
60

Optimal Scheduling and Allocation for IC Design Management
and Cost Reduction

PRABHAV AGRAWAL, UC San Diego
MIKE BROXTERMAN, Qualcomm, Inc.
BISWADEEP CHATTERJEE, Qualcomm India Private Limited
PATRICK CUEVAS and KATHY H. HAYASHI, Qualcomm, Inc.
ANDREW B. KAHNG, PRANAY K. MYANA, and SIDDHARTHA NATH, UC San Diego

A large semiconductor product company spends hundreds of millions of dollars each year on design infras-
tructure to meet tapeout schedules for multiple concurrent projects. Resources (servers, electronic design
automation tool licenses, engineers, and so on) are limited and must be shared – and the cost per day of
schedule slip can be enormous. Co-constraints between resource types (e.g., one license per every two cores
(threads)) and dedicated versus shareable resource pools make scheduling and allocation hard. In this ar-
ticle, we formulate two mixed integer-linear programs for optimal multi-project, multi-resource allocation
with task precedence and resource co-constraints. Application to a real-world three-project scheduling prob-
lem extracted from a leading-edge design center of anonymized Company X shows substantial compute and
license costs savings. Compared to the product company, our solution shows that the makespan of schedule
of all projects can be reduced by seven days, which not only saves ∼2.7% of annual labor and infrastructure
costs but also enhances market competitiveness. We also demonstrate the capability of scheduling over two
dozen chip development projects at the design center level, subject to resource and datacenter capacity lim-
its as well as per-project penalty functions for schedule slips. The design center ended up purchasing 600
additional servers, whereas our solution demonstrates that the schedule can be met without having to pur-
chase any additional servers. Application to a four-project scheduling problem extracted from a leading-edge
design center in a non-US location shows availability of up to ∼37% headcount reduction during a half-year
schedule for just one type of chip design activity.

Categories and Subject Descriptors: B.7.2 [Design Aids]: Design Schedule and Cost Optimization

General Terms: Design, Optimization

Additional Key Words and Phrases: Design cost optimization, resource scheduling, project scheduling

ACM Reference Format:
Prabhav Agrawal, Mike Broxterman, Biswadeep Chatterjee, Patrick Cuevas, Kathy H. Hayashi, Andrew
B. Kahng, Pranay K. Myana, and Siddhartha Nath. 2017. Optimal scheduling and allocation for IC design
management and cost reduction. ACM Trans. Des. Autom. Electron. Syst. 22, 4, Article 60 (June 2017), 30
pages.
DOI: http://dx.doi.org/10.1145/3035483

Authors’ addresses: P. Agrawal, A. B. Kahng, P. K. Myana, and S. Nath, Department of Computer Science
and Engineering, University of California at San Diego, La Jolla, CA 92093; M. Broxterman, P. Cuevas,
and K. H. Hayashi, Qualcomm Inc., 5775 Morehouse Drive, San Diego, CA 92121; B. Chatterjee, Qualcomm
Technology India Pvt. Ltd., Plot 153-154, EPIP, Phase II, Whitefield, Bangalore KA 560066.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1084-4309/2017/06-ART60 $15.00
DOI: http://dx.doi.org/10.1145/3035483

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

http://dx.doi.org/10.1145/3035483
http://dx.doi.org/10.1145/3035483

60:2 P. Agrawal et al.

1. INTRODUCTION

Since 2001, the International Technology Roadmap for Semiconductors [ITRS] chap-
ter on Design Technology has presented a Design Cost model calibrated to mobile
system-on-chip (SOC) products (e.g., Qualcomm Snapdragon [Snapdragon] and
Samsung Exynos [Exynos]) that are the main processing cores of tablets and smart-
phones and their associated development costs [Chan et al. 2014; Kahng and Smith
2002; Smith 2014]. For well over a decade, the Design Cost model has documented de-
sign costs of tens of millions of dollars for a single SOC product. Major contributors to
design cost include engineering headcount, compute infrastructure (servers, filers, dat-
acenters), and electronic design automation (EDA) tool licenses. The large investment
requirement for new product development stifles semiconductor startup activity and
innovation, and has arguably contributed to consolidation and a slowdown of growth
for the industry.

Today, a large semiconductor product company will spend hundreds of millions of
dollars annually on design infrastructure (e.g., datacenters, EDA tools, design teams)
to meet tapeout schedules for multiple concurrent projects. Resources (e.g., servers,
licenses, engineers) are limited and must be shared across projects. Not only are sched-
ule slips extremely costly but, as highlighted in recent years (e.g., the “How Green is
My Silicon Valley” plenary panel at the 2009 Design Automation Conference (DAC)
[DAC09]), there is now tremendous concern to reduce the energy footprint of semicon-
ductor integrated circuit (IC) design. In contrast to traditional scheduling optimizations
seen in the operations research and industrial engineering literature, IC design flows
often exhibit co-constraints between resource types (e.g., one license needed per every
two cores used in a multi-threaded tool run1). Common design center practices, such
as the setting up of dedicated vs. shareable resource pools as permitted by LSF-type
gridware [LSF], also make scheduling and allocation hard. Further, design managers,
while increasingly able to track and diagnose design activity [Fenstermaker et al. 2000;
RTDA], have no decision support tools to help determine the resource investments (e.g.,
is it better to add 500 more servers or 50 more timing analysis tool licenses?) that en-
able schedule requirements to be met with minimum cost. Thus, a company may leave
millions of dollars and gigawatt-hours per year – as well as weeks of schedule time – on
the table. In a competitive and cost-driven industry, there is an urgent need to recover
such wasted resources.

In the field of operations research, Kolisch and Hartmann [1999], Kolisch et al.
[1992], and Kolisch and Sprecher [1996] give an integer-linear programming (ILP) for-
mulation to solve the resource-constrained project scheduling problem (RCPSP). The
formulation optimally allocates renewable, non-renewable, and doubly-constrained re-
sources across multiple activities (with precedence constraints) in a project. The objec-
tive of the formulation is to minimize the makespan of a project with multiple activities.
We extend this formulation in the context of IC design cost optimization in various ways.
Specifically, we describe two mixed integer-linear programming (MILP) formulations
that efficiently and optimally perform multi-project, multi-resource allocation with
complex task precedence and resource co-constraints. The first is the Schedule Cost
Minimization (SCM) formulation, and the second is the Resource Cost Minimization
(RCM) formulation. We solve these two general resource-constrained project scheduling
problems that arise in a multi-tenanted, heterogeneous, high-throughput computing
(HTC) environment. A problem instance consists of projects that can be scheduled

1Maintaining design schedules with constant engineering headcount, even as SOC complexities continue to
scale, increasingly relies on multithreading (e.g., detailed routing, static timing analysis, physical verifica-
tion) and/or massively distributed tool runs (e.g., to perform functional verification).

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:3

in parallel, each involving multiple activities, in which each activity must consume
prescribed amounts of resources to reach completion. The goal is to schedule the projects
either with minimum total loss according to given penalty functions or with minimum
number of resources consumed per time unit.2 In Section 4.1, we describe an instance
with three projects, 11 activities with various precedence constraints per project, and
five types of resources that must be completed within 90 days. Our MILP formulation
captures such types of problems in a straightforward manner, as we demonstrate in
Section 4.1.

The challenge in practice for a large semiconductor design organization is to provide
just-in-time resources for each project, such that (i) project execution is not delayed by
resource starvation and (ii) utilization of each resource type satisfies resource limits
or usage policies. Current industry dynamics lead to strict boundary conditions (e.g.,
time-to-market, tapeout deadline), and constrained capital spending pushes business
units to seek increased productivity through maximum utilization of existing resources.
Today, resource planning and allocation, especially involving allocation of multiple dis-
parate resource types, has largely been dictated by heuristics and historical experience.
Decision support is urgently needed for “course corrections” and understanding of the
impact of resource allocation decisions. With this as background, our main contribu-
tions are as follows.

(1) We model two resource-constrained optimal project scheduling formulations, SCM
and RCM, as MILPs. Our formulations handle multiple projects, multiple activities
with precedence constraints, and multiple types of resources.3

(2) We handle co-constraints between resource types and allocation of resources from
multiple (fully-shared, conditionally-shared, segregated) resource pools. Each pool
may have a different penalty function, capturing real-world scenarios in a large
SOC design company. To our knowledge, we are the first to consider co-constraints
between resource types.

(3) We optionally enforce stability constraints that upper-bound the change in a
project’s allocated resources between successive timesteps.

(4) Application of SCM to a three-project scheduling problem extracted from a leading-
edge design center of Company X4 shows substantial compute and license cost
savings compared to the actual allocation/scheduling solution used by the product
company. Our solution reduces the schedule makespan of all projects by 1.4 work-
weeks,5 i.e., ∼2.7% of annual design infrastructure cost. (Per “Moore’s Law,” the
semiconductor industry advances at ∼1% in a calendar week [Moore’s Law]. There-
fore, during this time, the semiconductor industry advances by more than 1%.) We
also demonstrate the scheduling of two dozen chip development projects at the de-
sign center level, subject to resource and datacenter capacity limits as well as per-
project penalty functions for schedule slips. The design center was unable to solve
this problem and ended up purchasing 600 additional servers to avoid schedule

2A typical real-world HTC environment has multiple concurrent projects – each working on a specific
schedule that is largely non-negotiable and each having different workload characteristics in terms of in-
frastructure requirements.
3Note that we do not solve arbitrary-sized MILP formulations in this work. The context of our formulation
and ranges of our inputs pertain to IC design projects; very few, if any, semiconductor companies in the real
world would face problem instances with complexities larger than what we study in the article. Further, we
believe that on the time scales of SOC implementation, even a couple of days of runtime is tolerable if the
return is weeks of schedule gain or millions of dollars of design cost reductions.
4Owing to confidentiality reasons, we cannot reveal the name of the company; we refer to it as Company X.
5In the semiconductor industry, we typically refer to one “work-week” as five working days in a week.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:4 P. Agrawal et al.

Table I. Representative Previous Works

Reference Formulation Objective Modes Preemptive
Resource

Co-constraints
Conditionally-Shared

Resources
Ayala and Artigues [2010] ILP throughput ✗ ✗ ✗ ✗

Baptiste and Demassey
[2004]

LP makespan ✗ ✗ ✗ ✗

Bienstock and
Zuckerberg [2009]

LP cost � � ✗ ✗

Bonfietti et al. [2014] CP throughput ✗ � ✗ ✗

Christofides et al. [1987] ILP, LP cost ✗ � ✗ ✗

Keller and Bayraksan
[2009]

Stochastic ILP cost ✗ ✗ ✗ ✗

Kolisch et al. [1992],
Kolisch and Sprecher

[1996]

ILP makespan � ✗ ✗ ✗

Kramer and Hwang
[1991]

MILP, LP cost � � ✗ ✗

Li et al. [2009] MILP makespan ✗ � ✗ ✗

Mohanty and Nayak
[2011]

PSO cost ✗ � ✗ ✗

Qiong et al. [2010] ACO makespan ✗ ✗ ✗ ✗

Salewski et al. [1997] ILP cost � ✗ ✗ ✗

Our work MILP cost/makespan ✗ � � �

slips. Our solution shows that the schedule requirements could have been met
without purchasing any additional servers.

(5) Application of RCM to a four-project scheduling problem extracted from a leading-
edge design center of Company X shows substantial human resource costs left on
the table by the actual allocation/scheduling solution used by the company. For a
particular activity related to chip design, our solution reduces headcount by 37%,
which translates to ∼$3.7 million in savings at that particular (non-US) design
center. Our solver can also provide decision support via “what-if” analyses of cost
and schedule trade-offs.

(6) Of separate interest is the description of our test-case generator that we use to
perform scalability and sensitivity studies. We propose to make our generator and
solvers open-source, as prototyped at MILP-Solver.

The remainder of this article is organized as follows. Section 2 reviews relevant prior
work. Section 3 describes our MILP formulations. In Section 4, we describe experi-
mental validation of benefits from our MILP formulations, using three instances from
a worldwide top-5 semiconductor company. We present our conclusions and outline
future work in Section 5.

2. RELATED WORK

Resource-constrained project scheduling has been solved in many different settings
with varying constraints and/or objective functions. Table I places our present work
in the context of representative previous works on resource scheduling with multiple
activities. A common objective is to minimize the makespan [Baptiste and Demassey
2004]. Objective functions studied typically minimize project cost given time-dependent
and/or resource-dependent penalties [Kramer and Hwang 1991; Talbot 1982].

Several previous works solve the scheduling problem for a single project with mul-
tiple activities [Bienstock and Zuckerberg 2009; Christofides et al. 1987; Keller and
Bayraksan 2009; Kolisch and Sprecher 1996; Mohring et al. 2001; Salewski et al. 1997].
The activities can be either preemptive or nonpreemptive [Baptiste and Demassey
2004; Kolisch and Sprecher 1996; Salewski et al. 1997; Talbot 1982]. Kolisch and
Sprecher [1996] and Kolisch et al. [1992] formulate the RCPSP and propose methods
to generate RCPSP instances. They present the PSPLIB and MPSPLIB benchmark

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:5

suites, along with optimal as well as heuristic solutions.6 Further variations involve
the scheduling of activities that can execute in multiple modes [Bienstock and Zucker-
berg 2009; Kolisch and Sprecher 1996; Kramer and Hwang 1991; Salewski et al. 1997;
Talbot 1982]. These works consider that the resource usage and the time taken by an
activity can vary across available modes; they provide optimal scheduling solutions
across combinations of modes of activities. Mohring et al. [2001] and Christofides
et al. [1987] provide branch-and-bound algorithms to solve the resource-constrained
multi-activity single project scheduling problem. Mohring et al. [2001] further try
to identify special cases that are solvable in polynomial time. Generally, solution
frameworks involve linear or integer linear programming, although stochastic [Keller
and Bayraksan 2009] and nonlinear [Bonfietti et al. 2014] formulations have also
been studied. Cyclic scheduling has been addressed in Ayala and Artigues [2010] and
Bonfietti et al. [2014], in which sets of activities are executed indefinitely over time in
a periodic fashion. The work of Keller and Bayraksan [2009] is noteworthy in that its
formulation permits temporary resource expansion, albeit for a penalty that features
in the objective function. This has some similarity to our formulation presented later,
which has different penalties for resources used from different resource pools. (The
formulation provided in Keller and Bayraksan [2009] does not include precedence
constraints within activities or a number of other aspects of our formulation.)

To optimize human resources at an enterprise scale, Li et al. [2009] minimize the
makespan of a single project with multiple activities, subject to upper bounds of hu-
man resources. Mohanty and Nayak [2011] propose a particle swarm optimization
(PSO) algorithm to optimize the trade-off between cost and profit when a given num-
ber of employees are assigned to an activity. Their formulation considers employees
with different skill competencies for different activities. Qiong et al. [2010] propose an
ant colony optimization (ACO) algorithm to minimize the makespan of a project with
multiple activities and precedence constraints between the activities. The activities
are assumed to be non-preemptive, and the algorithm is applicable to general parallel
machine-scheduling problems.

Several commercial tools and services exist today [Dassult Systems; IC Manage;
inMotion; Nefelus; Salesforce] that serve design project management needs. Some of
these tools are specific to IC design [Dassult Systems; IC Manage; Nefelus], whereas
the other tools can serve project management needs for any industry. Our work is not
comparable to these tools because our work is combinatorial optimization-based and
solves formulations that, to our knowledge, are not addressed by any commercial prod-
uct. We have experimented with multiple tools for forecasting and performing what-if
analyses. However, none of these commercial tools are flexible to enable analyses in
different scenarios that large design companies work on, which has led to the develop-
ment of custom tools and methods for project planning. Today, large design companies
use a mix of in-house customer methods, statistical packages, business reporting tools
and large-scale production databases for project planning.

Comparisons to works on datacenter job allocations. Our work uses an objective
function similar to that seen in works from the datacenter literature that propose al-
gorithms to handle job scheduling within a datacenter, e.g., to minimize the makespan
as well as other penalty functions. With energy consumption a major concern in mod-
ern datacenters, recent formulations by Friese et al. [2012] propose multi-objective
optimization of makespan and energy consumption. However, formulations for data-
centers are focused on providing job scheduling solutions either in real-time or “online”

6We have compared optimal solutions from our formulation with the optimal solutions of benchmarks from
PSPLIB in Section 4.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:6 P. Agrawal et al.

[Li et al. 2014], often by using live data from various thermal, network, and rack uti-
lization sensors. By contrast, our optimization is performed “offline,” that is, we do
not monitor status of project executions in real-time during the optimization of our
objective function.

Other distinctions from previous works. While a number of previous works ad-
dress optimizations related to resource-constrained project scheduling, they cannot
address important use cases that arise for large SOC product companies. Our for-
mulations address real-world use cases that incorporate the following: (i) resource co-
constraints, (ii) tethering forecast resource allocations, and (iii) simultaneous allocation
of three different categories of resources (Fully-shared, Segregated, and Conditionally-
shared). Our formulations also handle stability constraints so that allocation of re-
sources (in particular, engineers) are shuffled as infrequently as possible across
projects. This induces a trade-off between schedule cost and frequency of task switch-
ing. Overall, we enable management to identify the minimum cost (in terms of any
penalty functions deemed appropriate for the situation) of project completion within
a set period of time, capturing many constraint types that arise in the industry. Our
solver can also help analyze how varying resource allocation affects cost and schedule
of product tapeout. We demonstrate a use case of handling late-breaking bugs in one
project without major disruptions in allocations of other projects.

3. PROBLEM FORMULATIONS

We now present (i) notations used in our discussion, (ii) resource categories that arise
in multi-tapeout project scheduling, and (iii) our MILP formulations. We have spent
considerable time working with technical management at one of a worldwide top-5
semiconductor company’s design centers to arrive at the optimization formulations
described later. Table II gives notations used in our work. “I” represents an input to
the MILP and “O” an optimization variable. We also indicate which notations are used
in each of the SCM and RCM formulations.

3.1. Resource Pool Types

Chip design companies typically have three pools for each resource type. Resource
types include compute nodes, memory, storage, and people [Qualcomm personal com-
munication].

Fully-shared resources are shared across all projects. We use ri, j,k,t to denote the
number of fully shared resources of type k used by activity a(i, j) of project Pi at time
t. For example, if there are two projects P1 and P2 with one activity each and 20 fully-
shared resources of type k are available, then P1 and P2 can share these 20 resources
among themselves such that r1,1,k,t + r2,1,k,t ≤ 20.

Segregated/dedicated resources are allocated exclusively to a specific project. These
resources are not available for use by any other projects at any time. We use qi, j,k,t to
denote the number of segregated resources of type k used by activity a(i, j) of project
Pi, at time t. For example, if there are two projects P1 and P2 with one activity each
and they are respectively allocated 10 and 20 segregated resources of type k, then
q1,1,k,t ≤ 10, and q2,1,k,t ≤ 20.

Conditionally-shared resources are allocated to each project, but any resource un-
used by a project may be used by other projects. We use yi, j,k,t to denote the number of
conditionally-shared resources of type k used by activity a(i, j) of project Pi at time t. For
example, if there are two projects P1 and P2 with one activity each and they are respec-
tively allocated 10 and 20 conditionally-shared resources of type k, then y1,1,k,t ≤ 10 and
y2,1,k,t ≤ 20. We use the notation zi, j,k,t to denote the number of resources of type k used

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:7

Table II. Notations Used in Our Work

Parameter Description I/O Formulation
N Total number of projects I SCM, RCM
T Maximum duration over all projects; t = 1, 2, . . . , T I SCM, RCM
Pi Projects indexed by i = 1, 2, . . . , N – SCM, RCM
J(i) Total number of activities for Pi I SCM, RCM
ai, j Pi ’s activities, where j = 1, 2, . . . , J(i) – SCM, RCM
Ha(i, j) Set of predecessor activities of ai, j that must complete before ai, j

can start
I SCM, RCM

K Available resource types I SCM, RCM
Rk,t Upper bound (UB) on # resources of type k at time t I SCM
Hr(i, j, k) Set of predecessor resources for resource type k for ai, j I SCM
g(i, j, h, k, t) Function that sets a UB on # resource type k at any time t, for

each predecessor h ∈ Hr(i, j, k)
I SCM

Li, j,k # resources of type k required to complete ai, j I SCM, RCM
Uk,t UB on # fully-shared resources of type k at time t I SCM
Ũk UB on # fully-shared resources of type k at any time t O RCM
Vi,k,t UB on # segregated resources of type k for Pi at time t I SCM
Mi,k,t UB on # conditionally-shared resources of type k for Pi at time t I SCM
Gi,k,t UB on total # resources of type k used by Pi at time t I SCM, RCM
Bi,k,t UB on change in resources consumed by Pi from t − 1 to t I SCM, RCM
dnom

i, j (enom
i) Nominal duration of ai, j (Pi) I SCM, RCM

Ca
i, j (t) (C p

i (t)) Penalty function for ai, j (Pi) at time t I SCM, RCM
Ck Weight for resource type k I RCM
C Cost of switching activities/projects I SCM+
wi, j,k,t # resources of type k consumed by ai, j at time t, given by forecast

resource allocation
I SCM

δ % of variation allowed in wi, j,k,t I SCM
snom
i, j (f nom

i, j) Nominal start (finish) time of ai, j for tethering constraints I SCM, RCM
ri, j,k,t # fully-shared resources of type k consumed by ai, j at time t O SCM, RCM
qi, j,k,t # segregated resources of type k consumed by ai, j at time t O SCM
yi, j,k,t # conditionally-shared resources of type k consumed by ai, j at

time t
O SCM

zi, j,k,t # unused conditionally-shared resources of type k consumed by
ai, j at time t

O SCM

si, j (fi, j) Start (finish) time of ai, j O SCM, RCM
Si, j,t (Fi, j,t) 0-1 variable, set to 1 if t ≥ si, j (t ≥ fi, j); 0 otherwise O SCM, RCM

by activity a(i, j) of project Pi at time t from the pool of unused conditionally-shared
resources of other projects. In the preceding example, we have z1,1,k,t ≤ 20 − y2,1,k,t and
z2,1,k,t ≤ 10 − y1,1,k,t.

Figure 1 illustrates two scenarios with three projects: A, B, and C. Each project has
one activity and consumes resource type k at time t. Each project may use resources
from any of the three pools with the following constraints: (i) segregated resources qi, j,k,t
consumed by a project cannot exceed the upper bound Vi,k,t, as shown in Figure 1, and
(ii) conditionally-shared resources yi, j,k,t consumed by a project cannot exceed Mi,k,t.
Figure 1(a) shows a feasible allocation of resources from each pool. Projects A and B
have a total of eight units of unused resources in their conditionally-shared pools after
allocation of resources from each pool.7 Project C uses five out of these eight units, i.e.,
zC, j,k,t = 5. The total number of fully-shared resources consumed by all three projects,

7Projects A, B, and C use 4, 4, and 5 resources from their respective segregated pools, which are within the
upper bounds VA,k,t = VB,k,t = VC,k,t = 5.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:8 P. Agrawal et al.

Fig. 1. Examples showing (a) feasible and (b) infeasible allocations of resources among three projects, A, B,
and C.

i.e., 3+2+6 = 11, cannot exceed Uk,t = 20. Figure 1(b) shows an allocation of resources
that is infeasible because yC, j,k,t = 6 > MC,k,t = 5. Furthermore, project C uses more
resources from the unused conditionally-shared resource pool label, i.e., zC, j,k,t > 8.

3.2. MILP Description of the Schedule Cost Minimization Formulation

Given the inputs listed in Table II for the SCM formulation, we seek to minimize the
total cost (i.e., sum of schedule penalties) of all projects:

minimize
N∑

i=1

T∑
t=1

C p
i (t) +

N∑
i=1

J(i)∑
j=1

T∑
t=1

Ca
i, j(t) (1)

This optimization is subject to the following constraints.8

Constraints on start and finish times. Constraint (2) indicates that all Si, j,t and
Fi, j,t are binary variables. Constraints (3) and (4) establish the relation between si, j
and Si, j,t and between fi, j and Fi, j,t, respectively. Note that Fi, j,t is set to one after the
activity completes; thus, we do not add one in Constraint (7). Constraint (5) sets all
Si, j,t and Fi, j,t to zero before the start time of the first activity of the project (if snom

i,1 is not
given, we assume that the project can start at t = 1, i.e., snom

i,1 = 1) [Bonfietti et al. 2014;
Kolisch and Sprecher 1996; Kramer and Hwang 1991]. Constraint (6) (resp. Constraint
(7)) prevents each start Si, j,t (resp. finish Fi, j,t) indicator variable from having a value
of zero once an activity has started (resp. finished) execution [Bonfietti et al. 2014;
Kolisch and Sprecher 1996; Kramer and Hwang 1991]. Constraint (8) ensures that an
activity’s start time precedes its finish time [Ayala and Artigues 2010; Bonfietti et al.
2014; Christofides et al. 1987; Talbot 1982].

∀i,∀ j,∀t, Si, j,t, Fi, j,t ∈ {0, 1} (2)

∀i,∀ j, si, j = T −
(

T∑
t=1

Si, j,t

)
+ 1 (3)

∀i,∀ j, fi, j = T −
(

T∑
t=1

Fi, j,t

)
(4)

∀i,∀ j,∀t < snom
i,1 , Si, j,t = 0, Fi, j,t = 0 (5)

8In our description, we point to example references that adopt similar formulations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:9

∀i,∀ j,∀t, Si, j,t ≥ Si, j,t−1 (6)

∀i,∀ j,∀t, Fi, j,t ≥ Fi, j,t−1 (7)

∀i,∀ j,
T∑

t=1

Si, j,t ≥
T∑

t=1

Fi, j,t (8)

Constraint on activity precedence. Constraint (9) ensures precedence require-
ments: all predecessors of an activity ai, j must complete before its start time si, j [Ayala
and Artigues 2010; Baptiste and Demassey 2004; Keller and Bayraksan 2009; Kolisch
and Sprecher 1996].

∀i, si, j > fi,h,∀h ∈ Ha(i, j) (9)

Constraint: Upper bounds on resource consumptions. Constraints (10) and (11)
upper-bound the total number of resources of each type that are used at time t, summed
over all activities of all projects (each project). Recall that we use yi, j,k,t to denote the
number of conditionally-shared resources of type k that are used by activity ai, j of
project Pi at time t. We use zi, j,k,t to denote the number of conditionally-shared resources
of type k that are used by activity ai, j of project Pi at time t from the pool of unused
conditionally-shared resources of other projects. That is, zi, j,k,t denotes the number of
resources borrowed from other projects. Constraints (12) to (19) ensure that an activity
does not use any resources before it starts or after it ends [Bienstock and Zuckerberg
2009; Christofides et al. 1987; Talbot 1982]. For example, Constraint (12) ensures
that no resources are used before the activity starts (Si, j,t = 0, ∀t < si, j , which forces
ri, j,k,t = 0, ∀t < si, j) and Constraint (13) ensures that no resources are used after the
activity finishes (Fi, j,t = 1, ∀t > fi, j , which forces ri, j,k,t = 0, ∀t > fi, j). Constraint (14)
also sets an upper bound on the number of segregated resources of type k used by a(i, j).
Constraint (20) sets an upper bound on the total number of fully-shared resources of
type k used by all activities of all projects. Constraint (21) sets an upper bound on
the total number of conditionally-shared resources of type k used by all activities of
Pi. Constraint (22) ensures that the total number of resources used by all the projects
from the unused conditionally-shared resource pool is not greater than the number of
resources available in the pool. Constraints (23) and (22) together ensure that a project
does not receive resources from its own contribution to the unused conditionally-shared
resource pool. The range of p is 1, . . ., N, and p �= i. We do not include Mp,k,t in order to
use conditionally-shared resources only from other projects.

∀k,∀t,
N∑

i=1

J(i)∑
j=1

(ri, j,k,t + qi, j,k,t + yi, j,k,t + zi, j,k,t) ≤ Rk,t (10)

∀i,∀k,∀t,
J(i)∑
j=1

(ri, j,k,t + qi, j,k,t + yi, j,k,t + zi, j,k,t) ≤ Gi,k,t (11)

∀i,∀k,∀ j,∀t, ri, j,k,t ≤ Uk,t × Si, j,t (12)

∀i,∀k,∀ j,∀t, ri, j,k,t ≤ Uk,t × (1 − Fi, j,t) (13)

∀i,∀k,∀ j,∀t, qi, j,k,t ≤ Vi,k,t × Si, j,t (14)

∀i,∀k,∀ j,∀t, qi, j,k,t ≤ Vi,k,t × (1 − Fi, j,t) (15)

∀i,∀k,∀ j,∀t, yi, j,k,t ≤ Mi,k,t × (Si, j,t) (16)

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:10 P. Agrawal et al.

∀i,∀k,∀ j,∀t, yi, j,k,t ≤ Mi,k,t × (1 − Fi, j,t) (17)

∀i, ,∀ j,∀k,∀t, zi, j,k,t ≤
N∑

p=1

Mp,k,t × Si, j,t (18)

∀i, ,∀ j,∀k,∀t, zi, j,k,t ≤
N∑

p=1

Mp,k,t × (1 − Fi, j,t) (19)

∀k,∀t,
N∑

i=1

J(i)∑
j=1

ri, j,k,t ≤ Uk,t (20)

∀i,∀k,∀t,
J(i)∑
j=1

yi, j,k,t ≤ Mi,k,t (21)

∀k,∀t,
N∑

i=1

J(i)∑
j=1

zi, j,k,t ≤
N∑

i=1

⎛
⎝Mi,k,t −

J(i)∑
j=1

yi, j,k,t

⎞
⎠ (22)

∀i,∀k,∀t,
J(i)∑
j=1

zi, j,k,t ≤
∑
p�=i

⎛
⎝Mp,k,t −

J(p)∑
j=1

yp, j,k,t

⎞
⎠ (23)

Constraint: Resource requirements of activities. Constraint (24) ensures the com-
pletion of an activity [Salewski et al. 1997]. One way to model heterogeneity in resource
requirements is to add finer-grained activities, such as “big-block early-design-phase
STA run,” “medium-block late-design-phase STA run,” and so on. In this example, {big,
medium, small} block size × {early, middle, late} stage of design indicates growth of ex-
ceptions and corners as one transitions from early to late. We can model heterogeneous
activities with different resource requirements for these activities by appropriately
varying Li, j,k.

∀i,∀k,∀ j,
T∑

t=1

(ri, j,k,t + qi, j,k,t + yi, j,k,t + zi, j,k,t) = Li, j,k (24)

Constraint: Resource co-constraints. Constraint (25) ensures that the number of
resources of type k used by activity ai, j satisfies the upper-bound constraints implied
by the co-constraints between its predecessor resources (see Table II). For instance, let
the number of used resources of type k = 1 (e.g., compute nodes) be upper-bounded
by 2× the number of used resources of type k = 2 (e.g., static timing analysis (STA)
licenses) at all times for a1,1, i.e., at most two compute nodes can be used for every STA
license. Therefore, Hr(1, 1, 1) = {2} and g(1, 1, 2, 1, t) = 2 at all times. The constraint
will set (r1,1,1,t +q1,1,1,t + y1,1,1,t + z1,1,1,t) ≤ 2 × (r1,1,2,t +q1,1,2,t + y1,1,2,t + z1,1,2,t),∀t. Note
that this constraint is specific to each activity of a project and not for the entire project.
To the best of our knowledge, previous works do not handle such co-constraints.

∀i,∀ j,∀k,∀t,∀h ∈ Hr(i, j, k),
(ri, j,k,t + qi, j,k,t + yi, j,k,t + zi, j,k,t) ≤ g(i, j, h, k, t) × (ri, j,h,t + qi, j,h,t + yi, j,h,t + zi, j,h,t) (25)

Constraint: Stability in resource allocation. Constraints (26) and (27) ensure sta-
bility in the consumption of resources for each project. That is, we upper-bound the
change in the quantity of each resource used by any given project between successive
timesteps t and t−1. In the real world, resources such as engineers may work on activ-
ities related to multiple projects in a day. However, major changes to allocations do not,

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:11

as a practical matter, occur within short time windows. For example, if 100 engineers
work on an activity of Project A for a week, reassigning 80 of them to work only on
Project B in the following week would be undesirable in management’s perspective.

∀i,∀k,∀t,
J(i)∑
j=1

(ri, j,k,t+qi, j,k,t+yi, j,k,t+zi, j,k,t)−
J(i)∑
j=1

(ri, j,k,t−1+qi, j,k,t−1+yi, j,k,t−1+zi, j,k,t−1) ≤ Bi,k,t (26)

J(i)∑
j=1

(ri, j,k,t−1+qi, j,k,t−1+yi, j,k,t−1+zi, j,k,t−1)−
J(i)∑
j=1

(ri, j,k,t+qi, j,k,t+yi, j,k,t+zi, j,k,t) ≤ Bi,k,t (27)

Constraint: Tethering forecast resource allocations. (See Section 4.2.) Con-
straints (28) and (29) ensure that a project’s forecast resource allocation is not modified
by more than a certain degree (indicated by δ). Specifically, no forecast value in the
active period (snom

i, j ≤ t ≤ f nom
i, j) of the activity9 can be perturbed by more than δ% in the

MILP solution. Constraint (30) ensures that activity ai, j consumes exactly the amount
of resources needed, according to the forecast resource allocation, for its completion.

∀i,∀ j,∀k,∀ snom
i, j ≤ t ≤ f nom

i, j , (ri, j,k,t + qi, j,k,t + yi, j,k,t + zi, j,k,t) ≥ wi, j,k,t(1 − δ/100) (28)

∀i,∀ j,∀k,∀ snom
i, j ≤ t ≤ f nom

i, j , (ri, j,k,t + qi, j,k,t + yi, j,k,t + zi, j,k,t) ≤ wi, j,k,t(1 + δ/100) (29)

∀i,∀ j,∀k,

T∑
t=1

(ri, j,k,t + qi, j,k,t + yi, j,k,t + zi, j,k,t) =
T∑

t=1

wi, j,k,t (30)

Intuition behind the variables included in the model. We choose input parame-
ters and optimization variables based on typical usages in IC design companies. We use
Ha(i, j) to enforce precedence relations among the activities of a project (e.g., parasitic
extraction cannot start until the design has completed routing; STA cannot start until
the design has been synthesized; or STA with signal integrity cannot start until the
design has been placed). We use Rk,t because companies typically budget for a certain
number of resources during the planning phase. However, they may increase the num-
ber of resources of a particular type during the project’s execution when they realize
that its deadline cannot be met without these additional resources. The time-dependent
variable allows us to handle such changes in our formulation. We introduce Hr(i, j, k)
and g(i, j, h, k, t) to handle co-constraints between resource types. For instance, at most
two compute nodes can be used for each STA license used. Similar to Rk,t, we use Uk,t
as the upper bound on the number of fully-shared resources, which can change over
time. For example, when a project’s deadline becomes risky to meet, units of resources
may be removed from the shared pool and allocated to the dedicated pool of the project
four work-weeks before tapeout (TO). We use Bi,k,t to achieve a stable allocation, since
resources should not be drastically shuffled (“whipsawed”) across projects in consecu-
tive units of time. For instance, we may not want to allocate 100 engineers to a project
on Day 1, but only five engineers on Day 2.

Penalty functions in the objective. The objective function can be any function that is
linear in the optimization variables presented in Table II. We use an objective function
that minimizes the sum of two schedule-related penalties over all projects [Mohring

9If a schedule cannot be pulled in, then the lower bound on t should be 1 (instead of snom
i, j) in Constraints (28)

and (29).

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:12 P. Agrawal et al.

et al. 2001]. The first penalty is for the overall duration of each project relative to the
nominal duration of the project. The second penalty is for the duration of each activity
in each project relative to the nominal duration of the activity. Commonly used penalty
functions are: Ramp — penalty due to each successive day of schedule slip increases
linearly as we move further past the deadline (thus, the total penalty is quadratic
in number of days in the slip); Step — penalty due to each successive day of slip is
constant (and the total penalty is linear in the magnitude of schedule slip); Delta —
total penalty for slip is constant (does not depend on the extent of the slip). We use
nominal duration of the activities (and projects) to penalize the schedule. The nominal
finish time of a project is calculated using the nominal start time of the first activity of
the project snom

i,1 and the nominal duration of the project enom
i . The nominal finish time

of ai, j can be calculated using the nominal start time of the activity and the nominal
duration of the activity, i.e., f nom

i, j = snom
i, j + dnom

i, j , where snom
i, j = max{1 + f nom

i,h }, over all
h ∈ Ha(i, j), or snom

i, j = si,1 if Ha(i, j) = ∅.

Complexity of the MILP. Even in a large SOC product company, number of projects
N ≤ 30, number of activities per project J(i) ≤ 20, number of resource types K ≤ 10,
and T ≤ 300 when the unit of time is days. There are (2×N× J(i)+2×N× J(i)×T +4×
N×K× J(i)×T) variables (= 2×30×20+2×30×20×365+4×30×10×20×365 ≈ 9M,
for 365 days). We note that actual values of N, K, T , and so on will likely be smaller
than these bounds. If necessary, to reduce the number of variables, we can change the
unit of time from days to weeks or months. In our experiments, we use IBM ILOG
CPLEX v12.6 [CPLEX] as our solver and the runtime of our MILP is around 45s for a
total of ∼10K variables, and 9min for a total of ∼100K variables, and 52min for a total
of ∼500K variables (see also Figure 8).

Notice that there are two types of input scenarios that can lead to infeasible solutions.

—If the value of T (maximum duration over all projects) is not large enough for all
projects to finish within that duration, CPLEX will report that the MILP is infeasible.

—Infeasibility can also arise due to inconsistent resource constraints. For example, if
20 units of resource A and 10 units of resource B are required for the completion of
an activity of a project but the co-constraint is such that to use one unit of A, one
unit of B must be used, infeasibility arises because we will never be able to use more
than 10 units of A.

Example of SCM. We now describe the SCM problem formulation, with the help of a
small example. Table III shows the values of input variables and their meaning.

Optimal solution. We seek to minimize the schedule makespan of both projects for
this example. Table IV shows one of the possible optimal solutions for the example
problem. Both of the projects can be completed by t = 4. (Resource utilization for each
activity is shown only for the first resource. The utilization for the second resource
is identical.) We note that a1,2 utilizes five units of the first resource at t = 4 from
the unused conditionally-shared pool of P2. The formulation is able to capture the
notion that if a project is not using any of its conditionally-shared resources, then those
resources can be used by other active projects.

3.3. MILP Description of the Resource Cost Minimization Formulation

Given the inputs listed in Table II for the RCM formulation, we seek to minimize the
total number of resources required and the total cost (i.e., sum of schedule penalties)
of all projects:

minimize
K∑

i=1

CkŨk +
N∑

i=1

T∑
t=1

C p
i (t) +

N∑
i=1

J(i)∑
j=1

T∑
t=1

Ca
i, j(t) (31)

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:13

Table III. Input Variables and Their Meanings for the SCM Example

Variable and value Meaning
N = 2 There are two projects, P1 and P2.
T = 10 The maximum duration over both projects is 10.
J(1) = 2 There are two activities, a1,1 and a1,2, in project P1.
J(2) = 1 There is one activity, a2,1, in project P2.
Ha(1, 2) = 1, In P1, activity a1 must complete before activity a2.
K = 2 There are two types of resources.
R1,t = 40, R2,t = 40 At most 40 units of either resource can be used at any point in time.
Hr(1, 1, 2) = 1, The first resource is a predecessor resource for the second resource for
Hr(1, 2, 2) = 1, all activities and projects.
Hr(2, 1, 2) = 1
g(1, 1, 1, 2, t) = 1 ∀t, One unit of the first resource must be used before using one unit of the
g(1, 2, 1, 2, t) = 1 ∀t, second resource by any activity at any point in time.
g(2, 1, 1, 2, t) = 1 ∀t
L1,1,1 = 60, L1,2,1 = 65, 60 units of each resource are required to complete activity a1,1,
L1,1,2 = 60, L1,2,2 = 65, 65 units of each resource are required to complete activity a1,2, and
L2,1,1 = 30, L2,1,2 = 30 30 units of each resource are required to complete activity a2,1.
U1,t = 20 ∀t, At most 20 units of each resource are fully-shared
U2,t = 20 ∀t between both projects at any point in time.
V1,1,t = 5, V1,2,t = 5 ∀t, Each project has five units of each resource that are segregated, i.e., they

can be used only by activities of that project at any
V2,1,t = 5, V1,2,t = 5 ∀t point in time. These resources are not shared with other projects.
M1,1,t = 5, M1,2,t = 5 ∀t, Each project has five units of each resource that are conditionally-shared

at any point in time, i.e., they can be used by activities of other
M2,1,t = 5, M1,2,t = 5 ∀t projects if they are unused by the project.
G1,1,t = 35, G1,2,t = 35 ∀t, At most 35 units of either resource can be used by either project at any
G2,1,t = 35, G1,2,t = 35 ∀t point in time.

Table IV. Consumption of the First Resource for Both Projects in an Optimal Solution

Activities
a1,1 a1,2 a2,1

Time t r1,1,1,t q1,1,1,t y1,1,1,t z1,1,1,t r1,2,1,t q1,2,1,t y1,2,1,t z1,2,1,t r2,1,1,t q2,1,1,t y2,1,1,t z2,1,1,t

1 20 5 5 0 0 0 0 0 0 5 5 0
2 20 5 5 0 0 0 0 0 0 5 5 0
3 0 0 0 0 20 5 5 0 0 5 5 0
4 0 0 0 0 20 5 5 5 0 0 0 0

Total (for
60 65 30

each activity)

This optimization is subject to the following constraints.

Constraints on start and finish times. We use Constraints (2) to (8), as in the SCM
formulation (Section 3.2).

Constraint on activity precedence. We use Constraint (9), as in the SCM formula-
tion (Section 3.2).

Constraint: Upper bounds on resource consumptions. Constraints (32) and (33)
upper-bound the number of resources of each type used at time t across all activities of
all projects. Constraints (34) and (35) ensure that an activity does not use any resources

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:14 P. Agrawal et al.

before it starts or after it ends.

∀i,∀k,∀t,
J(i)∑
j=1

ri, j,k,t ≤ Gi,k,t (32)

∀k,∀t,
N∑

i=1

J(i)∑
j=1

ri, j,k,t ≤ Ũk (33)

∀i,∀k,∀ j,∀t, ri, j,k,t ≤ Gi,k,t × Si, j,t (34)

∀i,∀k,∀ j,∀t, ri, j,k,t ≤ Gi,k,t × (1 − Fi, j,t) (35)

Constraint: Resource requirements of activities. Constraint (36) ensures the com-
pletion of an activity.

∀i,∀k,∀ j,
T∑

t=1

ri, j,k,t = Li, j,k (36)

Constraint: Stability in resource allocation. We modify Constraints (26) and (27)
from the SCM formulation as follows to ensure stability in the consumption of resources
for each project.

∀i,∀k,∀t,
J(i)∑
j=1

(ri, j,k,t) −
J(i)∑
j=1

(ri, j,k,t−1) ≤ Bi,k,t (37)

∀i,∀k,∀t,
J(i)∑
j=1

(ri, j,k,t−1) −
J(i)∑
j=1

(ri, j,k,t) ≤ Bi,k,t (38)

4. VALIDATION AND RESULTS

In this section, we describe computational studies using three multi-project schedul-
ing problem instances taken from a large design center (tens of market-leading SOC
product tapeouts per year) of a worldwide top-5 semiconductor company, referred to
from here as Company X. The results show a potential for significant resource savings
(datacenter provisioning, EDA tool licenses, people, and schedule) from our MILP for-
mulations when compared to the scheduling solutions actually used by Company X’s
design center. We also show the scaling of solver runtime with instance parameters.

4.1. Schedule Modification Use Case

The first industry problem instance has N = 3 projects, each in the final pass of
implementation, within an overall timeline of T = 90 days. The three projects P1, P2,
and P3 contain 15, 10, and 10 “hard macro” blocks, respectively. As listed in Table V,
there are 11 activities associated with each project (ai,1 = A1, . . . , ai,11 = A11).10 The
table shows that each activity, per block, uses some amount of each of five resource
types: compute cores, units of memory (e.g., a unit might be 16GB RAM), and tool
licenses of types L1, L2, and L3.11 Further, activities A5, A8, and A11 per block are

10See Table IX in the Appendix for a mapping of activities and resources to actual chip design flow
terminologies.
11According to Gary Smith personal communication [], leading exemplars of these resources include EDA
tools such as Cadence’s Innovus [Innovus], Assura QRC [Assura QRC] and Tempus Timing Signoff [Tempus],
and Synopsys’s IC Compiler [IC Compiler], Star-RCXT [StarRCXT] and PrimeTime-SI [PrimeTime]. The

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:15

Table V. Activity Requirements (Per Block) for Each Project

Activity #core #mem L1 L2 L3 Hours
1. A1 1 1 1 12
2. A2 4 2 2 24
3. A3 4 2 2 72
4. A4 4 2 1 8
5. A5 (per corner) 8 8 1 4
6. A6 4 4 1 12
7. A7 4 2 1 8
8. A8 (per corner) 8 8 1 4
9. A9 8 8 1 1 24
10. A10 4 2 1 8
11. A11 (per corner) 8 8 1 4

Fig. 2. Precedence order of activities in projects (a) P1, (b) P2, and (c) P3.

performed at 75 corners and two modes (functional and test).12 The projects have access
to the following total amounts of these resources: (i) compute cores = 4800, (ii) units
of memory = 4800, (iii) L1 licenses = 50, (iv) L2 licenses = 30, and (v) L3 licenses =
400.13

Additional constraints governing the projects and the scheduling solution are as
follows: (i) for each project, the activities must follow a given precedence order, as
shown in Figure 2 – for example, in Project P2, activities a2,1, a2,2, a2,3, and a2,4 must all
be completed before activity a2,5 can commence, but there are no ordering constraints
among a2,1 – a2,4; (ii) at any point in time, the number of compute cores consumed
cannot exceed 10 times the number of tool licenses consumed and cannot exceed twice
the number of units of memory consumed; (iii) each project is given a 30% allocation of
the 4800 total compute cores (i.e., as segregated resources), with the remaining 10% of
the compute cores being fully-shared resources; and (iv) no project can use more than

EDA tools used in the production design flows studied in this article cannot be specifically revealed here but
are from this set.
12Thus, for example, performing A5, A8, or A11 activity for a 10-block chip will require 10 (blocks) × 75
(corners) × 2 (modes) × 8 (cores) × 4 (hours) = 48000 core-hours of compute resource.
13In this instance, there are ∼65K variables and ∼980K constraints. The runtime of the solver is around
9min.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:16 P. Agrawal et al.

Fig. 3. MILP solutions for projects (a) P1, (b) P2, and (c) P3 at 48h, 24h, 12h, and 6h granularities from
top to bottom, respectively. For readability, we have scaled down the values of cores and storage memory as
Cores/8 and Mem/8.

350 L3 licenses, 40 L1 licenses, or 60% of the total supply of any other type of resource
(compute cores, memory units, L2 licenses) at any time.

MILP solution using SCM. Our SCM MILP formulation straightforwardly allows
capture of the multi-tapeout project scheduling problem described earlier. All projects
can be completed within the 90-day limit. In one optimal solution, projects P1, P2,
and P3 are completed in 59, 39, and 34 days, respectively. Figures 3(a) to 3(c) show
the resource consumption profiles of the three projects, where no stability constraints,
i.e., Constraints (26) and (27), are imposed. From top to bottom, the schedules for
each project are shown at 48h, 24h, 12h, and 6h granularities, respectively. When

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:17

timestep granularity is coarsest (48h), MILP runtime is around 3.4min and resource
consumptions switch rapidly across activities, whereas when timestep granularity is
finest (6h), MILP runtime is around 2.2h and the makespan tightens as compared to
the makespan of 48h granularity solutions.

Schedule modification. The salient problem that we address in this section is one of
late-breaking schedule changes that can introduce iterations of activities in a project
(e.g., synthesis, verification, placement, routing and sign-off). After projects are initially
scheduled, there can arise a need to modify some of the instance parameters during
schedule execution (e.g., due to a design bug and resulting Engineering Change Order
(ECO)), then re-solve for the project schedules from that point on. Here, a late-breaking
bug (i.e., a bug that is found and fixed very late in the schedule) in the behavioral
description of the design for project P2 caused large-scale changes. In the actual project,
this led to a push-out of activity a2,8 (A8), which, in turn, pushed out all downstream
activities for the project. As a result, there is a need to determine optimal scheduling
of the remaining activities, i.e., where P1 resumes from a1,5 on, P2 resumes from a2,8
on, and P3 has only its last activity a3,11 remaining to be scheduled. An optimal MILP
solution for the “from the moment of the ECO onward” scheduling problem is shown in
Figures 4(a), (c), and (e) with projects P1, P2, and P3. The solution actually used in the
company design center is shown in Figures 4(b), 4(d), and 4(f). In the MILP solution,
all three projects are completed by 34 extra days from the point of the late-breaking
bug, while the industry solution takes 41 extra days for completion. Our MILP solution
could thus have saved 1.4 work-weeks in the schedule makespan of the three projects.14

4.2. Scheduling Tethered to Forecasts

The SCM MILP formulation can be extended, with a few additional constraints (and cor-
responding inputs), to address a forecast-tethered resource allocation problem. The use
case is that we are given (typically, bottoms-up from project owners) a forecast resource
allocation for activity ai, j,k and its consumption wi, j,k,t of resource type k. The optimal so-
lution must satisfy the Constraints (28) to (30). Figure 5(a) illustrates the allocation for
one project; Figure 5(b) illustrates a consumption forecast over time for three identical
such projects. At times, forecast consumption is greater than the upper bounds of re-
sources (e.g., servers/datacenter capacity); thus, the allocation is infeasible. Figure 5(c)
shows a feasible scheduling that is obtained by modifying the forecast resource alloca-
tion within upper bounds, constraining the consumption peaks to be within bounds.

We find an optimal schedule by tethering an instance of an industrial forecast re-
source allocation from the design center of Company X. The instance consists of 24
projects along with the forecast resource consumption of each project from November
2014 to September 2015. The total forecast resource consumption over all the projects
is greater than the current servers (and datacenter capacity) during certain months.
Therefore, we optimize the allocation in order to bound the consumption within Rk,t
(i.e., the current servers or datacenter capacity). We consider two variants: (i) pull-in of
the project schedule and (ii) reduction of the amounts of shared allocations from the up-
per bound Rk,t. Table VI summarizes the experiments that we conduct for this instance.
CS = 1560 denotes the number of current servers and DC = 2100 denotes the datacen-
ter capacity. fs-in denotes whether the fully-shared resources (210 units of CS or DC)

14According to the actual industry solution, each of the projects P2 and P3 should be given 50% of the
resources until P3 is completed. This entails that P1 will be given 50% of the resources while P2 and P3
(for cleanup) get 20% of the resources each, and the number of fully-shared resources is restored to 10%.
Since we do not consider cleanup activity (of P3) to get the optimized solution, we re-allocate P3’s resources
to P1 (10%, as no project can consume more than 60% of the resources) and P2 (the remaining 10%) for fair
comparison of the solutions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:18 P. Agrawal et al.

Fig. 4. Solutions of (a) MILP for P1, (b) industry for P1, (c) MILP for P2, (d) industry for P2, (e) MILP for P3,
and (f) industry for P3 with a late-breaking RTL bug in project P2. Cores and Mem are exactly overlapping
in the industry solution in all three figures. For readability, we have scaled down the values of cores and
storage memory as Cores/8 and Mem/8.

are included in Rk,t; pi-en denotes whether pull-in is enabled; pi denotes the number
of months by which the schedule is pulled in; and po denotes the number of months by
which the schedule is pushed out. Our penalty functions for schedule changes (pull-in or
push-out) per-month are as follows: no penalty when the change is <5% of the forecast
duration of the project; penalty function pen1 for changes between 5% and 30% of the du-
ration; and penalty function pen2 for changes beyond 30% of the duration. Usually, pen2
is significantly higher than pen1. Furthermore, there are two types of projects – com-
mitted and proposed. Committed projects are penalized more than proposed projects

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:19

Fig. 5. Forecast allocation for (a) one project, (b) three such projects – infeasible, and (c) a feasible MILP-
derived allocation.

Table VI. Resource Allocations Tethered to Forecasts

Rk,t δ (%) fs-in pi-en pen1 pen2 #po #pi
CS 30 � ✗ ramp step 6 (3) -
CS 30 ✗ ✗ infeasible
CS 40 ✗ ✗ ramp step 14 (8) -
CS 40 � ✗ ramp step 3 (0) -
CS 30 � ✗ step delta 15 (8) -
DC 30 � ✗ ramp step 0 (0) -
DC 30 ✗ ✗ ramp step 0 (0) -
CS 30 � � ramp step 5 (2) 5 (0)

when not adhering to the forecast schedule.15 Values in parentheses show the total
number of months that the committed projects are either pushed out or pulled in.16

15We do not leverage our MILP currently for industrial projects. However, in our next version of our (com-
pany’s) forecast reporting/methodology, we are considering integration of features described in this article to
afford more “knobs to turn” when setting schedules, as there is a continuous and pressing need to achieve
increased efficiencies within the compute environment.
16In this instance, there are ∼1K variables and ∼4.5K constraints. The runtime of the solver is around 3.2s.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:20 P. Agrawal et al.

Table VII. Billable Man-Weeks for Each Activity for Each Project

Project
Activity Resource type used Project P1 Project P2 Project P3 Project P4

1. A12 HR1 140 145 45 160
2. A13 HR1 420 425 45 500
3. A14 HR2 115 100 45 200
4. A15 HR2 345 300 145 580
5. A16 HR3 870 990 140 640
6. A17 HR3 80 260 30 50
7. A18 HR2 220 300 90 390
8. A19 HR4 480 550 180 540

Fig. 6. Activity precedence for all projects.

Note that for the allocation to be bounded by Rk,t, δ must be sufficiently large such
that tethering can bring the total consumption for each of the months to be within
Rk,t. For example, if the total forecast consumption for a month is 100 units and Rk,t is
70 units, then δ ≥ 30% to obtain a feasible solution. The maximum CPU time needed
to solve any of the instances in Table VI is less than a second, since the unit of T is
months and T = 11. The design center management of Company X could not solve this
problem. Their solution was to purchase the additional 600 servers required to meet
committed project forecast demands during the months of peak execution. However,
we demonstrate that our solver can provide an allocation that does not require the
purchase of additional servers while still meeting the schedule.

4.3. (Human) Resource Allocation Use Case

Our third industry instance has N = 4 projects, each with a makespan of 16 work-
weeks (or 80 days). Each of the four projects P1, P2, P3, and P4 has eight activities
with assigned “billable man-weeks,” i.e., total amount of human resources needed to
complete each activity. Four types of human resources (HR1, . . . , HR4) are available for
each project. Table VII shows the resource requirement for each project across multiple
activities.17 Project P4 begins first; the start dates of projects P3, P2, and P1 are offset
by 5, 9, and 5 work-weeks, respectively (there are 5d in a work-week) relative to the
start date of project P4. The precedence graph for activities for each project is shown
in Figure 6. In addition, all resources are fully-shared across the four projects.18

17Table IX in the Appendix provides a mapping of activities and resources to chip design flow terminologies.
18In this instance, there are ∼6K variables and ∼31K constraints. The runtime of the solver is around 18s.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:21

Fig. 7. Comparison of allocations: (a) Industry vs. MILP with the makespan of all projects set to 16 work-
weeks, and (b) MILP solutions when the makespan of all projects is 16 vs. 20 work-weeks. Ũi=1,2,3,4 is the
maximum over total amount of HR{1,2,3,4} units consumed in any work-week.

From a scheduling standpoint, design management would typically like to assess
time-to-market versus resource costs. Our solver allows “what-if” analyses to under-
stand these trade-offs. To understand resource costs when time-to-market is critical,
we set the makespan of each project to 16 work-weeks. Figure 7(a) compares our RCM
MILP solution with the industry solution. The RCM MILP solution reduces the maxi-
mum amount of resources required in any work-week, Ũ1 (for HR1) by 13.5% (185 units
to 160 units), Ũ2 (for HR2) by 37.5% (240 units to 150 units), Ũ3 (for HR3) by 25.5% (200
units to 149 units), and Ũ2 (for HR4) by 30% (130 units to 91 units). Such reduction in
the number of human resources required can result in highly significant cost savings
for a company. For example, according to Glassdoor [], one unit of an HR resource costs
$40 (US dollars) per hour in a (South Asian) non-US location. We assume this cost and
that a given resource works 8 hours per day for 5 days per week. The overall makespan
of all four projects is 26 work-weeks. Therefore, reducing Ũ2 by 90 units for HR2 saves
40 × 8 × 5 × 26 × 90 ∼ $3.7 million for the company. To understand resource costs
when time-to-market can be relaxed, we have evaluated a solution in which we set the
makespan of each project to 20 work-weeks. Figure 7(b) compares MILP solutions for
20 work-weeks with those for 16 work-weeks. The relaxed project makespans enable
further reductions in the maximum amount of resources required in any work-week: Ũ3
(for HR3) by 10.7% (149 units to 133 units), Ũ4 (for HR4) by 14.3% (91 units to 78 units),
and Ũ2 (for HR2) by 16.7% (150 units to 125 units) relative to our solutions for the 16
work-week project makespan. The additional reduction of Ũ2 by 25 units for HR2 alone
can result in further savings of (40 × 8 × 5 × 26 × 150) − (40 × 8 × 5 × 29 × 125) ∼ $0.44
million for the company.

4.4. Artificial Test Case Generator

We have separately developed a generator of random multi-tapeout project scheduling
instances, in which parameters such as N, T , J(i), Rk,t, Uk,t, Vi,k,t, Mi,k,t, Gi,k,t, and
dnom (see Table II) are all Gaussian random variables, and various pairs of resources
may be co-constrained. Further, the randomly generated instances can have different
topologies of precedence constraints (see Figure 2). Our generator is implemented in
Python; it takes in values of N, T , J(i), Rk,t, Uk,t, Vi,k,t, Mi,k,t, Gi,k,t, and dnom as command-
line arguments, and generates a problem instance input as illustrated in the example
in Section 3.2. Large IC design companies typically deal with up to ∼30 projects with
known priorities (set by marketing teams and management). It is not required to study

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:22 P. Agrawal et al.

Fig. 8. Runtime variation with parameters: (a) N, (b) J(i), (c) T , and (d) K.

all N! permutations of projects because project priorities induce a chain ordering.
As a result, unlike Kolisch and Sprecher [1996], we do not exhaustively enumerate
instances. As demonstrated earlier, our MILP can handle ≤ 30 simultaneous projects
whose priorities have already been decided.19

4.5. Scalability Studies

Furthermore, we have also studied the scalability of our optimal solution approach with
respect to CPLEX v12.6 solver runtimes. We use artificial test cases from our generator
described in Section 4.4 for our scalability studies. Figure 8 shows the sensitivity of
CPLEX runtime to changes in various instance parameters relative to a base instance
configuration of N = 6, J = 8, T = 200, K = 6 (the red point shown in each of the
plots in the figure). Each plot sweeps one of the instance parameters as: (i) N = {2, 4,
6, 8}, (ii) J = {2, 4, 6, 8, 10} (J(i) = J∀i = {1, . . . , N}), (iii) T = {150, 200, 300} days, and

19We have run our solver on 480 test cases for the j30 benchmark from PSPLIB [PSPLIB], for which optimal
solutions for each test case are available. Other benchmarks such as j60, j90, and j120 do not have optimal
solutions posted in PSPLIB [PSPLIB]. This benchmark has one project with 30 activities, and each test
case varies the following: (i) precedence constraints between activities and (ii) upper bounds of resources for
each activity over various timesteps. For each test case, renewable resources map to Rk,t, and non-renewable
and doubly-constrained resources map to Gi,k,t in our MILP. For non-renewable resources, we set the same
upper bound for all t. We have confirmed that MILP solutions are the same as optimal solutions posted in
PSPLIB [] for j30. The runtimes of both PSPLIB and MILP solutions differ by ±3% when the respective
solver implementations (in CPLEX v12.6) are run on an Intel Xeon E5-1410 server at 2.80GHz.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:23

(iv) K = {2, 4, 6, 8}. All other parameters are fixed at the base configuration values.
The parameter being varied is shown on the x-axis; runtime (seconds) is shown on the
y-axis. Here, all projects are identical, i.e., they all have the same number of activities,
and corresponding activities have the same resource requirements.

4.6. Stochasticity Studies

The default usage model of the MILP solver assumes a “perfect world with no stochas-
ticity,” that is, there is some kind of optimal offline solution possible. However, in a “real
world that has stochasticity,” the optimal offline solution will actually result in some
kind of distribution (which depends on the stochasticity that is assumed) of outcomes
(e.g., schedule makespans, schedule slippage penalties, and so on). The slippages
in the “real world that has stochasticity” can be mitigated by re-running the solver
at intervals to adapt the scheduling solution to deviations from assumed idealities.
There is an expected trade-off between makespan and penalties versus the interval
between consecutive re-runnings of the solver. We conduct experiments to show that
our results have the expected sensitivities to the assumed variances in the modeling of
stochasticity. We modify our instance generator in the following way. Each activity can
be repeated with a certain probability distribution, which is provided by the user. The
resource requirements of each activity Li, j,k are sampled from a normal distribution
N(μ′, σ ′) provided by the user. Li, j,k with distribution N(μ′, σ ′) models “productivity”
of assigned resources (e.g., Engineer A is expected to complete a certain task in two
days but the engineer’s completion time has a standard deviation of 0.4d). When an
activity is repeated, we follow the precedence graph so that dependent activities are
also repeated. At various timesteps in a project’s execution (i.e., defined by the interval
between re-runnings of the solver), we (i) use our (stochastic) instance generator
to create instances based on sampling from distributions, (ii) induce a remaining
project scheduling problem instance after applying the current (previously-completed)
solution, and (iii) re-run our solver on this induced instance.

We test our stochasticity model using an instance with two projects, four activities per
project, linear precedence of all activities within a project, and four types of resources.
We sample Li, j,k from N(μ′, σ ′) and assume that each activity has a probability of 0.15
of being repeated. Repetition corresponds to the “anomaly” of a floor plan change, logic
ECO, failed P&R run, and so on. The timestep is days in our instances, and we conduct
100 trials of each experiment and report the average makespan across these 100 trials.
Figure 9(a) shows the impact on makespan as the time when anomaly happens is
varied. We set the probability of each activity being repeated to 0.15, Li, j,k to the
mean value, vary the time at which we sample each activity that has potential to be
repeated at t = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18}, and assume that the solver is re-run
as soon as the anomaly (i.e., repetition of the activity) is detected. We observe that
if the anomaly happens later during execution, the project makespan gets worse as
compared to the anomaly happening earlier during execution (less opportunity to work
around the schedule slip). We implement an oracular solver (that knows when anomaly
will happen and its impact on iterations of activities at t = 0) and compare solutions
from the oracular solver and solutions from the solver with and without cognizance
of anomaly. The important point to note here is that the makespan of the oracular
solution is less than or equal to the makespan of the solution when the solver is run
whenever anomaly occurs.

In Figure 9(b), we study the impact on makespan when the solver’s re-running
interval is varied across ξ = {1, 2, 4, 6, 8, 10, 12, 14, 16} timesteps (days) assuming that
the anomaly occurs at t = 10. We set the probability of each activity being repeated to
0.15 and Li, j,k to the mean value. As expected, makespan increases when the solver is
re-run much later after the anomaly happens, whereas when the solver is re-run every

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:24 P. Agrawal et al.

Fig. 9. Studies of stochasticity on makespan: (a) time when anomaly happens is varied, (b) interval at
which the solver is re-run is varied, (c) probability of each activity being repeated is varied, (d) resource
requirements are varied, and (e) when there is uncertainty in schedule.

day or every 2d or every 10d, the anomaly is detected immediately and there is no
impact on makespan as compared to solutions from the oracular solver. For example,
when the solver is run every 8d, anomaly is detected at t = 16 and the makespan
diverges from the oracular solution by 3.5d. However, when the solver is run every
10d, the anomaly is detected at t = 10 and the makespan is the same as that from the
oracular solver. In Figure 9(c), we study sensitivity of the makespan to stochasticity
in repeating activities. We vary the probability of each activity being repeated from
{0.15, . . . , 0.9} in steps of 0.05. We assume that the anomaly happens at t = 12 (with
probability {0.15, . . . , 0.9}), the solver is re-run every six (or any divisor of 12) days, and
set Li, j,k to the mean value. As expected, the makespan increases as the probability of
repetition increases, and solutions from the oracular solver have a smaller makespan
compared to the solutions from the solver that is re-run every 6d. In Figure 9(d), we
study sensitivity of the makespan to stochasticity in resource requirements when the
anomaly happens (i.e., we sample resource requirements for remaining activities) at
t = 10 and the solver is re-run immediately. We sample Li, j,k for activities that are
running or have not yet started. We vary the standard deviation across +{0, 15, 20,
25, 30, 35, 40}% of the mean. We observe that as standard deviation increases (i.e.,
resources become less predictable) the average makespan increases. In Figure 9(e), we
study distribution of the makespan when there is uncertainty in the schedule. For a
given problem instance, considering that there are no anomalies, we sample Li, j,k from

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:25

Fig. 10. (a) Impact on the makespan when the upper bounds on resources are increased. (b) Pareto curves
for changes to resource upper bounds.

a distribution that has the mean set to the value of Li, j,k when there are no anomalies
and has a standard deviation equal to +15% of the mean. We then plot the makespan
for various samples of Li, j,k. We observe that there is a minimum-makespan schedule
from 100 sampled values of Li, j,k.

Schedule Granularity. Our problem formulation discretizes time, with the unit t
potentially representing hours, days, months, and so on. A more granular time unit
permits more accurate modeling at the cost of runtime. Recall that Figures 3(a) to 3(c)
showed solutions to the industrial schedule modification instance by varying timesteps
at 48h, 24h, 12h and 6h granularities from top to bottom, respectively. As expected, we
see slightly tighter makespans for the projects at the finest granularity (6h) than at the
coarsest granularity (48h). The solver runtime increases from 3.4s (with 48h solution
granularity) to 2.2h (with 6h solution granularity).

4.7. Sensitivity Studies

We analyze the effect of the upper bounds (on the resources) on the optimal schedule. In
the first industry instance described in Section 4.1, we increase the upper bounds of the
resources, that is, we proportionately increase Rk,t, Uk,t, Vi,k,t, and Gi,k,t. Figure 10(a)
shows that the makespan decreases when the upper bounds of all the resources in-
crease.

We also create another instance in which we increase only upper bounds of compute
server and storage resources and do not change the upper bounds of other resources.
From the Pareto curves in Figure 10(b), we can see that in this instance at Company
X, additional compute servers and storage would not help at all. In this particular
instance, the number of licenses is the bottleneck and the makespan can be improved
only if more licenses are made available. (This also shows effects of the resource co-
constraints, i.e., additional compute and storage resources cannot be maximally utilized
due to shortage of licenses.) From our interactions with senior management at the
Company X design center, we understand that these types of sensitivity analyses can
be very useful for resource planning and procurement.

4.8. Engineer Allocation Studies

Last, we study stable allocation of certain resource types such as engineers, who cannot
be rapidly re-allocated to different projects or activities. We modify the objective of our

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:26 P. Agrawal et al.

Table VIII. Total Cost, Number of Switches, μ and σ of Switches Overall Engineers,
and Overall Schedule Makespan Impact

Switching Cost Total μ σ � Overall
Test case N # Engineers C # Switches (# Switches) (# Switches) Total Cost Makespan

E1 5 100

0 4108 39.8 7.33 0 0 weeks
0.1 3804 38.8 7.20 410.4 +1 weeks
1 2180 21.5 6.36 1920 +1 weeks
10 1280 12.4 4.28 12840 +1 weeks

100 0 0 0 15050 +4 weeks

E2 10 150

0 5690 37.5 5.25 0 0 weeks
0.1 5520 36.6 5.20 572 +1 weeks
1 2777 18.5 5.06 3207 +2 weeks
10 1550 10.6 3.4 16360 +2 weeks

100 0 0 0 22680 +4 weeks

E3 30 150

0 5910 39.0 5.36 0 0 weeks
0.1 5760 38.2 5.33 606 +1 weeks
1 1965 12.9 4.22 3475 +2 weeks
10 1342 8.8 2.75 17940 +3 weeks

100 0 0 0 28500 +4 weeks

E4 30 250

0 9870 39.2 6.05 0 0 weeks
0.1 8920 35.6 5.20 1112 +1 weeks
1 5680 22.8 5.59 30520 +3 weeks
10 2870 11.2 3.65 72950 +4 weeks

100 0 0 0 251280 +7 weeks

SCM problem as follows.

minimize C
K∑

k=1

N∑
i=1

J(i)∑
j=1

T∑
t=2

|ri, j,k,t − ri, j,k,t−1| +
N∑

i=1

T∑
t=1

C p
i (t) +

N∑
i=1

J(i)∑
j=1

T∑
t=1

Ca
i, j(t) (39)

This optimization is subject to start and finish times, resource upper-bounds and
activity precedence constraints, as described in Section 3.3. We consider each engineer
as a resource type; thus, Rk,t = 1,∀t. In consecutive timesteps t − 1 and t, the engineer
is either working on an activity ai, j of Project Pi, or working on another activity of the
same project or a different project. When the engineer is working on the same activity,
there is no switching between consecutive timesteps and the absolute difference of
|ri, j,k,t − ri, j,k,t−1| is zero. However, when the engineer works on a different activity or
project, then the absolute difference is one and is multiplied by the fixed cost C of
switching activities or projects. The total number of switches made by the engineer
is multiplied by C in the objective function to obtain the total cost of switching. Our
objective is to minimize the cost of switching across all engineers.

To verify this formulation, we use our generator described in Section 4.4 and create
four input instances E1,2,3,4 with 5, 10, 30, and 30 projects, respectively. Each instance
has one activity per project (i.e., J(i) = 1,∀i = 1, . . . , N), and the number of engineers
varying between 100 and 250 (i.e., K = 100, K = 150, or K = 250), T = 90 weeks,
Rk,t = Uk,t = 1,∀t, and s(i, 1) = 1. In instance E1, we assess solutions with C set to
0, 0.1, 1, 10, and 100. C = 0 corresponds to zero cost of switching between projects,
C = 1 corresponds to a small cost of switching, and C = 100 corresponds to a large cost
of switching. Table VIII summarizes the number of switches made by each engineer
over all projects. In instance E1, when the cost of switching is zero, there are a total
of 4108 switches without any impact to the overall schedule makespan. When the
cost of switching is large (C = 100), there are zero switches but the overall schedule
makespan increases by 4wk. When the cost of switching is small (C = 1), the total
number of switches reduces from 4108 to 2180, but the makespan increases by 1wk
and the total cost increases from 0 to 15050. Thus, we observe sensible behavior of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:27

trade-off between total number of switches (stable assignment) and overall schedule
makespan. Instances E2 and E3 further show the trade-off in total number of switches
and overall schedule makespan using different values of C for the same number of
projects and engineers. Instance E4 demonstrates scalability as the number of projects
is increased to 30 and the number of engineers is increased to 250. In all instances, we
reduce the total number of switches made by engineers by increasing C; however, the
total cost increases as schedules of projects are pushed out by 1wk to 7wk.20

We also solve a variant of the engineer allocation problem by adding constraints
that upper-bound the number of switches of each engineer during the overall schedule
makespan. We use the same objective function as the SCM problem with additional
constraints. We validate our solver for this variant using instance E4 described earlier,
and by varying the upper bound on the number of switches allowed per engineer as
{+∞, 30, 20, 10, 5, 1}. When the upper bound is +∞, the total cost is zero and matches
the total cost when C = 0 for instance E4 in Table VIII. When the upper bound is 30,
the total cost is 3830; when the upper bound is 20, the total cost is 33150; when the
upper bound is 10, the total cost is 97150; when the upper bound is 5, the total cost is
116650; and when the upper bound is 1, the total cost is 226250.

5. CONCLUSIONS AND FUTURE WORK

The lack of tools for management of semiconductor design resources (servers, tool li-
censes, engineering headcount) can impact a company’s bottom line by many millions
of dollars per year. In this work, we capture multi-project, multi-resource constrained
project scheduling as SCM and RCM MILP formulations that are readily solvable us-
ing commercial engines such as CPLEX. The MILP solutions provide optimal schedul-
ing and allocation solutions for complex multi-tapeout management scenarios in a
large design center. Aspects of our formulation that are unique to semiconductor de-
sign, and that take our work beyond the earlier RCPSP formulation of Kolisch and
Hartmann [1999], Kolisch et al. [1992], and Kolisch and Sprecher [1996], include mul-
tiple resource pools and co-constraints between resources of different types. We demon-
strate the flexibility and value of our optimization in three scenarios taken from the
recent history of Company X’s design center. (1) We find an optimal schedule for three
concurrent tapeouts when a late-breaking RTL change hits one of the projects, and
save 1.4 work-weeks of schedule compared to the solution deployed by the company.
This level of saving corresponds to 2.7% of annual labor and infrastructure costs and
enhances market competitiveness. (2) We find an optimal schedule for 20+ projects,
subject to datacenter capacity limits and a tethering constraint with respect to original
forecast resource allocations. Our solution shows that a slight relaxation of the tether-
ing constraint would allow committed projects to proceed within resource limits. Our
solution meets the schedule with no additional servers. By contrast, in the absence of
decision support tools, the company’s solution entailed the purchase of hundreds of ad-
ditional servers. (3) We find an optimal allocation of human resources for four projects
and save up to 37% of a particular resource type relative to the solution adopted by
the company. In a non-US location, this single-resource type reduction would imply a
∼$3.7M savings for the company within a half-year project scheduling makespan. We
also provide “what-if” analyses capabilities with our solver and demonstrate sensitiv-
ity analyses (schedule benefits of incremental resources) and scalability of our solution
approach. Since we introduce new concepts such as conditionally-shared, segregated,

20Instance E1 has ∼46K variables, ∼350K constraints, and a runtime of around 3min. Instance E2 has
∼150K variables, ∼1.1M constraints, and a runtime of around 28min. Instance E3 has ∼450K variables,
∼3.2M constraints, and a runtime of around 50min. Instance E4 has ∼680K variables, ∼5.4M constraints,
and a runtime of around 2.3h.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:28 P. Agrawal et al.

and fully-shared resource types along with resource co-constraints, we are unable to
compare against any previously existing MILP formulations of such problems. Using a
(stochastic) instance generator, we demonstrate impact on makespan with stochasticity
in resource requirements and iterations in activities.

Our work is applicable across multiple stages of project and capacity planning pro-
cesses. For example, it can be used (i) as part of a fiscal planning process to comprehend
the overall resource requirements of a site or a computing cluster, (ii) by program man-
agement as a what-if tool so that infrastructure can join engineering headcount as a
factor in scheduling decisions, and (iii) by “Engineering Compute” operations teams
to understand the impact of product roadmap or schedule changes on datacenter and
EDA licensing infrastructure so that corrective actions may be taken in a proactive
and principled manner. By providing a foundation for improved engineering resource
allocation to maintain high overall resource utilizations and low schedule latencies, we
enable design organizations to improve design throughput and efficiency with given
resources. Ultimately, this helps to continue the scaling of design cost efficiencies that
are so vital to the IC industry. Our solving of instances with co-constraints, stability
constraints and tethering forecast resource allocations may be of interest in other ap-
plication domains, such as industrial assembly (e.g., automobile assembly), air traffic
management, and workflow scheduling in grid computing [Laborie and Godard 2007].

Our formulations can be improved in a number of directions that are the subject of
ongoing investigation. For instance, it will be helpful to be able to automatically deter-
mine threshold values of inputs (e.g., the schedule length T or the tethering constraint
δ) at which feasible solutions exist. Scheduling decisions should also comprehend dis-
tributions of job sizes or job complexities (which can vary per block and according to the
state of a project), and automatic change of timestamps when schedule changes occur.
Solutions can be further stabilized by adopting iterative optimization approaches. A
further open direction is to optimize robustness of scheduling solutions in the face of
stochasticity in resources and personnel.

APPENDIX

Table IX maps activities and resources from problem instances in Section 4.1 and
Section 4.3 to chip design flow terminologies.

Table IX. Glossary for the Schedule Modification Use Case (Section 4.1) and (Human)
Resource Allocation Use Case (Section 4.3)

Schedule modification use case (Section 4.1) Human resource allocation use case (Section 4.3)
Activity / Resource Chip Design Flow Mapping Activity / Resource Chip Design Flow Mapping

A1 Placement A12 Block-Level Design (BLD)
A2 Routing A13 Full-Chip Design (FCD)
A3 Search and Repair A14 Block-Level Verification (BLV)
A4 Extraction A15 Full-Chip Verification (FCV)
A5 Static Timing Analysis (STA) A16 Block-Level Physical Design (BLPD)
A6 Functional ECO A17 Full-Chip Physical Design (FCPD)
A7 Extraction A18 Gate-Level Simulation (GLS)
A8 STA (per corner) A19 Emulation (EMU)
A9 Timing ECO HR1 Design Resources
A10 Extraction HR2 Design Verification Resources
A11 STA (per corner) HR3 PD Resources
L1 P&R License HR4 EMU Resources
L2 RCX License – –
L3 STA License – –

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

Optimal Scheduling and Allocation for IC Design Management and Cost Reduction 60:29

REFERENCES

P. Agrawal, B. Chatterjee, A. B. Kahng, P. K. Myana, and S. Nath. 2015. Optimal multi-tapeout project
scheduling for enterprise-scale design management and cost reduction. Work-in-Progress, DAC.

M. Ayala and C. Artigues. 2010. On Integer Linear Programming Formulations for the Resource-Constrained
Modulo Scheduling Problem, Rapport LAAS. Technical Report 10393.

P. Baptiste and S. Demassey. 2004. Tight LP bounds for resource constrained project scheduling. Operations
Research Spectrum 26, 251–262.

D. Bienstock and M. Zuckerberg. 2009. A new LP algorithm for precedence constrained production scheduling.
Optimization Online 1–33.

A. Bonfietti, M. Lombardi, L. Benini, and M. Milano. 2014. Cross cyclic resource-constrained scheduling
solver. Artificial Intelligence 206, 25–52.

W.-T. J. Chan, A. B. Kahng, S. Nath, and I. Yamamoto. 2014. The ITRS MPU and SOC system drivers:
Calibration and implications for design-based equivalent scaling in the roadmap. In Proceedings of the
IEEE International Conference on Computer Design. 153–160.

N. Christofides, R. Alvarez-Valdes, and J. M. Tamarit. 1987. Project scheduling with resource constraints: A
branch and bound approach. European Journal of Operational Research 29, 262–273.

S. Fenstermaker, D. George, A. B. Kahng, S. Mantik, and B. Thielges. 2000. METRICS: A system architecture
for design process optimization. In Proceedings of the ACM/IEEE Design Automation Conference. 705–
710.

R. Friese, T. Brinks, C. Oliver, H. J. Siegel, and A. A. Maciejewski. 2012. Analyzing the trade-offs between
minimizing makespan and minimizing energy consumption in a heterogeneous resource allocation prob-
lem. In Proceedings of International Conference on Advanced Communications and Computation. 81–89.

A. B. Kahng and G. Smith. 2002. A new design cost model for the 2001 ITRS. In Proceedings of International
Symposium on Quality Electronic Design. 190–193.

B. Keller and G. Bayraksan. 2009. Scheduling jobs sharing multiple resources under uncertainty: A stochastic
programming approach. IIE Transactions 42, 16–30.

R. Kolisch and S. Hartmann. 1999. Heuristic algorithms for the resource-constrained project scheduling
problem: Classification and computational analysis. International Series in Operations Research & Man-
agement Science 14, 147–178.

R. Kolisch and A. Sprecher. 1996. PSPLIB – A project scheduling problem library. European Journal of
Operational Research 96, 205–216.

R. Kolisch, A. Sprecher, and A. Drexl. 1992. Characterization and generation of a general class of resource-
constrained project scheduling problems. Management Science 41, 10, 1693–1703.

B. A. Kramer and C. L. Hwang. 1991. Resource constrained project scheduling: modeling with multiple
alternatives. Mathematical and Computational Modeling 15, 8, 49–63.

P. Laborie and D. Godard. 2007. Self-adapting large neighborhood search: Application to single-mode schedul-
ing problems. Multidisciplinary International Scheduling Conference, 276–284.

M. Li, Y. Zhang, W. Jiang, and J. Xie. 2009. A particle swarm optimization algorithm with crossover for
resource constrained project scheduling problem. In Proceedings of International Conference on Services
Science, Management and Engineering. 69–72.

Y. Li, J. Han, and W. Zhou. 2014. Cress: Dynamic scheduling for resource constrained jobs. In Proceedings of
International Conference on Computational Science and Engineering. 1945–1952.

S. Mohanty and M. K. Nayak. 2011. Optimization model in human resource management for job allocation
in ICT project. International Journal of the Computer, the Internet and Management 19, 3, 21–27.

R. H. Mohring, A. S. Schulz, F. Stork, and M. Uetz. 2001. On project scheduling with irregular starting time
costs. Operations Research Letters 28, 149–154.

Qualcomm Inc. (IT project manager). 2014. Personal Communication.
Z. Qiong, G. Yichao, Z. Ging, Z. Jie, and C. Xuefang. 2010. An ant colony optimization model for parallel

machine scheduling with human resource constraints. In Proceedings of International Conference on
Digital Enterprise Technology Advances in Intelligent and Soft Computing, Vol. 66. 917–926.

F. Salewski, A. Schirmer, and A. Drexl. 1997. Project scheduling under resource and mode identity con-
straints: Model, complexity, methods, and application. European Journal of Operational Research 102,
1, 88–110.

G. Smith. 2014. Personal Communication.
G. Smith. 2014. Updates of the ITRS design cost and power models. In Proceedings of the IEEE International

Conference on Computer Design. 161–165.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

60:30 P. Agrawal et al.

F. B. Talbot. 1982. Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive
case. Management Science 28, 10, 1197–1210.

Cadence Assura QRC. Retrieved July 04, 2016 from https://www.cadence.com/content/cadence-www/global/en
US/home/tools/digital-design-and-signoff.html.

Cadence Innovus Implementation System. Retrieved July 4, 2016 from https://www.cadence.com/
content/cadence-www/global/en US/home/tools/digital-design-and-signoff.html.

Cadence Tempus Timing Signoff. Retrieved July 4, 2016 from https://www.cadence.com/content/cadence-www/
global/en US/home/tools/digital-design-and-signoff.html.

Dassault Systems Enovia Synchronicity. Retrieved July 8, 2016 from http://www.3ds.com/products-
services/enovia/products/v6/synchronicity-designsync/.

Glassdoor. Retrieved January 1, 2017 from https://www.glassdoor.com/Salaries/index.htm.
How Green is my Silicon Valley? Retrieved July 4, 2016 from http://dac.com/sites/default/files/DACArchive/

pubs/46DACFinal Prgm.pdf.
IBM ILOG CPLEX. Retrieved July 4, 2016 from http://www-03.ibm.com/software/products/en/

ibmilogcpleoptistud/.
IC Manage. Retrieved July 8, 2016 from https://www.icmanage.com/ic-design-management-best-practices/.
inMotion Creative Project Management. Retrieved July 4, 2016 from http://explore.inmotionnow.

com/capterra-project-management.
ITRS. Retrieved July 4, 2016 from http://www.itrs2.net/.
Nefelus Design Tools. Retrieved July 8, 2016 from http://www.nefelus.com/design-tools/.
UCSD Design Cost Optimization Solver for Multi-Tapeout Project Scheduling. Retrieved July 4, 2016 from

http://vlsicad.ucsd.edu/MILP/.
When The Chips are Down. Retrieved July 4, 2016 from http://qz.com/387490/as-moores-law-turns-50-

computer-chips-continue-to-get-cheaper-and-more-powerful/.
Platform Load Sharing Facility. Retrieved July 4, 2016 from http://www-03.ibm.com/systems/services/

platformcomputing/lsf.html.
PSLIB Data Sets. Retrieved July 4, 2016 from http://www.om-db.wi.tum.de/psplib/download.html.
Runtime Design Automation. Retrieved July 4, 2016 from http://www.rtda.com/.
Qualcomm Snapdragon. Retrieved July 4, 2016 from https://www.qualcomm.com/products/snapdragon.
Salesforce Project Management. Retrieved July 8, 2016 from https://www.salesforce.com/.
Samsung Exynos. Retrieved July 4, 2016 from http://www.samsung.com/semiconductor/products/exynos-

solution/application-processor/.
Synopsys IC Compiler. Retrieved July 4, 2016 from http://www.synopsys.com/Tools/Implementation/

PhysicalImplementation/Pages/default.aspx.
Synopsys PrimeTime. Retrieved July 4, 2016 from http://www.synopsys.com/Tools/Implementation/SignOff/

Pages/PrimeTime.aspx.
Synopsys Star-RCXT. Retrieved July 4, 2016 from http://www.synopsys.com/Tools/Implementation/SignOff/

Pages/StarRC-ds.aspx.

Received July 2016; revised November 2016; accepted December 2016

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 60, Pub. date: June 2017.

https://www.cadence.com/content/cadence-www/global/en ignorespaces US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/content/cadence-www/global/en ignorespaces US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/content/cadence-www/global/en US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/content/cadence-www/global/en US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/content/cadence-www/global/en US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/content/cadence-www/global/en US/home/tools/digital-design-and-signoff.html
http://www.3ds.com/products-services/enovia/products/v6/synchronicity-designsync/
http://www.3ds.com/products-services/enovia/products/v6/synchronicity-designsync/
https://www.glassdoor.com/Salaries/index.htm
http://dac.com/sites/default/files/DACArchive/pubs/46DACFinal Prgm.pdf
http://dac.com/sites/default/files/DACArchive/pubs/46DACFinal Prgm.pdf
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
https://www.icmanage.com/ic-design-management-best-practices/
http://explore.inmotionnow.com/capterra-project-management
http://explore.inmotionnow.com/capterra-project-management
http://www.itrs2.net/
http://www.nefelus.com/design-tools/
http://vlsicad.ucsd.edu/MILP/
http://qz.com/387490/as-moores-law-turns-50-computer-chips-continue-to-get-cheaper-and-more-powerful/
http://qz.com/387490/as-moores-law-turns-50-computer-chips-continue-to-get-cheaper-and-more-powerful/
http://www-03.ibm.com/systems/services/platformcomputing/lsf.html
http://www-03.ibm.com/systems/services/platformcomputing/lsf.html
http://www.om-db.wi.tum.de/psplib/download.html
http://www.rtda.com/
https://www.qualcomm.com/products/snapdragon
https://www.salesforce.com/
http://www.samsung.com/semiconductor/products/exynos-solution/application-processor/
http://www.samsung.com/semiconductor/products/exynos-solution/application-processor/
http://www.synopsys.com/Tools/Implementation/PhysicalImplementation/Pages/default.aspx
http://www.synopsys.com/Tools/Implementation/PhysicalImplementation/Pages/default.aspx
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/StarRC-ds.aspx
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/StarRC-ds.aspx

