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Abstract—In advanced technology nodes, correctly choosing
among available back-end-of-line (BEOL) stack options is impor-
tant to meet stringent design quality of results requirements.
However, it is nontrivial to evaluate BEOL stack options since the
routing outcomes highly depend on the input design (e.g., netlist,
placement, etc.). In this paper, we propose a systematic frame-
work to measure routing capacity of a BEOL stack as well as
inherent capability of routers. Based on our experimental results,
we observe consistent results across mesh-like placement and
placements from various placers. Also, our proposed framework
enables new insights into important questions regarding BEOL
stack options. Using our framework, we further study the relation
between the routing hotspot size and routing failure empirically.
Lastly, we present an analytical study based on exponentiation
of a Markov transition matrix about the impact of design size
on routing failure.

Index Terms—Back-end-of-line stack options, benchmark,
placement, routability, routing, transition matrix.

I. INTRODUCTION

PARTICULARLY in advanced technology nodes, intercon-
nects significantly affect the power, area, and performance

of integrated circuits. Requirements of high integration den-
sity and performance, as well as patterning technology, design
rules, and cost implications, make it imperative to determine
good back-end-of-line (BEOL) stack options for sub-22-nm
technology nodes. Yet, to our knowledge, there has been no
systematic framework to measure the routing capacity of a
BEOL stack for a given router, or for a combination of router
and placement, particularly in a tool-agnostic, intrinsic sense.
Moreover, measurement of the routing capacity is nontrivial
due to the gear ratio of metal pitches, via blockages and many
other factors. A common methodology to measure the routing
capacity of a given BEOL stack will simply perform routing
on instances of placed designs (e.g., placement solutions for
different netlists, possibly with different utilization, and aspect
ratio configurations). However, the routing outcomes will
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highly depend on the input netlist, placement solution qual-
ity and technology (e.g., standard cell architecture and track
height, BEOL design rules). It has not been previously contem-
plated in the literature that design-technology co-optimization
might be supportable with a “quasi-universal” routing capacity
rank-ordering of alternative BEOL stacks, where this rank-
ordering is, empirically, general across different netlists and
placement solutions.1

In this paper, we propose a general framework to measure
the routing capacity of a BEOL stack with a given router.
Based on the gradual perturbation of an initial placement
of a netlist topology (e.g., a 2-D mesh), our framework is
able to obtain a ranking of alternative BEOL stacks accord-
ing to routing capacities, for a given router. Quite interest-
ingly, we further experimentally confirm that the measurement
(i.e., routing capacity ranking of BEOL stacks) based on
mesh-like placements is largely consistent with those based
on placements generated by a commercial P&R tool within a
standard SP&R flow (see Section IV-D below). Moreover, our
results appear, empirically, to be robust across various mesh-
like placements with different characteristics (e.g., types of
cells, track height, number of instances, row utilization, pin
alignment, and 1-D/2-D routing).

Our proposed framework enables new insights into important
questions about BEOL stack options, e.g., “In terms of routing
capacity, one P100 (100 nm pitch) layer is equivalent to how
many P150 layers, for a given router?” and “On which layer(s)
is it most valuable to enable bidirectional routing?” We also
study the relationship between routing hotspot size,2 placement
quality (i.e., indicated by the amount of perturbation away from
the optimal mesh-like placement), and the number of post-route
design rule violations (#DRVs). Last, we present an analytical
study based on exponentiation of a Markov transition matrix to
demonstrate how, with the same placement density and quality,
a larger design is more likely to experience routing failures,
an observation which is also supported by our empirical data.
Our contributions are summarized as follows.

1) We propose a systematic framework to assess routing
capacity of BEOL stack options for a given router.

2) We propose a novel metric, K, that intuitively corre-
sponds to a systematic worsening of placement quality
for a given standard-cell netlist—achieved by iteratively
swapping pairs of adjacently placed cell instances—
starting from a given initial placement.

1In this paper, we use the term “quasi-universal” to refer to rank-orderings
of BEOL stacks that are empirically highly correlated (e.g., correlation coeffi-
cient > 0.9) across different designs and/or design enablements (e.g., different
netlists, placers, and routers).

2Following common usage in the IC and EDA fields, we use the term
“hotspot” to refer to a local window of the layout that is spatially co-located
with routing failure.
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3) By sweeping K, we determine Kth as the minimum K
that results in routing failure.3 We apply Kth in our
routing capacity assessment.

4) We empirically demonstrate a quasi-universal rank-
ordering of Kth for BEOL stack routing capacity across
placements generated by a commercial P&R tool and
simple mesh-like placements.

5) Our framework can be used to evaluate routers.
6) We study the size and placement quality of a routing

hotspot and their correlation with #DRVs after routing.
7) We perform both an analytical study and an experimen-

tal study to demonstrate how, with the same placement
density and quality, a larger design is more vulnerable
to routing failures.

8) We suggest the possibility of a technology-dependent
sweetspot of block size (trading off overheads of design
decomposition against overheads of routing difficulty).

9) A utility that implements the above framework for
arbitrary enablement (.lef, .lib) is available at [39].

The mesh-like placements in our framework cannot per-
fectly represent real-life placements which comprehend tim-
ing, signal power integrity, and other conflicting objectives and
constraints that circuit designers face. However, rather than
generating testcases that mimic real designs, our approach
enables systematic generation of benchmarks with gradu-
ally increasing routing difficulty. This enables a principled
rank-ordering of the respective routing capacities of different
BEOL stacks, which to our knowledge cannot be straight-
forwardly achieved using specific real design instances. This
paper empirically shows that dependence on specific design
instances may be avoidable, which would help resolve a long-
standing controversy regarding the utility of artificial versus
real testcases. In sum, our results suggest that the mesh-like
placements may be usable as proxies of real-life placements,
at least to rank-order BEOL stack options in terms of routabil-
ity. The routability-oriented rank-ordering can help reduce the
number of configurations that must be considered as product
teams address the BEOL stack optimization problem.

II. RELATED WORKS

In this section, we review the previous literature on
1) benchmark construction and 2) routability estimation.

A. Benchmark Studies

1) Artificial Benchmarks: To evaluate the performance of
VLSI optimizations, a number of artificial benchmark gener-
ation approaches have been proposed in previous literature.
These include circ/gen [14], gnl [30] and the work of [7]. In
the interests of realism, circ/gen [14] measures characteristics
(e.g., circuit size, number of IOs, path depth, and fanout dis-
tribution) of existing circuits and uses these characteristics as
constraints in its synthetic circuit generation. As an extension
to graph-based benchmark generation (which only considers
graph-based properties such as rent parameter [20] and net
degree distribution), gnl [30] considers functional information,
in that it uses a specified component library and avoids com-
binational loops. Darnauer and Dai [7] proposed a method for
generating random circuits for routability measurement. The
input parameters of their benchmark generation include design
sizes, rent parameter, and number of IOs.

3In this paper, if a routed design has #DRVs > 150, we consider it as a
design with routing failure.

Several methodologies produce instances with known opti-
mal solutions, which enables quantification of a heuristic
optimization’s suboptimality. For placement optimization, the
PEKO benchmark generator [5] provides a netlist (with user-
specified number of placeable modules and net degree dis-
tribution) as well as a constructive placement solution with
known minimum wirelength. Attributed to Boese in [10],
PEKU [6] further improves the realism by including nonlo-
cal nets, while generating instances with known upper bounds
on optimal wirelength. In a similar spirit, there are also gate-
sizing-oriented benchmarks with known optimal solutions.
The work of [15] generates benchmark circuits (called eye-
charts) of arbitrary size along with a method to compute
their optimal solutions using dynamic programming. The work
of [16] generates more realistic benchmarks (by comprehend-
ing path depth and fanin/fanout distributions) with known
optimal solutions for gate sizing problems.

2) Realistic Benchmarks: Artificial benchmarks with
known optimal solutions can help quantify suboptimality of
heuristics for NP-hard optimizations. However, their artifi-
cial nature has lessened their impact among practitioners.
Certain methodologies quantify suboptimality of heuristics
for hard VLSI optimizations based on transformations of
existing realistic benchmarks. Hagen et al. [10] proposed a
general measure of heuristic performance based on the notion
of scaling suboptimality. The authors construct scaled VLSI
instances from initial VLSI instances (e.g., by replicating a
netlist or connecting together multiple copies of a netlist) and
use these to obtain quantified lower bounds on the suboptimal-
ity of VLSI layout heuristics such as placers and partitioners.
Kahng and Reda [17] proposed zero-change transformations to
quantify the suboptimality of existing placers. Given a netlist
and its placement from a placer, their zero-change transfor-
mations alter the given netlist while keeping its half-perimeter
wire length (HPWL) constant, resulting in zero change to
achievable HPWL. They showed that placers fail to attain their
original HPWL results, with large deviations, on the altered
netlists. Their work can provide suboptimality information
with respect to a given arbitrary (real) benchmark.

However, none of these previous benchmarks and bench-
mark generation methodologies helps to evaluate technology
itself, or the capability of tools in a technology-dependent man-
ner. It would be valuable if semiconductor product companies,
foundries, and equipment makers could measure the related
routing capacities of alternative BEOL stacks for given combi-
nations of, e.g., placement and routing tools. In this paper, we
propose benchmarks and methodologies to measure the routing
capacity of BEOL stacks for a given router.

B. Routability Studies

1) BEOL Stack Options: Only a few works in previous
literature study the design enablement (i.e., BEOL stack options)
in terms of routability. Dong et al. [8] proposed an analytical
model to estimate the required number of metal layers for a
design, based on assumed wirelength distribution and metal
layer utilization efficiency. However, realistic constraints such
as timing and design rules are not considered in their model.
Also, the model does not comprehend the router’s behavior.
A recent work [4] develops machine learning-based models to
predict whether a placement solution is routable for a given
number of metal layers; based on this, an early stage estimation
of the minimum required number of metal layer can be obtained.

2) Estimation of Congestion: Many works perform early
estimation of routability and congestion of a placement or
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TABLE I
DESCRIPTION OF NOTATIONS USED IN THIS PAPER

even a netlist. The works [11], [19], [21], [25] simply use aca-
demic global routers (e.g., BFG-R [13] or FastRoute 2.0 [24])
to estimate routing congestion. Reference [3] uses pin
density and constructs Steiner trees (where multipin nets
are split into many two-pin nets) to estimate congestion.
Liu and Marek-Sadowska [22] estimated wirelength and rout-
ing congestion of a netlist based on net range (i.e., circuit depth
spanned by all terminals of a net) and structural pin density
(i.e., the ratio between total number of pins of a net versus
the total pin count in the design). Spindler and Johannes [29]
modeled the routing demand by assuming a rectangular uni-
form wire density per net. Yang et al. [35] used Rent exponent
to estimate wirelength distribution of a region, based on which
they predict congestion. Taghavi et al. [32] proposed a local
congestion metric that indicates the routing difficulty for each
cell in the design library. Wei et al. [33] estimated both global
and local routing congestions. Kahng and Xu [18] compre-
hended blockage effects in their congestion estimation model.
The congestion estimation in [23] comprehends layer directive
and scenic constraints to limit the routing layer usage and the
maximum wirelength of timing-critical nets. Westra et al. [34]
studied the actual behavior of a routing engine. Their results
show that the number of nets with detour (e.g., nets with many
bends) is negligible. They also observe that the ratio between
L-shapes and Z-shapes of two-pin nets is roughly a constant
value. Based on these observations, they propose a fast con-
gestion prediction model. Saeedi et al. [27] also assumes no
wires are detoured and proposes an analytical model based
on probabilities of v-bend paths to estimate congestion. Based
on the global routing information, Zhou et al. [36] proposed
a learning-based model to estimate routing congestion after
detailed routing. Based on pin density and congestion map
from global routing, Qi et al. [26] applied multivariate adaptive
regression splines to predict routing congestion.

III. ASSESSMENT OF DESIGN ENABLEMENTS

In this section, we describe our framework to measure
routing capacity of BEOL stack options as well as inherent
capability of routers and, potentially, placers. We summarize
the notations used in this paper in Table I. The basic idea of our
framework (Fig. 1) is as follows. We start with (an instance of)
a placed netlist that is straightforward to route, i.e., the routing
can be completed by the routing tool with no DRVs. We then

Fig. 1. Our overall goal is to determine whether it is possible to find a quasi-
universal ranking of BEOL stacks in terms of routing capacity, and potentially
a ranking of place-and-route tools as well.

gradually perturb the placement by randomly swapping the
placed locations of adjacently placed cell instances (i.e., a
neighbor-swap operation) to increase the routing difficulty.4

After a number of neighbor-swaps, the routing becomes infea-
sible (i.e., the number of post-route DRVs exceeds a predefined
threshold). We use the number of neighbor-swaps that leads
to routing failures as an indicator of the routing capacity of
the given BEOL stack, as well as of the capability of the
router. For example, we may obtain a ranking of different
BEOL stacks in terms of their routing capacities, based on the
corresponding values of this indicator.

Our use of the neighbor-swap operator is intuitively rea-
sonable for placement perturbation, for at least two reasons.
First, as observed by Alpert et al. [1], with high utilizations
the placement problem reduces to the ordering problem since
there is not much whitespace in which cells can move. Second,
a neighbor-swap is an intuitive quantum of suboptimality or
error in placement; in this light, starting from a mesh (Rent
p = 0.5) that is perfectly placed, and then executing ran-
dom neighbor-swaps, intuitively allows us to dial up particular
amounts of suboptimality in placement.

The key benefit of our approach is its ability to system-
atically evolve a placement from routable to unroutable; this
enables evaluation and ranking of BEOL stacks in terms of
their routing capacities. It is more challenging to perform
such a ranking with real designs, due to larger instance counts
(making high-volume experimentation more time-consuming),
nonuniformity of topology, and nonuniformity of cell sizes.
Further, with real designs, the transition from routable to
unroutable is often much more abrupt than with the mesh-
based netlists and initial placements that we use. This being
said, Section IV-D below confirms the robustness of our anal-
yses and conclusions in multiple ways, including with real
netlists and nonuniform (real) cell sizes.

A. Our Goal

Given a netlist Dh, we place it using the placer Pk. We then
apply our proposed methodology (described below) to mea-
sure routing capacities of BEOL stacks {B1, B2, . . . , Bi} for
a given router Rj. We denote the ranking of BEOL stacks in

terms of routing capacity as �
Rj
B (Dh, Pk). Our goal is to deter-

mine a quasi-universal ranking of BEOL stacks (in terms of
routing capacity) for a given router, that is, �

Rj
B (Dh, Pk) =

�
Rj
B (Dh′ , Pk′) ∀h, k, h′, k′. In this paper, we measure the

4We use a discrete uniform distribution to randomly select a cell, and then
a random neighbor of that cell, for swapping. Thus, it is possible for one
random swap to revert a previous random swap.
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(a)

(b)

Fig. 2. (a) Illustration of mesh-like placement and perturbations by two
neighbor-swap moves. (b) Connections for 2-pin cells and 3-pin cells.

routing capacity of 73 BEOL stack options with various Dh,
Pk, and Rj. Detailed information of the 73 BEOL stack options
is given in Section IV-A.

B. Mesh-Like Placement

We first study routing capacity of BEOL stacks based on
mesh-like placements. We create a netlist having a square
mesh topology (with Mr rows indexed by p and Mc columns
indexed by q) using a given 2-input or 3-input cell. In the
netlist, we connect the output pin of the gate instance with
index (p, q) to input pins of the gate instances with indices
(p+1, q), (p, q+1), and (p+1, q+1).5 We then place the netlist
(according to its mesh topology) uniformly in a Wdie × Hdie
region, where Hdie = Mr · Hgate and Wdie = Mc · Wgate/U.
Here, Wgate and Hgate are, respectively, the width and height
of the given cell, and U is the predefined placement (row)
utilization. We note that all gate instances have the same size.

The initial mesh-like placement, where all gate instances
are connected only to their physically adjacent gate instances,
is easy to route. We gradually increase the routing difficulty
by iteratively swapping adjacently placed gate instances. In
each move, we randomly select a gate instance and then
swap it with one of its (up to four) adjacently placed gate
instances (up, down, left, and right) to swap. Fig. 2(a) shows
an example with two neighbor-swap moves. Such swap moves
will cause routing congestion by progressively worsening the
quality (as measured by the sum of embedded edge lengths)
of the placement, and eventually lead to a placement that is
infeasible to route. We denote the minimum K (number of
neighbor-swaps normalized to the total instance count) that
leads to an unroutable placement as the K threshold (Kth).
The value of Kth is an indicator of the routing capacity of the
given BEOL stack in the context of a (given) router, where a
BEOL stack with larger Kth has higher routing capacity.6 In
our experiments, we perform multiple trials of the iterative
swapping process for a given initial placement and report the
average observed Kth as a measure of routing capacity. Since

5For a netlist composed of 2-input cells, we only connect the output of
(p, q) to the inputs of (p+ 1, q) and (p, q+ 1).

6The difference between K and Kth is that K is an indicator that represents
suboptimality of a placement, while Kth is the minimum K value that results
in routing failure. Thus, K can serve as a metric to evaluate the quality of a
placement itself in terms of routability (i.e., K indicates the routing difficulty
increase with respect to a mesh-like placement); and Kth can be used as a
metric to evaluate the routing capacity of a BEOL stack option, or the routing
capabilities of a router for a given BEOL stack option and initial placement.
This is because Kth shows how much a BEOL stack option (or a router)
can sustain (i.e., while still being able to support successfully routing of the
design) in terms of suboptimality of the given placement (K).

Fig. 3. Illustration of the neighbor cell relation in a placement generated
by a commercial P&R tool, for the cases of one and adjacent row and two
adjacent rows. Brown cells that have line segments drawn to each blue cell
are considered as the neighbor cells of that blue cell. Left: cells with uniform
(bloated) widths. Right: cells with nonuniform (nonbloated) widths.

the Kth measurement requires a number of routing trials, we
reduce runtime by first performing a coarse-grained search
to narrow down the search space, and then performing a
fine-grained search within the reduced search space.7 The
mesh-like placement can be implemented with various differ-
ent configurations, such as number of total instances, standard
cell types, row utilizations, pin alignments, etc. To support the
robustness of outcomes and conclusions, we have performed
our basic experiment with various mesh-like placements with
different configurations. Details are given in Section IV-A.

C. Cell Width-Regularized Placement

We also measure routing capacity based on placements gen-
erated by a commercial P&R tool, using cell width-regularized
netlists. Our primary experiment uses bloated standard cells to
help maintain placement legality as neighbor-swaps are per-
formed.8 Of course, a width-regularized netlist is generally not
produced in the course of a usual SP&R flow. To generate a
width-regularized netlist, we modify the cell LEF [37] such
that all gate instances in the netlist have the same size. Here,
we simply increase the width of cells without changing the
layouts within the cells. We then use a commercial placer to
place the netlist with bloated cells. Similar to the method for
generating mesh-like placements, we iteratively swap locations
of random pairs of adjacently placed cells until the placement
becomes unroutable. Again, we use Kth to indicate the rout-
ing capacity of the BEOL stack. In this flow, cell bloating
avoids placement legalization after each neighbor-swap move.
Here, the definition of adjacently placed gate instances within
the same row is trivial. However, unlike the placement of
the square mesh topology, gate instances are not necessarily
aligned vertically. In our experiments, for a given gate instance,
we define its neighbors in the two (or, one) adjacent rows as
the gate instances with the minimum center-to-center distances
in horizontal direction (see Fig. 3, left). As with the exper-
imental flow for mesh-like placements, we perform multiple
runs of the iterative swapping for a given initial placement
and report the average Kth in our experiments. Supplementary
studies with two OpenCores [38] designs and nonuniform (non-
bloated, i.e., with original and nonregularized widths) cells (see
Fig. 3, right) are also reported in Section IV-D.

7In our experiments with 5K-instance designs, the runtime for routing is
∼10 min (single-threaded) on average. For most cases, the runtime for Kth
measurement is less than 3 h with a single core, which is a small cost for
crucial technology insight. It is possible to perform binary search or other
search techniques to further reduce the runtime.

8Here, we use cell bloating to make cell widths uniform (i.e., regularized),
thus enabling neighbor-swaps without legalization. (When instances have dif-
ferent widths, placement legalization is required to ensure a legal placement
after a sequence of neighbor-swaps; hence, the perturbation of the initial place-
ment is not as gradual.) We note that to evaluate routing in terms of pin acces-
sibility, we can use smaller, but still regularized, cell widths for all instances.
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TABLE II
TESTCASES

D. Extension to Evaluations of Placers and Routers

Similar to evaluating the routing capacity of a BEOL stack
option based on Kth, we can also use the metric Kth to evaluate
capabilities of placers and routers with respect to routability
for a given BEOL stack option. For example, a placement
that results in a higher Kth value for a given BEOL stack and
router is more likely to be routing-friendly. Also, with respect
to a given BEOL stack option and a placement, the router
that achieves a higher Kth value is more likely to have better
performance in terms of routability.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the setup and results of three
basic types of experiments.

1) Expt1: Measurement of routing capacity of various
BEOL stack options for mesh-like placements and cell
width-regularized placements with two routers.

2) Expt2: Comparison of different BEOL stack options that
have the same routing resources to derive new under-
standing of equivalences (e.g., between different-pitch
layers) that can guide the choice of BEOL stack option.

3) Expt3: Further verification of the robustness of the rank-
ordering of BEOL stack options.

A. Experimental Setup

1) Testcases: In our experiments, we use mesh-like place-
ments, and the AES encryption core and the enhanced VGA
core from OpenCores [38]. Information about testcases is sum-
marized in Table II. For AES, the first utilization number
is used for cell width-regularized placement; the second is
used for nonbloated-cell-based placement. We use 8-track (8T)
standard cells from a 28 nm LP foundry library.9 Mesh-like
placements (e.g., AOI-mesh, or a mesh with AOI cells) are
implemented as described in Section III. Since routing hotspots
occur locally, intuitively we do not need to use very large
designs to measure the routing capacity of a BEOL stack.10

Thus, we use 5K-instance designs. Indeed, we experimentally
confirm below in Section IV-D that the number of instances
(i.e., design size) does not change the rank-ordering of BEOL
stacks. Also, using small designs help to reduce the runtime.
In our experiments, the runtime for routing on the 5K-instance
design is ∼10 min (single-threaded) on average. The AES and
VGA designs are synthesized with Synopsys Design Compiler
K-2015.06-SP4 [40] and implemented with bloated combina-
tional cells (e.g., AOI21, AOI22, BUF, INV, NAND2, NOR2,
OAI12, OAI211, and OAI22) and one FF cell. For 8T cells, the
post-bloating width of combinational cells is eight placement
sites, and the flip-flop cell width, which we leave unchanged,

9Below, in Section IV-D, we show that results obtained using 12-track (12T)
cells are consistent with those obtained using 8T cells.

10Routing difficulty increases as design size increases, as quantitatively
analyzed in Section V-B and as empirically demonstrated in Section IV-D
[Fig. 9(d)]. Increased routing difficulty in larger designs reflects a higher
probability of (local) routing hotspots, for a given placement quality. Indeed,
the small designs used in this paper can be viewed as sampled routing hotspots
within larger design; see Section V. From our studies, we currently believe
that standard-cell netlist complexity of 15K instances (e.g., AES) or greater
can afford useful conclusions regarding relative capacities of BEOL stacks.

is 23 placement sites. The average and standard deviation of
width increase are 2.22 and 1.67 placement sites, respectively,
for combinational cell masters.

2) BEOL Stack Options: In the 28 nm LP foundry library
that we use, the minimum metal width and the minimum metal
pitch (i.e., width + spacing) are 0.05 μm and 0.1 μm, respec-
tively. We introduce 1×, 1.5×11 and 2× metal layers based on
these minimum width and pitch values. The width (resp. pitch)
values for 1.5× and 2× metal layers are 0.074 μm (0.15 μm)
and 0.1 μm (0.2 μm), respectively. We generate 73 BEOL
stack options according to the following rules.

1) The M1 and M2 pitch values are 0.136 μm and 0.1 μm,
respectively, in the 28 nm library that we use.

2) The total numbers of metal layers = 5, 6, 7, 8.
3) Different numbers of 1×, 1.5×, and 2× layers are tried.
4) From M2 upward, the pitch of a given metal layer is

always greater than or equal to the pitches of all lower
metal layers. In other words, pitch values increase mono-
tonically from lower to upper metal layers.12 Also, a
BEOL stack option is determined according to its num-
bers of 1×, 1.5×, and 2× layers. For example, if #1×,
#1.5×, and #2× layers are, respectively, 4, 1, and 1,
then the pitch values of M1, M2, M3, M4, M5, and M6
are, respectively, 0.136 μm, 0.1 μm, 0.1 μm, 0.1 μm,
0.15 μm, and 0.2 μm.

Table III summarizes the numbers of 1×, 1.5×, and 2×
layers, and the routing resource (R), of all the BEOL stacks
that we study, with total numbers of metal layers equal to five,
six, seven, and eight. There are 27 possible combinations of
BEOL stack options for eight metal layers. We ignore BEOL
stack options with layer number larger than eight (in Table III,
such BEOL stack options are marked with NA). The routing
resource (i.e., sum of track densities per unit channel height)
of each combination of (BEOL stack option, total # layers)
is calculated as

∑
b(1/[pitchb]), where b is a metal layer, and

pitchb is the pitch value of b.13 Note that we assume routing is
unidirectional in all of our experiments, except for the experi-
ments where we specifically study the impact of bidirectional
routing (Sections IV-C and IV-D below).

B. Expt1: Routing Capacity of Various BEOL Stack Options

In this section, we show our measurement of routing capac-
ity for various BEOL stack options. We first demonstrate
positive correlation between the number of #DRVs and K,
and show how we characterize Kth. As detailed in Section III
above, in our experiments we use Kth as an indicator of the
routing capacity of a BEOL stack option (or, the routing capa-
bility of a router). We then show Kth versus routing resource

11We derive 1.5× metal and via layers from the existing 1× and 2× layers
in 28 nm LEF since there is no 1.5× layer in the 28 nm BEOL LEF that
we use. The 1.5× metal width and spacing are 0.074 μm and 0.076 μm,
respectively. We use the same EOL extension spacing as seen for the 1×
layer; for the minimum length rule, we use the mean of the 1× and 2× layers’
values. The minimum enclosure area rule is set to that of a 2× layer. We set
via spacing such that two vias cannot be placed immediately (i.e., horizontally
or vertically) next to each other, but can be placed diagonally adjacent.

12The M1 layer is an exception to this monotonicity, since it is used for pins
or internal routing within standard cells, and its pitch follows the contacted
poly pitch.

13We use the sum-of-track-densities measure to achieve a design-
independent, normalized measure for comparison of BEOL stack options.
Thus, our definition of routing resource is a normalized routing resource.
This measure reflects current usage in industry [28]. We observe that using
total track length or total number of routing tracks as a measure of routing
capacity would require knowledge of layout dimensions, thus introducing a
design-dependence.
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TABLE III
BEOL STACK OPTIONS

Idx all = 8 all = 7 all = 6 all = 5

(number of available routing tracks) of various BEOL stack
options. Our experimental results suggest that routing resource
may not be the only factor to determine routing capacity of
a BEOL stack option. In light of this, we further study the
ranking of BEOL stack options with the same routing resource
based on our framework using mesh-like placement and cell
width-regularized placement, with two commercial routers.

1) Characterization of Kth: We measure #DRVs to char-
acterize the Kth. Fig. 4(a) shows #DRVs versus K with the
AOI-mesh design. For each K value, we run three trials with
different random sequences of neighbor-swaps to avoid noise
from tools and randomness of the perturbation process.14 Each
dot corresponds to a pair of a perturbation and a BEOL option.
The average values of the sets of three runs are marked by
the solid traces. We increase K until the average #DRVs >
150. We then record the current K as Kth. In Fig. 4(a), Kth
values are zero, four, 11, and >14 for BEOL0_6, BEOL1_6,
BEOL2_6, and BEOL3_6. The naming convention is {BEOL
stack option index}_{total #layers}. A higher Kth value for
a particular BEOL stack means that the BEOL stack has a
higher routing capacity to sustain more perturbed placements
(i.e., placements with more hotspots).

2) Kth Versus Routing Resources: We study the ranking
of BEOL stack options with respect to Kth. Fig. 4(b) shows
Kth values versus routing resource values, measured using three
commercial routers (R1, R2, and R3). The figure shows a positive
correlation between Kth and routing resource values for all the
three routers.15 We find that there are several points which
show a reversed correlation between Kth and routing resources,
i.e., a smaller routing resource point shows a higher Kth. Also,
there are points which have different Kth values even though
the corresponding routing resource values are the same. This

14In our experiments, Kth varies by ≤ 2 across any set of three trials.
15To avoid unnecessary flow complications, we report post-route #DRVs

out of the routing tool used. We separately verify that routing tools R1, R2,
and R3 report the same number of DRVs for a given routed DEF file.

(a) (b)

Fig. 4. (a) Number of DRVs versus K. This result is from a mesh-like
placement implemented with 5000 AOI21 cells, and row utilization of 90%.
(b) Kth values versus routing resource with three commercial routers (R1, R2,
and R3). The results are extracted using mesh-like placements implemented
with 5000 AOI21 cells and 90% row utilization. Each dot corresponds to
a BEOL stack option. We observe that BEOL stack options with the same
routing resource can show different Kth values.

result suggests that “counting routing tracks” may not be an
accurate estimation of the routing capacity of a BEOL stack
option.16 Indeed, intuition tells us that measurement of the
routing capacity is nontrivial, since gear ratio of metal pitches
and via blockages affect routability. Additionally, there could be
effects of “height” of layers—lower metal layers would be more
valuable than upper metal layers due to vias. Simply counting
routing tracks does not account for such impacts on routability.

3) BEOL Stack Options With Same Routing Resource:
Since we notice that routing resource may not be a good indi-
cator of routing capacity, we further analyze different BEOL
stack options that have the same routing resource value. As
R3 is an older release of a commercial router, in subsequent
experiments below we focus on two routers, i.e., R1 and R2,
which are essentially the latest releases available of two com-
mercial routers. We group BEOL stack options according to
routing resources, i.e., all BEOL stack options in each group
have the same routing resource value that corresponds to the
group. Fig. 5 and Table IV show Kth values for different
BEOL stack options with the same routing resource values.
The results of six types of implementations, e.g., 1) mesh-
like placement with R1 (m-R1); 2) mesh-like placement with
R2 (m-R2); 3) cell width-regularized placement with placer P1
and router R1 (r-P1-R1); 4) placer P2 and router R1 (r-P2-R1);
5) placer P1 and router R2 (r-P1-R2); and 6) placer P2 and
router R2 (r-P2-R2), are reported in the figure.17

Fig. 6 shows the correlations of the rank-ordering of BEOL
stack options (in increasing order of Kth) between mesh-like
placement results and cell width-regularized placement results.
We observe that the rank-ordering based on mesh-like place-
ment and the rank-ordering based on cell width-regularized
placements are well-correlated. The correlation coefficients of
the rank-orderings of BEOL stacks between the six types of
implementations are all larger than 0.9.

We summarize our observations from the results as follows.
1) BEOL stack options with the same routing resources

show different Kth values. This suggests that the routing
resource alone is not sufficient to quantify the routing
capacity of given BEOL stack options.

16Nevertheless, total track count has been used (and is still used) as
a routing capacity metric in industry, and it is an important factor that
decides business and technology strategic plans for patterning technology and
equipment manufacturing [28].

17For cell width-regularized placements, placements change depending on
BEOL stack options, since BEOL stack options affect placements due to
in-built trial routing mechanisms inside the placement tool.
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(a) (b) (c) (d)

Fig. 5. Kth values for (a) Group 1, (b) Group 2, (c) Group 3, and (d) Group 4 of BEOL stack options in Table IV. The results based on six types of
implementations are reported: 1) mesh-like placement with R1 (m-R1); 2) mesh-like placement with R2 (m-R2); 3) cell width-regularized placement with
placer P1 and router R1 (r-P1-R1); 4) placer P2 and router R1 (r-P2-R1); 5) placer P1 and router R2 (r-P1-R2); and 6) placer P2 and router R2 (r-P2-R2).

TABLE IV
Kth VALUES FOR GROUPS OF BEOL STACK OPTIONS HAVING THE SAME

ROUTING RESOURCE. THE ROUTING RESOURCE (T ) VALUE FOR EACH

GROUP IS SHOWN IN THE FIRST COLUMN. Kth VALUES ARE MEASURED

BASED ON SIX TYPES OF IMPLEMENTATIONS: 1) m-R1; 2) r-P1-R1;
3) r-P2-R1; 4) m-R2; 5) r-P1-R2; AND 6) r-P2-R2

2) The correlation of the rank-orderings of BEOL stack
options between cases m-R1 and m-R2 is high (i.e., cor-
relation coefficient > 0.9). This suggests at least a
possibility that the rank-ordering of BEOL stack options
is quasi-universal across different routers for the same
placements. (From our studies, we conjecture that such
quasi-universality holds regardless of the tool that pro-
duced the given placement.)

3) As shown in Fig. 6, the correlation of the rank-orderings
of BEOL stack options between cases m-R1, r-P1-R1,
and r-P2-R1 is high (i.e., all correlation coefficients >
0.9). Also, the correlation of the rank-orderings of BEOL
stack options between cases m-R2, r-P1-R2, and r-P2-R2
is high (i.e., all correlation coefficients > 0.9). This
could indicate that at least in this routability-centric eval-
uation where other constraints such as timing, power and
noise are not considered, the folklore gap between artifi-
cial and real benchmarks—in terms of ability to provide
insight into CAD heuristic performance—may not be as
significant as previously believed.

C. Expt2: Comparison of BEOL Stack Options

In this section, we seek to understand further the implications
of the results from our framework, and which BEOL stack
options can better apply a given amount of routing resource.
Here, we regard the BEOL stack having the larger Kth among
all of the candidate BEOL stacks as the better BEOL stack
option. We study the following.

(a) (b)

Fig. 6. Correlations of the rank-ordering of BEOL stack options (in increasing
order of Kth) between mesh-like placement results and cell width-regularized
placement results: (a) R1 and (b) R2.

1) Correlation Between Kth and Maximum Achievable
Utilization: To study the correlation between Kth and area,
we run P&R with different initial row utilization values and
see if there are DRVs after routing. We implement cell width-
regularized placements (AES) with bloated cells and sweep the
initial row utilization from 45% to 75%.18 The BEOL stack
options in Group 1 are tested with unidirectional routing, placer
P1 and router R1 (r-P1-R1 in Fig. 5). We record the maxi-
mum achievable utilization values such that #DRVs < 150.
The placements are perturbed with K = 20 to make routing
harder. Fig. 7 shows the Kth values obtained from cell width-
regularized placements (r-P1-R1) in blue bars (left y-axis) and
the corresponding maximum achievable (initial) row utilization
values in orange trace (right y-axis). We observe that a BEOL
stack option with a higher Kth achieves a higher maximum
achievable utilization.

2) Analyses of BEOL Stack Options With Same Kth: Fig. 8
shows the results of m-R1 mesh-like placements for subsets of
BEOL stack options with same Kth values. Fig. 8(a)–(d) shows
the results of BEOL stack options with Kth = 4–6, Kth =
9–11, Kth = 14–16, and Kth = 19–21, respectively. Since Kth
indicates routing capacity, BEOL stack options with the same
Kth values are regarded as equivalent with respect to routing
capacity. Example findings from m-R1 results are as follows.

1) The added or incremental routing capacity of a layer
depends on the height of the layer according to the m-R1
results, as one would expect. For example, in Fig. 8(a),

18For row utilizations > 75%, the results do not change since bloated
standard cells introduce porosities in placements that we cannot control using
initial row utilizations. For example, for 8T cell masters, the average width
increase is 2.22 placement sites, which means that every cell effectively has
∼2 placement sites of embedded, i.e., internal and whitespace.
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Fig. 7. Kth values obtained from cell width-regularized placements versus
maximum achievable (initial) row utilization values. The BEOL stack options
in Group 1 are tested using the AES design and R1.

(a) (b)

(c) (d)

Fig. 8. Results of m-R1, showing for subsets of BEOL stack options that
have the same Kth values. (a) BEOL stack options with Kth = 4–6; (b)
BEOL stack options with Kth = 9–11; (c) BEOL stack options with Kth =
14–16; and (d) BEOL stack options with Kth = 19–21.

one 1× layer on M3 is equivalent to two 2× layer on M5
and M6 (BEOL12_6 and BEOL13_5); or, one 1× layer
on M3 and one 2× layer on M5 are equivalent to two
1.5× layers on M3 and M5 (BEOL8_6 and BEOL17_6).
In Fig. 8(b), two 1× layers on M3 and M4 are equivalent
to four 1.5× layers on M3, M4, M5, and M6 (BEOL2_5
and BEOL21_7).

2) We also observe that if the numbers of 1× and 1.5× layers
are sufficient, higher metal layers do not significantly
affect routing capacity. In Fig. 8(b), if the number of 1
× and 1.5× layers ≥ 6, additional layers do not help.

3) Last, the data indicate that using more 1× layers reduces
the required total number of layers for a given routing
capacity. Obviously, added dimensions to our study, such
as signal integrity performance and/or power delivery,
are directions for follow-on research.

3) 1-D Versus 2-D Routing: We study the question “On
which layer(s) is it most valuable to enable bidirectional rout-
ing?” Here, we use 1-D routing to indicate unidirectional routing
where routing in the nonpreferred direction is not allowed. We
use 2-D routing to indicate bidirectional routing where routing
segments in both horizontal and vertical directions can exist on
the given layer. We use the same metal pitch for both directions
for 2-D routing. We compare Kth of various BEOL options
with six 1× 1-D layers (e.g., BEOL4_6) and one 2-D routing
layer enabled using the m-R1 implementation. Table V shows
the layer configuration of each BEOL option and the corre-
sponding Kth value. We note that the routing resource of each
option in this experiment is the same since all metal layers are
1× layers. However, each option has different horizontal and
vertical resources. 1-D, 2-D-B, and 2-D-D have three horizontal
routing layers and two vertical routing layers. And, 2-D-A and
2-D-C have two horizontal routing layers and three vertical

TABLE V
Kth RESULTS OF VARIOUS 2-D OPTIONS

1-D1-D 1-D 1-D

1-D 1-D
1-D
1-D

1-D
1-D

1-D
1-D 1-D 1-D

1-D 1-D
1-D

1-D
2-D2-D

2-D
2-D
2-D

2-D
2-D

2-D

routing layers. All BEOL options with one 2-D routing layer
show smaller Kth compared to the 1-D BEOL option. This may
indicate that having two 1-D layers is always better than having
one 2-D layer. Even though the routing resource (measured
by pure track count) is the same in both cases, routing rules
can limit the utilization of the given routing resource in a 2-D
routing layer.

By comparing between 2-D options, we observe that it
may be more valuable to enable 2-D routing on lower metal
layers; this can be seen by comparing 2-D-B versus 2-D-D,
and 2-D-A versus 2-D-C. We may also infer that horizontal
routing resources are more valuable than vertical resources,
for our nearly square blocks comparing 2-D-A versus 2-D-B,
or 2-D-C versus 2-D-D. That is, BEOL options with more
horizontal routing resources show higher Kth values (i.e., better
routing capacity). We do not claim to be the first to observe
such correlations, and our results are each specific to a given
enablement. This being said, ours is the first framework for
quantifying such assessments in a general, design-agnostic
manner.

D. Expt3: Robustness of the Rank-Ordering of BEOL
Stack Options

In this section, we show further experimental results to
support the robustness of our observed quasi-universal rank-
ordering of BEOL stack options across mesh-like placements
and cell width-regularized placements, and two routers.

1) Various Mesh-Like Placement Configurations: We per-
form experiments for various mesh-like placements imple-
mented with different configurations. Note that the baseline
is the AOI-mesh in Table II. The different configurations for
mesh-like placements are summarized as follows.

1) Different total numbers of instances (#instances = 5000,
15 000, and 20 000).

2) Different standard cell types (NAND2 and AOI21).
3) Different row utilizations (70%, 80%, and 90%).
4) Different pin alignment.
5) Different routing direction (1-D versus 2-D).
6) Different standard cells (8T and 12T).
Fig. 9 shows Kth values for five BEOL stack options,

measured with various mesh-like placements with different
configurations. The five BEOL stack options have the same
routing resources, T = 40 (Group 1 in Section IV-B). Our
findings from the results are as follows.

1) Fig. 9(a) shows the results of two mesh-like placements
implemented with AOI21 (three-input cell) and NAND2
(two-input cell). The width values of AOI21 and
NAND2 are 1.088 μm and 0.952 μm, respectively.
The NAND2 case has higher Kth values. This is because
the NAND2-based implementation has a lower net degree.
However, the rank-ordering of BEOL stack options with
respect to Kth values is the same as that of the AOI21
case.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Kth of mesh-like placements with various configurations. (a) Different
cell types: AOI21 (three-input cell) and NAND2 (two-input cell); (b) different
row utilizations: 70%, 80%, and 90%; (c) different pin alignments; (d) different
total number of instances: 5000, 15 000, and 20 000; (e) unidirectional routing
(1-D) and bidirectional routing (2-D); and (f) 8T and 12T cells.

2) Fig. 9(b) shows the results of m-R1 with different row
utilizations, 70%, 80%, and 90%.19 As expected, place-
ments with lower utilizations achieve higher Kth. The
rank-ordering of BEOL stack options with respect to Kth
is the same for 80% and 90% cases, but there is a devi-
ation for 70% case. (i.e., reversed ordering of BEOL3_5
and BEOL2_6).

3) Fig. 9(c) shows the impact of different pin alignments. In
a mesh-like placement, pins of standard cells are aligned
unless we apply different offsets for each placement
row. For the “misaligned” case, we add a different offset
for each placement row to create vertical misalignment
between cells in adjacent placement rows. The result
suggests that the impact of pin alignment is negligible.

4) Fig. 9(d) shows the impact of different numbers of
instances, i.e., 5000, 15 000, and 20 000. As the num-
ber of instances increases, Kth slightly decreases. This
result suggests that design size is related to Kth (see
Section VI, below). Kth of BEOL18_6 is relatively lower
in the 20 000 case, and this results in a different rank-
ordering of BEOL stack options. However, except for
BEOL18_6, the rank-ordering of BEOL stack options
remains consistent.

5) Fig. 9(e) shows results of 1-D and 2-D routing, where
bidirectional routing is enabled for all metal layers for
the 2-D routing. (Note that this is a different experiment
from 1-D versus 2-D routing in Section IV-C, where
bidirectional routing is enabled for only one layer.) Kth is
higher with 2-D routing, which suggests routing capacity
of 2-D routing is larger. The rank-ordering of BEOL stack
options remains the same.

6) Fig. 9(f) shows results of 8T and 12T cells. In this
experiment, we use 8T and 12T cells with the same

19We observe that in the implementation with 70% utilization, due to rounding
effects the space between two horizontally adjacent cells can vary (three or four
placement sites). Such cases, where cells are not distributed uniformly, lead to
more DRVs in the router outcome. To make a mesh-like placement with uniform
distribution, the row utilizations we can implement are limited to w/(w+ s),
where w and s are the cell width and the spacing between cells, respectively.
Since w, s are integer (in placement sites) and since w = 8 in the experiment,
we can implement row utilizations 72.7%, 80.0%, and 88.9% with s = 3, 2, 1,
respectively. To implement an exact 70% utilization, we would need to use
multiple values of s, which would result in nonuniform mesh-like placements.
Therefore, we use 72.7%, 80.0%, and 88.9% utilizations for 70%, 80%, and
90%, respectively, to make a fairer comparison among the three cases.

(a) (b)

Fig. 10. Kth values of the BEOL stack options in Group 1 for various cases:
1) a placement implemented with bloated (i.e., width-regularized) 8T cells
and unidirectional routing (R-8T-B1-1-D); 2) a placement implemented with
bloated cells of a wider width, and unidirectional routing (R-8T-B2-1-D);
3) a placement implemented with bloated cells and bidirectional routing
(R-8T-B1-2-D); and 4) a placement with bloated 12T cells (R-12T-B1-1-D).
The results are obtained (a) using (P1 and R1) and (b) using (P2 and R2).

width. Kth is higher with 12T cell, as one would expect.
The rank-ordering of BEOL2_6 and BEOL3_5 is reversed
with 12T cell, as compared to other configurations.20

In summary, the rank-ordering of the BEOL stack options
with respect to Kth does not change significantly across different
mesh-like placements with a wide range of configurations.
However, there do exist deviations across configurations (track
height, utilization, and routing directionality), indicating that
no one configuration perfectly represents all other possible
configurations. Thus, it would be important for designers to
select a proper set of configurations to reflect the properties of
target designs.

2) Cell Width-Regularized Placement With Standard Cell
Variants: We perform similar experiments with cell width-
regularized placements using more standard cell variants,21 for
five BEOL stack options in Group 1. Fig. 10 shows Kth values
of the BEOL stack options in Group 1 for four cases among the
combinations of two heights (8T and 12T), two widths (eight
and ten placement sites) and two routing directions (1-D and
2-D). That is: 1) 8T bloated cells (width= 8) and unidirectional
routing (R-8T-B1-1-D); 2) 8T bloated cells of a wider width
(width = 10), and unidirectional routing (R-8T-B2-1-D); 3) 8T
bloated cells (width = 8) and bidirectional routing (R-8T-B1-2-
D); and 4) 12T bloated 12T cells (width= 8) and unidirectional
routing (R-12T-B1-1-D). The results are obtained using P1 and
R1 [Fig. 10(a)], and P2 and R2 [Fig. 10(b)].22 We observe
that R-8T-B2-1-D shows higher Kth values than R-8T-B1-1-D.
This may be due to larger spacings between pins in the R-
8T-B2-1-D case. We also see that R-8T-B1-2-D shows slightly
higher Kth values when compared to R-8T-B1-1-D. We observe
that using 12T cells increases routing capacities dramatically
(R-12T-B1-1-D).

3) Placements Generated by Standard SP&R Flow: We
support our observed routing capacity-based ordering of
BEOL stacks using placements that are implemented by a
standard SP&R flow. Specifically, we implement placements
for the AES and VGA testcases using a full set of library cells
without any modification, and apply our neighbor-swap-based
approach. As noted in footnote 8, to maintain placement legal-
ity we check whitespace after every neighbor-swap operation
between placement rows. If the row utilization with the updated

20We have applied multiple runs (>10) to further remove noise due to
randomness of the sequence of neighbor-swaps, but have found results to
be consistent (i.e., stable).

21We use 8T and 12T cells bloated to have different widths (i.e., eight
and ten placement sites). The width of an FF is 23 placement sites.

22We could not obtain results for case 4) with P2 and R2, since R2 could
not produce DRV-clean results for K = 0 with 12T cells.



1468 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 7, JULY 2018

Fig. 11. Kth values of the BEOL stack options in Group 1 for AES
and VGA placements with nonbloated 8T cells (R-8T-NB-1-D-AES and
R-8T-NB-1-D-VGA). R-8T-B1-1-D-AES is shown for a reference. The results
are obtained using (P1 and R1).

Algorithm 1 Placement Perturbation
Input: an input placement, total number of instances N2, target K, target utilization
U, utilization margin M
Output: a perturbed placement

1: num_swap← 0
2: while num_swap < N2 · K do
3: cell← RandomlySelectCell
4: dir← RandomlySelectDirection
5: neighbor_cell← GetNeighborCell(cell, dir)
6: Swap cell, neighbor_cell
7: Update row utilization
8: num_swap← num_swap+ 1
9: if ((dir == north) || (dir == south)) && wcell 	= wneighbor_cell then

10: if row utilization > U +M for any row then
11: Swap cell, neighbor_cell (revert)
12: num_swap← num_swap− 1
13: end if
14: end if
15: end while

whitespace exceeds a predefined sum of initial row utilization
+ margin, we revert the neighbor-swap operation. For AES
and VGA, we use 50% and 45% for initial row utilization,
respectively, and we use 1% margin for both designs.

Algorithm 1 gives details of the procedure for perturbing
real-cell-based real placements. We initialize the number of
neighbor-swaps performed (num_swap) in line 1. We iteratively
perform neighbor-swaps until the total number of neighbor-
swaps reaches the target (calculated from the given N2 and K).
For a neighbor-swap, we randomly select target cell (cell) and
direction (dir) (north, south, east, and west) in lines 3 and 4.
This determines the neighbor cells of a cell (line 5). In line
6, the target cell and its neighbor cell are swapped, and row
utilizations are updated (line 7). We increment num_swap in
line 8. If the neighbor-swap is performed between rows and
the widths of the target cell and its neighbor cell are different
(line 9), we check that updated row utilizations do not exceed
a predefined limit (line 10). If this check fails, we revert the
neighbor-swap operation (lines 11 and 12).

The use of real cell widths leads to less-gradual perturbation
due to the effect of placement legalization before routing. The
resultsof thenonbloated-cell-based implementationareshownin
Fig. 11 (R-8T-NB-1-D-AES and R-8T-NB-1-D-VGA). R-8T-B1-
1-D-AES is given as a reference (R-8T-B1-1-D in Fig. 10). We see
that indeed, Kth values of R-8T-NB-1-D-AES and R-8T-NB-1-D-
VGA are dramatically smaller than those of R-8T-B1-1-D-AES.
Although our focus is on the rank-orderings of BEOL stack
routing capacities based on Kth, as opposed to the magnitudes
of Kth values, this experiment clearly shows a gap between cell
width-regularized placements and placements generated within
production SP&R flows. We emphasize that the AES-derived,
width-regularized testcase is a compromise between real and
synthetic, due to the cell bloating. And, further understanding
of the significance of the cell bloating used in our studies of
the PROBE methodology remains an important direction for

(a) (b)

Fig. 12. (a) Routed layout with two hotspots. DRVs are indicated by
white crosses. Other colors (green, pink, and orange) indicate metal layers.
Although each hotspot is perturbed by the same K (×S2, where S is the
dimension of the S×S hotspot), hotspot1 (S = 16) produces noticeably fewer
DRVs than hotspot2 (S = 33). (b) Contour map that indicates routability
for various (S, K) pairs. The solid line is the contour based on the average
number of DRVs, and the dotted line is the contour based on the maximum
number of DRVs in 10 trials per each (S, K) pair. Based on the contour
lines, the upper shaded regions show where routing fails.

future research. In terms of the rank-ordering, the result of R-
8T-NB-1-D-AES remains the same as the reference, while there
is a deviation (BEOL2_6) in the R-8T-NB-1-D-VGA case. This
data point may indicate that the rank-ordering has additional
dependencies on netlist structure and size.

V. ADDITIONAL STUDY OF ROUTING
HOTSPOT AND ROUTING FAILURE

The studies above focus on ranking of BEOL stack options
based on fixed-size designs and use of the Kth criterion as
an indicator of routing capacity. The Kth-based BEOL stack
ordering is shown empirically to be stable across a number
of factors—routing tool, netlist topology, utilization, porosity,
layer directionality, etc. Notably, Fig. 9(d) suggests that the
Kth-based stack ordering is independent from design size, even
as the Kth values themselves change with design size.

By necessity, our studies involve small netlists, which raises
the important question of how to extend insights to when designs
are large. In this section, we provide additional studies of: 1) the
size and placement quality of a routing hotspot and 2) the impact
of design size on routing failure. These provide context for the
preceding experimental results: 1) routing failure (in hotspots)
is a function of both hotspot size and placement suboptimality
(Kth) and 2) the observed change of Kth with design size
[Fig. 9(d)] matches the outcomes of a more quantitative analysis.

A. Routing Hotspots

Routing failure is caused by local routing hotspots in many
cases. However, not every routing hotspot contributes equally to
routing failure. Fig. 12(a) shows hotspots of two different sizes,
along with post-route DRVs (white crosses). Both hotspots are
generated with the same number K × S2 of neighbor-swaps
(where S is the dimension of the S×S hotspot, and defines the
size of the hotspot). We observe that while the two hotspots have
the same K, the numbers of DRVs are different, and hotspot1
does not contribute much to DRVs. This example suggests that
the size of routing hotspots is another key factor, in addition
to K, that determines routing failure. Thus, in this section, we
further empirically study various sizes of routing hotspots.

In mesh-like placements, we generate routing hotspots with
various locations and sizes. Specifically, we vary the size of
a hotspot (i.e., by performing K × S2 random neighbor-swaps
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(a) (b)

Fig. 13. Illustrations of edge mapping, ED and CC. (a) Initial lattice edge
[(p1, q1), (p2, q2)] [vertices (p1, q1), and (p2, q2) are adjacent in the initial
mesh] is mapped to [(p3, q3), (p4, q4)] after neighbor-swaps. For this edge,
the ED = |p3 − p4| + |q3 − q4|. (b) In red are net bounding boxes, and in
blue is the window, where Net B and Net C contribute to CC, but Net A
and Net D do not.

within a specific subregion). An S× S hotspot is a subregion
with S columns and S rows. We study various (S, K) pairs
and record #DRVs. For each (S, K) pair, we generate ten
random data points. Fig. 12(b) shows a contour map that
indicates routability for various (S, K) pairs. The x-axis shows
K normalized by S2 because there are O(S2) total edges, and
the y-axis shows S. The solid (resp. dotted) line is the contour
based on average (resp. maximum) numbers of DRVs (of ten
trials for the corresponding (S, K) pair), where the upper shaded
regions correspond to routing failures. The figure shows that:
1) if the size of hotspots (S) is smaller than a certain value,
then Kth = ∞ and 2) the Kth values increase as the size of
hotspots decreases.

B. Impact of Design Size on Routing Failure

Design size is an important factor (along with routing
algorithms, BEOL stack options, netlist topology, placement
utilization, etc.) that affects routing difficulty. To better under-
stand the connection between design size and routing difficulty
that is seen in Fig. 9(d), we now provide a more quantitative
study of the impact of design size on the probability of routing
failure. That is, given similar placement quality (measured by
the size-normalized number of neighbor-swaps from a mesh-
like placement), we examine the relation between design size
and the probability of routing failure.

As reviewed in Section II-B, many metrics have been
proposed to estimate routability, such as pin density [3], pin
shape [32], wire density [29], Rent exponent [35], net range [22],
and the number of incoming/outgoing edges [4]. We study two
metrics that have been closely related to routing failures in the
recent work of [4]. The first metric is the sum of edge distances
(ED), i.e., the sum of half-perimeter wirelengths of nets corre-
sponding to lattice edges initially in a given window. (An S×S
window of the initial square mesh contains 2 ·S · (S−1) lattice
edges.) The second metric is crossing count (CC), which is the
total number of nets that cross a given local window. In other
words, nets having positive-area overlap with a given window
are counted in CC (overlap only along the window boundary
is not counted). Fig. 13 shows examples of edge mapping, ED
and CC. We perform exponentiation on transition matrices to
estimate the ED and CC changes after neighbor-swaps, which
further provide an estimation for the probability of routing
failures [i.e., ED (or CC) is greater than a threshold EDth (or
CCth)].

We describe our transition matrix-based estimation as fol-
lows. Given a mesh-like placement (where an edge exists
between each pair of neighboring instances) with size (N×N),
and number of neighbor-swaps (K × N2), we estimate the
expected ED within the hotspot based on a transition matrix
(i.e., a matrix used to describe the transition of iterative

Algorithm 2 Create Transition Matrix (Exact), MT

1: MT ← N4 × N4 zero matrix
2: for p1 := 1 to N, q1 := 1 to N, p2 := 1 to N, q2 := 1 to N, p3 := 1 to N,

q3 := 1 to N, p4 := 1 to N, q4 := 1 to N do
3: if (((p1, q1) == (p3, q3) && isNeighbor((p2, q2), (p4, q4))) || ((p2, q2) ==

(p4, q4) && isNeighbor((p1, q1), (p3, q3))) || ((p1, q1) == (p4, q4) && (p2,
q2) == (p3, q3) && isNeighbor((p1, q1), (p2, q2)) && ((p1, q1) 	= (p2, q2)
|| (p3, q3) 	= (p4, q4)))) then

4: MT [N3 · p1 + N2 · q1 + N · p2 + q2][N3 · p3 + N2 · q3 + N · p4 + q4]← 1
5: end if
6: end for
7: for i := 1 to N4 do
8: rowSum←∑

j MT [i][j]
9: MT [i][i]← 2 · N · (N − 1)− rowSum

10: end for
11: MT ← MT /(2 · N · (N − 1))

Algorithm 3 Expected Edge Distance (Approximation)
1: MD ← create distance matrix
2: MT ← create transition matrix
3: ME ← exponentiate transition matrix MT to the Kth power
4: dist← calculate expected edge distance
5: return dist

neighbor-swaps, where MT [i][j] is the probability that a vertex
moves from location i to location j in a single neighbor-
swap [2]). Specifically, from a given matrix that is the
exponentiation (to the Kth power) of a given transition matrix,
we compute the ED and CC over a given hotspot region.

Algorithm 2 describes the transition matrix construction.
Based on the transition matrix, we are able to estimate the
probability of mapping an edge [(p1, q1), (p2, q2)] to another
edge [(p3, q3), (p4, q4)] [i.e., embedded in the matrix as the
entry in the (N3 · p1 + N2 · q1 + N · p2 + q2)th row and the
(N3 ·p3+N2 ·q3+N ·p4+q4)th column]. We then multiply such
probabilities by the Manhattan length of the (post-neighbor-
swapping) mapped edge to achieve an estimation of the expected
ED. Lastly, we take the sum over expected EDs of the lattice
edges (i.e., edges between adjacently placed cells in the initial
mesh). In line 9, we set MT [i][i] to the difference between
2 ·N · (N−1) and rowSum so that when we normalize the rows
by 2 ·N ·(N−1) (line 11), every entry will represent a marginal
probability of transitioning to that state.23 However, due to the
large size of the transition matrix O(N4), the runtime complexity
of the dense matrix exponentiation is O(N4k), where O(Nk) =
matrix multiplication complexity. Thus, the complexity of the
sparse matrix exponentiation is O(N8).

To reduce the runtime complexity, we propose an approximate
calculation approach, shown in Algorithm 3. The transition
matrix in Algorithm 3 is of size N2×N2 as opposed to N4×N4

in Algorithm 2, because it keeps track of the mapped vertex
locations as opposed to the mapped edges. Thus, Algorithm 3
assumes that the mapped vertex locations are independent,
which is intuitively reasonable given that the expected number of
neighbor-swaps for each vertex is still the same. In Algorithm 3,
we first create a distance matrix MD of size N2 × N2, where
MD[N ·p1+q1][N ·p2+q2] is the Manhattan distance between
(p1, q1) and (p2, q2) in the mesh-like placement (line 1).
We then create a transition matrix MT (line 2), as presented
in Algorithm 4. We exponentiate the transition matrix to the
Kth power, to approximate the resultant placement after K
moves (line 3). Lastly, according to ME, we calculate the
expected ED, as summarized in Algorithm 5. The runtime

23The normalization factor is 2N(N − 1) because this is the total number
of events or possible neighbor-swaps that can occur. Thus, in line 11, we
divide the matrix through by 2N(N − 1) to obtain a transition matrix in
which each row sums to 1.
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Algorithm 4 Create Transition Matrix (Approximation)
1: MT ← N2 × N2 zero matrix
2: for p1 := 1 to N, q1 := 1 to N, p2 := 1 to N, q2 := 1 to N do
3: if isNeighbor((p1, q1), (p2, q2)) then
4: MT [N · p1 + q1][N · p2 + q2]← 1
5: end if
6: end for
7: for i := 1 to N2 do
8: rowSum←∑

j MT [i][j]
9: MT [i][i]← 2 · N · (N − 1)− rowSum

10: end for
11: MT ← MT /(2 · N · (N − 1))

Algorithm 5 Calculate Expected Edge Distance
1: dist← 0
2: for all edges ((p1, q1), (p2, q2)) do
3: for i := 1 to N2, j := 1 to N2 do
4: dist += ME[N · p1 + q1][i] ·ME[N · p2 + q2][j] ·MD[i][j]
5: end for
6: end for
7: return dist

Algorithm 6 Expected Crossing Count Approximation
1: MT ← create transition matrix
2: ME ← exponentiate transition matrix MT to the Kth power
3: count← calculate expected crossing count
4: return count

complexities for construction of the distance matrix (line 1),
construction of the transition matrix (line 2), exponentiation of
the transition matrix (line 3) and calculation of the expected
EDs (line 4) are, respectively, O(N4), O(N4), O(N6 · log(K))
and O(N6).24 Overall, the runtime complexity of our procedure
is O(N6 · log(K)).

Similarly, Algorithm 6 describes our approximate calculation
of CC. Algorithms 4 and 7, respectively, describe the transition
matrix construction and expected CC calculation. To calculate
CC, in Algorithm 7 line 4, the variable count contains the
expected number of edges, where we add in the probability
that [(p1, q1), (p2, q2)] is mapped to [(p3, q3), (p4, q4)] by
assuming independence and multiplying the probability that
(p1, q1) is mapped to (p3, q3) by the probability that (p2, q2) is
mapped to (p4, q4). Furthermore, for every pair of undirected
edges, we add the probability of that mapping four times.25

Specifically, we count the edge mapping of (v1, v2) to (v3, v4)
once for each of the two edge permutations of (v1, v2) and
once for each of the two mapped edge permutations of (v3, v4).
So, we count this probability 2 · 2 = 4 times; we then divide
by 4 to eliminate double counting (line 7). We note that for
a large K value, the approximated ED and CC should be off
by a factor of (N2)/(N2 − 1) with respect to the exact values.
This is because the approximation algorithms count the set of
degenerate edges.26

Based on the transition matrix exponentiation, we estimate
the probabilities of ED ≥ EDth and CC ≥ CCth for an S × S
hotspot (EDth and CCth values are normalized to N2) as follows.
For ED, we assume a Gaussian distribution for the distribu-
tion of ED after K ×N2 neighbor-swaps. Using the transition
matrix exponentiation, we thus find the mean and variance

24We use Python np.linalg library to perform matrix exponentiation.
25Here, an undirected edge is an unordered pair of vertices (e.g., edge

[(p1, q1), (p2, q2)] in Fig. 13(a)). In our constructed mesh placement, there
can be at most one net between two instances, and we therefore, treat each
net as an undirected edge in our analyses.

26There are (N2)(N2 − 1) total edges, and there are (N2)(N2) ordered
pairs of vertices, which the approximation algorithm counts. Therefore, for
large K, we expect to be off by around a factor of (N2)/(N2 − 1) with
respect to the exact values.

(a) (b)

(c) (d)

Fig. 14. Probability of ED ≥ EDth increases with N. Shown: K = 50 based
on (a) Monte Carlo simulation and (b) transition matrix exponentiation;
probability of CC ≥ CCth increases with N. Shown: K = 50 based on
(c) Monte Carlo simulation and (d) transition matrix exponentiation.

Algorithm 7 Calculate Crossing Count
1: count← 0
2: for all edge ((p1, q1), (p2, q2)) do
3: for all mapped edge ((p3, q3), (p4, q4)) that overlap with the given S × S

hotspot do
4: count += ME[N · p1 + q1][N · p3 + q3] ·ME[N · p2 + q2][N · p4 + q4]
5: end for
6: end for
7: count← count/4
8: return count

in distance for each lattice edge. We then treat ED for each
S× S window as the sum of Gaussian random variables—the
lattice edges composing the window—which gives a Gaussian
distribution with mean =∑

lattice edges{means} and variance =∑
lattice edges{variances}. We further assume that the window

probabilities are independent. Finally, we can approximate the
probability that ED ≥ EDth. For CC, we assume that the prob-
abilities that each of the lattice edges is mapped to an edge that
crosses a given fixed window are independent, i.e., each mapped
edge’s respective crossing of the given window is an indepen-
dent Bernoulli-distributed random variable. Accordingly, the
distribution for the number of crossers for a fixed window
(i.e., the number of edges crossing over a fixed window) can
be represented as a sum of independent Bernoulli random vari-
ables, which is the Poisson Binomial distribution [9]. This is
then approximated using the Poisson distribution, with error
bound of 9 ∗maxi∈windows pi, as described in [12].

Figs. 14 shows the probabilities of ED ≥ EDth and CC ≥
CCth for S = 2 in an N × N mesh-like placement with (K =
50)·N2 neighbor-swaps, based on both Monte Carlo simulations
(with 500 trials) and transition matrix-based estimations.27 We
observe that the probabilities of having some window’s ED

27The small discrepancy between the results from Monte Carlo simulations
versus those from transition matrix-based estimations is due to errors of
the approximation from the Normal and Poisson distributions. Note that in
this section, we use mesh placements, which are more general and can
be modeled using the Markov transition matrix technique, instead of real
placements.
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Fig. 15. Routing failure probabilities versus N for K = 55, 90, and 145.

or CC value larger than given thresholds increase with N
(where N ×N indicates the design size). This observation can
also be confirmed by application of the Pigeonhole Principle.
Suppose we have N1 < N2 with corresponding neighbor-swaps
J1 = K ·N2

1 and J2 = K ·N2
2 , respectively, (J1 and J2 are absolute

values of #neighbor-swaps, and K is a normalized #neighbor-
swaps). By the Pigeonhole Principle, we can find an N1 × N1
window within the N2 × N2 mesh-like placement that has at
least J1 neighbor-swaps performed on it. Thus, for each window
of this N1×N1 design, the probability of exceeding both EDth
and CCth will be at least as large as that of the N1 × N1
mesh-like placement. This observation indicates that with the
same placement quality (i.e., normalized K value with respect
to N2), a larger design is more vulnerable to routing failures.

We also perform a similar study on mesh-like placements.
Specifically, we perform some normalized number of neighbor-
swaps (K) with respect to the design size (i.e., N2), and sweep
the value of N to study how routing failure probability changes
according to N. For each pair (N, K), we perform ten trials
of perturbation and routing, and then report the probability of
routing failures. Fig. 15 shows our results, which empirically
support the above analysis that the probability of routing failure
increases with the design size, when placement quality as
captured by normalized K is kept constant.

VI. CONCLUSION

In this paper, we propose a systematic framework that
measures routing capacity of BEOL stack options as well
as inherent capability of routers and, potentially, placers.
Using our framework, we demonstrate a “quasi-universal”
rank-ordering of various BEOL stacks by routing capacities, for
a given router. We also study the relationship between routing
hotspot size and placement quality. Lastly, we present an
analytical study based on exponentiation of a Markov transition
matrix to demonstrate how, with the same placement density
and quality, a larger design is more likely to experience routing
failures, an observation which is supported by empirical data.

This last observation, that the probability of routing failure
increases with the design size (i.e., N × N), is particu-
larly intriguing. This may indicate that there might be an
“optimal block size” for dividing an SoC into hard macros
for a given design enablement, in a similar spirit to how
Sylvester and Keutzer [31] proposed 50K to 100K gates as an
optimal size of place-and-route blocks nearly 20 years ago.28

For example, Fig. 16 shows our notional (hypothesized) tradeoff
between design area and block size, which is derived based on

28The landmark paper of [31] arrived at its predicted block size based on
entirely different justifications, namely, scaling of interconnect RC delay and
noise, and of gate drive and leakage. The envisioned size of P&R blocks
in a hierarchical physical design methodology has evolved differently from
the prediction of [31].

Fig. 16. Hypothesized tradeoff between overall design area and instance
count in individual P&R blocks. The x-axis shows block instance count, and
the y-axis shows overall design area overheads induced by 1) decomposition
and 2) difficulty of routing.

several simple assumptions. The x-axis shows block size nor-
malized to the entire chip area, and the y-axis shows area penalty
induced by decomposition (i.e., loss of global optimization in
hierarchical physical design relative to flat physical design)
and/or routability. When the block size is too large, the prob-
ability of routing failure is high, and we will end up with a
lower utilization to avoid routing failure (orange curve). On
the other hand, if the block size is too small, we will have to
pay for the cost of partitioning, i.e., loss of optimality due to
decomposition (blue curve). To derive the area penalty from
routing failure, we first derive a linear model for � utilization
as a function of Kth −K from the result in Fig. 7 (the routing
failure is directly related to maximum achievable utilization, as
shown in Section IV-C). We then assume that Kth is inversely
proportional to the square root of the normalized block area,
and K is the same for all block sizes (same quality of place-
ments). To derive the area penalty from decomposition, we
simply assume that the blocks are connected as clique model,
and there is a certain amount of area overhead for each cut. The
minimum total area penalty point is shown as the local mini-
mum in the gray curve. According to such a simple model we
see in Fig. 16 that there may be a choice of block size for hard
macros in hierarchical design that best compromises between
routing failure probability and the cost of partitioning.29

Open questions for future researchers might include the
following.

1) Extension of our framework to comprehend realistic
design considerations such as timing, power, manufac-
turing cost, complex design rules, multiheight cells, and
power delivery network requirements.

2) Estimation of “equivalent K” (or another metric to assess
and/or rank (windows of) placements with respect to
routability) in arbitrary real placements.

3) An analytical model to predict optimal block size for
minimum area penalty (considering both cost of decom-
position and routability) with a given performance (and,
possibly, design turnaround time) requirement.
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