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Abstmct-The complexity of circuit designs has necessitated 
a top-down approach to layout synthesis. A large body of work 
shows that a good layout hierarchy, or parririoning tree, as mea- 
sured by the associated Rent parameter, will correspond to an 
area-efecient layout. We define the intrinsic Rent parameter of 
a netlist to be the minimum possible Rent parameter of any 
partitioning tree for the netlist. Experimental results show that 
spectra-based ratio cut partitioning algorithms yield partitioning 
trees with the lowest observed Rent parameter over all bench- 
marks and over all algorithms tested. For examples where the 
intrinsic Rent parameter is known, spectral ratio cut partitiming 
yields a partitioning tree with Rent parameter essentially identical 
to this theoretical optimum. These results have deep implications 
with respect to both the choice of partitioning algorithms for 
top-down layout, as well as new approaches to layout area esti- 
mation. The paper concludes with directions for future research, 
including several promising techniques for fast estimation of the 
(intrinsic) Rent parameter. 

I. INTRODUCTION 

S VLSI system complexity and the number of imple- A mentation alternatives continue to increase, top-down 
hierarchical approaches have been widely adopted in lay- 
out synthesis. Recursive calls to a bipartitioning algorithm 
will generate a circuit hierarchy, or partitioning wee, that is 
typically used either to guide the placementhouting phases 
of layout, or to afford early estimates of layout area and 
wireability. The bipartitioning algorithm essentially reveals 
the natural circuit structure in the form of a binary tree of 
disjoint subcircuits, where connectivity between subcircuits is 
minimized. 

Traditionally, the quality of a partitioning algorithm is 
measured by the number of nets cut in a two-way partition 
of some benchmark circuit. However, such a metric fails to 
capture the integral role played by the partitioning algorithm in 
an overall layout synthesis or area estimation process-i.e., via 
the recursive top-down application of the algorithm. Since the 
quality of a partitioning tree has a direct bearing on the quality 
of the resulting layout, we would l i e  to find the partitioning 
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algorithm that generates the best tree of subcircuits. In this 
work, we propose using the Rent parameter, which is a well- 
established quality measure of a generated partitioning tree, 
as a quality measure for the underlying partitioning algorithm 
itself. 

The Rent parameter [28] characterizes a power-law relation- 
ship between the number of external terminals of a subcircuit 
in the layout and the number of modules in the subcircuit. 
This parameter has been studied extensively in the field of area 
estimation, where it affords accurate predictions of the wiring 
requirements for a giyen partitioning hierarchy. In particular, 
given two partitioning trees for the same design, the one 
with lower Rent parameter will lead to less wirelength and 
consequently a denser final layout (see the review of relevant 
literature given in Section 2.1 below). The Rent parameter is 
therefore well suited as a quality measure for the complete tree 
of subcircuits generated by a particular partitioning algorithm. 

Our work compares various partitioning algorithms with 
respect to the Rent parameters of their induced partitioning 
trees, with the goal of identifying an algorithm that yields 
trees having Rent parameter closest to optimal. To this end, 
we introduce the notion of the intrinsic Rent parameter of 
a given circuit: the intrinsic Rent parameter is the minimum 
possible Rent parameter of any partitioning tree for the circuit. 
Such a lower bound gives a measure of the required layout 
area, independent of layout strategy. An added advantage of 
our approach is that it allows comparison of the utility of 
partitioning algorithms, independent of possible differences 
between the algorithms’ individual objective functions. 

Extensive experimental results show that so-called spectra- 
based partitioning algorithms (i.e., methods based on comput- 
ing eigenvalues and eigenvectors of a particular netlistderived 
matrix) are superior to traditional iterative methods such 
as the Fiduccia-Mattheyses (FM) approach. Specifically, we 
have found that an algorithm which recursively partitions 
an eigenvector-derived linear ordering of the modules to 
minimize the ratio cut objective will yield partitioning trees 
with better Rent parameter than those produced by any other 
algorithm. Moreover, with each test case for which the in- 
trinsic Rent parameter is known, the spectra-based ratio cut 
partitioning tree has Rent parameter essentially identical to 
the theoretical lower bound. 

This result has key implications in two areas. First, it affirms 
previous work of Wei and Cheng [43], who were the first 
to propose the ratio cut metric as a partitioning objective, 
and of Hagen and Kahng [15], who proposed using the 
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spectral approach for ratio cut partitioning. Second, our work 
naturally leads to the development of better predictive layout 
models, enabling a more efficient search of the space of layout 
solutions. Indeed, to facilitate this latter application, we center 
on the spectra-based ratio cut approach and propose several 
methods for rapidly estimating the (intrinsic) Rent parameter 
value. These methods include: (i) computing the Rent parame- 
ter of incomplete partitioning trees, (ii) constructing a complete 
partitioning tree using a single eigenvector computation, and 
(iii) using the second-smallest eigenvalue of the netlist graph 
Laplacian to estimate the intrinsic Rent parameter. Preliminary 
experimental results show all three of these methods to be 
promising. 

The remainder of this paper is organized as follows. Sec- 
tion 11 reviews Rent’s rule and its application to wireability 
analysis and area estimation. Section II also provides a careful 
definition of the intrinsic Rent parameter of a given circuit. 
In Section III, we give a taxonomy of partitioning algorithms, 
concentrating on those which are most useful for both hierar- 
chical layout and rapid area estimation applications. Section 
IV presents experimental results concerning the intrinsic Rent 
parameter and shows the relative merits of various parti- 
tioning algorithms with respect to their induced, “algorithm- 
dependent” Rent parameters. The paper concludes in Section 
V with a discussion of techniques for rapid estimation of the 
Rent parameter, as well as other directions for future research. 

II. RENT’sRuLE 
Rent’s rule is an empirical relation observed in “good” 

layouts; it reflects a power-law scaling of the number of 
external teminals of a given subcircuit with the number of 
modules in the subcircuit. Specifically, 

T = k * C p  (1) 

where T is the average number of external terminals (pins) in a 
subcircuit or partition; k is Rent’s consrant, a scaling constant 
which has empirically been found to correspond to the average 
number of pins per module; C  is the number of modules in 
the subcircuit (or partition); and p is the Rent parameter or 
Rent exponent with 0 5 p 5 1. 

This relation was first observed by E. F. Rent of IBM in the 
late 1960’s and independently by several others, e.g., Donath 
[4] derived the same relation from a stochastic model of a hi- 
erarchical design process. Landman and Russo [28] performed 
an extensive study of the relation via partitioning experiments 
on large “real-life” circuits, and observed Rent parameter 
values p between 0.47 and 0.75.’ Following Mandelbrot [30] 
and Keyes [21], one may view Rent’s rule as a dimensionality 
relationship between pinout of a module and the number 
of gates in the module. This is in some sense a surface 

’ Landman and Russo also observed that Rent’s rule is actually a two-region 
relationship: the power law relation (1) above holds in region I, while region II 
is governed by a more complex relation. In our work, as in [28],  we consider 
scaling laws fitted to the region I domain (cf. the discussion in Section 4.1 
below). We also note that in a subsequent paper [MI, Russo concluded that, for 
a given fixed partitioning algorithm, p tends to be. high for high performance 
circuits, and low for low performance Circuits. As simple examples, consider 
that p 0 for a shift register in which data is loaded serially, and p x 1 for 
a latch circuit where data is loaded in parallel. 

area to volume relationship where, for example, “intrinsically 
two-dimensional” circuits such as memory arrays, PLA’s, or 
meshes will have optimal layouts with p = 1/2. Kurdahi [26] 
has noted that a Rent parameter value $p >$ 0.5 implies that 
wires must grow longer as circuit size increases; in other 
words, such a circuit cannot be embedded in two dimensions 
without “dilation,” and the relative contribution of wiring to 
layout area will grow with the size of the circuit. For example, 
a three-dimensional mesh topology requires a layout having 
p 2 2/3 [26], and indeed such a topology cannot be embedded 
in the plane without the introduction of long wires. Note that 
the tractability of the Rent parameter analysis for meshes 
will allow us to use 2-D and 3-D meshes as supplementary 
benchmarks (see Section 4 below) for which the optimum 
Rent parameter values are known. 

2.1. Relationships Between the Rent 
Parameter and Lqout Area 

The value of the Rent parameter is closely related to the 
layout area of a given circuit. Three researchers in par- 
ticular-Donath [5], Feuer [91 and Sastry [36], [35]-have 
proposed and experimentally verified relationships between 
the Rent parameter and the average wire length of a layout. 
Together, these works show that a lower Rent parameter will 
result in lower average wire length, which in turn generally 
implies smaller wiring area and less congestion in the layout. 

The early work of Donath [5] assumes a hierarchical par- 
titioning and placement of gates on a square array of slots. 
Donath found that a circuit with C  gates and Rent parameter 
p will have average wire length f given by 

(2) cp-1’21 p >  4 
f -  IOgc7 p =  T { fb) ,  P < 5 

with f(p) being independent of the number of gates, G. 
We make two observations. First, the experimental results 
in [5] show a large difference between the predicted and 
actual values of P; however, f was generally found to vary 
up or down in accordance with the proposed model. Second, 
Donath’s model has obvious ties to the “dimensional” intuition 
noted above [30], [21], [27]: Donath assumes that circuit 
layouts are two-dimensional, and the “critical value” of p = 
1/2 in (2) corresponds to the transition between planar and 
nonplanar circuits. In other words, an intrinsically planar 
netlist (p 5 1/2) can be placed such that all connections 
essentially lie between nearest neighbors, with the average 
wire length being independent of, or slowly growing in, C. 
However, this no longer holds if p > 1/2 and the circuit is 
non-planar? 

The work of Feuer [9] establishes a formula for the wire 
length distribution in terms of the Rent parameter. Using a 
continuous model, Feuer defines a partition function, I (R) ,  

’The correspondence between dimensionality and Donath’s wire length 
estimate in (2)  is supported by the work of Masaki and Yamada [31], who 
extended Donath’s work to model 3-D structures. Their estimate of average 
wire length identifies a “critical value” of p = 2/3, which would be expected 
in this higher dimension. 
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which gives the number of connections born inside and termi- 
nating outside a circle of radius R in the Manhattan plane. This 
partition function is easily reconciled with Rent’s rule, and 
I( R) moreover yields a wire length distribution by integrating 
an infinitesimal strip arwnd the circle over the whole plane. In 
this way, Feuer derives the following expression for average 
interconnection length: 

(3) 
- 2p(3 + 2p) cp-0.5 
6 
L A .  

(1 + 2p)(2 + 2P) (1 + Cp-1) 

where F / 6  is the average wire length expressed in terms of 
gate length units, 6. The predictions of (3) were compared to 
experimental data on real chips, assuming a “default” constant 
value of p = 2/3, and the results indicate a close agreement. 
While the model does not accommodate values of p 5 1/2, it 
should be noted that such low values of p are rarely observed 
in real layouts [26]. 

Finally, Sastry [35] also assumes a continuous model of 
logic and uses techniques from reliability theory to derive a 
relationship between Rent’s rule and the wire length distri- 
bution. The main result is that if Rent’s rule holds, the wire 
lengths of a layout will follow a Weibull distribution. The 
average of the Weibull distribution is then used as an estimate 
of the average wire length: 

(4) 

where k and p are as defined in Rent’s rule ((1) above) and r 
is the gamma function. As with the results reported in [5] and 
[9], estimates from (4) agree closely with actual average wire 
length values in the (gate array) layouts analy~ed.~ 

These results motivate the use of the Rent parameter of a 
given partitioning tree as a quality measure for the correspond- 
ing partitioning algorithm! However, in the next subsection 
we note that “the” Rent parameter is well-defined only with 
respect to a fixed methodology for extracting this parameter 
from a given circuit. Therefore, before we can use the Rent 
parameter as a quality measure for partitioning algorithms, we 
find it necessary to extend and solidify the original methodol- 
ogy sketched by Landman and Russo in [28]. 

2.2. Defining the Intrinsic Rent Parameter 
&andman and Russo [28] made the fundamental observation 

that “the” Rent parameter will depend upon both the structure 

Some confirmation of these models was provided by Kurdahi and Parker 
1261, who compared the accuracy of both Feuer’s and Sastry’s results using 
serial multipliers as a testbed. It was found that the two methods of [9] and 
[35] are of similar quality, e.g., Feuer’s estimates of the average wire lengths 
are within 23% of the actual values, using a “default” value of p = 0.720 as 
the Rent parameter. 

4Wirelength estimates also lie at the heart of the analytic area estimation 
methods used in synthesis; see, e.g., El Gama1 1121, Heller 181, Kurdahi 
[27] and Sastry 1351. We note that other authors have proposed wire length 
distribution models which do not use Rent’s rule. These include Sechen 
[39], Pedram and F’reas 1331, and Hamada et al. [19], all of whom estimate 
interconnection length based on local neighborhood analysis approaches: each 
signal net is propagated to random pin locations within a rectangular grid 
which has the same size as the neighborhood population of the net. These 
neighborhood analysis methods are also reported to be quite effective, even 
though they rely solely on local wire length estimates. 

t 

of the circuit and the partitioning algorithm chosen. This 
notion of an algorithm-dependent Rent parameter motivates 
our hypothesis that the Rent parameter can be used to charac- 
terize the quality of a given partitioning algorithm. Our results 
below show that for any given circuit, different partitioning 
algorithms will yield partitioning trees with widely varying 
Rent parameters, implying that the wirelength and layout 
area depend considerably on the choice of the partitioning 
algorithm used in the top-down layout process. Moreover, our 
experimental results demonstrate that the relative ordering of 
the algorithm-dependent Rent parameters is very consistent 
across a variety of benchmark circuits. The Rent parameter 
thus objectively distinguishes those partitioning algorithms 
that are most useful within the hierarchical layout approach. 

In what follows, we propose the notion of an intrinsic Rent 
parameter, denoted by p*, which is the minimum possible 
Rent parameter attainable over any partitioning tree of the 
given circuit. Because the Rent parameter is in some sense a 
“folklore” concept that has been computed in various ad hoc 
ways throughout the literature, we devote the remainder of this 
section to formally defining the concepts of a partitioning tree 
and the associated Rent parameter computation. 

The early work of h d m a n  and Russo [28] computed “the” 
Rent parameter of a circuit as follows. By using a multi-way 
partitioning algorithm, Landman and Russo could generate 
partitioning instances Pi, each of which corresponded to a 
partition of the entire circuit into disjoint subcircuits. To obtain 
each partitioning instance, ad hoc constraints on the maximum 
size and the maximum number of pins of any subcircuit were 
specified, and a heuristic, iterative process was invoked to vary 
these constraints until they could be satisfied by the output of 
the multi-way partitioning algorithm. For the ith partitioning 
instance, the average subcircuit size ci, and the average 
number of pins per subcircuit, Ti, were both calculated to yield 
a single data point. In order to correlate the experimental data 
to Rent’s rule, the relationship T = k . CP was re-expressed 
as log T = log k f p log C, which is a straight-line equation 
with intercept log k and slope equal to the Rent parameter p 
in Rent’s rule. Thus, Lmdman and Russo could compute p by 
plotting all of the (Ci, Ti) data points on a log-log scale, and 
then using linear regression to find a straight-line fit. The slope 
of the fitted line yielded the Rent parameter of the circuit. 

Currently, the partitioning algorithms most popular in 
top-down layout synthesis will recursively divide a circuit 
into two subcircuits. Thus, we define a partitioning instance 
within the context of the partitioning tree obtained by the 
recursive application of a given bipartitioning alg~ri thm.~ 

- -  

’This methodology, though very similar in spirit to that of Landman and 
Russo, has important differences which allow the Rent parameter calculation 
to become well-defined. We obtain a sequence of partitioning instances by 
repeatedly applying a fixed bipartitioning algorithm to split a subcircuit into 
two smaller circuits, while Landman and Russo obtain their sequence of 
partitioning instances by ad hoc constraints on the number of subcircuits 
and the maximum number of terminals per subcircuit. Also, it should be 
noted that our Rent parameter computation will allow more complete use 
of all partitioning instances, and their associated (c,,T,) data points, than 
does the method of Landman and Russo. This is because Landman and 
Russo impose the further requirement that the number of pins per subcircuit 
decrease monotonically as the number of subcircuits in the partitioning 
instance increases. This heuristic requirement forces partitioning instances that 
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ALG to bipartition C into subpartitions C1 and C2 
record size and number of pins for C1 and C2 
Generate-Partition-Tee(C1) 
Generate-Partition-Tee( C2) 

Fig. 1. Recursive application of a bipartitioning algorithm, ALG, to yield a 
partitioning tree that is restricted with respect to threshold CO. 

Definition: Given a circuit C with n modules, apartitioning 
tree of C is any binary tree of subcircuits having n leaves. 

In practice, we only apply the bipartitioning algorithm to 
subcircuits that are larger than a prescribed threshold, denoted 
by $c-O$. This gives rise to the following: 

Definition: Given a circuit C and a positive integer CO, 

a restricted partitioning tree of C with threshold CO is any 
full binary tree of subcircuits, such that every internal node 
corresponds to a subcircuit with greater than CO modules, and 
every leaf node corresponds to a subcircuit with no more than 
co modules. 

Note that the definition of a restricted partitioning tree will 
subsume the original partitioning tree definition for CO = 
1. Thus, for simplicity we will henceforth use the term 
“partitioning tree” to refer to a possibly restricted partitioning 
tree, specifying the value of CO as necessary. Generation of a 
partitioning tree is accomplished using the algorithm of Fig. 
1. Note that in order to later perform the Rent parameter 
computation, the size and number of external pins of the two 
resulting subcircuits is recorded after each execution of the 
bipartitioning algorithm. 

Next we extract partitioning instances from the partitioning 
tree, such that each instance contains a set of disjoint sub- 
circuits of roughly equal size? Formally, given a complete 
partitioning tree we define the ith partitioning instance, Pi, 
to be a set of i disjoint subcircuits containing all modules of 
the circuit, subject to the constraint that the maximum size 
of any subcircuit is minimum. Partition instance Pi+l with 
i + 1 subcircuits is then constructed by replacing the largest 
subcircuit in Pi by its two children in the partitioning tree. It 
is easy to see that all partitioning instances P2,. . , P,  can 
be derived by traversing the partitioning tree as specified in 
Fig. 2 (m will depend on the parameter CO used in generating 
the partitioning tree). 

Finally, given that Generate-Partitioning-Instances has 
output m partitioning instances Pz, , Pm, we apply the 
methodology described in [28] to divide these instances into 
two regions: Region I, where Rent’s rule applies, and Region I1 
(corresponding to the few topmost levels of the partitioning 

“buck the trend” to be discarded, resulting in a Rent parameter computation 
that is artificially “clean.” 

61ntuitively, each partitioning instance can be viewed as a “bucket” that 
contains a subset of the subcircuits generated during the recursive application 
of the partitioning algorithm. As in the work of Landman and Russo, 
computing the “average” size and the “average” number of pins in the 
subcircuits of each partitioning instance will provide the data points that yield 
the Rent parameter via linear regression on a log-log plot. 

Generat *Part itioning-Ins tances( ) 
Innut: A Dartitioninn tree for circuit C I 
Output: Sequence of partitioning instances Pi 
let C = root of partitioning tree (i.e., the complete circuit) 
let P = C 
while C is an internal node of the partitioning tree 

P = P - c  
P = P U subcircuits of C in partitioning tree 
output P 
C = largest element of P 

Fig. 2. Traversal of the partitioning tree to output partitioning instances 
PZ, . . . , P,. 

I Extract-Rent-Parameter0 1 
.I 

Input: Partitioning instances Pz, . . . , P, - 
corresponding to data points (Cz, Tz), . . . , ( C t ,  %) 
(Using geometric averaging) 

Outnut: Rent Dammeter v I 
let Doto = set of all data points (log-log scale) 
let Not-Yet = b e  
while NotYd 

compute linear regression over Doto 
if all data points are within 10% of straight-line fit 

Output slope of this straight-line fit 
Not-Yet = False 

else Data = Doto - {lowest-index data point} 

Fig. 3. Extraction of Rent parameter (slope of straight-line fit to data points in 
“Region I” of Landman and Russo) from partitioning instances Pz , . . , P,,, . 

tree), where the rule breaks down. Formally, Region I is 
comprised of the partitioning instances {Pt ,  a , P m } ,  with 
2 5 t < m, where t is the minimum index such that 
the straight-line fit to data points on the log-log plot of 
(Ct,Tt),  (ct+l,Tt+l),***, (EmYFm) has error 5 10% for 
each of the m - t + 1 data points. Here, we compute each 
average using geometric averaging, e.g., Cm is the geometric 
average of the sizes of all the subcircuits of Pm.7 The Rent 
parameter is the slope of this straight-line fit (see Fig. 3). 

The Region IJ partitioning instances can be viewed as stem- 
ming from the initial partitioning steps needed to “explode” the 
original circuit into a state from which the intrinsic behavior 
of the individual partitioning algorithm will manifest itself. 
Again, let each partitioning instance Pi correspond to a data 
point (Ci, Ti). Assuming CO = 1 in Generate-Partitioning- 
Tree, all partitioning algorithms will yield partitioning trees 
that start at the same point (Cl, TI) (the complete circuit), and 
end at the same point (C,, T,) (where E,  = 1 abd T ,  = ]E 
in Rent’s rule, i.e., the average number of external pins per 
module). Therefore, in order for the algorithm-dependent Rent 
parameter to vary, there must be a stage (Region 11) early in 
the partitioning process where the ratio log (Ei)/ log (Ti) has 
non-linear behavior that is unique to the partitioning algorithm. 
This initial behavior causes the starting point of Region I 
to vary with each partitioning algorithm, and consequently 
the Region I data points of each partitioning algorithm will 
approach (C,, T,) with distinct slope (i.e., Rent parameter) 

7We slightly abuse notation in the sense that C,,, refers to the average 
size of all subcircuits in a partitioning instance, rather than to an individual 
subcircuit; cf. the notation of Fig. 1. 

- -  

- -  

- -  
- _  

- -  
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lOQ( E , )  

Fig. 4. Rent’s rule fit for each partitioning tree of the Struct test circuit. 

on the log-log plot. This phenomenon is clearly visible in the 
plots of Fig. 4 (see Section IV below). 

The above procedural specifications make the Rent parame- 
ter well-defined for any partitioning tree. Thus, the notion of a 
minimum Rent parameter over all partitioning trees of a given 
circuit also becomes well-defined. With this in mind, we now 
make the following definitions. 

Definition: Given a circuit C and a prescribed bipartition- 
ing algorithm, ALG, the algorithm-dependent Rent parameter 
is obtained by (i) executing Generate-Partitioning-Tree using 
ALG, C, and the threshold parameter CO = 1; then (ii) execut- 
ing Generate-Partitioning-Instances; and then (iii) executing 
Extract-Rent-Parameter. 

Definition: Given a circuit C, the intrinsic Rent parameter 
p* of C is the minimum value obtainable by (i) executing 
Generate-Partitioning-Instances on any partitioning tree of C, 
and then (ii) executing Extract-Rent-Parameter. 

The remainder of this paper examines various bipartition- 
ing algorithms to see which yield algorithm-dependent Rent 
parameters that are closest to the intrinsic Rent parameters. 
Before presenting our experimental results, we briefly review 
a taxonomy of those partitioning algorithms which are of 
interest in the dual contexts of hierarchical layout and rapid 
area estimation. 

III. A PARTITIONINGTAXONOMY 
A general model for VLSI layout associates a hypergraph 

H = (V, E’) with the circuit netlist; vertices in V represent 
modules and edges in E’ represent signal nets. Several stan- 
dard transformations [29] may be used to convert H into a 
graph G = (V, E) with vertices and edges of G weighted 
to reflect module areas and the multiplicity or importance of 
connections. Two widely used partitioning formulations are: 

Minimum-Cut Bisection: Given G = (V, E), find the 
partition of V into disjoint U and W, with IUI = JWI, 
such that .(U, W), i.e., the number of edges in {(U, w) E 
E ~ u  E U and w E W}, is minimized. 

Minimum Ratio Cut: Given G = (V, E), find the partition 
of V into disjoint U and W such that 

is minimized. 
Because minimum-cut bisection divides module area evenly, 

it is a popular objective within the hierarchical layout par- 
adigm. However, the area bisection requirement is unneces- 
sarily restrictive and can preclude finding natural structure 
within the circuit. Various ad hoc thresholds and penalty 
functions (e.g., the r -bipartition formulation of Fiduccia 
and Mattheyses [lo]) have not been completely successful 
in relaxing this constraint. With this in mind, the ratio cut 
formulation [42] provides a more straightforward tradeoff 
between nets cut and evenness in the partition: the numerator 
captures the minimum-cut criterion while the denominator 
favors near-bisection. It is well known that both minimum- 
cut bisection and minimum ratio cut are NP-complete [13], so 
heuristic methods must be used. Previous approaches fall into 
several classes, as surveyed in [6], [151, [291.8 

The greedy iterative paradigm is popular either as a stand- 
alone strategy or as a postprocessing refinement to other 
methods. Iterative methods are based on local perturbation 
of the current solution and typically entail variations of 
the Kemighan-Lin method [20], [37], e.g., the algorithmic 
speedups of Fiduccia and Mattheyses [ 101 and Krishnamurthy 
[25]. Practical implementations will use a number of random 
starting configurations and return the best result [29], [42] 
in order to adequately search the solution space and give 
predictable performance, or “stability.” For example, Wei and 
Cheng [42] propose a ratio cut heuristic that adapts the shifiing 
and group swapping methods of [lo] and returns the best of 
20 runs. It should be noted that current wireability analysis 
algorithms rely almost exclusively on Fiduccia-Mattheyses 

‘The reader will note that OUT discussion omits several popular approaches, 
including simulated annealing [221, [38], genetic algorithms [24], and 
relaxation-based two-dimensional placement/partitioning (e.g., [23]). These 
methods are generally too CPU-intensive to be used as the basis of area 
estimation and thus lie beyond the scope of our discussion. 



32 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL. 13, NO. 1, JANUARY 1994 

partitioning. This is due to such reasons as: ( i )  the long 
history of Kernighan-Lin k-opt methods in physical layout, 
(ii) the bisection requirement, which is naturally suited to 
hierarchical decomposition, and (iii) the simplicity of the 
algorithm implementation. However, while iterative Fiduccia- 
Mattheyses style optimization is very fast for single runs 
and has been a very popular approach, certain limitations 
loom as problem sizes grow large. These include theoretical 
results on the weakness of local-search methods, as well as 
instability and the lack of error bounds; all of these factors 
seem endemic to the local strategy. 

With respect to the present work, an important class of 
partitioning algorithms consists of efficient "spectral" methods 
which use eigenvalues or eigenvectors of matrices derived 
from the netlist graph, Recall that the circuit netlist may be 
represented by the simple undirected graph G = (V, E) with 
V = n vertices 01, - * , vn. Often, we use the n x n adjacency 
matrix A = A( G), where Aij = 1 if {vi, v j  } E E and Aij = 0 
otherwise. If G has weighted edges, then Ai, is equal to the 
weight of {w;,v3} E E, and by convention Aii = 0 for all 
i = 1, . . , n. If we let &(vi) denote the degree of node wi (i.e., 
the sum of the weights of all edges incident to vi), we obtain 
the n x n diagonal degree matrix D defined by Dii = d(vi). 
The eigenvalues and eigenvectors of such matrices are the 
subject of the relatively recent subfield of graph theory dealing 
with graph spectra. 

Early theoretical work connecting graph spectra and parti- 
tioning is due to Barnes, Donath, and Hoffman [ll,  [61, [71. 
More recent eigenvector and eigenvalue methods have dealt 
with both module placement [ l l ] ,  [41] and graph min-cut 
bisection [3], fZ]. In general, these previous works formulate 
the partitioning problem as the assignment or placement of 
nodes into bounded-size clusters or chip locations. The prob- 
lem is then transformed into a quadratic optimization, and a 
Lagrangian formulation leads to an eigenvector computation.' 
In [15], Hagen and Kahng established a close relationship 
between the optimal ratio cut cost and the second smallest 

9A prototypical example is the work of Hall [MI. which we now outline. 
This work is particularly relevant since it uses eigenvectors of the same graph- 
defived matrix Q = D - A (the same D and A defined above) that we utilize. 
Donath and Hoffman, Boppana, and others use diffemnt matrices derived 
from the netlist graph, but exploit similar mathematical properties (e.g., 
symmetry, positive-definiteness) to derive alternate eigenvalue formulations 
and re1 4tionships to partitioning, Hall's result [181 was that the eigenvectors 
of the matrix Q = D - A solve the quadruric placement problem of finding 
the vector z = ( 2 1 ,  z 2 , ,  I") which minimizes 

,=1 ,=1  

subject U, the constraint 1x1 = (zTz) lI2 = 1, with A,, again equal to the 
strength of the connection between modules i and i. It can be shown that 
z = zTQr,  so that to minimize z we may form the Lagrangian 

L = zrQr - X(zTz - 1).  

Taking the first partial derivative of L with respect to I and setting it equal 
to zero yields 

ZQZ - ZXX = 0, 

and this can be rewritten as 

(Q - XI)z = 0 

eigenvalue of the matrix Q = D - A, where D and A are 
as defined above: 

Theorem 1 (Hagen-Kahng): Given a netlist graph G = 
(V,E)  with adjacency matrix A, diagonal degree matrix D, 
and 1 V 1 = n, the second smallest eigenvalue X of Q = D - A 
yields a lower bound on the cost c of the optimal ratio cut 

0 
This result suggests that the eigenvector z corresponding to 

A, i.e., the solution of the matrix equation Q x  = Xz, be used 
to guide the partitioning. For ratio cut partitioning, [ 151 uses x 
to induce a linear ordering of the modules, and the best "split" 
in terms of ratio cut cost was returned. To be more specific, 
the components zi of the eigenvector are sorted to yield an 
ordering w = wl,.--,wn of the modules which we call the 
spectral ordering. The splitting index T ,  1 5 T 5 n - 1, is 
then found which yields the best ratio cut cost when modules 
with index > T are placed in U and modules with index I r  
are placed in W. This straightforward construction achieves 
very significant improvements over previous iterative methods, 
and also exhibited several desirable traits, including speed, 
provability, and stability. The spectral method is appealing for 
its use of global rather than local information, and it more- 
over provides an inherently spatial embedding of the circuit 
graph. Because the spectral approach significantly outperforms 
iterative Fiduccia-Mattheyses style methods [ 151, Section IV 
uses the spectral ordering as the basis for ratio cut partitioning 
VariantS.'O 

partition, with c 2 X/n. 

IV. EX~ERIMENTALRESULTS AND DISCUSSION 

4.1. Experimental Procedure 
Within the preceding taxonomy, the main classes of par- 

titioning algorithms of interest for top-down layout gener- 
ation and area estimation are greedy iterative methods (in 
particular, Fiduccia-Mattheyses minimum-cut bisection) and 
methods based on a spectral ordering. Within these classes, we 
parameterize the algorithms of interest by (i) their objective 
function: minimum net cut metric or ratio cut metric; and 
(ii) the balance restrictions in the output bipartition: exact 
bisection, 1/4-3/4 range limited, or no limits on range. The 
following is a list of the algorithms used in our experiments: 

1. SpecRC-Full: spectral ordering; partition the ordering at 
best splitting point according to ratio cut metric. 

2. SpecRC-1/4: spectral ordering; partition the ordering at 
best splitting point according to ratio cut metric, subject 
to constraint that maximum partition size is 53/4. IVI. 

where I is the identity matrix. This is readily recognizable as an eigenvalue 
formulation for A, and the eigenvectors of Q are the only nontrivial solutions 
for I .  The minimum eigenvalue 0 gives the uninteresting solution z = 
(l/fi, l/fi, .  . . , l/m, and hence the eigenvector corresponding to the 
second smallest eigenvalue X is used. 

lowhile eigenvalue computations are not cheap, the run-times reported in 
[I51 were actually less than those for the multiple FM computations needed 
by, e.g., the RCut 1.0 program of Wei and Cheng [43]. Significant algorithmic 
speedups stem from the need to calculate only a single (the second smallest) 
eigenvalue of a symmefric matrix. Moreover, netlist graphs tend to be very 
sparse due to hierarchical circuit organization and degree bounds imposed 
by the technology fanout limits; this allows application of sparse numerical 
techniques such as the block Lanczos algorithm [14]. 
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TABLE I 
CHARACl’FJUSTICS OF B ENCHMARK EXAMPLES 

Benchmark Cells nets pin3 pads celllibrary techologl P+ 
primary1 752 904 2941 81 sclib Scell 2-metal ? 

2907 3029 11226 107 sclib scell2-metal ? 
Struct 1888 1920 547 1 64 db MOSS SCMOS ~ 0 . 5  
Biomed 6417 5766 22253 97 db MOSIS SCMOS ? 
MCSh2D 2ooo 4090 8000 180 test test 0.5 
M W D  1000 3300 6Ooo 600 test test 0.666 

TABLE II 
Rwr P Resu~m. NUMBERSIN P ARENTHESES RESPECI~VELY INDICATETHE N 

UMBER OF DATA F’OJNl’S B ELONGIN0 To REGION / THi? T OTAL NUMB= OF DATA P O W  

Partitioning strategy 
Rand-Bis FM-Bis FM-1/4 Sp~c-Bis Sp~cRC-l/4 SpeCRC-Full 

Benchmark Circuit 

primary1 0.916 (2/122) 0.721 (2/79) 0.696 (1/112) 0.647 (4/127) 0.580 (5/126) 0.488 (7/162) 
Primary2 0.951 (2/456) 0.938 (l/3lO) 0.790 (3/434) 0.746 (6/511) 0.674 (7/484) 0.598 (7/493) 

0.635 (SI253 0.581 (4/277) 0.572 (3/278) Struct 0.935 (2/119) 0.869 (4/201) 0.816 (3/280) 
Biomed 0.920 (42278) 0.934 (2/692) 0.745 (41958) 0.779 (0/1023) 0.688 (0/1058) 0.599 (4/1234) 
Mesb2D 0.970 (2/255) 0.698 (2Dll)  0.612 (4/301) 0.514 (OI255) 0.540 (2/253) 0.524 (1/175) 
MesMD 0.953 (2/127) 0.699 (1/105) 0.685 (l/l55) 0.620 (0/127) 0.654 (0/74) 0.660 (OD4) 

Spec-Bis: spectral ordering; bisect the ordering. In other 
words, this is simply “spectral bisection.” 
FM- 1/4: Fiduccia-Mattheyses implementation of the 
Kemighan-Lin method for minimum net cut partitioning; 
range limitation (“T ” in [lo]) such that maximum 
partition size is 53/4 - IVI. 
FM-Bis: “standard” Fiduccia-Mattheyses method, i.e., 
for minimum net cut bisection.” 

To generate a control for these partitioning algorithms (and, 
separately, to confirm the work of Sutherland and Ostreicher 
[34], [ a ] ,  who posit a Rent parameter of 1 for random 
partitioning methods), we also tested the following three 
variants of random circuit partitioning: 

1. RandMC-1/4: random linear ordering; partition this lin- 
ear ordering at best splitting point according to minimum 
net cut metric, subject to constraint that maximum par- 
tition size is 5314 - V. 

2. RandRC-1/4: random linear ordering; partition this linear 
ordering at best splitting point according to ratio cut 
metric, subject to constraint that maximum partition size 
is 5 3 / 4 .  IVl. 

3. Rand-Bis: random linear ordering; bisect this linear 
ordering. 

All eight partitioning strategies were tested on the four cir- 
cuits Primaryl, Primary2, Biomed and Struct from the MCNC 
benchmark suite. We also used two highly structured inputs 
as additional benchmarks: Mesh2D, a two-dimensional mesh 
topology, and MesWD, a three-dimensional mesh topology. 
Since Primaryl, primary2 and Biomed are circuits with un- 
known structure, little can be deduced about their intrinsic Rent 
parameter. On the other hand, Struct is an array multiplier with 
a mesh-like topology, meaning that its intrinsic Rent parameter 
is likely to be 1/2. Additionally, since Mesh2D and Mesh3D 

have very regular topologies, their respective intrinsic Rent 
parameters are known to be exactly 1/2 and 2/3; we therefore 
use these latter three benchmarks to assess the near-optimality 
of the partitioning trees produced by various bipartitioning 
algorithms. Table I summarizes the characteristics of the 
benchmark circuits. 

Our experimental procedure was as follows. 
For each of the six input netlists (four industry benchmark 
circuits and two synthetic mesh topologies), each of the 
eight partitioning algorithms was used to construct a 
partitioning tree by applying Generate-Partitioning-Tree 
with = 9 (i.e., subcircuits of size 9 or less were 
not partitioned further). After every application of the 
partitioning algorithm, the size and external pin count of 
the generated subcircuits were recorded, as specified in 
the Generate-Partitioning-Tree template 
To each of the resulting partitioning trees, we applied 
the Generate-Partitioning-Instances algorithm. For, e.g., 
a partitioning tree with m subcircuits at the leaves, this 
yielded rn - 1 partitioning instances Pz, P3, . - , P, cor- 
responding to i-way circuit partitions for a = 2,3, . - . , m. 
Finally, we applied the Extract-Rent-Parameter algorithm 
to each set of partitioning instances. For, e.g., a set of 
m - 1 partitioning instances Pi, th is  entailed plotting 
the corresponding (Ci, Ti) data points and then find- 
ing the maximum t such that the linear regression to 
Pt,Pt+l,...,Pm hadatmost lO%errortoanyofthese 
m - t + 1 data points. We then returned the algorithm- 
dependent Rent Parameter given by the slope of this 
straight-line fit. 

- -  

4.2. Results and Discussion 
Our main experimental results are summarized in Table 11, 

which gives the algorithmdepndent Rent parameters for all 
input netlists and all bipartitioning algorithms. Since all the 
Rand variants yielded essentially identical Rent parameters, 

l 1  ’zhe computation time muired for spectral-- Partitioning is slightly 
more than that for FM-based partitioning [U]. Thus, for each of FM-1/4 and 
FM-Bis, we for this difference by reporting the 
Rent m e t e r  over IO independently generated partitioning trees. 



we report only the Rand-Bis results as representative of this 
category. 

The results indicate that our experimental methodology 
effectively distinguishes the relative merits of the various 
bipartitioning algorithms (e.g., see Fig. 4, which depicts the 
Rent parameter fits for the Struct benchmark). In particular, the 
spectral ratio cut variants SpecRC- 1/4 and SpecRC-Full gener- 
ate partitioning trees with uniformly superior Rent parameters 
for essentially all test cases. Moreover, for the Struct, Mesh2D 
and Mesh3D inputs, where we know the value of the intrinsic 
Rent parameter, p* , we see that SpecRC-1/4 and SpecRC-Full 
yield partitioning trees with Rent parameters very close to the 
optimal values of 1/2 for Struct and Mesh2D, and 2/3 for 
Me~h3D.l~ We further note that our experimental results are 
consistent with the conjecture of Sutherland and Oestreicher 
[40] that random partitioning trees for all circuits will have 
Rent parameters very close to one. 

Occasional entries in the table are derived from regressions 
using slightly fewer data points in Region I than other entries, 
which would imply a correspondingly lesser statistical signif- 
icance. However, Table I1 also indicates the number of data 
points assigned to Region 11 by the Extract-Rent-Parameter 
algorithm. The fact that so few data points are discarded 
indicates that the straight-line fit is very strong. For example, 
the total numbers of partitioning instances for Spec-Bis (i.e., 
numbers of leaves in the corresponding partitioning trees) with 
q, = 9 include 1023 instances for Biomed, 255 instances for 
Struct, etc. Indeed, if we use Q = 1 the number of partitioning 
instances becomes equal to the number of modules, while the 
number of Region II data points remains the same. Recall 
that the Region II data points result from a few of the 
largest partitions not conforming to the Rent relationship. 
Our conclusions are further strengthened when we take into 
consideration the quality of the fit between our Region I data 
points and the regressed line. Fig. 4 shows graphs depicting 
the Region I data points and their regressed lines for six 
of the partitioning algorithms, using the Struct benchmark 
circuit. The goodness of fit was measured using a correlation 
coefficient [32]. For the three SpecRC algorithms, virtually 
every example had a correlation coefficient higher than 0.98, 
indicating a consistently good fit. (The leftmost data points 
in each regression may vary due to edge effects with respect 
to application of the threshold Q, as well as characteristics 
of the partitioning algorithm. For example, our SpecRC-Full 
partitioning tree for primary2 was rather unbalanced, resulting 
in a large number of leaf subcircuits that were smaller than 
the threshoAd Q = 9.) 

Our experimental procedure reflects the recipe, or “black 
box,” given in Section 2.2 for computing the algorithm- 
dependent Rent parameter of a given circuit $C$ with respect 

lZIn some cases (e.g., Mesh3D using Spec-Bis or Spe.cRC-1/4), we observe 
that the value of p output by Extract-Rent-Parameter is actually smaller than 
the theoretical minimum (e.g., 2/3 for Mesh3D). However, this discrepancy 
is acceptable since the estimation procedure has a built-in maximum error of 
10%. It may be noted that for the symmetric Mesh2D and Mesh3D inputs, 
one would expect al l  optimal ratio cut partitions to be exact bisections, so 
that the partitioning trees for Spec-Bis, SpecRC-1/4, SpecRC-Full would 
be identical. The results of Table II thus reflect the heuristic nature of the 
eigenvector ordering: the differing Rent parameters show that the spectra- 
based partitioning trees, while quite good, are not optimal. 

to a given bipartitioning algorithm ALG. We reiterate that 
not only does our recipe make the (algorithm-dependent) Rent 
parameter and the intrinsic Rent parameter well-deiined, but it 
also retains the spirit of the original Rent parameter experiment 
performed by Landman and Russo. Furthermore, while our two 
algorithms Generate-Partitioning-Instances and Extract-Rent- 
Parameter might seem to embody several “arbitrary” decisions, 
we emphasize that Rent’s rule refers to a power-law scaling 
phenomenon which will be “visible” to any of a number of 
similar methods. Indeed, our research has shown that varying 
the basic Rent parameter evaluation methodology has such a 
small effect on our qualitative results that it might be likened 
to measuring in “inches” rather than “meters.” We conclude 
this section with a brief digression, giving the rationale behind 
two defining aspects of our Generate-Partitioning-Instances 
and Extract-Rent-Parameter algorithms. 

First, the reader may note that any number of methods 
could be used to generate partitioning instances from a 
given partitioning tree. For example, the standard ap- 
proach in the literature [28], [34] has been to generate 
partitioning instances using a breadth-first traversal of 
the partitioning tree, i.e., to group all the subcircuits at 
distance one from the root into a partitioning instance, 
then all of the subcircuits at distance two into another 
partitioning instance, etc. We make two observations. 
(1) This standard approach is typically applied to the 
(perfectly balanced) partitioning trees that are generated 
by FM-Bis, which is the usual bipartitioning algorithm 
for top-down layout. In such a context, our methodol- 
ogy in Generate-Partitioning-Instances is consistent with 
previous work: in fact, we generate a superset of the 
partitioning instances output by the standard approach. (2) 
When the bipartitioning algorithm can output an uneven 
partition, the standard breadth-first traversal can output 
partitioning instances that are highly unbalanced, with 
a very large size differential between the smallest and 
largest subcircuits. In contrast, our approach is consistent 
with Landman and Russo’s requirement that the subcircuit 
sizes be as uniform as possible, e.g., for 1/4-314 range- 
limited bipartitioning, the size ratio between the largest 
and smallest subcircuits in any partitioning instance will 
be at most four. 
Second, the reader might note that geometric averaging 
was specifically prescribed for obtaining ci and in 
the Extract-Rent-Parameter algorithm. Here, we make 
two observations. (1) Specifying the averaging method 
allowed the Rent parameter computation to be well- 
defined. (1) The more compelling observation is that 
in retrospect, the choice of geometric averaging did 
not qualitatively affect our results, i.e., the choice of 
averaging method is akin to “inches” versus “meters.” 
Table I11 shows that for Biomed no matter how i?i 
and Ti are respectively averaged (geometric-geometric, 
arithmetic-geometric, etc.), essentially identical results 
will be obtained. 
Finally, the reader may notice that there are several 
instances of “built-in imprecision” in our reported results, 
namely (i) the use of the threshold q, = 9 in our ap- 
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TABLE III 

DIFFERENT AVERAGING T E C H N I Q ~ .  HERE g = GEOMETRIC A ~ A G I N G ,  a 
RENT P ARAMEER RESULTS FOR TEST c IRCUIT BIOMED USING F OUR 

= -C A VERAGING AND, E.GL g-a IMPLIES THAT THE c, ARE 
GEoMElRlcALLY A -OED WHILE THE T ,  ARE ARlTFtMETICALLY A VERAGED. 
NOTICE THAT THE RESULTS WILL v ARY EVEN FOR BISECTION B ECAUSE OF THE 
VARYING Fz VALUES IN THE SUBCIRCUITS OF E ACH PARlmONING hSTANCE. 

Partitioning Strategy 

Rand-Bis FM-Bis FM-1/4 Spec-Bis ’7;‘- ’?Ec- Averaging 
Scheme 

* I_. - I  . 
9-9 0.920 0.934 0.745 0.779 0.688 0.599 
a-a 0.920 0.933 0.740 0.800 0.674 0.608 
a -9 0.919 0.934 0.736 0.777 0.674 0.603 
g-a 0.925 0.933 0.787 0.803 0.685 0.618 

plication of Generate-Partitioning-Tree, (ii) the averaging 
of subcircuit sizes and pin counts for each partitioning 
instance (rather than the use of individual subcircuit data) 
in Extract-Rent-Parameter, and (iii) the incorporation of 
a 10% tolerance in the regression fit of Extract-Rent- 
Parameter. With regard to (i), it should be noted that we 
employ this threshold in order to avoid plotting (for the 
larger benchmarks) thousands of data points that are all 
essentially on top of one another. Due to the effects of 
averaging and the very large number of subcircuits at 
this juncture in the generation of partitioning instances, 
our results are basically identical to those that would be 
obtained with CO = 1, i.e., Table I1 indeed reports the 
true algorithm-dependent Rent parameter. With respect 
to (ii) and (iii), the fact that the Rent parameter is an 
average scaling relationship for the entire circuit implies 
that some tolerance (iii) in the straight-line fit is necessary. 
Also, our work closely follows the original methodology 
of Landman and Russo in treating subcircuits as they are 
grouped within whole partitioning instances (rather than 
outside of the partitioning instance “context”); this avoids 
undue sensitivity to local variation in the circuit structure. 

V. EXTENSIONS ANDCONCLUSIONS 
The experimental procedure used above relies on an entire 

partitioning tree to derive the algorithm-dependent Rent pa- 
rameter. However, constructing an entire partitioning tree is 
potentially quite time-consuming. Therefore, important exten- 
sions of our current work will involve speedups of the Rent 
parameter computation, and more specifically, the SpecRC- 
based Rent parameter computation since the SpecRC-based 
partitioning trees are superior to those produced by other 
partitioning algorithms. Such speedups will greatly enhance 
the utility of our approach for such time-critical applications 
as early wireability analysis or area e~timati0n.l~ With this in 
mind, we now list three research directions (two of which are 
specific to the SpecRC class of algorithms) that offer potential 
speedups to our methodology. 

I3we note that in practice, a single execution of spectral ratio cut parti- 
tioning is significantly faster than 10 executions of the Fiduccia-Mattheyses 
algorithm, e.g., [16] cites 83 s of Sun Sparc-1 CPU time for the. eigenvector 
computation in the top-level bipartitioning of Primaryl, while 10 M execu- 
tions required 204 s of CPU time. However, the matrix computations used by 
spectral partitioning algorithms are potenriully expensive, and we are therefore 
interested in minimizing the number of such computations. 

Incomplete Partitioning Trees 
The very strong fit of our data points to the power-law in 

Rent’s rule suggests the following method for estimating the 
Rent parameter: restrict Generate-Partitioning-Tree to only a 
small number of applications of the bipartitioning algorithm, 
then apply the linear regression analysis to the partitioning 
instances produced from this restricted partitioning tree.14 
We have observed that as successive Region I data points 
for the regression are obtained by the procedure Generate- 
Partitioning-Instances, each additional data point results in 
essentially monotonic convergence toward the Rent parameter 
of the complete partitioning tree. Moreover, for all input 
netlists a significant reduction in computation time can indeed 
be achieved with little corresponding loss of accuracy in the 
Rent parameter value, simply by restricting the number of 
partitioning instances (or, equivalently, restricting the size 
of the partitioning tree). For example, with the Mesh2D 
benchmark we found that the SpecRC-Bis, SpecRC-1/4, and 
SpecRC-Full algorithms respectively required 40, 49, and 29 
partitioning instances in order to achieve 5% accuracy in the 
estimate of the Rent parameter. This is in contrast to 2000 
partitioning instances if we process the partitioning tree for 
each algorithm with CO = 1, or between two and three hundred 
partitioning instances for these algorithms with CCI = 9. To 
achieve 10% accuracy, the same three algorithms respectively 
required only 9, 35 and 16 partitioning instances. While we 
do not know the Region I-Region I1 demarcation a priori, in 
our experience the number of data points in Region 11 has 
always been very small (i.e., always less than 10). Thus, we 
believe that accurate estimates of the (SpecRC) Rent parameter 
may be obtained after generating only a small portion of the 
partitioning tree. As an aside, it is also possible that Monte 
Carlo methods which examine random root-leaf paths in the 
partitioning tree may similarly be applied to reduce the number 
of bipartitions computed. 

Reducing the Number of Eigenvector Computations 
Our second speedup is based on the observation in [ 151 that 

the sorted second eigenvector used by the SpecRC partitioning 
algorithm provides a “uniformly good” ordering of the netlist 
modules. In other words, after we bipartition a circuit using 
the sorted second eigenvector of its Laplacian, there is no 
compelling reason to independently reorder the two resulting 
subcircuits. Thus, we propose to “recycle” portions of the 
original linear ordering, and recursively find optimal splitting 
points in these portions of the ordering in order to construct the 
partitioning tree. In general, this will not return the same Rent 
parameter as would be obtained by recomputing eigenvectors 
for each subcircuit; however, our preliminary experimental 
results are very encouraging in that this “single-eigenvector” 
methodology yields partitioning trees with very strong Rent 
parameter fits. Thus, our current work examines methods 

l4  Strictly speaking, Generate-Partitioning-Tree and Generate-Partitioning- 
Instances are merged under this scenario: the latter algorithm drives the 
former by selecting the largest existing subcircuit to be the next input to 
the bipartitioning algorithm. 
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which can compensate for the inaccuracy that stems from using 
only a single eigenvector. 

Direct Use of Netlist Spectra 
In view of the superior performance of the SpecRC algo- 

rithms, as well as the very good match between the SpecRC 
based Rent parameter and the known intrinsic Rent parameter 
for the Struct, Mesh2D and Mesh3D examples, we conjecture 
that the spectral ratio cut algorithm is in some sense an 
“intrinsically good” top-down partitioning strategy. It has been 
established [ 151 that the eigenvector-based heuristic ratio cuts 
($UIW$) will in practice have cost very close to the theoretical 
lower bound of 

.(V,W) 
n IUI*IWI 
- 5 -  

provided in Theorem 1 (recall the discussion of Section 
111). This suggests that the SpecRC algorithm-dependent Rent 
parameter is closely tied to the heuristic ratio cut cost, which 
in turn is closely tied via Theorem 1 to the second-smallest 
eigenvalue X of the netlist Laplacian. It is therefore tempting 
to speculate that a relationship exists between (i) the second- 
smallest eigenvalues X encountered as SpecRC is used in 
Generate-Partitioning-Tree, and (ii) the intrinsic Rent parame- 
ter of the circuit. Preliminary experimental results and heuristic 
justifications presented in [17] to support such a proposed 
relationship were at best inconclusive. However, we believe 
that exploration of a possible “lambda-Rent” relationship 
is one of the more far-reaching open questions that stem 
from the present work. Certainly, such a relationship, if 
established, will offer speedups along the lines of those 
above, e.g., by estimating p* from the X values of only a 
few eigenvector-based partitioning applications, or even from 
the single eigenvalue X obtained in the top-level ratio cut 
bipartition. 

In conclusion, we have introduced the notion of the intrinsic 
Rent parameter of a circuit, which is the minimum possible 
Rent parameter of any partitioning tree of the circuit. In 
making this notion well-defined, we have formulated the Rent 
parameter computation in terms of three phases: (i) Generate- 
Partitioning-Tree (which takes as input a bipartitioning algo- 
rithm and a circuit netlist, along with an optional lower bound 
CO on the size of the partitioned subcircuits), (ii) Generate- 
Partitioning-Instances, and (iii) Extract-Rent-Parameter. Our 
three phases closely follow the spirit of Landman and Russo’s 
original Rent parameter experiments which have guided work- 
ers in the field for two decades, and we observe that our 
choices in formulating these phases do not qualitatively change 
our results or their interpretation. 

Motivated by observed relationships between low Rent pa- 
rameter of a partitioning tree and small total wire length in the 
corresponding top-down hierarchical layout, we have assessed 
the utility of existing bipartitioning algorithms by comparing 
their induced algorithm-dependent Rent parameters on various 
benchmark circuits. Our empirical results indicate that spectral 
ratio cut partitioning algorithms generate partitioning trees 
with lower Rent parameter than those generated by any other 
algorithms tested. Moreover, these Rent parameter values are 

essentially optimal for those examples where the intrinsic 
Rent parameter is known. This result suggests that top-down 
layout techniques based on spectral ratio cut partitioning 
will achieve denser layouts than current methods based on 
Fiduccia-Mattheyses partitioning. Hence, our ongoing work 
addresses the integration of spectra-based ratio cut partitioning 
into a top-down layout synthesis package. 

Finally, our results imply that tools for layout area estima- 
tion and early wireability analysis should also be based on 
spectral ratio cut partitioning, since this will achieve closer 
estimates of the required resources for a given design. Such 
applications of the Rent parameter are in general time-critical, 
and we have offered three extensions which lead to com- 
putation of the SpecRC algorithm-dependent Rent parameter 
using far fewer eigenvector computations than our current 
methodology. 
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