legalization stage (mLG)
to fix all macro locations. The SA-based algorithm randomly
picks a macro and randomly determines its movement vector
within the search range, considering both wirelength and
macro overlapping removal. The search range and the temper-
ature (probability to accept the move) are adjusted to balance
quality and efficiency [29]. Then, a standard-cell only global

10We follow the same mixed-size placement procedure and naming con-
vention as detailed in [29].

(a) Iteration: 250 (mGP), HPWL= 2.07×107 (LHS), 2.14×107 (RHS).

(b) Iteration: 400 (mGP), HPWL= 4.51×107 (LHS), 4.32×107 (RHS).

(c) Iteration: 600 (mGP), HPWL= 6.55×107 (LHS), 5.32×107 (RHS).

(d) Iteration: 30 (cGP), HPWL= 5.18×107 (LHS), 5.96×107 (RHS).

(e) Final legalized layout, HPWL= 6.39×107 (LHS), 5.60×107 (RHS).

Fig. 3: Placement of NEWBLUE1 [43]: left hand side (LHS)
images are from ePlace-MS [29], and right hand side (RHS)
images are from RePlAce-ld. The target density is set to 100%.

placement stage (cGP, inheriting instance locations from mLG
with macros fixed) is called to recover solution quality lost
during macro legalization. Figure 3(d) shows that moving
the largest macro to the boundary of the layout helps to
improve the solution quality by providing more space in the
center of the layout region for the standard-cell placement.
Moreover, Figure 3(b) (left) shows that ePlace-MS applies
only one large center-oriented force to filler cells. By contrast,
RePlAce-ld applies multiple overflowed-region-induced force
components to filler cells, as a result of the local-density
function. Figure 3(e) shows the final legalized layouts. HPWL
values for ePlace-MS and RePlAce-ld are 6.39× 107 and
5.60×107, respectively.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

IV. IMPROVED DYNAMIC STEP SIZE ADAPTATION

In this section, we describe our improved dynamic step size
adaptation. How to decide the step size is a well-studied
topic in the global placement literature [5] [6]. In general,
constant large step size leads to faster convergence, but can
sacrifice solution quality (Figure 4(a)). Constant small step
size generates an accurate solution according to the given
formulation, but with large runtime (Figure 4(b)). Neither
strategy accounts for the shape characteristics (e.g., instan-
taneous slope at different iterations) of the HPWL curve11

shown in the figure. Figure 4(c) conceptually illustrates our
improved dynamic step size adaptation that comprehends the
characteristics of the HPWL curve. To effectively allocate
optimization effort, we dynamically adjust both the step size
and the step size scaling range during global placement, while
previous approaches [5] [6] [27] [28] [29] adjust step size
within a constant step size range.

Fig. 4: An illustration conceptually showing the benefit of
dynamic step size adaptation. Cost is composite of wirelength
and density. (a) Constant large step size obtains a result quickly
but with large suboptimality. (b) Constant small step size may
generate a near-optimal result but with many iterations. (c)
Our improved dynamic step size adaptation starts and ends
with small step sizes, and dynamically scales the step size to
efficiently allocate the optimization effort.

A. Improved Dynamic Step Size Adaptation

The density penalty factor λ (in Equation (1)) is used
to resolve instance overlaps. In previous ePlace implementa-
tions [27] [28] [29], the λ scaling tries to maintain a constant
HPWL increment12 across iterations. Algorithm 2 summarizes
the ePlace λ scaling methodology, whereby step size (i.e., co f
in Algorithm 2) is dynamically scaled to maintain a constant
HPWL increment of ∆HPWLre f (Line 4 in Algorithm 2).
In our implementation, we use the same ∆HPWLre f as in
ePlace-MS [29]. Based on HPWL increment per iteration, co f
varies within a predefined step size scale [co f min, co f max],
co fmax and co fmin respectively indicate the maximum and the
minimum step sizes. A larger (resp. smaller) HPWL increment
corresponds to a smaller (resp. larger) co f . The previous work
of ePlace-MS [29] fixes co f min = 0.95 and co f max = 1.05.

In RePlAce, to efficiently allocate the optimization effort
we propose an improved dynamic step size adaptation strategy
that dynamically adjusts the step size co f and the maximum

11We define the HPWL curve as the plot of HPWL values versus iterations
in the global placement procedure.

12A “constant cell displacement” results in failure to converge for at least
four of 16 (ISPD-2005 and ISPD-2006) testcases; we therefore believe that
this is an enabling difference in RePlAce.

Algorithm 2 λ Scaling
1: Procedure λ Scaling()
2: λ ←(∑i gradient wirelength)/(∑i gradient potential);
3: for k = 0 to last iteration do
4: p ← (HPWLk − HPWLk−1) /∆HPWLre f ;
5: if p < 0 then
6: co f ← co fmax;
7: else
8: co f ← max(co fmin, pow(co fmax,1− p));
9: end if

10: λ ← λ× co f ;
11: end for

Fig. 5: HPWL curve of ADAPTEC1 from the trial placement
procedure and the estimated transition points (T P2=red/blue
stars, T P1=yellow squares).

step size co fmax (i.e., the range of step size scaling) with
respect to the HPWL increment per each iteration. Figure 5
shows the HPWL curve from the testcase ADAPTEC1 [43]
across iterations in the placement procedure. The slope of
the HPWL curve can change at each iteration, and changes
rapidly near the star symbols. In our experience, all observed
HPWL curves from a wide range of testcases have very strong
commonality, with trajectory shapes as shown in Figure 5
and two classes of extreme points. We define two classes of
transition points based on the HPWL curve’s instantaneous
slope-change rate: (i) 2nd-order transition point (T P2), and
(ii) 1st-order transition point (T P1).

On the HPWL curve from the placement procedure,13 the
T P2 points are defined to be the two points with largest
absolute instantaneous rate of slope change (red and blue stars
in Figure 5). Two T P2 points divide the HPWL curve into
three phases (blue, green, and yellow regions in Figure 5), and
each phase has one T P1 point. The T P1 point within a given
phase is determined as follows. (i) Within each of the 1st and
3rd phases, the T P1 point has the same instantaneous slope
as the line segment (purple solid line segment in Figure 5)
drawn between the two extreme (i.e., leftmost and rightmost)
points of the HPWL curve within the phase. (ii) Within the 2nd

13We perform a trial placement ahead of the actual placement procedure to
capture transition points. We observe that the HPWL on transition points from
the trial placement are close to those from the actual placement procedure (i.e.,
< 5%). The trial placement procedure is described in Section IV-B.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

Fig. 6: Flowchart of our trial placement procedure. The red
rectangle indicates nonlinear optimization using Nesterov’s
method. The actual placement procedure follows this trial
placement procedure.

Fig. 7: Solution qualities achieved by RePlAce with constant
step size scale and by RePlAce-ds’ improved dynamic step
size adaptation strategy, on the ADAPTEC1 [43] testcase.
RePlAce-ds achieves a dominating runtime and solution qual-
ity (red square). We note that RePlAce with constant step size
scale (blue line) does not converge with smaller step sizes (i.e.,
[0.95,1.002] or below).

phase, the T P1 point corresponds to the intersection between
the HPWL curve and the purple solid line segment. The T P1

points are shown as yellow squares in Figure 5.
We observe that transition points are important to obtaining

improved solution quality because (i) instances tend to alter
their moving directions and to settle their locations near
the T P2s, which determines the overall solution quality; and
(ii) instances move actively toward their final locations near
the T P1s, which provides an opportunity to save runtime.
We allocate optimization effort based on these observations,
applying the smallest step size at the T P2s and the largest step
size at the T P1s. We achieve this dynamical adaptation of the
step size scale by controlling the maximum step size co fmax.
Our empirically determined step size scale ranges from [0.95,
1.0001] to [0.95, 1.05].

co fmax = minco fmax + co frange×
|HPWLcurrent −HPWLT P2 |
|HPWLT P1 −HPWLT P2 |

(10)
With the given minco fmax , co frange, and the current iteration’s

HPWL, we compute maximum step size using Equation (10),

Algorithm 3 Finding Transition Points
1: Procedure Trial()
2: Trial placement();
3: Connect initial and final points on HPWL curve using a linear line;
4: Calculate HPWL differences between HPWL curve and linear line for each tGP

iteration;
5: Get the 2nd-order transition points (T P2);
6: Divide the HPWL curve into three phases by T P2;
7: Connect initial and final points on HPWL curve separately for each phase;
8: Calculate HPWL differences between HPWL curve and linear line for each phase

for each tGP iteration;
9: Get the 1st-order transition points (T P1);

10: return T P2 and T P1;

which achieves dynamic control of the step size scale. In
our implementation, minco fmax is 1.0001 in the first phase,
1.001 in the second phase, and 1.005 in the third phase. We
empirically determine co frange as 0.0009, 0.024 and 0.045 for
the three phases, respectively. We allocate more optimization
effort at the beginning of the nonlinear optimization based on
our observations that the solution quality achieved in early
iterations is critical to the final placement solution. Figure 7
shows the tradeoff between solution quality (HPWL) and
runtime (#iterations) with various constant step sizes. Our
improved dynamic step size adaptation achieves a superior
result (red square) in terms of both HPWL and runtime.

B. Trial Global Placement

To find the 1st-order (T P1) and the 2nd-order (T P2) transi-
tion points on the HPWL curve, we perform a trial placement
procedure that includes a trial global placement (tGP). We
terminate tGP when the density overflow is ≤ τinit

2.5 .14 Figure 6
describes our trial procedure. Inspired by [36], the transition
points are determined as follows. (1) In Line 2 of Algorithm 3,
we first perform tGP and obtain the HPWL curve, as shown
in Figure 5. (2) In Line 3, we connect the initial (start of tGP)
and final (end of tGP) HPWL points on the HPWL curve by a
primary line segment (green solid line segment in Figure 5). In
Line 4, for each tGP iteration (along the x-axis in Figure 5), we
calculate the absolute HPWL differences between the HPWL
curve and the primary line segment (black arrows in Figure 5).
(3) In Line 5, we pick the point with the largest absolute
difference as one of the T P2 points (red star in Figure 5).
(4) To find the other T P2 point, we connect the existing T P2

point to the initial and final HPWL points, respectively, using
two secondary line segments (green dotted line segments in
Figure 5). The point (blue star in Figure 5) with the largest
absolute HPWL difference between the HPWL curve and the
two secondary line segments is determined as the other T P2

point. (5) In Line 6, we divide the HPWL curve into three
phases based on the two T P2 points. In Line 7, we repeat (2)
separately for the HPWL curve of each phase. (6) In Lines
8-9, we repeat (3) to find a T P1 point within each of the 1st
and 3rd phases. The T P1 point in the 2nd phase is the point
of intersection where the HPWL curve transitions from above
to below the purple line segment.

14Overall density overflow τ is defined as the sum of the density overflow
for all placement bins over the total cell area. 0 ≤ τ ≤ 1. The initial
density overflow τinit is the density overflow obtained from a wirelength-only
optimization before our nonlinear optimization. We empirically determine the
constant as 2.5, which provides better results in terms of tradeoff between
HPWL and the number of iterations.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

V. ROUTABILITY-DRIVEN PLACEMENT

To produce routable placement has recently being recog-
nized as being of critical importance. This is reflected by many
routability-driven placement contests [3] [38] [39] [40] [45]
and placers [7] [8] [10] [13] [21] [23]. In this section, we
describe how global routability-driven placement is achieved
in RePlAce, including (i) capacity and blockage calculation;
(ii) demand calculation; (iii) cell inflation technique; and (iv)
overall flow. Notations are described in Table II.

TABLE II: Notations for routability-driven placement. We use
the default length unit in the DAC-2012 and ICCAD-2012
benchmark suites.

Term Description
blk blocked routing capacity per tile edge
cap routing capacity (by length unit) per tile edge

demand routing demand per tile edge
in f l ratio cell inflation ratio

ml metal layer index
pincnt pin count per tile
pitchml metal pitch (by length unit) on layer ml

rt global routing tile index
usage # tracks used per tile edge

A. Capacity and Blockage Calculation

According to DAC-2012 [39] and ICCAD-2012 [40] contest
and benchmark suite descriptions, global routing is performed
using global routing tiles, with back-end-of-line capacity (i.e.,
tile width or height) and blockage (in the unit of tile dimen-
sion) defined for each layer in the official benchmark inputs.
We follow the definitions from [39] [40], and associate a
capacity value (cap) to each edge of the global routing tile
for each metal layer. As an example, for a unidirectional
horizontal routing layer, the left and right tile edges have
a capacity value directly from the benchmark specification,
while the upper and lower tile edges have a capacity of zero.
We also associate a routing blockage (blk) to each edge of
a global routing tile for each metal layer. The blockage is
defined as the total blocked capacity (total blocked tile width
or height), as illustrated in Figure 8.

Fig. 8: Illustration of blockage calculation. For the vertical
edge on the right, blk = blk1+blk2. Note the union of blocked
capacity for the upper two blockages.

Algorithm 4 Inflation Ratio Adjustment
1: Procedure Ad justIn f lationRatio
2: total in f lated area← GetTotalIn f latedArea();
3: while total in f lated area≥ max in f lated area do
4: in f l ratio0← GetIn f lationRatioForLeastCongestedTile();
5: for all tiles (rt) do
6: in f l ratiort ←

in f l ratiort
in f l ratio0

;
7: end for
8: total in f lated area←U pdateTotalIn f latedArea();
9: end while

B. Demand Calculation

During global placement, we invoke the official router
NCTU-GR [48] from the DAC-2012 and ICCAD-2012 contests
to obtain the routing demand. As described in [39], the global
router reports cross-tile routing segments, so that tile edge-
based routing usage (#tracks used) can be obtained.

For each layer, we multiply the usage (usage) with metal
pitch to obtain the routing demand. Additionally, for metal 2
and below, we further consider the pin blockage effect. Here,
we calculate the total number of pins (pincnt) within a tile
and use γpin as a pin blockage factor. We describe the demand
calculation in Equation (11):

demande,ml = (usagee,ml + γpin · pincnt) · pitchml , (11)

where the subscript e indicates one of the four edges of a given
global routing tile, and the subscript ml indicates a specific
metal layer. Thus, we calculate the demand for all four tile
edges and for all metal layers. We use the same pin blockage
factor as specified in each of the benchmark suites, i.e., γpin = 0
for DAC-2012 benchmark and γpin = 0.05 for ICCAD-2012
benchmark.

C. Cell Inflation

To resolve congestion, we inflate cells within tiles for which
the demand is larger than the corresponding capacity. Since
we calculate the capacity and demand per tile edge on each
layer, there are multiple (capacity, demand) pairs. The inflation
ratio for each cell is calculated as the maximum demand over
capacity ratio (i.e., Equation (12)). Cell width and height are
increased according to the square root of the inflation ratio
for each direction. Based on empirical studies, we enable
superlinear cell inflation with γsuper = 2.33 and we bound the
maximum inflation ratio to be 2.5. In this way, we achieve
metal layer-aware inflation, rather than relying only on sums
of capacities and demands over all metal layers [10] [23].

in f l ratio = max
all e,ml

((demande,ml +blke,ml

cape,ml

)γsuper
,2.5

)
(12)

To avoid the total inflated area exceeding available white-
space, we adopt the dynamic inflation ratio adjustment
methodology from [9]. Algorithm 4 describes the inflation
ratio adjustment. We first calculate the total inflated area
according to the initial inflation ratio. If the total inflated area
exceeds a predefined maximum value, max in f lated area, we
divide the horizontal inflation ratio for each tile by the inflation
ratio of the least-congested tile that has a ratio greater than
one, and recalculate the total inflated area. We repeat the above
procedure until the total inflated area becomes smaller than the
predefined maximum value. We describe max in f lated area
in Section V-D.

D. Overall Flow

Figure 9 shows the overall flow of our global routability-
driven placement. When the wirelength-driven global place-
ment reaches 20% density overflow, we invoke the global
router NCTU-GR [48] to obtain our internal routing congestion
(RC) evaluation. We then perform routability optimization

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

Fig. 9: Overall flowchart of our routability-driven placement.

using our cell inflation technique (see discussion below), then
feed the new cell sizes, die utilization, and density penalty
factor back to the global placement engine. We choose to per-
form routability optimization only if we meet all three of the
following conditions: (i) the latest congestion estimation indi-
cates a less than 1% routing overflow (RC < 1.01); (ii) fewer
than 10 rounds of cell inflation have been performed; and (iii)
the binary indicator earlyTermination is false. Otherwise, we
execute the remaining global placement procedure and pass
the placement solution on to the detailed placer. The binary
earlyTermination flag is used to skip the following rounds of
cell inflation once the design is considered difficult to improve
further (see discussion below). Since our work solely focuses
on global placement, we use NTUplace3 [6] as the detailed
placer. We then perform a post-placement optimization [24] if
we believe there can be further benefits. In our implementation,
we go through post-placement optimization only when both of
the following conditions are met: (i) there is still more than
2% routing overflow (RC > 1.02); and (ii) there is still room
for improvement (earlyTermination is false).

Results reported below (in Section VI-C) show that im-
provements over previous works can be attributable to Re-
PlAce global placement as opposed to the use of NTUplace3
(or, even, NTUplace4h [13]).

The routability optimization process is described in Algo-
rithm 5. In Line 2, we first calculate the inflation ratio from
congestion estimation, as described in Sections V-A and V-B.
Then, in Line 3, we adjust the inflation ratio according to
Algorithm 4. In Line 4, we perform cell inflation to improve
routability. In Line 5, we roll back the density penalty factor λ

by 100 Nesterov’s optimization iterations [29] to encourage re-
placement of cells based on the new cell sizes. Line 6 reflects

Algorithm 5 Routability Optimization
1: Procedure RouteOpt
2: CalculateIn f lationRatio();
3: Ad justIn f lationRatio();
4: In f lateCell();
5: λcurr iter ← λcurr iter−100;
6: Ad justUtilization();
7: U pdateEarlyTerminationIndicator();

that the overall die utilization should be adjusted because the
equivalent total cell area becomes larger due to inflation. We
adjust the die utilization based on the ratio of equivalent total
cell area over die area, as given in Equation (13). In each
routability optimization, we limit max in f lated area to be
10% of the total whitespace area, so that the total utilization
is constrained to remain less than 100%. In Line 7, we update
the binary indicator earlyTermination. The indicator remains
false until the minimum RC value thus far has not improved
by 0.008 over the last four consecutive rounds of cell inflation.

util =
curr cell area+ total in f lated area

die area
(13)

Figure 10 shows snapshots of congestion maps during our
routability optimization procedure for SUPERBLUE12. The
figure shows how the global placement process effectively
reduces the congestion (i.e., hotspots) indicated by red regions.

VI. EXPERIMENTS

In this section, we describe our experimental setups and
results. We implement RePlAce in C++ and perform exper-
iments in single-thread mode using a 2.6GHz Intel Xeon
server. Our implementation has no benchmark-specific code
or tuning: a single binary produces all results, with command-
line options as we describe below. Experiments are performed
on three types of well-studied academic benchmarks: (i)
ISPD-2005 [32] and ISPD-2006 [33] benchmark suites for
standard cell placement; (ii) the large-scale modern mixed-
size (MMS) [43] benchmark suite for mixed-size placement;
and (iii) DAC-2012 [39] and ICCAD-2012 [40] benchmark
suites for global routability-driven placement. RePlAce func-
tionalities and corresponding suffixes (command-line options)
are summarized in Table III. We briefly give some insight
into the remaining gaps between academic and real-world
placers and testcases, by comparing final-routed wirelength
for real standard-cell placements obtained by RePlAce-r and
a leading-edge commercial place-and-route tool in a foundry
28LP technology. In all of our experimental results tables, bold
numbers indicate the best HPWL (sHPWL) for each testcase.

TABLE III: RePlAce functionalities and the corresponding
suffixes (command-line options) that produce the results re-
ported below.

Benchmark Type -ld -ds -ldds -r
ISPD-2005 and ISPD-2006 benchmarks •

MMS benchmarks • • •
DAC-2012 and ICCAD-2012 benchmarks •

A. Standard Cell Placement

For standard cell placement, we validate RePlAce using
the ISPD-2005 [32] and ISPD-2006 [33] benchmark suites,
whose parameters are summarized in Table IV. We employ
NTUplace3 [6] as our detailed placer. Experimental results
are summarized in Table V. For testcases with a specified
target density, we report the scaled HPWL using the official
evaluation scripts [33].

Table V compares RePlAce-ds to the best known results [28]
[46] across ISPD-2005 and ISPD-2006 benchmark suites. We
observe that RePlAce-ds achieves (new) best known results

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

(V1) RC=211.73

(H1) RC=211.73

(V2) RC=138.50

(H2) RC=138.50

(V3) RC=109.05

(H3) RC=109.05

(V5) RC=104.60

(H5) RC=104.60

(V7) RC=101.95

(H7) RC=101.95

(Vf) RC=102.43

(Hf) RC=102.43
RC

Fig. 10: Global routing overflow (SUPERBLUE12) during routability-driven global placement procedure. RC = Routing
Congestion reported by the DAC-2012 official evaluation script. (Hk) and (Vk) show horizontal and vertical congestion before
the kth cell inflation; (Hf) and (Vf) show final horizontal and vertical routing congestion after detailed placement.

for 15 out of 16 testcases. Overall, RePlAce-ds achieves up
to 4.00% HPWL reduction (ADAPTEC2) and 2.00% HPWL
reduction on average, when compared to the previous best
known results.

B. Mixed-Size Placement

We demonstrate the benefit from our constraint-oriented
local density function using the large-scale modern mixed-size
(MMS) placement benchmarks [43]. Parameters of the bench-
marks are summarized in Table IV. The MMS benchmarks
embody the same designs as the ISPD-2005 and ISPD-2006
benchmarks, except that some macros are movable. We use
NTUplace3 [6] as our detailed placer. Experimental results are
summarized in Table V. For testcases with a specified target
density, we report scaled HPWL using the official evaluation
scripts [43].

Table V compares RePlAce mixed-size placement results
with best known previous results [29]. We apply three different
schemes: (1) local density function equipped RePlAce-ld,15

(2) dynamic step size adaptation equipped RePlAce-ds, and
(3) combined RePlAce-ldds. Runtimes of (2) and (3) include
the trial procedure’s runtimes. From the bottom row of the
table, we see that RePlAce-ld reduces HPWL by approxi-
mately 2.25% on average compared to best known results.16

Compared to best known results, RePlAce-ld produces shorter
HPWL for 15 out of 16 testcases. In addition, RePlAce-
ldds shows further improvement of solution quality with
the addition of dynamic step size adaptation. Albeit with
increased runtime, RePlAce-ldds appears to effectively invest
its effort (i.e., iterations, runtime), and achieve the best solution

15We see little benefit by applying local density to testcases without large
movable macros. Thus, “-ld” option is only applied to MMS benchmark suites.

16However, with local density function, we do not find a uniform trend
with accelerated convergence rate for global placement. The local density
calculation takes on average ∼ 1.8% of the total runtime.

quality on average, by incorporating both the -ld and -ds
techniques. Together, RePlAce-ds and RePlAce-ldds produce
the best solution quality for 15 out of 16 testcases. As our
results show merits to both constraint-oriented local smoothing
and dynamic step size adaptation, as well as their explicit
combination, we leave to future practitioners the question of
how to best apply and orchestrate these techniques.

Last, Figure 11 shows a breakdown of #iterations across
the component global placement procedures for (a) RePlAce-
ds with the ISPD-2005 and ISPD-2006 benchmark suites, and
(b) RePlAce-ds and (c) RePlAce-ldds with the MMS bench-
mark suite, aggregated over all reported testcases. (Note that
for any given testcase, runtime will be roughly proportional
to #iterations.) In the figure, tGP indicates trial placement;
mGP indicates macro and standard-cell placement; and cGP
indicates standard-cell only placement. With dynamic step
size adaptation, approximately 17-22% of iterations (i.e., of
runtimes) are additionally consumed by the tGP procedure.

Fig. 11: Runtime breakdown (#iterations) aggregated over all
reported testcases in the ISPD-2005 and ISPD-2006 bench-
mark suites for (a) RePlAce-ds, and in the MMS benchmark
suite for (b) RePlAce-ds and (c) RePlAce-ldds. Here, tGP,
mGP, and cGP respectively denote trial placement, macro and
standard cell placement, and standard cell-only placement.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

TABLE IV: Statistics for ISPD-2005 [32], ISPD-2006 [33], and MMS [43] benchmark suites.
Circuits # Objects # Standard # Nets Target ISPD Macros MMS Macros

Cells Density (%) #Movable #Fixed #Movable #Fixed
ADAPTEC1 211447 210904 221142 100 0 543 63 480
ADAPTEC2 2255023 254457 266009 100 0 566 127 439
ADAPTEC3 2451650 450927 466758 100 0 723 58 665
ADAPTEC4 2496045 494716 515951 100 0 1329 69 1260
BIGBLUE1 2278164 277604 284479 100 0 560 32 528
BIGBLUE2 2557866 534782 577235 100 0 23084 959 22125
BIGBLUE3 21096812 1093034 1123170 100 2485 1293 2549 1229
BIGBLUE4 22177353 2169183 2229886 100 0 8170 199 7970
ADAPTEC5 2843128 842482 867798 50 0 646 76 570
NEWBLUE1 2330474 330137 338901 80 64 337 64 337
NEWBLUE2 2441516 436516 465219 90 3723 1277 3748 1252
NEWBLUE3 2494011 482833 552199 80 0 11178 51 11127
NEWBLUE4 2646139 642717 637051 50 0 3422 81 3341
NEWBLUE5 21233058 1228177 1284251 50 0 4881 91 4790
NEWBLUE6 21255039 1248150 1288443 80 0 6889 74 6815
NEWBLUE7 22507954 2481372 2636820 80 0 26582 161 26421

TABLE V: (Scaled†) HPWL (×106) and runtime (minutes) comparison of best known, RePlAce-ld, RePlAce-ds and RePlAce-
ldds on ISPD and MMS benchmarks. Best known ISPD results are cited from Tables II and V of Nonsmooth placer [46]
and Tables II and V of ePlace [28]. Best known MMS results are cited from Table II of ePlace-MS [29]. sHPWL is HPWL
scaled by placement density overflow. Runtime with “*” indicates cited results, using Intel Core processors at 2.4GHz [46], or
2.67GHz [28]. Our runtime is reported using Intel Xeon processors at 2.6GHz. All cited and reported results use NTUplace3 [6]
as the detailed placer.

Circuits
ISPD-2005, ISPD-2006 MMS

Best known [28] [46] RePlAce-ds Best known [29] RePlAce-ld RePlAce-ds RePlAce-ldds
HPWL CPU∗ HPWL CPU HPWL CPU∗ HPWL CPU HPWL CPU HPWL CPU

ADAPTEC1 74.20 13.13 73.01 14.18 66.82 5.47 65.17 5.30 65.32 15.34 64.98 19.08
ADAPTEC2 84.84 4.90 81.45 25.75 76.74 7.58 72.75 7.68 71.68 20.43 71.51 25.08
ADAPTEC3 194.07 26.13 190.45 50.88 161.55 27.23 154.18 23.22 151.34 62.81 151.42 69.15
ADAPTEC4 174.11 27.85 172.22 87.55 145.89 56.40 142.05 32.91 139.70 96.71 140.57 117.35
BIGBLUE1 90.98 6.25 89.05 23.78 86.29 7.82 85.79 8.15 86.03 23.85 85.04 28.23
BIGBLUE2 141.83 10.50 136.67 48.19 130.06 13.70 125.33 16.29 125.84 47.95 125.49 53.46
BIGBLUE3 306.94 27.29 298.61 112.98 284.39 72.98 270.17 73.83 282.42 165.23 280.31 183.76
BIGBLUE4 742.45 145.00 740.57 337.23 656.68 204.15 653.24 162.34 650.09 317.67 647.55 363.32

ADAPTEC5† 391.02 83.65 391.24 74.92 294.24 46.07 303.36 35.13 301.78 81.83 302.53 92.53
NEWBLUE1† 59.26 14.00 57.44 27.56 60.43 11.70 58.63 9.90 57.75 27.56 57.44 31.67
NEWBLUE2† 182.42 20.01 177.82 32.56 159.11 51.12 152.32 15.44 152.34 51.31 150.09 58.29
NEWBLUE3† 264.48 33.15 255.07 68.62 269.47 36.30 258.53 20.97 257.22 57.19 257.67 65.76
NEWBLUE4† 269.58 56.26 267.71 58.33 226.29 28.27 223.52 26.08 224.02 59.92 223.62 68.24
NEWBLUE5† 492.62 54.83 486.37 118.19 392.77 55.47 390.14 75.81 388.74 151.55 386.30 167.19
NEWBLUE6† 464.36 116.70 460.24 118.45 409.28 69.65 408.89 84.04 407.04 168.23 406.60 184.09
NEWBLUE7† 978.07 246.00 950.27 335.19 889.18 392.02 876.36 172.58 877.83 277.77 880.67 326.00

Avg. +0.00% 1.00× -2.00% 1.78× +0.00% 1.00× -2.25% 0.72× -2.43% 1.81× -2.73% 2.09×

C. Routability-Driven Placement

We validate RePlAce global routability-driven placement
using the DAC-2012 [39] and ICCAD-2012 [40] benchmark
suites. We compare our placement solutions to those of all
published results from leading-edge academic placers [7] [10]
[13] [23]. Parameters of the DAC-2012 and ICCAD-2012
benchmark suites are summarized in Table VI. The DAC-2012
and ICCAD-2012 benchmark suites do not include movable
macros, but contain .shapes and .route files that respectively
describe the component shapes for non-rectangular nodes and
routing-related information (e.g., the number of routing tracks
per each metal layer, routing blockages, etc.).

Experimental results are summarized in Table VII and
Table VIII. For all testcases, we set the target density as 90%.17

We report scaled HPWL (sHPWL) and routing congestion
(RC) as evaluated by the official global router NCTU-GR [25]
[48] and contest evaluation scripts [39] [40]. In the DAC-
2012 and ICCAD-2012 benchmark suites, routing congestion

17In our work, we apply the uniform 90% target density, based on expe-
rience, to balance wirelength and congestion from a initial global placement
perspective, and we keep using the same value without per-benchmark tuning.

is described using the “ACE(X)” metric, which is the averaged
congestion of the top X% tile edges. Then, peak weighted
congestion (PWC) and Routing Congestion (RC) are obtained
by Equations (14) and (15), where ki = 1. Equation (16)
defines the final evaluation metric, i.e., scaled HPWL. Each
unit of RC in excess of 100 results in a 3% sHPWL penalty.

PWC =
Σi=0.5,1,2,5ki ·ACE(i)

Σki
(14)

RC = max(100,PWC) (15)
sHPWL = HPWL× (1+0.03× (RC−100)) (16)

Compared to all published results, RePlAce achieves
smaller sHPWL for all testcases (10 and eight testcases from
DAC-2012 and ICCAD-2012, respectively). RePlAce achieves
on average 9.80% and 9.60% sHPWL reduction over best
DAC-2012 and ICCAD-2012 contest results, respectively; and
on average 8.50% to 9.59% scaled HPWL reduction over the
leading previous academic placers.18 In our flow as shown

18To match the reporting convention in Table V, the improvement over
previous best known DAC-2012 and ICCAD-2012 results (with those previous
best known results set to be 1.00×) would be -7.93% and -6.66%, respectively.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

in Figure 9, 16 out of 18 testcases automatically bypass the
post-placement optimization stage, and only two testcases
(SUPERBLUE2 and SUPERBLUE10) invoke post-placement
optimization, with sHPWL improved by 2.74% and 7.47%
respectively. These indicate that our routability-driven global
placement effectively reduces overall routing congestion, with
an average RC value similar to all published leading-edge
results.

To show the impact of the detailed placer, we have
conducted additional experiments with the DAC-2012 and
ICCAD-2012 benchmark suites by employing a routability-
driven detailed placer, NTUplace4h [13], shown as “RePlAce-r
alt” in Table VII and Table VIII. Interestingly, all 18 testcases
end up with worse sHPWL than “RePlAce-r”, and 11 out of 18
testcases have worse routing congestion. However, “RePlAce-r
alt” is still 7.09% to 8.47% better on average compared to the
leading previous academic placers. This provides confirmation
of the effectiveness of our routability optimization during the
global placement.

D. State of Academic vs. Industry Placement

Finally, to help assess remaining gaps between our work
and “the real world,” and to demonstrate tractability of such
assessment, we apply RePlAce to standard-cell placement
using a foundry 28LP 8-track cell library after applying format
conversion scripts as in [18]. We place-and-route four design
blocks (JPEG, VGA, LEON3MP and NETCARD from [34]
[49]), with up to 300K instances.19 In our experiments,
RePlAce achieves 2.4% reduction of routed wirelength on
average with similar number (<100) of DRVs, and consumes
less than 2× runtime compared to a commercial place-and-
route tool. Our internal benchmarking studies indicate that in
an ideal case, use of an 8-core configuration (i.e., 8-thread,
to match the commercial tool) should speed up the cGP (and
mGP) stage by up to 89%. With this speedup using 8 cores,
the overall runtime (including the single-threaded detailed
placement performed by NTUplace3 [6]) would be reduced by
up to 59.2%. We believe that these results show encouraging
progress toward bridging remaining gaps between academic
and real-world placement.

VII. CONCLUSION

We have described RePlAce, a single engine for global
placement that, without testcase-specific tuning, achieves sig-
nificant improvements over best known HPWL results on
standard-cell and mixed-size benchmark suites, as well as
improvements over best known sHPWL on global routability-
driven placement benchmark suites. We propose a new den-
sity function that comprehends local over-demand for area
resources, leading to constraint-oriented local smoothing at

19We push placement utilization up to the limit of a 2016 release of a
leading commercial tool, i.e., until post-detailed routing design rule violations
(DRVs) appear without exceeding 100 DRVs in the commercial tool. The
number of post-route DRVs for the commercial tool (C), and RePlAce (R)
are (C, R) = (5, 3), (40, 12), (79, 68), (34, 81) for JPEG, VGA, LEON3MP
and NETCARD, respectively. Due to license restrictions, we are unable to
more specifically identify the commercial tool.

a per-bin granularity. Our dynamic step size adaptation de-
termines step size and allocates optimization effort to sig-
nificantly improve solution quality without undue runtime
impact. We achieve an average HPWL reduction of 2.00% over
best known ISPD-2005 and ISPD-2006 benchmark results,
and of 2.73% over best known MMS benchmark results. For
routability-driven placement, we achieve better sHPWL on all
testcases from the DAC-2012 and ICCAD-2012 benchmark
suites, with on average 8.50% to 9.59% scaled HPWL reduc-
tion compared to the leading previous academic placers. To
our knowledge, RePlAce is the first work to achieve overall
superior solution quality across the ISPD-2005, ISPD-2006,
MMS, DAC-2012 and ICCAD-2012 benchmarks with a single
global placement engine. We leave to our future work several
enhancements: (i) timing-driven global placement; (ii) parallel
and/or distributed implementation for runtime improvement;
(iii) a more systematic approach for dynamic step size adap-
tation with reduced runtime; (iv) integration of constraint-
driven local smoothing with routability-driven placement; and
(v) techniques to accelerate convergence.

ACKNOWLEDGMENTS

RePlAce [50] source code is available at
http://vlsicad.ucsd.edu/RePlAce/. We thank the authors
of [30] for providing access to, and useful discussions
of, their implementation. We also thank the authors of
NTUplace3 [6] and NTUplace4h [13] for providing the
executables that we use as our detailed placer.

REFERENCES

[1] C. J. Alpert, Z. Li, M. D. Moffitt, G.-J. Nam, J. A. Roy and G. Tellez,
”What Makes a Design Difficult to Route”, Proc. ISPD, 2010, pp. 7-12.

[2] C. J. Alpert, Z. Li, G.-J. Nam, C. N. Sze, N. Viswanathan and S. I.
Ward, “Placement: Hot or Not?”, Proc. ICCAD, 2012, pp. 283-290.

[3] I. S. Bustany, D. Chinnery, J. R. Shinnerl and V. Yutsis, “ISPD 2015
Benchmarks with Fence Regions and Routing Blockages for Detailed-
Routing-Driven Placement”, Proc. ISPD, 2015, pp. 157-164.

[4] U. Brenner and A. Rohe, “An Effective Congestion-Driven Placement
Framework”, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 22, no. 4, pp. 387-394, Apr. 2003.

[5] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen and Y.-W. Chang,
“A High-Quality Mixed-Size Analytical Placer Considering Preplaced
Blocks and Density Constraints”, Proc. ICCAD, 2006, pp. 187-192.

[6] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen and Y.-W. Chang,
“NTUplace3: An Analytical Placer for Large-Scale Mixed-Size Designs
with Preplaced Blocks and Density Constraints”, IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 27, no. 7, pp. 1228-1240, Jul.
2008.

[7] J. Cong, G. Luo, K. Tsota and B. Xiao, “Optimizing Routability in
Large-scale Mixed-size Placement”, Proc. ASP-DAC, 2013, pp. 441-446.

[8] N. K. Darav, A. Kennings, A. F. Tabrizi, D. Westwick and L. Behjat,
“Eh?Placer: A High-Performance Modern Technology-Driven Placer”,
ACM Trans. on DAES 21(3) (2016), article 37.

[9] X. He, T. Huang, L. Xiao, H. Tian and E. F. Y. Young, “Ripple: A
Robust and Effective Routability-Driven Placer”, IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 32, no. 10, pp. 1546-1556, Oct.
2013.

[10] X. He, Y. Wang, Y. Guo and E. F. Y. Young, “Ripple 2.0: Improved
Movement of Cells in Routability-Driven Placement”, ACM Trans. on
DAES 22(1) (2016), article 10.

[11] M.-K. Hsu and Y.-W. Chang, “Unified Analytical Global Placement for
Large-Scale Mixed-Size Circuit Designs”, IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 31, no. 9, pp. 1366-1378, Sep. 2012.

[12] M. K. Hsu, Y.-W. Chang and V. Balabanov, “TSV-aware Analytical
Placement for 3D IC Designs”, Proc. DAC, 2011, pp. 664-669.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

TABLE VI: Statistics for DAC-2012 [39] and ICCAD-2012 [40] benchmark suites.
Circuits # Objects # Movable # Terminal # Nets # Pins Util Density

Cells Nodes (%) (%)
SUPERBLUE1 849441 765102 52627 822744 2861188 69 35
SUPERBLUE2 1014029 921273 59312 990899 3228345 76 28
SUPERBLUE3 919911 833370 55033 898001 3110509 73 42
SUPERBLUE4 600220 521466 40550 567607 1884008 70 44
SUPERBLUE5 772457 677416 74365 786999 2500306 77 37
SUPERBLUE6 1014209 919093 65316 1006629 3401199 73 43
SUPERBLUE7 1364958 1271887 66995 1340418 4935083 76 58
SUPERBLUE9 846678 789064 37574 833808 2898853 73 47

SUPERBLUE10 1202665 1045874 96251 1158784 3894138 70 32
SUPERBLUE11 954686 859771 67303 935731 3071940 79 40
SUPERBLUE12 1293433 1278084 8953 1293436 4774069 56 44
SUPERBLUE14 634555 567840 44743 619815 2049691 72 50
SUPERBLUE16 698741 680450 419 697458 2280931 69 46
SUPERBLUE18 483452 442405 25063 468918 1864306 67 47
SUPERBLUE19 522775 506097 286 511685 1714351 78 49

TABLE VII: Scaled HPWL (sHPWL) (×107), routing congestion (RC) and CPU runtime (minutes) comparison of RePlAce
to leading published results for DAC-2012 [39] global routability-driven placement. sHPWL is HPWL scaled with routing
congestion penalty. (Each unit of RC in excess of 100 results in a 3% sHPWL penalty.) Published results are cited from best
contest results at DAC-2012 [39], and newest versions of mPL [7]. Missing benchmark results are indicated by N/A. “RePlAce-
r alt” uses NTUplace4h as its detailed placer. Global routing is performed by the official global router NCTU-GR [48], and
sHPWL is evaluated by the official DAC-2012 contest evaluation scripts. To match the reporting convention in Table V, the
improvement of RePlAce-r over previous best known DAC-2012 results (with those previous best known results set to be
1.00×) would be -7.93%. Runtime with “*” indicates cited results, using Intel Core [7] or Xeon [39] processors at 2.27GHz.
Our runtime is reported using Intel Xeon processors at 2.6GHz. Only SUPERBLUE2 invokes post-placement optimization,
with sHPWL improvement of 2.74% (sHPWL from 62.58 to 60.87).

Circuits best in contest [39] mPL12 [7] RePlAce-r RePlAce-r alt
sHPWL RC CPU∗ sHPWL RC CPU∗ sHPWL RC CPU sHPWL RC CPU

SUPERBLUE2 62.40 100.68 291 61.40 N/A 312 60.87 100.96 155 60.96 101.00 160
SUPERBLUE3 36.20 100.56 236 36.00 N/A 215 30.68 100.78 62 32.08 102.10 64
SUPERBLUE6 34.25 100.32 186 34.00 N/A 285 31.20 100.51 41 31.40 100.52 43
SUPERBLUE7 39.85 100.71 433 39.50 N/A 287 37.28 101.22 47 37.36 101.07 51
SUPERBLUE9 25.46 102.48 219 25.00 N/A 212 21.28 100.78 42 21.39 100.81 44
SUPERBLUE11 34.22 100.02 254 34.00 N/A 245 33.69 102.07 52 34.20 102.35 54
SUPERBLUE12 31.19 100.02 581 30.40 N/A 320 26.52 102.43 75 27.49 103.02 80
SUPERBLUE14 22.56 100.07 156 24.50 N/A 126 21.21 100.65 16 21.32 100.68 18
SUPERBLUE16 27.39 101.38 46 27.40 N/A 157 25.27 101.87 42 25.51 101.94 44
SUPERBLUE19 15.31 100.61 140 15.10 N/A 165 14.27 100.71 29 14.65 101.55 30

Avg. +9.80% 0.995× 5.31× +9.59% N/A 5.00× +0.00% 1.000× 1.00× +1.54% 1.003× 1.05×

[13] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, S. Chou, T.-H. Lin, T.-C. Chen
and Y.-W. Chang, “NTUplace4h: A Novel Routability-Driven Placement
Algorithm for Hierarchical Mixed-Size Circuit Designs”, IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 12, pp. 1914-
1927, Dec. 2014.

[14] C.-C. Huang, C.-H. Chiou, K.-H. Tseng and Y.-W. Chang, “Detailed-
Routing-Driven Analytical Standard-Cell Placement”, Proc. ASP-DAC,
2015, pp. 378-383.

[15] J. Hu, A. B. Kahng, S. Kang, M. Kim and I. Markov, “Sensitivity-Guided
Metaheuristics for Accurate Discrete Gate Sizing”, Proc. ICCAD, 2012,
pp. 233-239.

[16] J. Hu, J. A. Roy and I. L. Markov, “Completing High-Quality Global
Routes”, Proc. ISPD, 2010, pp. 35-41.

[17] Z.-W. Jiang, B.-Y. Su and Y.-W. Chang, “Routability-Driven Analytical
Placement by Net Overlapping Removal for Large-Scale Mixed-Size
Designs”, Proc. DAC, 2008, pp. 167-172.

[18] A. B. Kahng, H. Lee and J. Li, “Horizontal Benchmark Extension
for Improved Assessment of Physical CAD Research”, Proc. GLSVLSI,
2014, pp. 27-32.

[19] A. B. Kahng, J. Lienig, I. L. Markov and J. Hu, VLSI Physical Design:
From Graph Partitioning to Timing Closure, Springer, 2011.

[20] A. B. Kahng and Q. Wang, “Implementation and Extensibility of an
Analytic Placer”, IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 24, no. 5, pp. 734-747, May 2005.

[21] M.-C. Kim, J. Hu, D. J. Lee and I. L. Markov, “A SimPLR method for
Routability-Driven Placement”, Proc. ICCAD, 2011, pp. 67-73.

[22] M.-C. Kim and I. L. Markov, “ComPLx: An Competitive Primal-dual
Lagrange Optimization for Global Placement”, Proc. DAC, 2012, pp.
747-752.

[23] T. Lin and C. Chu, “POLAR 2.0: An Effective Routability-Driven
Placer”, Proc. DAC, 2014, pp. 1-6.

[24] W.-H. Liu, C.-K. Koh and Y.-L. Li, “Optimization of Placement Solu-
tions for Routability”, Proc. DAC, 2013, pp. 1-9.

[25] W.-H. Liu, W.-C. Kao, Y.-L. Li and K.-Y. Chao, “Multi-Threaded
Collision-Aware Global Routing with Bounded-Length Maze Routing”,
Proc. DAC, 2010, pp. 200-205.

[26] W.-H. Liu, W.-C. Kao, Y.-L. Li and K.-Y. Chao, “NCTU-GR 2.0:
Multithreaded Collision-Aware Global Routing with Bounded-Length
Maze Routing”, IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 32, no. 5, pp. 709-722, May 2013.

[27] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng and
C.-K. Cheng, “ePlace: Electrostatics Based Placement Using Nesterov’s
Method”, Proc. DAC, 2014, pp. 1-6.

[28] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng and C.-
K. Cheng, “ePlace: Electrostatics-Based Placement Using Fast Fourier
Transform and Nesterov’s Method”, ACM Trans. on DAES 20(2) (2015),
article 17.

[29] J. Lu, H. Zhang, P. Chen H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha, D.
Huang, Y. Luo, C.-C. Teng and C.-K. Cheng, “ePlace-MS: Electrostatics-
Based Placement for Mixed-Size Circuits”, IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 5, pp. 685-698, May 2015.

[30] J. Lu, H. Zhuang, I. Kang and C.-K. Cheng, “ePlace-3D: Electrostatics
based Placement for 3D-ICs”, Proc. ISPD, 2016, pp. 11-18.

[31] I. L. Markov, J. Hu and M.-C. Kim, “Progress and Challenges in VLSI
Placement Research”, Proc. IEEE vol. 103, no. 11, pp. 1985-2003, Nov.
2015.

[32] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter and M. Yildiz, “The
ISPD 2005 Placement Contest and Benchmark Suite”, Proc. ISPD, 2005,
pp. 216-220.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2859220, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

14

TABLE VIII: Scaled HPWL (sHPWL) (×107), routing congestion (RC) and CPU runtime (minutes) comparison of RePlAce
to leading published results for ICCAD-2012 [40] global routability-driven placement. sHPWL is HPWL scaled with routing
congestion penalty. (Each unit of RC in excess of 100 results in a 3% sHPWL penalty.) Published results are cited from best
contest results at ICCAD-2012 [40], and newest versions of POLAR 2.0 [23], NTUplace4h [13] and Ripple 2.0 [10] (listed in
chronological order). “RePlAce-r alt” uses NTUplace4h as its detailed placer. Global routing is performed by the official global
router NCTU-GR [48], and sHPWL is evaluated by the official ICCAD-2012 contest evaluation scripts. To match the reporting
convention in Table V, the improvement of RePlAce-r over previous best known ICCAD-2012 results (with those previous
best known results set to be 1.00×) would be -6.66%. Runtime with “*” indicates cited results, using Intel Xeon processors
at 2.0GHz [13], 2.67GHz [23] [40], or 3.4GHz [10]. Our runtime is reported using Intel Xeon processors at 2.6GHz. Only
SUPERBLUE10 invokes post-placement optimization, with sHPWL improvement of 7.47% (sHPWL from 63.12 to 58.41).

Circuits best in contest [40] Polar 2.0 [23] NTUplace4h [13]
sHPWL RC CPU∗ sHPWL RC CPU∗ sHPWL RC CPU∗

SUPERBLUE1 27.89 100.97 39 28.20 101.15 27 28.13 101.15 84
SUPERBLUE3 34.39 100.56 45 33.30 101.06 29 34.59 101.06 92
SUPERBLUE4 22.69 101.32 143 22.40 100.96 21 23.05 100.96 65
SUPERBLUE5 34.86 100.38 180 35.10 100.70 18 35.56 100.70 86
SUPERBLUE7 41.37 100.71 250 40.70 100.82 31 39.82 100.82 166
SUPERBLUE10 61.11 101.91 439 62.10 101.11 49 61.67 101.11 153
SUPERBLUE16 28.33 101.55 100 27.20 101.30 17 27.94 101.30 63
SUPERBLUE18 17.09 103.15 77 16.90 101.47 21 16.36 101.47 55

Avg. +9.60% 1.003× 2.63× +8.50% 1.000× 0.50× +9.06% 1.007× 1.81×

Circuits Ripple 2.0 [10] RePlAce-r RePlAce-r alt
sHPWL RC CPU∗ sHPWL RC CPU sHPWL RC CPU

SUPERBLUE1 28.48 100.74 51 25.89 100.43 43 27.84 102.67 46
SUPERBLUE3 34.07 100.22 64 30.78 100.85 52 30.91 100.84 45
SUPERBLUE4 22.51 100.30 32 20.94 100.52 35 20.99 100.53 36
SUPERBLUE5 35.38 100.41 70 33.37 100.93 64 33.40 100.82 66
SUPERBLUE7 40.76 100.79 100 37.10 100.76 44 37.42 100.84 48
SUPERBLUE10 60.44 100.57 90 58.41 101.32 189 58.79 101.53 191
SUPERBLUE16 27.95 100.71 46 25.46 101.35 45 25.64 101.34 48
SUPERBLUE18 17.07 100.78 35 14.60 102.10 36 14.70 102.16 38

Avg. +9.29% 0.995× 1.15× +0.00% 1.000× 1.00× +1.41% 1.003× 1.04×

[33] G.-J. Nam, “ISPD 2006 Placement Contest: Benchmark Suite and
Results”, Proc. ISPD, 2006, pp. 167.

[34] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke and C. Zhuo,
“The ISPD-2012 Discrete Cell Sizing Contest and benchmark suite”,
Proc. ISPD, 2012, pp. 161-164.

[35] M. Pan and C. Chu, ”FastRoute: a Step to Integrate Global Routing into
Placement”, Proc. ICCAD, 2006, pp. 464-471.

[36] V. Satopää, J. Albrecht, D. Irwin and B. Raghavan, “Finding a “Kneedle”
and a Haystack: Detecting Knee Points in System Behavior”, Proc.
ICDCS, 2011, pp. 166-171.

[37] P. Spindler and F. M. Johannes, “Fast and Accurate Routing Demand
Estimation for Efficient Routability-Driven Placement”, Proc. DATE,
2007, pp. 1226-1231.

[38] N. Viswanathan, C. J. Alpert, C. N. Sze, Z. Li, G.-J. Nam and J. A. Roy,
”The ISPD-2011 Routability-Driven Placement Contest and Benchmark
Suite”, Proc. ISPD, 2011, pp. 141-146.

[39] N. Viswanathan, C. J. Alpert, C. N. Sze, Z. Li and Y. Wei, “The DAC
2012 Routability-driven Placement Contest and Benchmark Suite”, Proc.
DAC, 2012, pp. 774-782,

[40] N. Viswanathan, C. J. Alpert, C. N. Sze, Z. Li and Y. Wei, “ICCAD-2012
CAD Contest in Design Hierarchy Aware Routability-Driven Placement
and Benchmark Suite”, Proc. ICCAD, 2012, pp. 345-348,

[41] M. Wang, X. Yang, K. Eguro and M. Sarrafzadeh, “Multicenter Con-
gestion Estimation and Minimization During Placement”, Proc. ISPD,
2000, pp. 147-152.

[42] J. Westra, C. Bartels and P. Groeneveld, “Probabilistic Congestion
Prediction”, Proc. ISPD, 2004, pp. 204-209.

[43] J. Z. Yan, N. Viswanathan and C. Chu, “Handling Complexities in
Modern Large-Scale Mixed-Size Placement”, Proc. DAC, 2009, pp. 436-
441.

[44] X. Yang, R. Kastner and M. Sarrafzadeh, “Congestion Estimation Dur-
ing Top-Down Placement”, IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 21, no. 1, pp. 72-80, Jan. 2002.

[45] V. Yutsis, I. S. Bustany, D. Chinnery, J. R. Shinnerl and W.-H. Liu,
“ISPD 2014 benchmarks with sub-45nm technology rules for detailed-
routing-driven placement”, Proc. ISPD, 2014, pp. 161-168.

[46] W. Zhu, J. Chen, Z. Peng and G. Fan, “Nonsmooth Optimization Method
for VLSI Global Placement”, IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 34, no. 4, pp. 642-655, Apr. 2015.

[47] General Purpose FFT Package, http://www.kurims.kyoto-u.ac.jp/∼ooura/
fft.html.

[48] NCTU-GR, http://people.cs.nctu.edu.tw/∼whliu/NCTU-GR.htm.
[49] OpenCores, http://opencores.org/projects/.
[50] RePlAce, http://vlsicad.ucsd.edu/RePlAce/.

Chung-Kuan Cheng, Photograph and biography not available
at the time of publication.

Andrew B. Kahng, Photograph and biography not available
at the time of publication.

Ilgweon Kang received the B.S. and M.S. degrees in
electrical and electronic engineering from the Yonsei
University, Seoul, Korea, in 2006 and 2008, respec-
tively. He is currently pursuing the Ph.D. degree
at the University of California at San Diego, La
Jolla. He was with the Research and Development
Division, SK Hynix, Icheon, Korea, from 2008 to
2012. His current research interests include VLSI
layout design automation and optimization, e.g., IC
floorplanning, placement, DFM methodologies, etc.

Lutong Wang received the B.S. degree in mi-
croelectronics from Tsinghua University, Beijing,
China, in 2014 and the M.S. degree in electrical
and computer engineering from the University of
California at San Diego, La Jolla, in 2016. He is
currently pursuing the Ph.D. degree at the University
of California at San Diego, La Jolla. His research
interests include physical design implementation and
DFM methodologies.

