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As we approach the limits of traditional Moore’s-Law scaling, alternative computing techniques that consume
energy more efficiently become attractive. Stochastic computing (SC), as a re-emerging computing technique,
is a low-cost and error-tolerant alternative to conventional binary circuits in several important applications
such as image processing and communications. SC allows a natural accuracy-energy tradeoff that has been
exploited in the past. This article presents an accuracy-energy tradeoff technique for SC circuits that reduces
their energy consumption with virtually no accuracy loss. To this end, we employ voltage or frequency
scaling, which normally reduce energy consumption at the cost of timing errors. Then we show that due
to their inherent error tolerance, SC circuits operate satisfactorily without significant accuracy loss even
with aggressive scaling. This significantly improves their energy efficiency. In contrast, conventional binary
circuits quickly fail as the supply voltage decreases. To find the most energy-efficient operating point of an
SC circuit, we propose an error estimation method that allows us to quickly explore the circuit’s design
space. The error estimation method is based on Markov chain and least-squares regression. Furthermore,
we investigate opportunities to optimize SC circuits under such aggressive scaling. We find that logical and
physical design techniques can be combined to significantly expand the already-powerful accuracy-energy
tradeoff possibilities of SC. In particular, we demonstrate that careful adjustment of path delays can lead
to significant error reduction under voltage and frequency scaling. We perform buffer insertion and route
detouring to achieve more balanced path delays. These techniques differ from conventional path-balancing
techniques whose goal is to minimize power consumption by resizing the non-critical paths. The goal of our
path-balancing approach is to increase error cancellation chances in voltage-/frequency-scaled SC circuits.
Our circuit optimization comprehends the tradeoff between power overheads due to inserted buffers and
wires versus the energy reduction from supply voltage downscaling enabled by more balanced path delays.
Simulation results show that our optimized SC circuits can tolerate aggressive voltage scaling with no
significant signal-to-noise ratio (SNR) degradation. In one example, a 40% supply voltage reduction (1V
to 0.6V) on the SC circuit leads to 66% energy saving (20.7pJ to 6.9pJ) and makes it more efficient than
its conventional binary counterpart. In the same example, a 100% frequency boosting (400ps to 200ps) of
the optimized circuits leads to no significant SNR degradation. We also show that process variation and
temperature variation have limited impact on optimized SC circuits. The error change is less than 5% when
temperature changes by 100◦C or process condition changes from worst case to best case.
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1. INTRODUCTION

As we approach the limits of traditional Moore’s-Law scaling, energy and power con-
straints pose major challenges for integrated-circuit (IC) designers. Many embedded
systems, such as wearable devices and medical implants, have strict power and energy
requirements due to battery capacity and physiological limitations [Lee et al. 2013]. For
example, body tissue may be damaged by excessive power dissipation in a poorly de-
signed implantable circuit [Chun et al. 2014]. Various approaches have been proposed
to overcome such energy/power problems. Notably, embedded systems are usually de-
signed for specific applications; this allows designers to use dedicated hardware with
more desirable physical and/or logical characteristics than conventional designs.

Stochastic computing (SC) [Gaines 1969; Poppelbaum et al. 1967] has been proposed
as an alternative low-power computing technique for several important embedded pro-
cessing applications. SC circuits perform complex computations on (pseudo-)random
bit-streams by means of simple logic gates. Figure 1 shows an SC circuit implementing
the function Z = 1

4 + 1
2 X1 X2. The number represented by each bit-stream is the proba-

bility of seeing a 1 in it. For example, the stochastic numbers (SNs) X1, X2, Z appearing
at x1, x2, z represent 9

12 , 8
12 , 6

12 , respectively. The circuit has two primary inputs, x1 and
x2, and two auxiliary inputs, r1 and r2. The auxiliary inputs are constant SNs of value
1
2 . The NAND gate of Figure 1 implements the stochastic function Y1 = 1− X1 X2, which
involves multiplication and subtraction. The OR gate implements Y2 = R1 + R2 − R1 R2,
and since R1 = R2 = 1

2 , we have Y2 = 3
4 . Finally, the XOR gate implements the function

Z = Y1 + Y2 − 2Y1Y2 = 1
4 + 1

2 X1 X2.
The main benefit of SC, as is evident from Figure 1, is that simple logic gates imple-

ment complicated arithmetic functions. For example, a single AND gate implements
multiplication. Compared to a conventional binary multiplier, the SC multiplier is or-
ders of magnitudes smaller in size. This, however, comes at the cost of speed. SC circuits
need to operate on bit-streams that grow exponentially as the precision increases, and
thus they take much more time to complete a computation. This has always been the
main drawback of SC. The exponential loss in runtime not only hurts the performance
but also leads to excessive energy consumption when long bit-streams are used [Moons
and Verhelst 2014]. Consequently, SC circuits are mainly useful for low-precision com-
putations [Aguiar and Khatri 2015]. Some recent work has focused on addressing this
problem by reducing the runtime of SC circuits through the use of deterministic num-
ber sources [Alaghi and Hayes 2014] or by eliminating the power overhead of the clock
distribution tree [Najafi et al. 2016].

This article exploits SC’s error tolerance in order to reduce the energy consumption
of SC circuits via voltage/frequency scaling. SC circuits are error tolerant, because a
single error on one of the bits has minimal effect on the numerical value of a long bit-
stream, and multiple errors tend to cancel each other out. Finally, SC circuits provide
a natural energy-accuracy tradeoff: The bit-stream length N, that is, the number of
clock cycles an SC circuit uses to perform a computation, directly affects its energy
consumption and its accuracy.
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Fig. 1. Stochastic computing circuit implementing the function Z = 1
4 + 1

2 X1 X2. The stochastic number
represented by each bit-stream is the probability of seeing a 1 in a randomly chosen position.

SC, when first introduced in the 1960s, was attractive because it allowed simple
implementation of arithmetic functions. However, it was dominated by conventional
binary computing in the decades that followed, mainly because transistors became
cheaper and performance became the primary design target. Throughout those decades,
SC remained useful in certain applications, including efficient implementation of arti-
ficial neural networks [Kim and Shanblatt 1995; Brown and Card 2001; Canals et al.
2016].

After the turn of the century, SC regained attention because of its potential in low-
power embedded processing applications. Some recent successful applications include
low-density parity check (LDPC) decoding [Gaudet and Rapley 2003; Lee et al. 2015;
Gross et al. 2005] and image processing [Li and Lilja 2011; Alaghi et al. 2013; Fick et al.
2014]. Other recent applications of SC include data recognition and mining [Chippa
et al. 2014; Morro et al. 2015], machine learning [Gupta and Gopalakrishnan 2014],
and dynamical systems [Wang et al. 2015]. Note that Lee et al. [2015] and Fick et al.
[2014] have silicon-validated SC designs that outperform their conventional binary
counterparts.

As mentioned, we investigate the application of low-power techniques such as voltage
scaling to SC with the goal of obtaining circuits with ultra-low energy needs. Voltage
scaling, that is, reducing the supply voltage of a circuit, reduces the circuit’s energy
consumption but increases its latency. If the application allows some latency overhead,
then aggressive voltage scaling can be employed at the cost of occasional erroneous
outputs. Thus, voltage scaling allows designers to trade accuracy for energy. This ap-
proach has been extensively studied in the non-SC literature [He et al. 2012; Hegde and
Shanbhag 2001; Kahng et al. 2010], and methods of tolerating and/or correcting tim-
ing errors have been proposed. However, the probability of timing violations increases
rapidly with voltage scaling, necessitating complicated error-correcting methods.

In this article, we show that representative SC circuits can tolerate up to 40% voltage
reduction with no significant error. Figure 2 shows an example circuit and illustrates
why, intuitively, we can aggressively scale the voltage/frequency of SC circuits. The
idea is that we can apply new sets of inputs before the previous inputs have completely
propagated through the circuit. In the ideal scenario (shown in Figure 2(c)), all the
input signals propagate through different levels with the same speed; this scenario is
very similar to the concept of wave pipelining [Burleson et al. 1998].

A major contribution of this work is an optimization method that improves the
accuracy-energy tradeoff of SC circuits under voltage/frequency scaling. This is based
on the observations of Figure 2. In order to achieve the ideal scenario shown in
Figure 2(c), we need to modify the circuit to make sure signals propagate simultane-
ously. For this purpose, we employ synthesis and physical design techniques that keep
the circuit’s functionality intact, while effectively winning back any lost accuracy.
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Fig. 2. Example showing how a representative SC circuit (a) operates under aggressive voltage/frequency
scaling: (b) the normal mode of operation, in which the period of the clock is the same as the propagation
delay of the circuit. In this case, the input remains unchanged until the propagation to the output is complete;
(c) shows a voltage/frequency scaled scenario where the clock period is approximately 3 times smaller than
the propagation delay of the circuit. As soon as the input propagates through the first level, a new input is
applied. The circuit levels therefore operate like a pipeline.

In the synthesis step, we employ circuit structures that are naturally balanced. Note
that this differs from logic-level balancing of circuits because we look at circuits that
are stochastically equivalent [Chen and Hayes 2015], meaning that their underlying
logic function may not be the same, even though they implement the same stochastic
function. Existing logic-level tools do not understand such equivalences.

Ideally, a conventional place-and-route (P&R) flow balances path delays as much as
possible (e.g., trading the slacks of non-critical paths for power and area reductions).
However, due to design constraints (e.g., maximum transition or maximum capaci-
tance) and the fact that gate sizes are limited, path delays are typically not perfectly
balanced, especially when the paths have large differences in their depths. Figure 3
illustrates our proposed optimization. Assume that gate G1 is already sized to its small-
est size and is using high Vth (threshold voltage), but due to the difference in the depths
of the paths, delays from x{1,2,3,4} to z and those from x{5,6} to z are still not completely
balanced. Our study shows (in Section 4) that such unbalanced path delays increase the
computation error of voltage/frequency-scaled SC circuits. To improve the computation
accuracy of SC circuits, we propose to further balance path delays using buffer insertion
and wire detouring. As indicated in Figure 3(b), we insert buffers (shown in red) into
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Fig. 3. (a) SC circuit implemented via conventional P&R tools, where the main objectives are area and
power reduction. (b) SC circuit implemented via the proposed optimization flow, where path delays are
balanced to improve accuracy. Inserted buffers are shown in red.

the non-critical path. Although the inserted buffers incur a power penalty, they enable
more frequency and/or voltage scaling and hence reduce the latency and the energy
consumption of the circuit for a given accuracy requirement. To our knowledge, this is
the first time such techniques have been employed in the context of SC. In addition, to
guide the design space exploration, we demonstrate an improved Markov chain model
of computation errors in Section 3.3 based on the model from Alaghi et al. [2015].
We improve the modeling accuracy in Alaghi et al. [2015] by applying least-squares
regression.

Note that the term “stochastic computing” has been also used recently to describe
conventional circuits involving probabilistic behavior, including scenarios with voltage/
frequency scaling [Sartori et al. 2011; Shanbhag et al. 2010]. What we refer to as SC is
the computation technique that was proposed in the 1960s [Gaines 1969; Poppelbaum
et al. 1967] and is unrelated to the concepts used in Sartori et al. [2011] and Shanbhag
et al. [2010].

In this article, we focus only on combinational SC circuits. Qian and Riedel [2008]
and Qian et al. [2011] show a connection between combinational SC circuits and Bern-
stein polynomials [Lorentz 1986] and prove that SC combinational circuits only im-
plement certain types of polynomial functions. In this article, we use Reconfigurable
Stochastic Computing (ReSC) [Qian et al. 2011] as the main method of implementing
most of our testcases. As we will discuss later in the article, the rival design method
[Alaghi and Hayes 2015] is not as energy efficient as ReSC.

We note that sequential SC circuits that implement a larger class of functions also ex-
ist in the literature [Li and Lilja 2011; Saraf et al. 2013; Brown and Card 2001]. Brown
and Card [2001] are among the first to develop the theory of sequential SC circuits in
the context of neural networks. In particular, they implement a sigmoid function by
using a simple finite-state machine. However, addressing sequential circuits is beyond
the scope of this article; we leave it as a subject for future work. The Sigmoid testcase
used in this article is a combinational implementation and is unrelated to the circuit
designed by Brown and Card [2001]. We also note that combinational circuits can im-
plement non-polynomial functions by exploiting correlation [Alaghi and Hayes 2013]
and that our optimization method is capable of handling them.

This article is organized as follows. Section 2 gives a brief review of SC, as well as an
error analysis under voltage/frequency scaling conditions. It also illustrates the effect
of stochastic number generation on the accuracy of SC circuits. Section 3 poses two
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Fig. 4. Basic SC components: (a) multiplier, (b) scaled adder, (c) stochastic number generator, and (d)
stochastic-to-binary converter.

related optimization problems, along with a straightforward way to find the minimum-
energy operating point of an SC circuit for a desired accuracy level. It is also discusses
a fast error estimation method for SC circuits. Section 4 examines the opportunities
for optimizing SC circuits at different voltage levels. Section 5 presents experimental
results, and, finally, conclusions are given in Section 6.

2. ERROR TOLERANCE AND NUMBER GENERATION IN STOCHASTIC COMPUTING

A stochastic circuit C is a logic circuit that operates on (pseudo-)random bit-streams,
called stochastic numbers (SNs). Each wire xi of C carries an SN Xi. The information
conveyed by Xi, also conveniently denoted by Xi when no confusion is possible, is the
rate or frequency of its 1-pulses and is independent of bit-stream length. Formally,
a bit-stream of length N with N1 1’s and N − N1 0’s is called an SN with value or
magnitude Xi = N1/N. This is usually interpreted as the probability of seeing a 1 in
a randomly chosen position of the bit-stream [Gaines 1969]. SN values range over the
unit interval [0, 1], and their precision is determined by N.

Figure 4 shows several basic SC components. As mentioned earlier, a single AND-gate
(shown in Figure 4(a)) implements SC multiplication. Figure 4(b) shows a multiplexer
that implements SC addition. Since SNs are in the unit interval, the sum of two SNs
falls into the interval [0, 2] which cannot be represented by an SN. To mitigate this
problem, a scaling factor of 1/2 is usually applied to bring the result back in the unit
interval. Thus, the circuit of Figure 4(b) implements the scaled addition Z = (X+Y )/2.

When used along with conventional binary circuits, the inputs and outputs of
stochastic circuits must go through a conversion process. Figure 4(c) shows a binary-
to-stochastic converter that is usually referred to as a stochastic number generator
(SNG). At each clock cycle, the SNG compares its k-bit binary input with a uniformly
distributed random number. As a result, the probability of seeing a 1 at the output of
the comparator becomes proportional to the binary input. Several studies have shown
that the random number generator of Figure 4(c) can sometimes be replaced by simple
counters [Alaghi and Hayes 2014]. As we will show later in this section, the choice
of random number generators can impact the power and accuracy of an SC circuit.
Converting SNs back to binary form can be done by counting the number of 1s, so the
binary counter shown in Figure 4(d) suffices for this task.

2.1. Error Analysis

The inherent error tolerance of SC circuits stems from the fact that a single bit-flip
in an SN of length N alters its magnitude by 1/N, which is insignificant when N is
sufficiently large. For example, the SN at the output of the circuit in Figure 1, where
N = 12, represents Z = 6

12 . If one of the 1’s or 0’s of the bit-stream changes due to an
error, then the erroneous SN is Z∗ = Z ± 1

12 , a minimal change. Furthermore, multiple
errors tend to cancel each other out if they occur in opposite directions, since it is
the number of 1’s, but not their positions, that determines the magnitude of an SN
[Chen et al. 2013; Qian 2011; Qian et al. 2011]. The probabilistic nature of SC circuits,
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Fig. 5. Effect of delay errors on an SN.

along with the cancellation possibilities, makes it difficult to evaluate the accuracy of
SC circuits.

Even though we will be dealing with the effect of timing errors in this article, it is
worth mentioning how errors of the bit-flip type affect SNs. The mean square error
(MSE) of an SN in the presence of bit-flips can be calculated by the following equation
[Chen et al. 2013]. Assuming Z is the error-free SN and Z∗ is the erroneous SN, we
have

MSE = E[(Z− Z∗)2] = p2
e ·(1−2 · Z)2 + 1

N
·(Z·(1− Z)+ pe ·(1− pe) ·(1−4 · Z·(1− Z))

)
, (1)

where E[∗] denotes the expected value (averaging) operator, pe is the probability of
getting a bit-flip on each bit of the SN, and N is the SN’s length. Equation (1) reflects
the effect of error cancellation: when Z = 1/2, the error becomes zero for large N.
However, the cancellation does not help much when Z �= 1/2. In the extreme case of
Z = 0 (or Z = 1), the error is maximized because no cancellation occurs.

This work investigates the application of voltage and frequency scaling to SC cir-
cuits. Voltage scaling refers to the systematic reduction of the power supply voltage
(i.e., “undervolting”), which is a standard technique used to reduce the power consump-
tion of digital circuits. However, such scaling tends to produce timing violations that
may cause output errors. Overly aggressive voltage scaling can induce many timing
errors in conventional binary circuits and the resulting degradation of computational
correctness can be catastrophic. By frequency scaling, we refer to the clocking of the
circuit at higher than its nominal speed, at the cost of timing errors. It is possible to use
design methods such as Razor [Ernst et al. 2003] to make conventional circuits more
resilient to timing errors that are induced by frequency scaling. However, these tech-
niques are only effective when the error rate is relatively low. SC circuits, on the other
hand, have the potential to achieve graceful degradation of computational correctness
when the voltage (or frequency) scaling is extremely aggressive and the timing error
rate is relatively high. In addition, we may also be able to retrieve lost accuracy by
employing the optimization method proposed in this work.

The types of errors that affect an SC circuit differ considerably from, bit-flips when
voltage (or frequency) scaling is applied. In general, SC circuits tolerate errors of the
bit-flip type, so one would expect them to tolerate scaling-induced timing errors as well.
As we show next, SC circuits are much better at tolerating such timing errors.

Timing errors may occur in an SN Z when a transition from 0 to 1 is delayed, in
which case the 1 will not be captured in time, and the magnitude of Z will be reduced
by 1/N, where N is the bit-stream length. Similarly, on a 1-to-0 transition, the 0 may
be missed because of a timing error, and the magnitude of Z will increase by 1/N.
Since the numbers of 0-to-1 and 1-to-0 transitions are almost the same for any bit-
stream (the difference is at most one), these timing errors tend to cancel each other
out. Figure 5 shows an example of an SN affected by transition errors. In this figure,
Z has three 0-to-1 and three 1-to-0 transitions denoted by arrows. Due to delay errors,
some of the transitions are missed in the erroneous case Z∗, but the resulting number
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value remains the same due to error cancellation. In a very recent work, Najafi et al.
[2016] show that SC circuits can tolerate timing variations caused by unsynchronized
clocks. Their observation is in agreement with the results of our work. Similarly, Perez-
Andrade et al. [2013] have shown that SC LDPC decoders can operate satisfactorily
when clock-scaling-induced timing errors are present.

Now let us denote the 0-to-1 and 1-to-0 error rates by e0→1 and e1→0, respectively.
We want to analyze their effect on an SN Z. We assume that the event of having a
transition error at a certain clock cycle is an independent sample from a Bernoulli ran-
dom variable with parameter e0→1 or e1→0, depending on the direction of the transition.
This simplifying assumption is not a precise model, because, after all, the underlying
circuit is deterministic. However, there are several phenomena that produce seemingly
random behavior in voltage/frequency-scaled SC circuits. First, since (pseudo-)random
bit-streams are used in most cases, signals in two consecutive clock cycles will be sta-
tistically independent. This implies that an input signal does not always activate the
same circuit paths; the activated paths depend on the signals of the previous clock
cycles, which are pseudo-random. Second, the output of an SC circuit is usually col-
lected at a flip-flop of a counter, and, due to timing violations, the output flip-flop may
become metastable and produce a seemingly random result. Third, when the supply
voltage is reduced, the circuits become more susceptible to environment noise of a ran-
dom nature. We do not consider the direct effect of each of these phenomena in this
work; we model their collective effect by a Bernoulli random variable. We note that if
deterministic bit-streams are used, as in our EdgeDetection testcase, the simplifying
assumption of Bernoulli random variable fails to model the circuit behavior correctly.

For simplicity, we also assume that Z has equal numbers of 0-to-1 and 1-to-0 transi-
tions. These numbers depend on two factors: the value of Z and its “activity.” If Z = 0
or Z = 1, then the number of transitions will be zero. The maximum number of tran-
sitions usually occurs when Z = 1/2 if (pseudo-)random number sources are used in
generating Z. But, as we will show in the next subsection, the choice of the random
number source affects the number of transitions. We define the activity factor A as a
number between 0 and 1 with the following properties. When A = 1 in Z, the number
of transitions becomes maximum, and when it is 0, the number of transitions drops to
the minimum. In the case of Z = 1/2, the maximum number of transitions will be N,
where N is the length of the SN. This corresponds to an SN that transitions on every
clock cycle, for example, 01010101010 . . . . The SN Z = 1/2 with A = 0 corresponds to
a bit-stream with the minimum number of transitions, for example, 00000001111 . . . .

We are now ready to calculate the effect of transition errors. Following the analysis
in Chen et al. [2013], we observe that they cause output errors in two ways; they change
the average value and the variance of Z∗. For the error-free number Z of length N and
activity factor A we have

E[Z∗] = 1
N

· E[Z · N − N0→1 · e0→1 + N1→0 · e1→0],

where ei→ j denotes the error rate on i-to- j transitions and Ni→ j denotes the number of
i-to- j transitions calculated by

N0→1 = N1→0 = 2 · Z · (1 − Z) · A · N.

Hence

E[Z∗] = Z + 2 · Z · (1 − Z) · E[e1→0 − e0→1]) · A. (2)

Equation (2) has two important implications. First, and more importantly, if e0→1 =
e1→0, then Z and Z∗ will be equal on average. Second, the activity factor A has also
a direct effect on the error. We will address impact of the activity factor in the next
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subsection. For now, let us assume that e0→1 = e1→0 = e is correct. Even though the
expected value of Z∗ is the same as the error-free Z, we may still see random fluctuations
due to the probabilistic nature of e0→1 and e1→0. Once again, if only deterministic signals
are used, no random fluctuation will be seen. We compute the MSE using an approach
similar to that in Chen et al. [2013], that is,

MSE = E[(Z − Z∗)2] = 1
N2 · E

[(
Z · N − (Z · N − N∗

0→1 + N∗
1→0)

)2]
,

in which N∗
i→ j is a random variable denoting the number of i-to- j transition errors. We

now have

MSE = 1
N2 · E

[
(N∗

0→1 − N∗
1→0)2] = 1

N2 · (
E[(N∗

0→1)2] + E[(N∗
1→0)2] − 2E[N∗

0→1 · N∗
1→0]

)
.

Since N∗
0→1 is a binomial random variable with parameters N0→1 and e, we can

evaluate the first term of the above equation by finding the second moment of N∗
0→1,

E[(N∗
0→1)2] = e2 · N0→1 · (N0→1 − 1) + e · N0→1

and, since E[(N∗
0→1)2] = E[(N∗

1→0)2], we get

MSE = 1
N

· (
4 · A · Z · (1 − Z) · e · (1 − e)

)
. (3)

Equation (3) has several important and counterintuitive implications:

—The errors due to voltage scaling can be reduced by increasing the number length N.
While it is well known that increasing N reduces the random fluctuation errors in SC
[Gaines 1969], Chen et al. have observed that when bit-flips are present, increasing
N will not help [Chen et al. 2013].

—The activity factor A can also play an important role, since reducing A decreases the
MSE.

—If the transition error rate e = 1/2, then the error is maximized. Obviously, if we set
e = 0, we reduce the error to zero, but, somewhat surprisingly, if we increase the
error rate to e = 1, then we also get MSE = 0. This is a scenario in which every
transition of Z is erroneous, and since the numbers of transitions are equal, the
errors all cancel each other out. Note that when e = 1, no random fluctuation is seen
in the circuit, and the circuit behaves deterministically. This scenario is similar to
the desirable behavior shown in Figure 2(c).

Among the three preceding implications, increasing N is the least desirable because
it increases the runtime of the circuit and hence its energy consumption. The activity
factor can be controlled by generating suitable SNs at the input (see Section 2.2).
Balancing the transition errors e0→1 and e1→0 is the main target of this article, and
this will be addressed in the following sections.

We emphasize that Equations (2) and (3) are based on several simplifying assump-
tions and only reflect the result of delay errors on a single signal Z. In reality, the
assumptions may not hold due to circuit complications. For example, the assumption of
having e0→1 = e1→0, which is based on Equation (2), leads to desirable error reduction
and cannot be easily achieved in real-world examples. We use Equation (2) as a guide-
line or ideal case that we want to approach. Similarly, Equation (3) sets guidelines for
error reduction, some of which are not easily achieved. For instance, the e = 1 scenario
where the final error becomes zero is never seen in our experiments. Also, A = 0 is
another unachievable case that reduces the final error to zero. However, as we will
show next, reducing A decreases the final error.
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Fig. 6. Three SNs with different activity factors representing Z = 1/2.

Fig. 7. The effect of SN generation on output errors; they are lower when a low-activity SNG is used.

2.2. Stochastic Number Generation

Stochastic number generation is an important step of a stochastic computation and
directly affects parameters such as accuracy and area cost. It has been studied fairly
extensively in the SC literature [Jeavons et al. 1994; Qian et al. 2009]. While most
of the early work on SC assumed that SNs must be (pseudo-)random, several recent
studies suggest that deterministic SNs can also be successfully employed in SC [Fick
et al. 2014; Alaghi and Hayes 2014].

Equation (3) shows that the activity factor A of an SN directly affects its error. In-
terestingly, the activity factor also affects dynamic power consumption [Pedram 1994],
so reducing A leads to both power and error reduction. While A cannot be completely
fixed in a general SC circuit, it is possible to control it to some extent by a careful
choice of stochastic number generators. Figure 6 shows three SNs with different activ-
ity factors representing 1/2. The most commonly used method of SN generation, that is,
using (pseudo-)random number generators [Jeavons et al. 1994], yields numbers with
medium activity factor. The SN generation method of Alaghi and Hayes [2014] yields
SNs with high activity factors and hence is not suitable for the purposes of this work.
The low activity factor SN shown in Figure 6 is generated by the method of Fick et al.
[2014]. This number has only one transition, so it is very tolerant of transition errors
and consumes very little dynamic power.

Figure 7 compares the impact of different SN generation methods on a voltage-
overscaled SC circuit. The supply voltage of the circuit under test has been reduced
from the nominal value of Vdd = 1.0V to Vdd = 0.72V. As a result, the output Z∗ deviates
from the correct output Z. As seen in the figure, the deviation is higher when a high-
activity SNG is used. Based on this observation, we employ the SN generation method
of Fick et al. [2014] to the extent allowed by the SC design. Note that SC circuits
usually require independence (zero correlation) among their inputs, so in many cases
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it is not possible to generate all the inputs using the same method. In other words, we
do not have complete control over the activity factors of all the signals.

3. PROBLEM DESCRIPTION AND PROPOSED SOLUTIONS

This section defines the two main problems that are addressed in this work. An error es-
timation method, which allows quick evaluation of SC circuits under voltage/frequency
scaling, is also discussed.

3.1. Finding the Minimum Energy Point

First, we pose and answer the following question: “Given an SC circuit, what is the
lowest energy required for computation with a given required accuracy (errgoal)?” To
quantify the accuracy of a circuit, several error metrics, such as maximum error, MSE,
and so on, can be employed. From this point forward, we use the “average error” metric,

err = E[|Z − Z∗|],
where Z is the correct or “golden” value of the circuit output and Z∗ is the erroneous
output. The difference between Z and Z∗ is averaged over all possible inputs. This
average-error metric will be used to measure the accuracy of both SC and conventional
binary circuits. It is important to note that our choice of average error as the accuracy
metric is because of its simplicity. The general approach that we propose below is not
limited to a specific error metric. However, due to the probabilistic nature of SC circuits,
all of the deduced error bounds will be probabilistic.

The length N of the SNs used in a stochastic computation controls the accuracy and
the total energy consumed by the circuit. Thus, by decreasing N, one can trade away
accuracy for energy or power savings. This natural tradeoff has been successfully used
in the past [Alaghi et al. 2013]. Our work here shows that voltage/frequency scaling
adds new dimensions to the accuracy-power tradeoff possibilities for SC circuits. In
effect, SC circuits have three control knobs—(i) supply voltage Vdd, (ii) clock frequency
f , and (iii) bit-stream length N (or, equivalently, clock cycle count)—that determine
their accuracy and energy/power consumption. Finding the best operating point for a
circuit is thus a new and challenging problem.

Previous methods search for the minimum N for which the average error is less than
the given errgoal. However, as discussed, it is possible to adjust all three parameters
(supply voltage Vdd, clock frequency f , and SN length N) concurrently in order to find
the best solution. We will refer to the triplet (Vdd, f, N) as an operating point of an SC
circuit. We now formalize the above question in the following problem statement.
Minimum-Energy Operating Point (MEOP) Problem. Given an SC circuit, find
the operating point (Vdd, f, N) that has minimum energy consumption while satisfying
the accuracy requirement of average error ≤ errgoal.1

In addition to providing a solution to the MEOP problem, which we do in the next sub-
section, we also consider optimization to improve error behavior under voltage scaling
conditions. Excessive supply-voltage downscaling and/or increase of the operating fre-
quency can result in the misalignment of signal actual arrival times (AAT) at output z
with respect to the clock capture phase. Without loss of generality, for any pair of timing
paths from inputs xi and xj to output z in an SC circuit, we assume the corresponding
arrival times at z are AATi and AATj , respectively, such that ki · T ≤ AATi ≤ (ki +1) · T

1It is practically impossible to search the entire solution space given that f and Vdd are continuous and N
is an arbitrary integer. Here “minimum energy” refers to the minimum energy point among a given set of
(Vdd, f, N) combinations. Since varying N has been extensively studied in the literature, we only consider
one choice of N in our search space. This means that the energy savings reported in this article are obtained
only from voltage/frequency scaling.
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Fig. 8. Misalignment of arrival times at z with respect to the clock capture phase can lead to a computation
error.

and kj · T ≤ AATj ≤ (kj + 1) · T , where T is the clock period. We say that these two
timing paths exhibit arrival time misalignment if ki �= kj . In other words, the two
signals cannot be captured in the same clock cycle. We will show that the arrival time
misalignment has significant impact on computation accuracy for SC circuits. Figure 8
shows one example of two timing paths (arcs x1 − z, x2 − z) to illustrate that arrival
time alignment matters. In the example, Case (a) assumes no timing violation for both
paths. This case generates the correct output sequence 1, 0, 1. Case (b) has timing vi-
olations on both timing paths. However, the two arrival times are captured within the
same clock cycle (i.e., T2). Therefore, there is no arrival time misalignment. Although
both signals are delayed by one cycle, the output sequence at z is still correct, that is, it
is 1, 0, 1.2 In Case (c), due to unbalanced path delay, signals from x1 and x2 arrive at
z in two different cycles. Thus, Case (c) has an arrival time misalignment that leads to
a computation error, as shown by the red-dotted oval in Figure 8. Moreover, the output
sequence cannot be recovered by adjusting the capture phase.

Motivated by the discussion above, we propose to employ logical and physical design
techniques to align the arrival times at the output of an SC circuit. As observed in
Equation (2), it is desirable to have equal error rates on 0-to-1 and 1-to-0 transitions
(e0→1 and e1→0), because balanced errors reduce the average error. Accordingly, we
define the following problem statement, whose solution is discussed in Section 4 below.

SC Circuit Optimization (SCOpt) Problem. Given a stochastic function and a
range of supply voltages, find a circuit implementation that has minimum average
error across the given supply voltage range.

3.2. Solution of the MEOP Problem

We now present our solution to the MEOP problem defined in the previous section.
Briefly, given an SC circuit, we want to find the most energy-efficient operating point
(Vdd, f , N) for a given accuracy metric. Our approach to this problem is a straightfor-
ward search within the operating-point space. In other words, we try different operat-
ing points and, for each, evaluate the accuracy and energy of the corresponding circuit.

2In Case (b), the output at the end of T2 (derived from propagated signals in T1 of Case (a)), can be incorrect.
However, the corresponding impact on computational accuracy is negligible given that N is typically large,
for example, N = 4,096.
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Fig. 9. Markov chain model for the proposed error estimation approach. The states are described in Table I.

We then choose the point that has the lowest energy while satisfying the accuracy
requirements.

Unlike conventional binary circuits, errors in SC circuits tend to cancel each other
out. In addition, SC circuits have a non-deterministic nature, that is, their behavior can
be described by probabilities. For these reasons, evaluating the accuracy of SC circuits
is not trivial. Exhaustive simulation can be used to evaluate the accuracy of small
stochastic circuits. However, for larger circuits, it is impractical to perform exhaustive
simulation for every operating point. With this in mind, we propose a method for fast
error estimation. We note that our search strategy is not novel, but we are proposing a
new model that enables fast exploration of the solution space.

3.3. Error Estimation Using a Markov Chain

We propose a Markov chain (MC) model [Grinstead and Snell 2003] to estimate errors.
This model assumes that an SC circuit involving timing errors can be in correct or
incorrect states. In a correct state, the circuit is producing the same output as the
circuit with no timing errors. Since there are two possible output values, we have two
correct states: C0, in which the output is 0, and C1, in which the output is 1 (Figure 9).
In addition to the correct states, there are four incorrect ones. In an incorrect state, the
SC circuit is producing an incorrect result due to a timing violation. Timing violations
occur in two forms: (i) delay errors that appear when a 0-to-1 or 1-to-0 transition is
missed at the output and (ii) glitches that appear when the output was not supposed to
have a transition. We distinguish between these two error types and allocate different
states to them. State Di (i ∈ {0, 1}) is a state in which the output is the incorrect value
i due to a delay error, and Gi is a state caused by a glitch in the output signal. Table I
summarizes the MC model states.

The edges of the MC model indicate the transition probabilities between the states.
For simplicity, we only show edges for the error cases and assume that the output
magnitude is 0.5. In general, the magnitude of the output also affects the transition
probabilities. Furthermore, there are implicit edges that are the complements of the
shown edges and land on correct states. For instance, the implicit edge that goes from
C0 to C1 is the complement of the edge that goes from C0 to D0 and so has transition
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Table I. Description of Each State in the MC Model

Term Meaning
C0 Output is 0 and is correct
C1 Output is 1 and is correct
D0 Output is 0 and is incorrect due to a delay error
D1 Output is 1 and is incorrect due to a delay error
G0 Output is 0 and is incorrect due to a glitch
G1 Output is 1 and is incorrect due to a glitch

Fig. 10. Flow to construct MC model and estimate computation errors across various operating points.

probability 1 − pe1. As an example, let us assume that pe1 = 0.1. This means that if the
circuit is in state C0 and the next output is going to be 1, there is a 10% chance that the
output transition is not captured due to a delay error, and hence the circuit lands in
D0 with probability pe1. The other 90% of the time, the transition is successfully made
and the circuit goes to the correct state C1.

If the transition probabilities are known, then we can find the equilibrium probability,
that is, the stationary distribution, of the MC and then we can evaluate the accuracy
of the circuit in question. We do so by calculating the probability of seeing a 1 at
the output of the circuit, that is, the probability of being in states C1, D1, or G1, and
comparing it with the correct output probability. Figure 10 illustrates our MC-based
error estimation flow. We obtain the transition probabilities by generating a small
input sample set (uniformly selected from the input space) and simulating the circuit.
We perform logic simulation based on gate-level netlists. We then gather statistics
for the transition rates between different states of the MC model. The size of the
sample set determines the tradeoff between simulation runtime and the accuracy of
the constructed MC model. We gradually increase the input sample size and find that
in our testcases, the transition probabilities always converge when the input sample
size is less than or equal to 20 (increasing the sample size to 21 does not lead to a
significant change in the collected data). We therefore use 20 input samples in our
experiments. Once the transition probabilities are estimated, we plug them into the
MC model of Figure 9 and evaluate the accuracy of the circuit.

Our experimental results show that although the estimated errors from our MC
model correlate well with the actual errors from simulation, they are typically pes-
simistic. We therefore apply a least-squares regression (LSQR) technique to improve
the estimation accuracy. The LSQR step uses the final error values observed during
the simulations. To further clarify, we simulate the circuits for 20 evenly distributed
input samples from the big space of possible inputs. We collect two data sets from
the simulations: (i) transition probabilities that are used to construct the MC model
and (ii) final error values that are used to correct the MC model. Figure 11 shows an
example where the LSQR technique improves the estimation accuracy. The MC model
enables fast design space exploration by avoiding exhaustive simulation. Note that the
MC model is constructed only once for each (design, operating point) combination.
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Fig. 11. Distribution of the estimation errors across different operating points. Left: Estimation from the
MC model without LSQR (i.e., the method proposed earlier in Alaghi et al. [2015]) is pessimistic. Right:
Application of the LSQR technique significantly improves the estimation accuracy.

We verify our modeling flow by comparing the average error values predicted by the
MC model (i.e., MC + LSQR) and by post-layout simulation. We use six representative
testcases throughout this article. These testcases are mostly from image processing
and artificial neural network applications. A list of the testcases appears in Section 5.
Although the MC model can be employed in all cases, it is mostly useful for the big-
ger testcases (GammaCorrection [Qian et al. 2011], Neuron [Brown and Card 2001],
Sigmoid and BilateralFilter) since exhaustive simulation would be time consuming in
these cases.

After logic synthesis, placement, and routing (SP&R), each testcase is simulated in
Cadence NC-Verilog [Cadence 2011] with delays that are annotated from the SP&R
flow results. To show the ability of the MC model to predict errors under aggressive
voltage and frequency scaling, the circuit is signed off at Vdd = 1.0V, worst process
corner, 125◦C; it is then operated at lower voltages (Vdd = {0.6, 0.64, . . . , 0.96}V) and
boosted clock frequencies (e.g., up to 5× the signoff frequency).

Figure 12 shows that the predicted average errors are well correlated with the post-
layout simulation results of the majority of the testcases. The MC model does not
perform well for small testcases (EdgeDetection and PolySmall) mainly because they
exhibit deterministic behavior (especially the EdgeDetection testcase). But, as noted,
the MC model may not be useful in small testcases, since exhaustive simulation is
feasible and fast.

The estimation error is relatively larger in the low-error cases (e.g., GammaCorrec-
tion) compared to the high-error cases (e.g., Neuron). The low-error cases happen when
the transition errors e0→1 and e1→0 are either very small or very large. In such cases,
the behavior of the circuit becomes mostly deterministic. For example, as discussed
along with Equation (3), when e0→1 = e1→0 = 1, all the transitions acquire an error,
yielding a zero error for the SN. Our MC model’s main limitation is that it cannot model
such deterministic scenarios.

Furthermore, the MC error estimation involves some discrepancies, as seen in Fig-
ure 12. We observed that in most of our testcases, a 25% margin is sufficient to guard
against the discrepancies of the larger testcases. However, this makes the MC model
pessimistic; we may discard acceptable operating points. As we discuss in Section 5,
using the MC model does not always find the optimum operating point that is found
via exhaustive simulation. Nevertheless, we believe that the MC model is still useful
for the following scenarios: (i) estimating the error of a big circuit for which exhaustive
simulation is impossible and (ii) exploring the huge space of operating points.

To further clarify the second scenario, consider an MEOP problem with errgoal =
0.01 on a relatively large circuit. Our approach is to search the space of possible
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Fig. 12. Plots showing correlation between the errors estimated by our proposed MC model and the errors
obtained from post-layout simulations. A 25% margin added to the MC estimated errors is sufficient to guard
against small discrepancies for most of the testcases.

operating points and choose one that meets the errgoal with the least amount of energy
consumption. For each operating point, we first run the MC model to quickly assess
its error behavior. If the MC model shows a high error, say, 0.1, then we can safely
dismiss the current operating point and move on to the next one. Otherwise, we perform
exhaustive simulation on the operating point to precisely assess its error behavior.
Thus, the MC model saves valuable simulation time for many operating points.

4. CIRCUIT-LEVEL OPTIMIZATION

The previous section dealt with a scenario in which an SC circuit is already imple-
mented and we can only choose an operating point for it, that is, the MEOP problem
defined in Section 2. In this section, we consider how to optimize the circuit using logic
synthesis and physical design techniques to improve its energy efficiency (the SCOpt
problem). We first discuss the timing behavior of SC circuits and highlight the main
causes of errors, as well as the opportunities to eliminate them (Section 4.1). We then
discuss the proposed optimization methods (Section 4.2).

4.1. Arrival Time Misalignment Matters

To examine the impact of arrival time misalignment on computation accuracy in an
SC circuit, we insert and gradually increase the delays at the circuit’s inputs; in the
example shown in Figure 13, we sweep the delay from 0ps to 450ps, that is, 3× the clock
period, with a step size of 15ps. We record the change in the average computation error.
We perform this experiment on two implementations of testcase PolySmall, where one
implementation uses the conventional P&R flow and the other is optimized to have
more balanced path delays. Figure 13(a) shows the path delay distribution of the two
implementations. Note that the initial designs have the maximum path delay around
140ps. Therefore, the designs will have timing violations due to the inserted input
delays.
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Fig. 13. Simulation results of the PolySmall testcase synthesized in 28nm FDSOI technology and clocked
at 6.7GHz: (a) path delay distributions of two implementations and (b) computation error for different input
delays.

The results in Figure 13(b) show that changing the input delay results in periodic
fluctuation of computation accuracy, which indicates the impact of arrival time mis-
alignment with respect to the capture phase. More specifically, when a large number of
paths exhibit arrival time misalignment, for example, when the delay ranges between
15ps to 65ps for the balanced case, the corresponding computation error is large. On the
other hand, when there is no arrival time misalignment, for example, when the delay
ranges between 60ps to 150ps for the balanced case, although the design has larger
timing violations, the computation error is small. Further, due to a wider range of path
delays in the unbalanced case, the unbalanced implementation shows more data points
with non-minimum average error (as seen in Figure 13(b)). Therefore, to reduce the
likelihood of the misalignment of arrival times and to minimize the computation error,
we propose buffer insertion and route detouring to minimize input-output path delay
differences in SC circuits.

4.2. Optimization Methodologies

To resolve the arrival time misalignment issue and reduce the computation errors at
a low supply voltage or with an overscaled frequency, we perform optimization during
SC circuit implementation (i.e., SP&R) to balance the circuit’s path delays.

First, we examine two major SC design styles: Spectral TRAnsform Use in Stochastic
circuit Synthesis (STRAUSS) [Alaghi and Hayes 2015] and ReSC [Qian et al. 2011].
We then compare their path delays and computation errors for a given range of supply
voltages. Figure 14 compares STRAUSS and ReSC for testcase PolySmall in 28nm
fully depleted silicon on insulator (FDSOI) technology. We observe that the SC circuit
implemented with ReSC tends to have more balanced path delays and smaller errors
than that designed by STRAUSS. The ReSC architecture, which consists of an adder
and a multiplexer, is very symmetric with respect to the primary inputs of the circuit.
The STRAUSS-based circuits, on the other hand, have an asymmetric structure, which
makes them smaller than the ReSC circuits but leads to unbalanced path delays and
hence greater sensitivity to timing errors. We therefore only implement SC circuit
designs based on ReSC in the experiments reported in Section 5.
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Fig. 14. Path delays (left) and average computation errors (right) at supply voltages ranging from 0.72V
to 0.98V for testcase PolySmall at 28nm FDSOI. Each trace in (a), (c), and (e) denotes a timing path with
a unique combination of rise/fall transitions. [(a) and (b)] STRAUSS [Alaghi and Hayes 2012], [(c) and (d)]
ReSC [Qian et al. 2011], and [(e) and (f)] optimized circuit using our proposed MILP-based method.

To optimize the circuit, we perform buffer insertion and/or route detouring at the
post-routing stage to balance path delays.3 Various mathematical programming meth-
ods have been applied in the previous literature to guide the buffer insertion and wire
sizing/route detouring for minimization of clock skew or data path delay [Chu and
Wong 1999; Han et al. 2015]. Given that SC circuits typically have small sizes,4 we
formulate a Mixed Integer Linear Program (MILP) to search for the optimal solution
based on a given set of buffering candidates.

We formulate our MILP as follows. The objective of the optimization is to minimize
the normalized maximum delay difference (denoted by U ) among timing paths of a
design across a given range of supply voltages. Constraints are upper bounds on the
maximum path delay and design leakage power. The notation used in the formulation
is given in Table II.

Minimize U, (4)

subject to D′k
i = Dk

i +
∑

1≤i≤M,1≤ j≤Q

crj · dk
j , (5)

3We note that buffer insertion and route detouring techniques are not novel. They have been used to balance
clock paths for skew minimization [Han et al. 2015] and to balance signal paths to prevent power side-
channel attacks in smartcards [Tiri and Verbauwhede 2006]. However, we appear to be the first to apply
such optimization techniques to balance path (datapath) delays in SC circuits in order to improve their
accuracy.
4Typical image-processing SC circuits have only around 20 gates [Alaghi et al. 2013], while the largest
known SC circuits have no more than 1,250 gate instances [Li and Lilja 2011].
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Table II. Description of The Notation Used in the MILP

Term Meaning
Vk Supply voltage, (1 ≤ k ≤ K; VK is the highest voltage)
Pi Timing path, (1 ≤ i ≤ M)
Dk

i Path delay of Pi at Vk

U Upper bound on maximum normalized delay difference
Gk Leakage power of the design at Vk

nr Wiring net (1 ≤ r ≤ R)
dk

j Delay increase due to buffer insertion and/or routing at Vk, (1 ≤ j ≤ Q)
gk

j Leakage power penalty of buffer insertion choice at Vk, (1 ≤ j ≤ Q)
crj Indicator of buffer insertion and/or routing detour on nr

α Normalized upper bound on delay increase
β Normalized upper bound on leakage power penalty

∑

1≤ j≤Q

crj ≤ 1, ∀ 1 ≤ r ≤ R, (6)

Dk
max = max

1≤i≤M
Dk

i , ∀ 1 ≤ k ≤ K, (7)

α · Dk
max ≥ D′k

i , ∀ 1 ≤ i ≤ M, 1 ≤ k ≤ K, (8)

D′k
max ≥ D′k

i , ∀ 1 ≤ i ≤ M, 1 ≤ k ≤ J, (9)

D′k
min ≤ D′k

i , ∀ 1 ≤ i ≤ M, 1 ≤ k ≤ K, (10)

U ≥ DK
max

Dk
max

· (D′k
max − D′k

min), (11)

β · Gk ≥
∑

1≤r≤R,1≤ j≤Q

crj · gk
j , 1 ≤ k ≤ K, (12)

where D′k
i is the optimized path delay of path Pi, with the buffer insertion and/or

routing detour solution indicated by crj . D′k
max and D′k

min are, respectively, the maximum
and minimum path delays at supply voltage Vk with buffer insertion and routing detour.
U is the upper bound on the normalized path delay difference at all supply voltages.
The MILP model minimizes U , thus minimizing the maximum normalized path delay
difference at all supply voltages. In addition, Gk is the leakage power of the original
design. The parameter gk

j is the leakage power penalty of buffer insertion at supply
voltage Vk. Our formulation constrains the optimization not to lead to more than α
times the original maximum path delay and more than β times the original leakage
power at each supply voltage.

Our initial studies attempted to include gate sizing and Vth swapping in the opti-
mization process. However, this leads to a significant runtime and complexity increase
in our MILP optimization, where each gate instance can have 6 to 22 candidate library
cells for gate sizing and Vth swapping in the technology used. Furthermore, small sizing
and/or Vth-swapping moves do not have a large impact on path delay and so are not
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Fig. 15. Energy of designs optimized with different β values. The target average error rate is 0.02. Operating
points are selected based on exhaustive simulation to minimize energy.

helpful in balancing path delays. On the other hand, large sizing and/or Vth-swapping
moves might cause maximum-capacitance and maximum-transition violations, due to
weak drive strength for downsizing and/or swapping to a higher Vth, or large input
pin capacitance for upsizing. We therefore only apply buffer insertion and/or route
detouring in our optimization.

Figures 14(e) and (f) show the resultant path delays and computation errors of the
optimized SC circuit. They indicate significant improvement over both the unoptimized
STRAUSS and ReSC implementations.

There is a tradeoff between power overhead due to inserted buffers and wire seg-
ments versus the energy benefits from improved accuracy with more balanced path
delays (e.g., greater supply voltage downscaling is enabled by more balanced path
delays). Our optimization reduces energy only when the power benefits from voltage
downscaling outweigh the power overhead due to inserted buffers and wire segments. A
small design with simple netlist structure might already have relatively balanced path
delays and be sensitive to the power overhead of buffer insertion (i.e., the relative power
overhead of buffer insertion is large), where the potential benefit from our optimization
is small. On the other hand, power overhead due to buffer insertion is relatively small
with respect to the total design power in a large design. Therefore, a large design is
more likely to benefit from our optimization. Figure 15 shows the design energy opti-
mized with different β values for a given accuracy requirement (i.e., errgoal = 0.02). We
observe that for the small testcase EdgeDetection (with ∼5 instances), a larger β value
always increases design energy.5 On the other hand, for the relatively large testcase
GammaCorrection (with ∼100 instances), the change of design energy with various β
values shows a unimodal behavior due to the tradeoff between the power overhead of
buffer insertion and the energy benefits from improved accuracy. These results support
our intuition that large designs are more likely to benefit from optimization.

Figure 16 compares energy use across different accuracy requirements for testcase
GammaCorrection, which is optimized with different β values. The black arrows
in Figure 16 indicate the minimum achievable error for each optimized circuit. We
observe that a larger β value leads to higher accuracy. However, due to the tradeoff
between power overhead of buffer insertion and route detouring versus energy benefits
from improved accuracy, a higher β value does not necessarily provide smaller design
energy. We therefore sweep the value of β to explore such a tradeoff and to minimize
design energy. This optimization procedure is illustrated in Algorithm 1, in which we

5Given that the EdgeDetection testcase only has about five instances, even insertion of the minimum-size
buffer leads to relatively large power overhead.
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Fig. 16. Energy comparison of three GammaCorrection circuits optimized with different β values. The
optimum operating point for a given accuracy requirement (errgoal) is selected via exhaustive simulation.
Black arrows indicate the minimum achievable error of each circuit.

iteratively increase the value of β by δ (in our experiments δ = 0.05) until there is no
further energy reduction.

ALGORITHM 1: SC Circuit Optimization.

1: β ← 1; Energy ← inf ; is improved ← true
2: while is improved do
3: Solve MILP; Perform buffer insertion and/or route detouring as ECOs
4: Perform exhaustive simulation to search for min-energy operating point for each errgoal
5: Calculate average energy over all errgoal; Update Energy
6: β ← β + δ
7: if Energy reduces then
8: is improved ← true
9: else
10: is improved ← false
11: end if
12: end while

To evaluate the influence of process corners and temperature variation, we charac-
terize standard cell libraries in different corner cases (worst corner and best corner)
and temperatures (125◦C and 25◦C) using Synopsys SiliconSmart [Synopsys 2014]. We
choose the same GammaCorrection testcase and simulate the circuits over different
supply voltages. The result is shown in Figure 17. The differences among the corners
are within 60% (normalized to the largest error at the same voltage) when the supply
voltage decreases from 1.2V to 0.72V. This results in a maximum of 5% change in the
output error.

Figure 18 further shows the path delays at different supply voltages for various
corners. We observe that, due to smaller gate delays, the maximum path delay dif-
ference reduces in the best-corner cases, leading to smaller errors. In addition, lower
temperature increases the maximum path delay difference (temperature inversion ef-
fect), especially at low supply voltages, which leads to larger errors as compared to the
default (worst corner 125◦C) case.

To ensure the feasibility of engineering change orders (ECOs), we characterize
lookup tables (LUTs) based on buffer insertion and/or route detouring candidates with
different input slew and load capacitance values. We then formulate our MILP and
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Fig. 17. Evaluation of the impact of process and temperature variations on the average error. The testcase
GammaCorrection is optimized at 125◦C and simulated at different corners and temperatures.

Fig. 18. Path delay for the four different corners in Figure 17.

Fig. 19. Applied buffering styles: a single-stage non-inverting buffer, and an inverter pair with routing
detour.

optimize circuits based on the characterized LUTs. The approach is similar to that
of Han et al. [2015]. To balance path delays at a range of supply voltages and minimize
the MILP runtime, we select buffer insertion and/or routing detour candidates that
cover a wide range of delay-voltage tradeoffs but with a small set of choices. We study
the delay-voltage tradeoffs with various gate types, gate sizes, threshold voltages, and
wirelengths. We observe that the delay-voltage tradeoff is greatly affected by threshold
voltage, gate size, and wirelength, which matches the observations made in Chan and
Kahng [2012]. Therefore, we apply two buffering styles—a single-stage non-inverting
buffer and an inverter pair with routing detour in between—as shown in Figure 19.
Our approach selects from buffers and inverters of various sizes based on the delay
requirements. We use both low Vth (LVT) and regular Vth (RVT) cells. The detoured
wirelength, L, ranges from 10μm to 50μm with a step size of 10μm. Based on the
LUTs, we further extend the buffering candidates with multiple cell stages (e.g., five
stages of X100 buffers) to cover a wide range of delays. However, a large number of
buffering candidates can significantly increase the runtime of a MILP. We therefore
prune the candidates such that for a range of delay and delay-voltage tradeoffs, we
uniformly divide the solution space into 4×4 sub-regions. We then select the buffering
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Fig. 20. (a) Buffering solution space, that is, delay range and delay-voltage tradeoff range, with multiple
stages of buffers/inverter pairs. The circle colors denote different numbers of stages of buffers/inverter pairs.
(b) Pruned buffering candidates.

solution with minimum leakage power from each sub-region. Figure 20(a) shows the
solution space with up to five stages of buffering candidates. Figure 20(b) shows the
pruned buffering candidates with delay ranges from 20ps to 120ps. Our experiments
show that the pruning significantly reduces the runtime, while leading to negligible
degradation in solution quality.6

Using the MILP solution, we perform buffer insertion and routing detour as ECO
steps. Given that single-stage non-inverting buffer insertion is trivial, we use ECO
commands from the P&R tools to perform buffer insertion and placement legalization.
For insertion of an inverter pair with routing detour, we perform the ECO steps de-
scribed in Algorithm 2. In the design flow, we start by inserting the first inverter. We
then legalize the location of the inserted inverter so there is enough space for wire
detour, for example, by moving the inverter away from the block boundary, and to
ensure there is no overlap with previous routing detours. We then insert the second
inverter such that the distance is 25 sites in the horizontal direction and two rows
in the vertical direction with respect to the first inverter. Last, we perform routing
detour with the single-width double-spacing (1W2S) routing rule on layers M3 and
M4, between two inverters. An example of detoured routing is shown in Figure 21.
Our current optimization method does not comprehend switching activity informa-
tion. However, function-aware and input-pattern-aware optimization will be one of our
future directions.

ALGORITHM 2: Insertion Flow of Inverter Pairs.

1: Place first inverter
2: Legalize the location of the first inverter
3: Insert second inverter such that its distance to the first inverter is 25 sites in horizontal

direction and two rows in vertical direction
4: Perform routing detour with 1W2S

6For the largest design with ∼500 gate instances, the MILP runtime is less than 20s on a 24-core 2.5GHz
Intel Xeon server.
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Fig. 21. Layout of routing detour (in red). The detoured wirelength is 40μm. Shaded blocks are standard
cells.

Table III. Summary of Testcases

Testcase # of cells Description

GammaCorrection ∼100 A common image processing task [Qian et al. 2011]
EdgeDetection ∼5 A common image processing task [Alaghi et al. 2013]
PolySmall ∼20 A simple polynomial of degree 3 implemented using

methods of Alaghi and Hayes [2015] and Qian et al.
[2011]

Neuron ∼500 A 128-input neuron [Brown and Card 2001]
Sigmoid ∼120 A common function used in artificial neural networks
BilateralFilter ∼300 An edge-preserving smoothing filter; used in image

processing

5. EXPERIMENTAL RESULTS

The experiments are implemented in 28nm FDSOI technology. We synthesize the test-
cases using Synopsys Design Compiler vH2013.03-SP3 [Synopsys 2013a], and place and
route them using Synopsys IC Compiler vI-2013.12-SP1 [Synopsys 2013b]. We use Syn-
opsys PrimeTime vH-2013.06-SP2 [Synopsys 2013c] and Synopsys PT-PX vH-2013.06-
SP2 for timing and power analyses, respectively. We perform gate-level simulation
using Cadence NC-Verilog v8.2 [Cadence 2011]. We construct the Markov chain model
using MATLAB R2013a [MathWorks 2013]. The MILP solver used in our optimiza-
tion flow is CPLEX v12.5 [IBM 2013]. Our testcases (see Table III) are representative
circuits obtained from the SC literature and employed in typical applications such as
image processing and neural network design. For input generation, we convert binary
input vectors to pseudo-random bit-streams via SNGs.

5.1. Circuit Optimization Results

To evaluate the effectiveness of our optimization methods, we apply them to the test-
cases of Table III and compare the results with those of the unoptimized circuits.
Figure 22, for example, shows how our optimization method changes the 0-to-1 and
1-to-0 error rates of the GammaCorrection testcase. It also shows that reducing the
difference of the two error rates leads to output error reduction, even though the er-
ror rates are increased. For example, for the voltage range Vdd = 0.88–0.96V, we see
that the optimized circuit has more 0-to-1 and 1-to-0 errors. The final results shown
in Figure 23 also confirm the error reductions of the optimized circuits; that is, opti-
mized circuits have less energy per data while we apply the same accuracy constraint.
However, because the difference between the error rates is lower than that of the
unoptimized circuit, we see a better output error behavior for the optimized circuit.
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Fig. 22. Optimization of the GammaCorrection testcase: (a) 0-to-1 and 1-to-0 error rates of the unoptimized
circuit, (b) 0-to-1 and 1-to-0 error rates of the optimized circuits, (c) error rate difference for both circuits (the
optimized circuit has a lower error rate difference even though the error rates are higher for some cases),
and (d) average output error for both circuits; the optimized circuit has a lower error.

Fig. 23. Energy comparison for different accuracy requirements (errgoal) between unoptimized implemen-
tations (blue solid line) and optimized circuits (green dashed line). Operating points are selected based on
exhaustive simulation. The Vdd range is 0.6V to 1.0V with a step size of 4mV. A cross sign (×) indicates that
no suitable operating point was found for the given errgoal. β values corresponding to the optimized circuits
are shown in red font.
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Figure 23 shows the minimum energy required for each design to meet a given aver-
age error constraint errgoal (within the space of possible operation points). A cross sign
(×) indicates that no suitable operating point was found for the given errgoal. Note that a
circuit with a large number of inserted buffers (more balanced path delays) might have
a small energy consumption when the error constraint is high because of voltage scal-
ing, but it can have a large energy consumption when the error constraint is low due to
the power penalty of the inserted buffers. Thus, it is difficult to find an optimized circuit
that achieves minimum energy for all error constraints. To address this, we consider
multiple optimized circuits, each optimized with a different β value. Note that we show
different optimized circuits in Figure 23 to illustrate our optimization performance.
Designers can choose their own accuracy requirements and use our method to find
an optimized circuit tailored for their requirements. Furthermore, multiple accuracy-
energy requirements are also supported in our optimization. A key observation here is
that the optimized circuits are able to achieve lower errgoal values than the unoptimized
circuits, especially for large testcases and/or tight error constraints.

In spite of the power overhead of added buffers and wires, the improved accuracy of
the optimized circuits enables more aggressive voltage scaling yielding lower power.
We observe that when the error constraints are tight, the optimized circuits can meet
the constraints at a lower Vdd, leading to significant energy savings. For example, up to
49% energy reduction occurs in the GammaCorrection testcase with errgoal = 0.02. In
addition, the results show that tighter error constraints require larger β values (i.e.,
more balanced path delays) for circuit optimization (especially in the large testcases).
This indicates that SC circuits with more balanced path delays are able to achieve
higher accuracy. On the other hand, when the error constraints are loose, or when the
design is fairly balanced, for example, the EdgeDetection testcase, the unoptimized
circuits (i.e., with β = 1) can also perform satisfactorily at low supply voltages. In
such cases, especially for circuits with a small number of instances, where the rela-
tive power overhead of buffer insertion is large, optimizations with buffer insertion
and route detouring are not efficient because the inserted buffers and wires increase
the overall energy consumption. Therefore, our optimization flow (illustrated in Algo-
rithm 1) chooses not to insert any buffer or wire for the small testcases EdgeDetection
and PolySmall, hence the optimized circuits are the same as the unoptimized circuits.

5.2. Validation of MC Model

To gauge the effectiveness of our MC model, we perform an energy-accuracy compari-
son between the operating points selected by the MC-based flow and the ones selected
via exhaustive simulation; see Figure 24. In this experiment, we only consider the
unoptimized implementation of the testcases. The results show that our MC-based
flow finds operating points that are similar in terms of energy to those selected via
exhaustive simulations for most of the designs and error constraints. Moreover, Fig-
ure 24 shows that the MC-based flow reduces runtime significantly especially for large
design, for example, ∼50% for BilateralFilter. We observe that the energy penalty of
using the MC-based flow is relatively high for small designs (e.g., PolySmall) where the
computation errors are typically small and the MC-based estimation is less accurate.

5.3. Comparison with Conventional Circuits

This subsection performs a comparison between the optimized SC GammaCorrection
and EdgeDetection and their binary counterparts. Figure 25 shows images generated
by conventional binary and SC circuits at different supply voltage levels. We use both
the signal-to-noise ratio (SNR) and multi-scale structure similarity (MS-SSIM) [Wang
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Fig. 24. Energy comparison between operating points from MC-based search (green dashed line) and
exhaustive search (blue solid line) for different accuracy goals (errgoal). A cross sign (×) indicates that no
suitable operating point was found. The MC-based approach uses far fewer samples for circuit simulation,
thus significantly reducing the simulation runtime. (Runtime unit: minutes.)

et al. 2003] error metrics to quantify the quality of the output images.7 The results show
that while the SC circuits tolerate aggressive voltage scaling, the binary circuits’ output
quality quickly drops, even with modest voltage changes.8 This leads to significant
energy savings in the SC case. Figure 25 shows that in the GammaCorrection testcase,
the SC circuit consumes more energy than the conventional binary circuit at Vdd = 1V.
However at Vdd = 0.6V, the SC circuit achieves the same accuracy as the conventional
circuit at Vdd = 1V, making it more energy efficient (about 44% less energy). Similarly,
in the EdgeDetection testcase, the SC circuit at Vdd = 0.6V achieves the same accuracy
as the conventional circuit at Vdd = 0.9V, thus achieving 95% energy reduction. In
Figure 25, we also report the area and the runtime of the circuits. As expected, the SC
circuits have a lower area than their binary counterparts but have a longer runtime.

6. CONCLUSIONS

We present several optimization and modeling methodologies to exploit voltage/
frequency scaling in SC circuits for reduced energy consumption at the cost of timing

7MS-SSIM evaluates the similarities of luminance, contrast, and structure components between the original
image and the processed image. We use the MATLAB function from Chen et al. [2013] in our experiments to
calculate MS-SSIM.
8SNR and MS-SSIM do not change monotonically with the supply voltage. There are several explanations for
this. First, voltage reduction increases the rate of 0-to-1 and 1-to-0 errors (e0→1 and e1→0), but the changes
are not necessarily linear, meaning that the difference |e0→1 − e1→0| may decrease due to voltage reduction,
thus yielding a lower error. Second, based on Equation (3), the MSE decreases when e increases beyond 0.5.
So a non-monotonic error behavior is not surprising. We also note that both GammaCorrection circuits (SC
and binary) approximate the original gamma correction function (i.e., Z = X0.45 [Qian et al. 2011]) and that
the SC circuits have inherent random fluctuation errors. So even at a high supply voltage, some error exists.
When timing errors are introduced via voltage reduction, they can cancel out the other errors and cause
non-monotonic error behavior similar to that seen in Figure 25.
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Fig. 25. Voltage scaling results of GammaCorrection (top, design obtained from Qian et al. [2011]) and
EdgeDetection (bottom, design obtained from Alaghi et al. [2013]) executed by conventional and stochastic
circuits, both implemented in 28nm FDSOI technology. After applying our proposed optimization techniques,
the stochastic circuits show better tolerance against aggressive voltage scaling. Test images are from Kodak
[1993] and Canon [2002].

errors. We also demonstrate that SC circuits are extremely tolerant of timing errors.
Hence they can operate successfully under highly aggressive voltage/frequency scaling
with very little loss of accuracy, unlike almost all conventional logic circuits. Based on
these results, we define and solve the problem of finding the minimum-energy operat-
ing point of an SC circuit for a desired accuracy level. To enable rapid exploration of the
operating-point space, we introduce a Markov chain-based technique for error estima-
tion. We further observe that the accuracy of an SC circuit under scaled conditions can
be improved by balancing its path delays. Accordingly, we perform optimizations dur-
ing the logical and physical design phases to balance path delays. These methods have
been successfully applied to several representative SC circuits, achieving substantial
energy reduction without significant accuracy loss. To determine the robustness of our
optimization approach, we also demonstrate that process and temperature variation
have little impact on the error behavior of the optimized SC circuits, even under voltage
scaling.
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