
170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

Benchmarking of Mask Fracturing Heuristics
Tuck-Boon Chan, Student Member, IEEE, Puneet Gupta, Senior Member, IEEE,

Kwangsoo Han, Student Member, IEEE, Abde Ali Kagalwalla, Student Member, IEEE,
and Andrew B. Kahng, Fellow, IEEE

Abstract—Aggressive resolution enhancement techniques such
as inverse lithography (ILT) often lead to complex, nonrectilinear
mask shapes which make mask writing extremely slow and expen-
sive. To reduce shot count of complex mask shapes, mask writers
allow overlapping shots, due to which the problem of fracturing
mask shapes with minimum shot count is NP-hard. The need to
account for e-beam proximity effect makes mask fracturing even
more challenging. Although a number of fracturing heuristics
have been proposed, there has been no systematic study to ana-
lyze the quality of their solutions. In this paper, we first propose
a method to generate tight upper and lower bounds for actual
ILT mask shapes by formulating mask fracturing as an integer
linear program and solving it using branch and price. Since the
integer program requires significant computational resources to
compute reasonable bounds, we propose a new method to gener-
ate benchmarks with known optimal solutions, that can be used to
evaluate the suboptimality of mask fracturing heuristics. To make
the generated benchmark shapes realistic, we further propose a
novel automated benchmark generation method that takes any
ILT shape as input and returns a benchmark shape which looks
similar to the input shape and for which the optimal fracturing
solution is known. Using these methods, we compare the subopti-
mality of four mask fracturing heuristics. Our results show that
even a state-of-the-art prototype (version of) capability within a
commercial EDA tool for e-beam mask shot decomposition can
be suboptimal by as much as 2.6× for real ILT shapes and by
6.0× for generated benchmarks.

Index Terms—Benchmark testing, design for manufacture,
integer linear programming, layout, relaxation method.

I. INTRODUCTION

PHOTOMASKS are one of the most significant contributors
to semiconductor manufacturing cost. The use of aggres-

sive resolution enhancement techniques (RETs) has made
mask manufacturing extremely expensive and challenging.
Moreover, the number of critical masks required for a particu-
lar design has increased due to the use of multiple patterning.

Manuscript received March 5, 2015; revised June 5, 2015 and
September 23, 2015; accepted November 16, 2015. Date of publication
October 24, 2016; date of current version December 20, 2016. This work
was supported by the IMPACT+ Program. This paper was recommended by
Associate Editor C. C.-N. Chu.

T.-B. Chan and K. Han are with the Department of Electrical and
Computer Engineering, University of California at San Diego, San Diego,
CA 92093-0407 USA.

P. Gupta and A. A. Kagalwalla are with the Department of Electrical
Engineering, University of California at Los Angeles, Los Angeles,
CA 90095 USA.

A. B. Kahng is with the Department of Computer Science and Engineering,
University of California at San Diego, San Diego, CA, USA, and also with the
Department of Electrical and Computer Engineering, University of California
at San Diego, San Diego, CA, USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2016.2620902

As a result, controlling the cost of mask manufacturing is
urgently needed to sustain benefits derived from Moore’s-Law
scaling of patterning technologies.

Masks are fabricated using variable-shaped electron
beam (VSB) writing tools. These tools directly expose shots,
i.e., axis-parallel rectangles of different sizes. Mask fracturing
is used to obtain a set of shots from the mask pattern, which
can then be input to a VSB tool. Since the total shot count
strongly affects mask fabrication time, the key objective of
mask fracturing tools is to minimize the number of shots. This
has been traditionally formulated as the well-studied rectilin-
ear polygon partitioning problem. Imai and Asano [20] gave
an O(n1.5 log (n)) algorithm to partition a polygon into a min-
imum number of rectangles. Since such approaches are unable
to handle additional manufacturing constraints such as mini-
mization of slivers, Kahng et al. [24] proposed an ILP-based
fracturing method, and a faster heuristic based on selection of
rays from concave corners [25].

Due to aggressive RET such as inverse lithography (ILT),
mask shapes are curved and nonrectilinear [6]. Fracturing
these polygons using traditional methods with acceptable
fidelity can dramatically increase the shot count [34]. To man-
age the shot count of such complex patterns, [7] proposes
model-based fracturing, which is also often referred to as
model-based mask data preparation (MB-MDP). Two key fea-
tures of model-based fracturing distinguish it from traditional
mask fracturing.

1) Shots may overlap, that allows more flexibility in deter-
mining shot locations and hence lower shot count.

2) E-beam proximity effects in VSB mask writers are sim-
ulated during the mask fracturing itself to ensure that
the final mask pattern matches the intended target.

The model-based mask fracturing problem allowing over-
lapping shots becomes similar to the rectilinear covering
problem, which is NP-hard [10]. In fact, there is no known
constant-factor approximation algorithm for rectilinear cov-
ering [2]. For polygons which are convex in the vertical or
horizontal direction, [12] proposes a quadratic-time algorithm
to solve the covering problem. But, this convexity property
rarely holds for ILT shapes. Franzblau [13] proposed an
approximation algorithm with worst-case performance bounds
for any rectilinear polygon. However, the need to correct for
proximity effects means that these methods cannot be used for
mask fracturing.

In addition to overlapping shots and proximity effect
correction, [16] proposes to adjust the dose of each shot
independently. The use of L-shaped shots to reduce shot
count has been suggested by [33]. The use of circular
shots [15], [34] or shots with 45◦ edges [9] has also been
proposed. Elayat et al. [11] analyzed the benefits and disad-
vantages of different mask fracturing strategies. They conclude
that, among the alternatives studied, using axis-parallel rect-
angle shots with fixed dose is the most viable candidate for
improvement of shot count without significant changes in mask

0278-0070 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CHAN et al.: BENCHMARKING OF MASK FRACTURING HEURISTICS 171

TABLE I
GLOSSARY OF TERMINOLOGY

writing tools. Hence, in this paper we only use axis-parallel
rectangle shots with fixed dose.

Jiang and Zakhor [21] proposed an algorithm based on
matching pursuit (MP) to solve the fracturing problem, and
a greedy approximate covering algorithm that grows rect-
angles from convex vertices of a target polygon [22]. Both
of these heuristics assume an adjustable shot dosage, but
can be extended to solve the fixed-dose problem. Lin et
al. [26] compared several heuristics to solve the model-based
fracturing problem. While these recent works on model-
based mask fracturing have demonstrated improvements in
shot count over traditional partitioning-based approaches, the
gap between existing methods and optimal solutions remains
unclear.

Benchmarking of heuristics used to solve NP-hard EDA
problems such as gate sizing [17] enables the development
of better methods for solving these problems. The goal of this
paper is to enable the benchmarking of model-based fractur-
ing as a foundation for further research toward more effective
heuristics. To the best of our knowledge, this is the first work
that attempts to benchmark model-based mask fracturing. The
key contributions of this paper are as follows.

1) We propose an ILP formulation to optimally solve the
model-based mask fracturing problem. We then develop
a branch and price (B&P) method that, in practice, gen-
erates strong upper bound (UB) and lower bound (LB)
for benchmarking.

2) To deal with the slow runtime of ILP-based bench-
marking, we propose a systematic method to generate
benchmarks with known optimal shot count.

3) To generate more realistic benchmarks, we propose an
automated benchmark generation method that takes a
real ILT shape as input and creates a benchmark with
known optimal shot count that looks similar to the input
shape.

4) Using the above methods, we evaluate the suboptimality
of four mask fracturing heuristics: greedy set cover (GSC),
MP, graph coloring (GC) and a state-of-the-art prototype
(version of) capability within a commercial EDA tool
for e-beam mask shot decomposition (PROTO-EDA).

In the following, Section II defines the mask fracturing prob-
lem, and Section III describes mask fracturing heuristics that
we benchmark. Section IV proposes an ILP-based method to
obtain tight UB and LB on optimal shot count. Section V gives
our method for benchmark generation with known minimum
shot count. Section VI presents our method to automatically
generate benchmarks with known minimum shot count which
are similar to input mask shapes. Table I summarizes our
notations.

II. MASK FRACTURING PROBLEM

The goal of mask fracturing is to find the minimum num-
ber of rectangular shots required to construct a mask target
shape. Although each shot is rectangular, the e-beam proxim-
ity effect blurs its boundary [7]. Hence, the developed mask
pattern differs from the union of rectangular shots. Also, since
the blurring due to the e-beam proximity effect is smaller than
the spacing between different shapes, each shape in the mask
can be fractured independently. Moreover, to better understand
which target shapes are more challenging, the suboptimality of
mask fracturing heuristics should be evaluated for individual
mask target shapes rather than for the entire mask.

We define S as the set of all possible candidate shots that
could be used to reconstruct the target shape tori, i.e., the dic-
tionary of candidate shots. S consists of all shifted copies of all
different shot sizes ranging from Wmin to Wmax, with shot size
granularity of �.1 E-beam proximity effect is modeled using a
low-pass filter, typically a Gaussian or sum of Gaussians [30].
In this paper, we model the proximity effect by a single 2-D
Gaussian low-pass filter, described by (1). However, our pro-
posed methods for benchmarking can be easily extended to
handle other proximity effect models

K(x, y) =
⎧
⎨

⎩

1

F
exp
− x2+y2

σ 2 if − 3σ ≤ √x2 + y2 ≤ 3σ

0 otherwise.
(1)

1The step size of shifting is also �, i.e., all shots are rectangles in a discrete
grid.

172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

Fig. 1. (a) Each grid is a pixel p(x, y). The thick black line is the target
boundary. CD tolerance is γ = 2 nm and the grid size is 1 nm × 1 nm.
p(x, y) ∈ Pd if p(x, y) is within 2 nm of the target boundary. (b) Illustration
of CD control constraint for candidate shots for a horizontal critical region.

K(x, y) is the kernel function of the Gaussian filter, F is a
normalization factor [i.e., sum of K(x, y) across all values of x
and y] and σ is a parameter which characterizes the spreading
of the e-beam. For any rectangular shot s, the intensity at a
pixel can be computed by convolving the ideal rectangular
function [ψ(x̂, ŷ)] [4] with the kernel function. That is

I(x, y, s) = K(x, y)⊗ ψ
((

x− xc,s
)

W(s)
,

(
y− yc,s

)

H(s)

)

ψ
(
x̂, ŷ

) =
{

1 if
∣
∣x̂
∣
∣ < 0.5 and

∣
∣ŷ
∣
∣ < 0.5

0 otherwise
(2)

where xc,s and yc,s are the x and y coordinates of the center
of the shot. In this paper, all dimensions are in wafer scale.2

We model the e-beam resist using a constant-threshold
model with threshold value of ρ. A given pixel [p(x, y)] on
the mask will be exposed if and only if the total intensity at
that pixel resulting from all shots is greater than or equal to
the resist threshold ρ.3 As shown in Fig. 1(a), we divide the
set of pixels on the mask into three disjoint sets: 1) P1; 2) P0;
and 3) Pd. have intensity ≥ ρ. Similarly, we define P0 as the
set of the pixels outside the target shape which do not belong
to Pd. The pixels in P0 must have intensity < ρ.

The mask fracturing problem is formally defined as follows.
1) Goal: Minimize total #mask shots N = |Smin(tori)|.
2) Inputs: Mask target shape, set of candidate shots S, ρ,

σ , γ .
3) Outputs: Set of rectangular shots, Smin(tori).
4) Constraints:

∑

s∈Smin

I(x, y, s) ≥ ρ if p(x, y) ∈ P1

∑

s∈Smin

I(x, y, s) < ρ if p(x, y) ∈ P0. (3)

CD control of the target pattern is a key concern for
mask manufacturing. To minimize CD variation, any critical
vertical or horizontal segment of the target shape bound-
ary should not be constructed with more than one shot [32]
[see Fig. 1(b)]. To check if a particular candidate shot satisfies
the CD control constraint, we first identify critical verti-
cal/horizontal regions of a given target shape (i.e., long and
narrow part of a target shape). Any candidate shot in S that
overlaps with these horizontal (vertical) critical regions must

2Typically, mask scale is 4× wafer scale.
3The exposed pixels will form the mask shape.

have both of its vertical (horizontal) edges touching the target
boundary.

The mask writing process may also require additional con-
straints to avoid resist over-heating. In this paper, we do not
consider the imposition of maximum intensity constraints to
model resist over-heating, since the over-heating is an effect
at length scales on the order of microns [14].

III. FRACTURING HEURISTICS

To evaluate the suboptimality of different mask fractur-
ing heuristics, we have implemented two simple methods
to fracture mask shapes, based on prior work, that we
describe in this section. The fracturing solutions created by
both these heuristics tend to have CD violations, i.e., pix-
els that violate constraint (3). Hence, we use an additional
step, shot refinement, to fix the CD violations. In addition
to the two simple heuristics, we evaluate the suboptimality
of a PROTO-EDA. We further evaluate the recent heuristic
of Kagalwalla and Gupta [23], which uses a combination of
GC-based approximate fracturing and shot refinement.

The first heuristic, GSC, is inspired by the well-known
greedy approximation algorithm for the NP-complete set cover
problem [8]. Note that the fracturing problem (in the absence
of proximity effect) is a geometric set cover problem, so
we choose this heuristic for comparison. We first construct
a Hanan grid [18] by constructing x- and y-axis-parallel
lines from each vertex of the target polygon. Every grid ele-
ment that lies inside the polygon and contains at least one
pixel p(x, y) ∈ P1 is considered an element to be covered in
the set cover problem. We then find all the maximal rect-
angles lying inside the polygon.4 Each maximal rectangle
is treated as a “set” that covers some of the grid elements.
The fracturing problem reduces to the set cover problem to
which we apply the greedy approximation algorithm. Note
that the e-beam proximity model is not considered in con-
structing this fracturing solution but is handled during the shot
refinement.

The second heuristic, MP, is a well-known technique to rep-
resent a signal sparsely for an over-complete basis set [28].5

Jiang and Zakhor [21] proposed a technique to apply this
method to the mask fracturing problem. A dictionary of dif-
ferent shot sizes is first constructed. To keep the dictionary
size tractable, some step size �MP ≥ � is used to discretize
the width/height range between Wmin and Wmax.6 The prox-
imity model is applied to each shot in the dictionary. We
then iterate over the dictionary and over all potential posi-
tions of the candidate shot to pick the shot that maximally
reduces the residual error (RE). This procedure is repeated
until no shot is found that can reduce the RE, defined to be
the sum of |I(x, y) − ρ| over all pixels which violate the CD
constraint.

The third heuristic, GC, proposed recently by
Kagalwalla and Gupta [23], traverses the boundary of

4A rectangle is maximal if all four edges touch the boundary of the target
polygon.

5Although there are several papers on model-based mask fracturing
(see [7]), there is a dearth of papers that talk about the specific method being
used. The only specific method we found was MP, so we have implemented
that for comparison.

6We use a large shot size granularity �MP only during the first step of
generating an approximate fracturing solution that is then refined to obtain
the final valid solution. The refinement step moves shots in steps of size �.
Consequently the final solution of MP uses shots with the same granularity as
B&P. We note that keeping the granularity of MP large during the first step
is necessary to ensure reasonable runtime.

CHAN et al.: BENCHMARKING OF MASK FRACTURING HEURISTICS 173

Fig. 2. Flowchart of shot refinement step for GSC and MP heuristics.

the target shape to identify candidate shot corner point
locations. Treating every shot corner point as a graph vertex,
mask fracturing is mapped to a GC problem such that
each color corresponds to a shot. The NP-hardness of GC
motivates use of a sequential greedy heuristic [29] to find an
approximate fracturing solution.

After obtaining initial fracturing solution from GSC, MP,
and GC heuristics, we perform shot refinement step as shown
in Fig. 2. The shot refinement step moves edges of shots greed-
ily to minimize the RE. Once this procedure stops reducing
the RE, we bias all the shots of the current solution by a
small value. If the number of pixels in set P0 that violate the
CD constraint (over-cover) is greater than the number of pix-
els in P1 that violate the CD constraint (under-cover), then
we shrink all shots; otherwise, we expand all shots during this
bias step. After biasing, we continue with the greedy shot edge
adjustment. If this iterative procedure fails to reduce the RE
for more than N iterations, we add (remove) one shot if more
pixels are under-covered (over-covered). We terminate when
the RE is zero, i.e., there are no CD violations. We note that
this procedure does not guarantee a feasible (CD error-free)
fracturing solution, and that some results in our experiments
have CD errors.

IV. ILP-BASED BENCHMARKING

To evaluate the suboptimality of fracturing heuristics on any
given mask shape, we apply an optimal ILP formulation. The
straightforward ILP formulation requires a large number of
binary variables, even for small target shapes. As a result,
even commercial ILP solvers can run out of memory on high-
performance computers. To circumvent this, we propose three
strategies, described in this section: 1) pruning the set of can-
didate shots; 2) splitting large target shapes; and 3) solving the
ILP using B&P. With these strategies, we can obtain strong
UB and LB on the optimal solution within feasible runtime.
Note that although the proposed ILP can be used to inspire
effective mask fracturing heuristics, the goal of this paper is
benchmarking. Hence, runtime is important only in the context
of making the method tractable.

A. Optimal ILP Formulation
Inspired by the ILP formulation of

Heinrich-Litan and Lübbecke [19], we proposed a sim-
ple ILP formulation for the model-based mask fracturing
problem. We define a binary selection variable zs for each
candidate shot s ∈ S, where zs = 1 if shot s is used and
zs = 0 otherwise. Then, based on the problem description in

Section II, we may formulate an optimal ILP to solve the
fracturing problem as

Minimize
∑

s

zs

subject to
∑

s

{zs · I(x, y, s)} ≥ ρ, p(x, y) ∈ P1

∑

s

{zs · I(x, y, s)} < ρ, p(x, y) ∈ P0. (4)

The problem with this ILP formulation is that |S| can be
very large even for small target shapes. For a target shape tori
with a bounding box of W(tori)×H(tori), if the shot size gran-
ularity is � and no shots are disallowed due to the CD control
constraint, then the size of the set of candidate shots would be
[((Wmax −Wmin)/�)]2·[W(tori)−(Wmax +Wmin/2)]·[H(tori)−
(Wmax +Wmin/2)], where Wmin and Wmax are the minimum
and maximum allowed shot sizes. Even for small mask shapes,
the corresponding ILP is too large for commercial solvers to
handle due to runtime and excessive memory usage.7 In fact,
the CPLEX v12.5 solver [36] runs out of memory when we
attempt to solve an instance on an Intel Xeon L5420 with
128GB RAM.8

B. Pruning the Candidate Shot Dictionary
Reducing |S| can significantly help in making the above

ILP tractable for benchmarking. Here we highlight two simple
rules that can be used to reduce |S|.

1) For any candidate shot s, if there exists a pixel p(x, y) ∈
P0 such that I(x, y, s) ≥ ρ, then s can be removed from
the set S. This pruning condition obviously does not
affect optimality because any candidate shot that satisfies
this condition cannot be a part of a feasible solution
of the ILP. Depending on the specific target shape, this
pruning strategy can significantly reduce |S|.

2) If a candidate shot s is inside the target shape and none
of its four edges are less than the distance γ from the
target boundary, then we remove s from set S. If s is a
part of the optimal solution, then we can replace s with
a larger shot that covers s and has at least one boundary
close to the edge of the target shape, without affecting
the optimality of the solution.

The reduction in |S| due to these pruning rules depends
strongly on the specific target shape and the e-beam prox-
imity effect model. For certain target shapes, the number of
variables even after pruning could be > 106, making it difficult
to solve the problem efficiently with commercial ILP solvers.

C. Splitting Target Shapes

The size of the mask fracturing ILP depends on the size
of the bounding box of the target shape [i.e., the number
of variables (candidate shots) and the number of CD con-
straints (pixels)]. The ILP can become intractable for large
target shapes. In this section, we propose a simple strategy that
can be used to split large target shapes into two or more split-
shapes. This allows us to solve a separate smaller ILP for each
smaller split-shape. The fracturing solutions of the smaller ILP
instances can then be aggregated to obtain a solution of the

7We have formulated alternative ILPs with fewer variables, but these turned
out to be even harder for the ILP solver, for numerical reasons. We have
assiduously explored the possibility of ILP speedups and, to our current under-
standing, currently apply “best known methods” in expressing our ILP to the
CPLEX solver.

8The details of the instance are described in [5].

174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

Algorithm 1 Determine Horizontal Locations to Split Target
Input: Target shape tori and length threshold Lth
Output: Locations where tori is split
1: Bv ← all vertical boundary segments longer than Lth, sorted by x-coordinate
2: for all bi ∈ Bv do
3: for all bj ∈ Bv do
4: low← max(bi.low, bj.low)
5: high← min(bi.high, bj.high)
6: if bi 	= bj&&(high− low) > Lth then
7: (xbl(rect), ybl(rect))← (bi.val, low)
8: (xtr(rect), ytr(rect))← (bj.val, high)
9: if rect lies inside tori then

10: Split location ← Line segment from (bi.val, low+high
2) to

(bj.val, low+high
2)

11: end if
12: end if
13: end for
14: end for

Fig. 3. Splitting a target polygon into smaller polygons.

full target shape; this can then be used as the initial solution
of the larger ILP corresponding to the full target shape.

When splitting any target shape, the key step is to determine
locations where the shape should be split. We find horizon-
tal and vertical line segments which serve as split locations
(see Fig. 3). Algorithm 1 describes the procedure we use to
obtain horizontal split locations. An analogous procedure can
be used to find vertical split locations.

In Algorithm 1, we first identify vertical boundary
segments9 of tori which are longer than Lth. Each such verti-
cal boundary segment bi is characterized by three parameters:
the x-coordinate of the orthogonal segment (bi.val), and the
respective y-coordinates of the two end points of the segment
(bi.low and bi.high). Using these, we then find pairs of parallel
vertical segments which satisfy the following two conditions:
1) the length of the shadow rectangle between the two par-
allel segments is longer than Lth (line 6) and 2) the shadow
rectangle lies inside the target polygon tori (line 9). Then, we
can split tori at the center of the shadow rectangle.

Suppose that we split a target shape into two shapes tori,i
and tori,j with a horizontal split location using Algorithm 1. Let
Lth ≥ 2β, where β is the maximum distance outside the shot
for which the shot intensity is nonzero. Then, we can bound
minimum shot counts of tori as a function of minimum shot
count of tori,i and tori,j based on the following two lemmas.

Lemma 1:

|Smin(tori)| ≤
∣
∣Smin

(
tori,i

)∣
∣+ ∣∣Smin

(
tori,j

)∣
∣.

Proof: If we consider all the shots of an optimal fracturing
solution of the two split-shapes tori,i and tori,j, we vertically
extend all the shots that touch the split location by one pixel, so
that these shots from tori,i and tori,j overlap at the split location.
This modified set of shots is a feasible solution that satisfies
all the CD constraints. The size of this feasible solution is
an UB on the size of the optimal solution of the full shape.
Note that combining solutions of the smaller split-shapes is
valid if and only if the distance from the horizontal split line
to the top (bottom) of the shadow rectangle is large enough

9A boundary segment is a contiguous part of the boundary of a target shape.

that extending the shot from the lower (upper) split-shape by
one pixel above (below) the horizontal split line does not add
intensity to any pixel above (below) the shadow rectangle. This
is guaranteed when we set Lth = 2β.

Lemma 2:

|Smin(tori)| ≥ max
(∣
∣Smin

(
tori,i

)∣
∣,
∣
∣Smin

(
tori,j

)∣
∣
)
.

Proof: Without loss of generality, assume that |Smin(tori,i)| ≥|Smin(tori,j)|, and that tori,i lies below a horizontal split location.
Suppose toward a contradiction that there exists an optimal
fracturing solution S∗min(tori) for target shape tori, such that
|S∗min(tori)| < |Smin(tori,i)|. From this solution, we can obtain
a feasible fracturing solution for tori,i by taking all the shots
that lie below the split location and splitting all shots that
overlap with the split location. Clearly, the number of shots
in this fracturing solution satisfies |S∗min(tori,i)| ≤ |S∗min(tori)|
since only a subset of the shots in the fracturing solution of
tori are used. This implies |S∗min(tori,i)| < |Smin(tori,i)|, which
is impossible. Consequently our original assumption must be
incorrect, and |Smin(tori)| ≥ |Smin(tori,i)|.

After splitting tori using the method described above, we
solve a separate ILP for each split-shape. We then combine
the fracturing solution of the separate ILPs to obtain a feasible
fracturing solution for tori, which we use as a starting solution
for the larger ILP for tori. Note that this splitting technique
is effective only if the target shape boundary contains long
vertical and/or horizontal boundary segments.

D. Branch and Price Method
B&P is a well-known method for solving large ILPs [3]. The

key feature that distinguishes B&P from typical ILP solvers is
that the LP relaxation at each node of the branch and bound
tree is solved using column generation. To solve the LP relax-
ation, which contains too many variables to handle efficiently,
a reduced master problem (RMP) containing only a small sub-
set of the variables is solved first. To confirm the optimality
of this RMP, a separate pricing subproblem is solved to find
any new variables that must be inserted back into the RMP. If
no variable is found by the pricing subproblem, then the LP
relaxation is optimal and branching can be done to obtain the
integral solution to the original ILP.

The selective insertion of variables based on the pricing sub-
problem in B&P means that most variables are never inserted
into the LP relaxation. As a result, the LP relaxation solver
does not consume too much memory. This is the main rea-
son why we choose to apply this technique to solve the ILP
described in (4). The runtime of B&P is known to be lim-
ited by the pricing subproblem for most problems [3]. Hence,
we propose a novel pricing mechanism comprising a fast,
approximate pricer, and a slower, optimal pricer.

The goal of pricing subproblem is to identify additional
variables that must be inserted into the RMP. For mask frac-
turing problem, let λ∗p be the optimal value of the dual variable
corresponding to CD constraint (4) at pixel p(x, y) ∈ P1 ∪ P0,
obtained after an iteration of the RMP. The pricing subproblem
(derived from the dual of the RMP) reduces to finding a new
candidate shot s such that

∑
p I(x, y, s) · λ∗p ≤ −1. This can-

didate shot must satisfy the pruning rules discussed above.
Moreover, additional constraints imposed by the branching
rules of branch and bound tree must be met. The reduced cost
of any candidate shot s is given by Rs = 1+∑p{I(x, y, s)·λ∗p}.
In short, we refer to any candidate shot that has Rs ≤ 0 and
satisfies all pruning and branching constraints as an insertable
candidate shot (ICS).

CHAN et al.: BENCHMARKING OF MASK FRACTURING HEURISTICS 175

Algorithm 2 Fast Pricer Heuristic
Input: Target shape t, and list of pixels with negative dual values Pneg
Output: Set of inserted candidate shots to be added into the RMP
1: for all p(x, y) ∈ Pneg do
2: Draw vertical/horizontal line from (x, y) to find ylow, yhigh, xlow and xhigh

(iillustrated in [5, Fig. 9])
3: Find all candidate shots in vicinity of (x, y) that satisfy Equation (5) below
4: Insert (up to

NC|Pneg|) candidate shots that satisfy reduced cost, pruning and
branching constraints into the RMP

5: end for

To ensure that the LP relaxation is solved optimally, pric-
ing subproblem must guarantee that no ICS exists. If there are
several ICSs, the pricing subproblem only needs to find a sub-
set of all the ICSs in an iteration. To improve the convergence
of B&P, we set the maximum number of candidate shots that
are inserted in each pricing iteration as NC = 500.

One strategy to solve the pricing problem is to enumerate all
possible sizes and locations of candidate shots and insert any
shot that has a negative reduced cost and satisfies pruning and
branching rules. To improve efficiency of this naive pricing
strategy, we analyze the dual variables of the RMP. Based on
the Karush-Kuhn-Tucker conditions, the following holds for
the dual variables.

1) Due to complementary slackness, λ∗p 	= 0 if and only if∑
s{zs · I(x, y, s)} = ρ. Since this is likely to occur only

close to the boundary of the target shape, λ∗p is nonzero
only for a small number of pixels that lie very close to
the target boundary. We shall refer to the set of pixels
with nonzero dual values as dual points.

2) To ensure dual feasibility, λ∗p > 0 for p(x, y) ∈ P0 and
λ∗p ≤ 0 for p(x, y) ∈ P1. This implies that all negative
dual points (Pneg) with λ∗p ≤ 0 are located inside the
target shape.

That negative dual points are sparse and located close to the
target shape boundary is illustrated in [5, Fig. 9] for a partic-
ular pricing iteration of a target shape. With this insight, we
propose two pricing strategies to effectively find ICSs.

1) Fast Pricer: The basic idea of the fast pricer is to look
for ICSs in the vicinity of p(x, y) ∈ Pneg, since any candidate
shot s with negative reduced cost must be located such that
it covers or is close to at least one negative dual point (see
Algorithm 2). The intuition behind constraining xbl(s), ybl(s),
xtr(s) and ytr(s) as shown in (5) is that such candidate shots
will have nonzero intensity at the negative dual point under
consideration and are likely to obey the first pruning rule (not
exposing any pixel in P1)

xlow − α ≤ xbl(s) ≤ x+ β, x− β ≤ xtr(s) ≤ xhigh + α
ylow − α ≤ ybl(s) ≤ y+ β, y− β ≤ ytr(s) ≤ yhigh + α. (5)

2) Optimal Pricer: Although our pricing heuristic above
effectively identifies most ICSs which can be inserted into the
RMP, it does not guarantee that if no ICS is found, then there
does not exist any ICS. Hence, if the heuristic fails to find any
ICS, we call the optimal pricer that is guaranteed to find a can-
didate shot with negative reduced cost, if it exists. The optimal
pricer iterates over all candidate shots in the vicinity of the
negative dual points. The method is described in Algorithm 3.
The optimal pricer first constructs square boxes of size 2× β
centered at each negative dual point. Any candidate shot which
could have negative reduced cost must overlap with at least
one of these boxes. Hence, we could iterate over all such can-
didate shots to find ICSs. But several dual points may lie close
to each other which may cause candidate shots to be generated
twice. To avoid this, we first merge the boxes using polygon

Algorithm 3 Optimal Pricer
Input: Target shape t, and list of pixels with negative dual values Pneg.
Output: Set of candidate shots inserted into the RMP
1: mergedBoxes← new list of polygons
2: for all p(x, y) ∈ Pneg do
3: rect←square box of size 2× β with p(x, y) as center
4: mergedBoxes← mergedBoxes

∨
rect (Polygon Boolean OR operation)

5: end for
6: for all polygon ∈ mergedBoxes do
7: Find bounding box of polygon
8: Find all candidate shots that overlap with the bounding box of polygon

9: Insert (up to
NC|Pneg|) candidate shots that satisfy reduced cost, pruning, CD control

and branching constraints into the RMP
10: end for

Boolean OR operation. We then find the bounding box of each
resulting polygon. All candidate shots that overlap with these
bounding boxes are then checked for insertion into the RMP.

E. Initialization and Overall Summary
In addition to solving the pricing subproblem efficiently,

B&P benefits significantly from a good initial feasible solu-
tion. B&P can discover feasible solutions using Farkas pric-
ing [1], but can take many iterations of pricing. In this paper,
we use the lowest shot count solution that satisfies all the con-
straints, over the results from the GSC, MP, and GC heuristics,
as the initial solution for B&P. Although B&P resolves the
problem of excessive memory usage, it takes a long time to
converge to the optimal solution. Since our objective is to eval-
uate suboptimality, we run B&P with a fixed time limit and
report UB and LB on the optimal shot count.

For each split-shape tori,i, we first obtain an initial solution
and solve the ILP using B&P. Based on the UB and LB of
each smaller ILP, we obtain lower and upper bounds for tori
using Lemmas 1 and 2. To improve these bounds, we combine
the solutions from each split-shape by merging shots lying at
the split locations. If this does not give a feasible solution for
tori, we apply shot refinement to fix the violations and use
this as the initial solution for solving the larger ILP for tori.
To improve the runtime of the pricing method, we parallelize
both fast and optimal pricing methods. For fast pricer, line 4
in Algorithm 2 can be parallelized since candidate shot can be
checked for insertion to the RMP independently. Similarly for
optimal pricer (Algorithm 3), line 9 can be parallelized. Note
that the use of fast pricer before optimal pricer is critical for
faster convergence.10

F. Experimental Results
Our B&P-based suboptimality evaluation method has imple-

mented in C++. We use the OpenAccess API [39] to parse
layouts, Boost Polygon Library [35] to perform polygon oper-
ations, and Eigen Library [37] to perform matrix operations.
To implement B&P, we use the SCIP framework [1], along
with CPLEX v12.5 [36] as the LP solver. We parallelize the
pricing methods using OpenMP [40].

We set the resist threshold ρ = 0.5 and use a Gaussian e-
beam proximity effect model with two values of σ , 6.25 nm
and 4 nm.11 For CD tolerance γ , we consider values of

10In our experiments, the wall time of optimal pricer is 10−100× the wall
time of fast pricer.

11σ = 6.25 nm is consistent with recent work on mask
fracturing [21], [22]. We also show results for σ = 4 nm to highlight
the impact of Gaussian blur on shot count.

176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

Fig. 4. ILT mask shapes after applying ILT from the ICCAD-2013
contest [38] (wafer scale).

2 and 1 nm. The shot dimension constraints are Wmin = 13 nm,
Wmax = 1000 nm and � = 1 nm.12 The pixel size is 1 nm.

We apply ILT to benchmark pre-RET layouts from the 2013
ICCAD contest [38], using a 2013 production release of a
commercial EDA tool. From the ILT solutions, we select ten
representative mask shapes for evaluation (see Fig. 4).

For each of the ten target shapes, we run B&P on an eight-
core machine with a time limit of 12 h. Half the time limit is
devoted to solving the ILP corresponding to the split-shapes,
with the time limit of each split-shape tori,i proportional to the
size of its bounding box. The remaining time limit is spent in
solving the larger ILP corresponding to tori.

In any branch and bound based search method for integer
programs, the UB corresponds to the best integral solution
that has been discovered so far. The LB corresponds to the
LP relaxation at a particular level of the branch and bound
tree. We report the UB and LB reached by B&P within the
set time limit.

The shot count and runtime of the MP heuristic depend
strongly on �MP and the value by which each shot size
is shifted when searching for new shots. Selecting a large
value for these parameters reduces the runtime, but typically
increases shot count, and can cause many mask shapes to have
CD violations even after shot refinement. For this paper, we
set �MP = 15 nm, and shots are shifted by (�MP/2).

Table II shows the shot count, runtime and memory
usage for four different heuristics (GSC, MP, GC, and
PROTO-EDA). For ten benchmark shapes and three scenarios,
our method reports a LB based on LP relaxation.13 Although
this seems trivial, typical LP methods (simplex and barrier
methods) run out of memory while trying to solve the LP
relaxation of the ILP in (4) for these benchmark shapes. Hence,
our B&P-based method appears to be enabling to the compu-
tation of this LB. Moreover, for the case with σ = 6.25 nm,
γ = 2 nm, our method discovers a fracturing solution (UB)
better than any of the heuristics for five of ten shapes. For two
of them, optimal solution is found.

Some results in bold indicate that the solution has CD viola-
tions; since these shot counts are therefore “optimistic,” we do
not include these results in our suboptimality analysis.14 If we
assume that the LB reported by the ILP is indeed the optimal
shot count, the suboptimality of GSC, MP, GC, and PROTO-
EDA heuristics ranges, respectively, from 1.7× to 5.6×, 1.6×

12The minimum shot size constraint accounts for slivers. Although some
prior fracturing work mention that aspect ratio of a shot should be con-
strained, based on our discussion with an EDA vendor, we believe that setting
a minimum shot size is a more appropriate constraint for a e-beam mask
write tool.

13The fractional LP relaxation value is rounded up to the next integer to
obtain the LB.

14The percentage of pixels that are failing (i.e., number of failing pixels/
total number of pixels × 100), over all results, is at most 0.16%.

to 6.0×, 1.3× to 4.7×, and 2.0× to 3.7×, for σ = 6.25 nm
and γ = 2 nm.

Since the gap between the optimal solution of an ILP and
the LP relaxation can be very large, suboptimality analysis
based on the LB may be too pessimistic. If we make the
optimistic assumption that the integer solutions obtained by
the ILP are in fact optimal, i.e., the UB is equal to the opti-
mal shot count, then the suboptimality of the GSC, MP, GC,
and PROTO-EDA heuristics could be as large as 3.9×, 4.5×,
2.3×, and 2.6×, respectively. These results suggest that there
is significant room for improving the shot count of current
mask fracturing solutions. Regarding the runtime, PROTO-
EDA always runs faster than the other heuristics. MP takes
the longest time to obtain the solutions among four heuris-
tics, but this heuristic finds the better solutions (i.e., smaller
number of shot counts) than GSC and PROTO-EDA. Note
that we do not include our B&P-based method in this run-
time comparison because B&P-based method is not for mask
fabrication, but for benchmarking of any mask fracturing
heuristics. We also show the peak memory usage: GSC, MP,
and GC have essentially the same peak memory usage which
is dominated by the manner in which we implement our fast
convolution.

Improvements in mask writing tools are likely to reduce the
blurring of shot intensity caused by forward scattering since
reducing blurring helps improve the resolution of the tool.
Consequently, σ in the Gaussian model will decrease. The
shot counts of different heuristics, along with the UB or LB,
are also shown in Table II, when σ is reduced to 4 nm. The
impact of change in σ on the shot count varies for different
shapes. For most shapes, the change in shot count of the GSC
heuristic is not very large. However, the MP heuristic is highly
sensitive to the value of σ , and the shot count increases with
σ = 4 nm for most mask shapes. This is because smaller σ
reduces the covering distance range of a shot, which uses more
shots in the first phase of MP. Among the four heuristics, GC
shows the best solution (i.e., minimum shot count) within a
relatively short time (<10 s) in most cases.

In addition to σ , another important factor that can affect
the shot count is CD tolerance γ . Tighter CD tolerance will
increase the number of constraints that a fracturing solution
must follow, leading to higher shot count. More constraints
also slows down B&P and increases the gap between the
reported UB and LB. This is illustrated in Table II, if we
compare the shot counts of the scenarios with σ = 4 nm,
γ = 2 nm and with σ = 4 nm, γ = 1 nm.

V. BENCHMARK GENERATION WITH KNOWN OPTIMUM

Section IV-F shows that ILP-based benchmarking requires
considerable computational resources to find LB and UB on
the optimal shot count. In this section, we propose a scal-
able method to evaluate the suboptimality of mask fracturing
heuristics by constructing target shapes for which the mini-
mum shot count is known. This benchmark generation method
is based on the key observation that there is a set of bound-
ary segments each of which requires at least two shots in any
fracturing solution. Here, we use Bn to denote the set of all
boundary segments such that each boundary segment bn ∈ Bn

requires at least n shots. For example, the union of green and
red lines in Fig. 7(a) is a boundary segment b2.

We first use exactly two shots to generate a target shape
which contains a boundary segment b2. By the definition of b2,
we need at least two shots to produce the boundary segment.
Since we use exactly two shots to generate the target shape,
our solution is optimal and the minimum shot count is two.

CHAN et al.: BENCHMARKING OF MASK FRACTURING HEURISTICS 177

TABLE II
COMPARISON OF SHOT COUNT, RUNTIME, AND MEMORY USAGE FOR ILT MASK SHAPES SHOWN IN FIG. 4 FOR FOUR DIFFERENT HEURISTICS

(GSC, MP, GC, AND PROTO-EDA) ALONG WITH LB AND UB OBTAINED FROM B&P. SHOT COUNT IS SHOWN FOR THREE SCENARIOS

WITH DIFFERENT VALUES OF SIGMA (σ) AND CD TOLERANCE (γ). WE SET 12 h TIME LIMIT FOR B&P. BOLD-FONT NUMBERS

INDICATE INFEASIBLE SOLUTIONS (AT LEAST ONE FAILING PIXEL IN THE SOLUTION)

To extend the target shape, we add a new shot adjacent to one
of the existing shots. We select the location of new shot such
that there is a new b2 in the extended target shape. Note that we
only increase the total shot count by one (and reuse an existing
shot) to produce the new b2 which requires two shots. Because
the extended target shape cannot be produced by stretching
or shifting the shots in the previous solutions (i.e., at least
one more shot is required), the solution corresponding to the
extended target shape remains optimal regarding shot count.

A. Boundary Segment Analysis
To determine the set of boundary segments which require

at least two shots, we analyze the relationship between
straight/concave boundary segments and the image produced
by a shot. We do not analyze the case of convex boundary
segments because the convexity of shot image boundary (i.e.,
corner rounding) makes it hard to determine the set of convex
boundary segments which require at least two shots.

1) Straight Boundary Segment: Since a mask shot must be
isothetic, a single mask shot cannot produce a long straight
boundary at an angle (θ) which is not a multiple of 90◦. Fig. 5
shows a straight boundary segment bseg (black solid line) at
an angle θ . The dashed lines parallel to bseg are the inner and
outer boundaries. The inner (resp. outer) boundary is obtained
by shrinking (resp. expanding) the target boundary toward the
inside (resp. outside) of the target shape by the value of γ .
To produce the straight boundary using a single shot, we must
place a corner of the shot close to bseg. The longest straight
boundary covered by the single shot is the length [Lθlin(W,H)]
between the crossing points (blue cross marks in Fig. 5) of
the inner target boundary and the image boundary.15 To max-
imize the coverage of a single shot, we must shift the shot
and therefore the image boundary to touch the outer boundary
as shown in Fig. 5. The shot must not be shifted beyond the
outer boundary because I(x, y, s) must be less than ρ for all
pixels in P0.

2) Concave Boundary Segment: Fig. 6(a) shows a concave
boundary bseg and its inner (bseg_in) and outer (bseg_out) bound-
aries. For a concave target boundary, the maximum boundary
length covered by a single shot is defined by the straight line
between the points of intersection between bseg_in and the shot
image boundary [i.e., the blue cross marks in Fig. 6(a) and (b)].
From the straight line between the points of intersection, we
define a “virtual” straight line (bvir) and its inner (bvir_in) and
outer (bvir_out) boundaries. Note that because of the concavity
of bseg, any point along bvir_in is always closer than bseg_in to

15W and H correspond to the width W(s) and height H(s) of the shot s
under consideration.

Fig. 5. Definition of the length Lθlin(W,H) of a straight-line target boundary
covered by a single shot.

Fig. 6. (a) Definition of the length Lθcon(W,H) of a concave target boundary
covered by a single shot. (b) Comparison of the lengths covered by a single
shot for concave versus straight-line target boundaries.

the point that touches the target boundary [i.e., pc in Fig. 6(a)].
Thus, bvir_out is always in P0, outside the boundary of the
shot image. This means that bvir_out can be shifted until the
bvir_out touches the shot image boundary [see Fig. 7(b)] so
that we obtain the longest straight boundary Lθlin(W,H) cov-
ered by the shot image. As a result, the length of the virtual
straight line, which is the same as Lθlin(W,H) at the same θ , is
always larger than the length Lθcon(W,H) of the concave target
boundary.

3) Maximum Length Covered by Shot: As mentioned
above, the rounded corner of a single shot image deter-
mines the maximum length covered by the shot. As the shot
size increases, the corner rounding due to the e-beam prox-
imity effect saturates. As a result, the Lθlin(W,H) does not
change further with respect to the shot size. Therefore, we
can calculate the Lθmax by increasing W and H iteratively

Lθmax = max
s∈S

{
Lθ (W(s),H(s))

}
. (6)

Since Lθcon(W,H) < Lθlin(W,H) for any shot s, the maximum
Lθlin(W,H) is an UB on maxs∈S{Lθcon(W(s),H(s))}.

Lemma 3: For a mask fracturing problem with finite
γ and σ , if a target boundary segment is a straight line or
concave shape with length Lt [defined in Fig. 7(a)] larger than

178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

Fig. 7. (a) Lt is the Euclidean distance between the startpoint and the endpoint
on the target boundary, provided that the target boundary from the startpoint
to the endpoint is concave or straight line. (b) Example of benchmark gener-
ation with three shots. bmain is the union of green and red lines and contains
two bcri.

Lθmax, more than one mask shot is required to pattern the target
boundary segment.16

B. Construction of Target Shape
We now describe a systematic method to construct a target

shape with known minimum shot count. We first construct a
bseg using two shots by placing the second shot to the top right
of the first shot as shown in Fig. 7(b). We define the top left
boundary [e.g., the union of green and red lines in Fig. 7(b)]
as the main boundary (bmain).17 By placing the second shot
far enough from the first shot, we create a critical boundary
segment bcri ∈ B2, which is part of bmain. The bcri is a straight
line or a concave segment with length Lθ larger than Lθmax
(Lemma 3). Although there can be many boundary segments
∈ B2, only those overlapping with bmain are considered as the
critical boundary segments. For example, the yellow boundary
segment in Fig. 7(b), while an element of B2, is not considered
to be a bcri because it does not overlap with bmain.

Lemma 4: Given a boundary segment bn of a target with
n− 1 critical boundary segments, and its corresponding shots,
we can add a shot to obtain bn+1 with an optimal (n+1)-shot
solution if the addition satisfies the following conditions.

1) Adding a shot does not affect the critical boundary
segments of bn.

2) bmain of the new target shape is continuous.
3) There is a b2 in the bmain of the new target shape which

cannot be made by extending the shots which produce
bn without altering the critical boundary segments of bn.

Based on Lemma 4, we add a shot at the top right of the
existing target shape. This ensures that we have a continuous
bmain. Moreover, the top-left coordinate of the newly added
shot is selected such that there is a b2 in the new bmain. Since
the new b2 is always at the top of the target shape, it cannot be
made by extending previous shots unless the existing critical
boundary segments are altered. Also, placing the shot at the top
right does not affect the existing critical boundary segments.
By adding n − 2 shots to the target shape generated by two
shots, we can obtain a target shape ∈ Bn.

An important property of our method is that the critical
boundary segments are defined only by the top-left coordinates
of the shots. Therefore, we may freely place the bottom-right
coordinates of the shots to create different target shapes as
long as they do not affect the critical boundary segments.

16Proof of Lemmas 3–6 are given in [5].
17bmain is at the top left boundary because we place the next shot to the

top right of previous shots.

Fig. 8. Example of rotating a target shape for merging.

C. Merging Target Shapes
Lemma 5: Given two target shapes with critical boundary

segments ba ∈ Bna and bb ∈ Bnb , which have, respectively,
na − 1 and nb − 1 critical boundary segments, we can merge
ba and bb by stretching a shot to create bc ∈ Bna+nb−1 if the
following conditions are satisfied.

1) The stretched shot must not alter the critical boundary
segments in ba or bb.

2) The stretched shot must merge a shot from ba with a
shot from bb.

3) The nonstretched shots in ba must be far apart from or
misaligned from the nonstretched shots in bb so that any
two nonstretched shots cannot be merged to reduce the
number of shots.

The first condition in Lemma 5 imposes a tight constraint
on merging the target shapes generated by the method of
Section V-B. That is, we can only stretch a shot by moving the
lower right corner of the shot in either the rightward and/or
downward direction, such that the critical boundary segments
are not affected. However, stretching a shot of a target shape
to the right and/or down will affect the critical boundary seg-
ments on the other target shape. This problem can be solved
by rotating the target shapes before merging them.

Lemma 6: A bn rotated by 90◦ is still an element of Bn.
Fig. 8 shows an example in which we use Lemmas 5 and 6

to merge a target shape and its rotated copy into a larger
and more complex target shape. Using the incremental tar-
get boundary extension (Lemma 4) and merging/rotation of
optimal target shapes, we can generate a variety of different
benchmarks with arbitrary values of optimal shot count.

D. Experimental Results
Using the same experimental setup in Section IV-F, with

σ = 6.25 nm, γ = 2 nm, we generate two types of target
shapes.

1) Arbitrary Generated Benchmarks: We generate five
shapes with known optimal shot count using the method of
Section V-B. These are shown in [5, Fig. 11(a)].

2) Realistic Generated Benchmarks: Since generated
benchmarks can often be unrealistic compared to actual ILT
mask shapes, we also generate five mask shapes that look sim-
ilar to actual ILT shapes with known optimal shot count, again
using the method of Section V-B (see [5, Fig. 11(b)]). We man-
ually select shot locations so that the generated benchmarks
are similar to actual ILT mask shapes.

We compare the optimal shot count of our generated bench-
marks with the shot counts of the comparison heuristics in
Table III. For the ten target shapes, the suboptimality ranges
from 1.6× to 4.3×, 1.0× to 4.6×, 1.0× to 2.2×, and 1.6×
to 2.9× for the GSC, MP, GC, and PROTO-EDA heuristics.18

For comparison, we also report the LB and UB obtained
from B&P for our generated benchmarks in Table III. The

18We have performed the additional experiments for more RGB shapes
which are similar to the shapes 6–10 in Fig. 4; these yield qualitatively similar
results.

CHAN et al.: BENCHMARKING OF MASK FRACTURING HEURISTICS 179

TABLE III
COMPARISON OF SHOT COUNT FOR GENERATED BENCHMARKS WITH

KNOWN OPTIMAL SOLUTION. BOLD-FONT NUMBERS INDICATE

INFEASIBLE SOLUTIONS THAT HAVE AT LEAST

ONE FAILING PIXEL

results show that for testcases arbitrary generated bench-
mark (AGB)-{1, 5} and realistic generated benchmark (RGB)-
{3, 5}, the B&P method can find the optimal solution, i.e.,
the UB is equal to the optimal shot count. However, for some
shapes, the UB reported by B&P within the set time limit may
be very far from the optimal shot count (testcases AGB-2,
AGB-4, and RGB-4).

The generated benchmarks are more wavy (i.e., have high-
frequency components in the boundary of the target shape)
compared to actual ILT shapes. This could make the sub-
optimality estimation pessimistic. However, we believe that
highlighting scenarios where mask fracturing heuristics per-
form poorly can contribute to the development of better
heuristics.

VI. AUTOMATED BENCHMARK GENERATION

In Section V, we constructed benchmark shapes by plac-
ing shots manually. This can be extremely tedious, especially
for generating benchmarks similar to real ILT shapes. In
this section, we propose an automated benchmark generation
(AutoBG) method to generate a benchmark ILT mask shape
(tgen) which resembles a given actual shape (tori), with known
optimal shot count. To guarantee that the optimal fracturing
solution of tgen is known, AutoBG places shots such that they
obey the constraints specified in Section V.

In AutoBG, we first split tori using the method described
in Section IV-C.19 For each split-shape (tori,i), we generate a
separate benchmark shape (tgen,i) with known minimum shot
count that resembles tori,i. We then apply Lemma 5 to obtain
the benchmark shape tgen, which resembles tori.

To obtain tgen,i from tori,i, we first enumerate several candi-
date sets of line segments such that each set approximates part
of the boundary of tori,i. The candidate set of line segments that
is eventually picked becomes the main boundary segment bmain
of tgen,i. Next, we determine the locations of corner points of
shots to construct bmain. Lastly, for each corner point of a shot
used to generate bmain, we find the diagonally opposite cor-
ner point to minimize the XOR difference between the input
and generated shape [d(tori,i, tgen,i)]. In the remainder of this
section, we describe the details of these steps.

19For certain target shapes, we use Lth < 2β so as to improve the similar-
ity between the generated benchmark and the target shape. To ensure that the
fracturing solutions are still optimal, we check the intensity maps to ensure
that the fracturing solutions are still optimal, and we make sure that the bound-
aries obtained by applying the resist threshold to the intensity of split shapes
do not overlap with each other.

Algorithm 4 Cost Function for Selecting a Pair of Vertices as
Part of b′main

Procedure: slopeCDcost(target shape t, two vertices vk(t) and vl(t), θLB, θUB)
Output: Cost of the segment formed by vertices vk(t) and vl(t)

1: θ(vk(t),vl(t))
← the angle with respect to the x-axis of the segment formed by vertices

vk(t) and vl(t)
2: if (θLB ≤ θ(vk(t),vl(t))

< θUB) then
3: cost← CD violating area of line segment between vk(t) and vl(t) (Figure 9)
4: else
5: cost←+∞
6: end if
7: return cost;

Fig. 9. Number of error pixels along the segment vk(t)− vl(t).

A. Finding Candidate Main Boundary Segments
Based on Lemma 4, bmain is a continuous boundary segment

of the generated mask shape which determines the minimum
number of shots required to construct tgen,i. Moreover, all the
shot corner points used to generate bmain must be of the same
type (i.e., bottom-left, bottom-right, top-left, or top-right).
Given the input split-shape tori,i (after splitting), to construct
the benchmark shape with known optimal shot count tgen,i,
we need to find a boundary segment that can be used as the
main boundary segment to place the optimal shot corners. For
that, we enumerate several candidate main boundary segments;
each is a set of connected line segments and approximates part
of the boundary of tori,i. We then construct the optimal bench-
mark shape for each candidate main boundary segment, and
finally pick the generated shape that is the most similar to the
input shape tori,i as tgen,i. Note that the similarity between any
two shapes is measured by the area of the region obtained
after polygon Boolean XOR operation between the two given
shapes.

To find a candidate main boundary segment, we select an
ordered sublist of the vertices of tori,i (Vmain) such that the line
segments obtained after connecting the vertices approximates
some boundary segment of tori,i within the CD tolerance γ .
We first define a cost function slopeCDcost for selecting two
vertices vk(t) and vl(t) to be part of Vmain in Algorithm 4.
The cost is equal to the number of the error pixels which are
outside the CD tolerance region defined by the line segment
connecting vk(t) and vl(t), as shown in Fig. 9. To ensure that
the set of line segments obtained from Vmain can be constructed
using only one type of shot corner points, all the chosen line
segments must have angle with x-axis in the same quadrant.
We add an additional constraint to the cost function that sets
the cost to infinity if the angle of the line segment with the
x-axis is not between the specified LB and UB (θLB and θUB).
The values of θLB/θUB could be 0◦/90◦, 90◦/180◦, 180◦/270◦,
or 270◦/360◦ corresponding to upper-left, upper-right, lower-
right, and lower-left shot corners.

Based on Sato’s [31] dynamic programming method to
approximate any given curve by a set of line segments, we
propose a similar technique to find a candidate main bound-
ary segment as shown in Algorithm 5. For each vertex of the
input shape, we iterate over all the previous vertices in the list
to find the vertex with minimum cost (slopeCDcost returned

180 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

Algorithm 5 Dynamic Programming Algorithm to Obtain a
Candidate Main Boundary Segment for Target Shape t

Input : Vertices V(t), target shape t, CD tolerance γ , θLB, θUB)
Output: Ordered sublist of V(t), Vmain

1: k = 1; last_index = 1; min_cost(k) = 0;
2: for k = 1 to |V(t)| do
3: for l = 1 to k do
4: cost(l) = slopeCDcost(vl(t), vk(t), t, θLB, θUB);
5: end for
6: sol_index(k) = the index l which has the minimum cost
7: min_cost(k) = cost(sol_index(k))
8: if (min_cost(k) == 0) then
9: last_index = k

10: end if
11: end for
12: j = last_index; Insert vj(t) into Vmain
13: while j 	= 1 do
14: Insert vsol(j)(t) into Vmain; j = sol(j)
15: end while
16: return Vmain

by Algorithm 4) (lines 5–8). This is based on the assump-
tion that d(tori,i, tgen,i) is likely to be smaller when we use
a candidate main boundary segment which approximates the
boundary of the input shape tori,i as much as possible with
zero cost. In lines 10–12, we store the last vertex with zero
cost, and then backtrack from this last vertex to the first vertex
to obtain the candidate main boundary segment with zero cost
that approximates part of the input shape tori,i (lines 14–20).

The list of vertices of any polygon, V(t), is cyclical, i.e., any
vertex can be used as the starting point. Moreover, the vertices
can be ordered in clockwise or anti-clockwise direction. The
choice of both the starting vertex and the direction affect the
candidate boundary segment that we obtain from Algorithm 5.
A poor choice of the starting vertex or direction in determining
Vmain could result in a tgen,i which is not similar to tori,i. To
avoid this, we pick different starting vertices and for each
consider both the clockwise and anti-clockwise directions to
obtain different candidate main boundary segments. We obtain
a benchmark shape for each candidate segment, then select
the one which is most similar to tori,i. We select the starting
vertices for generating candidate Vmain as follows.

1) If the target shape tori has no split location, we select
the four vertices that are the top, bottom, left and right
vertices of tori as the starting vertices since this will max-
imize the approximation of the candidate main boundary
segment for one quadrant of the boundary of tori. In other
words, starting from these vertices will find the longest
candidate main boundary segments.

2) Based on Lemma 5, at least one of the shots of a split-
shape will be merged with a shot of another split-shape.
We call a shot which will be merged as a “merged-shot.”
Note that the edges of the merged-shots also define the
main boundary. Thus, it is reasonable to select start-
ing vertices around the edges of merged-shots. More
specifically, for each splitting edge, we create a vir-
tual merged-shot and stretch the shot along the direction
perpendicular to the splitting edge (so that it covers
more area and potentially reduces the total number of
shots). The starting vertices are defined at the locations
where edges of merged-shots intersect with the boundary
of tori,i.

B. Determine Corner Points
For each candidate main boundary segment from

Algorithm 5, we place shot corner points to construct
the boundary segment. The set of shot corner points Cmain

Algorithm 6 Obtain Shot Corner Points (Cmain) to Construct
a Candidate Main Boundary Segment
Input: Ordered list of points Vmain, CD tolerance γ and the distance between corner

point of shot and its image ζ(θ)
Output: Set of shot corner points Cmain
1: If vmain,1 has largest x-coordinate in Vmain reverse order of Vmain

2: Vsft
main ← Shift every point of Vmain such that every line segment between consecutive

points is shifted by ζ(θ)+ γ
3: Cl

main ← getCnrPtsFrmSrt(Vsft
main); Vsft,rvr

main ← Reverse order of Vsft
main

4: Cr
main ← getCnrPtsFrmSrt(Vsft,rvr

main)

5: Reverse order of Cr
main

6: if (L(cl
main,1, cr

main,1) ≤ γ) then

7: Cmain = Cl
main

8: else
9: Insert cl

main,1 into Cmain

10: for i = 2 to |Cl
main| − 1 do

11: cmain,i ← (cl
main,i + cr

main,i)/2; Insert cmain,i into Cmain
12: end for
13: Insert cr

main,|Cr
main|

into Cmain

14: end if
15: return Cmain

Procedure: getCnrPtsFrmSrt(ordered list of points Vsft
main)

Output: Set of shot corner points C

1: Vsamp ← Sample points on all the line segments obtained from Vsft
main

2: Insert vsamp,1 into C; cprev ← vsamp,1
3: for i = 2 to |Vsamp| do
4: if (L(vsamp,i, cprev) ≥ Lθ

th) then
5: Insert vsamp,i into C; cprev ← vsamp,i
6: end if
7: end for
8: return C

Fig. 10. Gap [ζ(θ)] between a shot corner point and the line segment with
slope θ that is part of boundary segment.

must be placed such that Lemmas 3 and 4 are obeyed, i.e., so
that the fracturing solution of the generated benchmark
split-shape tgen,i is optimal. Algorithm 6 outlines the steps to
find Cmain.

We first order the points in Vmain such that they are sorted by
x-coordinate (line 1). We then shift the line segments of Vmain
to obtain Vsft

main, such that the shot corner points must lie on
the line segments obtained by connecting consecutive points
of Vsft

main (line 2). This shift compensates for the difference
between the rectangular mask shot and its rounded corner due
to the e-beam proximity effect, as illustrated in Fig. 10.

Once we obtain the shifted set of points Vsft
main such that all

shot corner points lie on the line segments connecting con-
secutive points from Vsft

main, we can find a set of shot corner
points using the function getCnrPtsFrmSrt(). We first sample
the line segments connecting consecutive points from Vsft

main
and get all points with integral coordinates that lie on these
line segments, Vsamp [line 1 of getCnrPtsFrmSrt()]. We then
include the first point of Vsamp as a shot corner point (line 2).

Next, we iterate over the set of sampled points; if the dis-
tance between the previously added shot corner point cprev
and the sampled point vsamp,i is greater than Lθth, we add the
sampled point to the set of shot corner points (lines 4–9).
Note that θ is the angle between the x-axis and the line

CHAN et al.: BENCHMARKING OF MASK FRACTURING HEURISTICS 181

Fig. 11. Example of (a) Cl
main and (b) Cmain.

segment connecting cprev and vsamp,i. This distance condition
ensures the optimality of the fracturing solution of tgen,i by
satisfying the conditions of Lemmas 3 and 4.

Obtaining shot corner points from the shifted set of points
Vsft

main using the method described in getCnrPtsFrmSrt() of
Algorithm 6 could lead to large error between the input
mask shape and generated shape near the location of the
last point of Vsft

main. This is illustrated in Fig. 11(a), which
shows Vsft

main, Vmain, and tori,i. If the leftmost point of Vsft
main is

the first point, then the shot corner points we obtain from
getCnrPtsFrmSrt() are cl

main,1, cl
main,2, and cl

main,3. Due to
the minimum distance constraint between shot corner points
imposed by Lemmas 3 and 4, no additional shot corner
points can be chosen after cl

main,3. As a result, there is sig-
nificant pixel error after the last shot corner point cl

main,3.
Moreover, using this method, tgen,2 is not mergeable with tgen,3
because the shot with cl

main,3 violates the second condition of
Lemma 5.

To reduce pixel error in generating a mergeable shape, we
first obtain two sets of potential shot corner points: 1) Cl

main
with ordered list of points Vsft

main and 2) Cr
main with reverse-

ordered list of the same points Vsft,rvr
main ; these are given as input

to getCnrPtsFrmSrt() (lines 2–5). If the first corner points of
Cl

main and the last corner point of Cr
main are close to each

other (≤γ), all points of Cl
main and Cr

main will be close to
each other, and we can use Cl

main as the set of shot corner
points Cmain that can construct the line segments formed by
Vmain (lines 6 and 7). However, if the potential shot corner
points of Cl

main and Cr
main are not close to each other, we take

the average of the x- and y-coordinates of the corresponding
points in Cl

main and Cr
main. We also include the points with

lowest and highest x-coordinates, i.e., the first point of Cl
main

and that of Cr
main. Fig. 11(b) shows the result with this choice

of corner points. Although this creates error pixels all along the
main boundary, it does not cause any large pixel error after
the last corner point and guarantees that tgen,2 is mergeable
with tgen,3.

C. Determine Opposite Corner Points
We now describe the method to determine the locations

of diagonally opposite corner points (Copp
main) of Cmain. Since

a shot is determined by Copp
main and Cmain, Copp

main must be
placed such that the shot size constraints are obeyed, and the
generated shape tgen,i is similar to tori,i.

Algorithm 7 summarizes our method for finding the oppo-
site shot corner points. Given a fixed corner point cmain ∈
Cmain, we first enumerate all points which could become
the opposite corner point copp

main ∈ Copp
main in Line 3. If cmain

is a top-left shot corner, we can find candidate opposite
points by considering all the points within distance γ of

Algorithm 7 Determine Opposite Corner Points for Given Set
of Shot Corners

Input : Shot corner points Cmain, input shape tori,i
Output: A set of opposite corner points Copp

main
1: for all cmain ∈ Cmain do
2: maxCover← 0; Ccan_opp

main ← Candidate opposite shot points for cmain
3: for all c ∈ Ccan_opp

main do
4: s← Shot with opposite corners cmain and c
5: cover← area(XOR(s, tori,i))
6: if cover > maxCover then
7: copp

main ← c,maxCover← cover
8: end if
9: end for

10: Add copp
main to Copp

main
11: end for

TABLE IV
VALIDATION OF AUTOBG METHOD

the boundary of tori,i that also satisfy the following two
conditions.

1) The points lie below and to the right of cmain.
2) The distance from cmain is such that the corresponding

shot will satisfy shot size constraints.
Candidate opposite points for cmain when it is a bottom-left,
top-left or top-right shot corner can be obtained similarly.

After finding the candidate set of opposite corner points in
Algorithm 7, we iterate over this set and find the opposite
point for which the corresponding shot best covers the input
shape tori,i (lines 4–10). This opposite point is then inserted to
the list of opposite shot corner points (line 11). Once the shot
corner points (Cmain) are known along with the corresponding
opposite shot corner points (Copp

main), we can obtain the shape
tgen,i by adding the intensity of all the corresponding shots
and applying the resist threshold.

D. Experimental Results
We first generate shapes by using AGB and RGB shapes as

input to our AutoBG in C++. Table IV shows the shot count,
runtime and the similarity (area of XOR of input shape and
generated shape divided by the area of the input shape). The
shapes generated by AutoBG are also shown in Fig. 12.

From Table IV, AutoBG can generate shapes that are ≥80%
similar to input mask shapes for most cases. The similarity
is somewhat less for a few complex shapes such as AGB-4.
In addition to similarity, the optimal shot count of the input
shapes and the optimal shot count of the AutoBG generated
shapes are fairly close,20 and identical for four cases. This
suggests that the optimal shot count of the AutoBG generated
shapes for real ILT mask shapes will be close to the unknown
optimal shot count of the ILT shapes. The runtime to generate
each benchmark shape is less than 8 s.

We also generate benchmark shapes using the 10 mask
shapes in Fig. 4 as inputs with different σ and γ . Table V
summarizes the suboptimality of the heuristics on these

20The shot count of the AutoBG generated shapes is still optimal since the
generation process obeys the constraints of Section V.

182 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

TABLE V
COMPARISON OF OPTIMAL SHOT COUNT FOR AUTOBG-GENERATED BENCHMARK SHAPES TO THE SHOT COUNTS OBTAINED BY FOUR FRACTURING

HEURISTICS. BENCHMARK SHAPES ARE GENERATED FOR THREE SCENARIOS WITH DIFFERENT VALUES OF SIGMA AND CD TOLERANCE.
BOLD-FONT NUMBERS INDICATE INFEASIBLE SOLUTIONS (AT LEAST ONE FAILING PIXEL IN THE SOLUTION)

Fig. 12. Illustration of AutoBG generated benchmark shapes. (a) AutoBG
generated shapes using AGB shapes of [5] as input. (b) AutoBG generated
shapes using RGB shapes of [5] as input.

benchmark shapes. The suboptimality of GSC, MP, GC, and
PROTO-EDA across the 10 shapes for the baseline case
(σ = 6.25 nm, γ = 2 nm) ranges from 1.0× to 3.4×, 1.0× to
9.0×, 1.0× to 2.7×, and 1.3× to 6×. We also report the UB
and LB obtained from B&P, which find the optimal solution
(i.e., the UB is equal to the optimal shot count) for 16 out of
30 cases.

VII. CONCLUSION

The use of aggressive RET techniques such as ILT, the need
for e-beam proximity effect correction, and the use of over-
lapping shots have transformed mask fracturing into a very
challenging computational problem. Although several heuris-
tics have been proposed in the last few years, there has been
no systematic study to analyze the quality of solutions. In this
paper, we propose two methods to evaluate the suboptimal-
ity of mask fracturing heuristics. First, we formulate the mask
fracturing problem as an integer linear problem and develop
a practical B&P method to generate tight UB and LB on the
optimal shot count. Second, we introduce a systematic method
to generate a set of benchmarks with known, provably opti-
mal solutions. Further, we describe an automated benchmark
generation method to construct shapes which look similar to
real ILT shapes.

Furthermore, we evaluate the suboptimality of four mask
fracturing heuristics: greedy set cover, MP, graph coloring and
a state-of-the-art PROTO-EDA. Our experimental results show
that PROTO-EDA has up to 6.0× more shots compared to
the optimal solution for generated benchmarks, and has up to
2.6× more shots for ILT mask shapes with unknown optimal
solution. These results suggest that there remains considerable
opportunity to improve mask fracturing heuristics.

Our source code and benchmark suite are available pub-
licly (http://impact.ee.ucla.edu/maskFracturingBenchmarks).
We hope that this will stimulate further research toward
development of improved mask fracturing heuristics.

ACKNOWLEDGMENT

The authors would like to thank E. Sahouria of Mentor
Graphics for his participation and guidance of this project, and
for his co-authorship of [5]. They would also thank P. Ghosh
and B. Durvasula of Mentor Graphics for valuable discussions
and help in obtaining fracturing results, respectively.

REFERENCES

[1] T. Achterberg, “SCIP: Solving constraint integer programs,” Math.
Program. Comput., vol. 1, no. 1, pp. 1–41, 2009.

[2] S. Arora, “Approximation schemes for NP-hard geometric optimization
problems: A survey,” Math. Program., vol. 97, nos. 1–2, pp. 43–69,
2003.

[3] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh,
and P. H. Vance, “Branch-and-price: Column generation for solving huge
integer programs,” Oper. Res., vol. 46, no. 3, pp. 316–329, 1998.

[4] R. N. Bracewell, “Rectangle function of unit height and base, PI(x),”
in The Fourier Transform and Its Applications. New York, NY, USA:
McGraw-Hill, 1965.

[5] T. B. Chan et al., “Benchmarking of mask fracturing heuristics,” in Proc.
ICCAD, San Jose, CA, USA, 2014, pp. 246–253.

[6] J. Choi, J. S. Pack, I. K. Shin, and C.-U. Jeon, “Inverse e-beam lithog-
raphy on photomask for computational lithography,” J. Micro Nanolith.
MEMS MOEMS, vol. 13, no. 1, pp. 011003-1–011003-9, 2013.

[7] G. S. Chua et al., “Optimization of mask shot count using MB-MDP
and lithography simulation,” in Proc. SPIE PT, vol. 8166. Monterey,
CA, USA, 2011, pp. 816632-1–816632-11.

[8] V. Chvatal, “A greedy heuristic for the set-covering problem,” Math.
Oper. Res., vol. 4, no. 3, pp. 233–235, 1979.

[9] R. Cinque et al., “Shot count reduction for non-manhattan geome-
tries: Concurrent optimization of data fracture and mask writer
design,” in Proc. SPIE PT, vol. 8880. Monterey, CA, USA, 2013,
pp. 88801F-1–88801F-8.

[10] J. C. Culberson and R. A. Reckhow, “Covering polygons is hard,”
J. Algorithms, vol. 17, no. 1, pp. 2–44, 1994.

[11] A. Elayat, T. Lin, E. Sahouria, and S. F. Schulze, “Assessment
and comparison of different approaches for mask write time reduc-
tion,” in Proc. SPIE PT, vol. 8166. Monterey, CA, USA, 2011,
pp. 816634-1–816634-13.

[12] D. S. Franzblau and D. J. Kleitman, “An algorithm for constructing
regions with rectangles: Independence and minimum generating sets for
collections of intervals,” in Proc. ACM Theory Comput., Washington,
DC, USA, 1984, pp. 167–174.

[13] D. S. Franzblau, “Performance guarantees on a sweep-line heuristic for
covering rectilinear polygons with rectangles,” SIAM J. Discr. Math.,
vol. 2, no. 3, pp. 307–321, 1989.

[14] A. Fujimura, T. Kamikubo, and I. Bork, “Model-based mask data prepa-
ration (MB-MDP) and its impact on resist heating,” in Proc. SPIE
ALT III, vol. 7970. San Jose, CA, USA, 2011, pp. 797012-1–797012-10.

CHAN et al.: BENCHMARKING OF MASK FRACTURING HEURISTICS 183

[15] A. Fujimura et al., “Best depth of focus on 22-nm logic wafers with
less shot count,” in Proc. SPIE PNGLMT XVII, vol. 7748. Yokohama,
Japan, 2010, Art. no. 77480V.

[16] R. Galler et al., “Modified dose correction strategy for better pat-
tern contrast,” in Proc. SPIE EML, vol. 7545. Grenoble, France, 2010,
pp. 75450F-1–75450F-12.

[17] P. Gupta, A. B. Kahng, A. Kasibhatla, and P. Sharma, “Eyecharts:
Constructive benchmarking of gate sizing heuristics,” in Proc. DAC,
Anaheim, CA, USA, 2010, pp. 597–602.

[18] M. Hanan, “On Steiner’s problem with rectilinear distance,” SIAM J.
Appl. Math., vol. 14, no. 2, pp. 255–265, 1966.

[19] L. Heinrich-Litan and M. E. Lübbecke, “Rectangle covers revisited
computationally,” J. Exp. Algorithmics, vol. 11, nos. 2–6, pp. 1–21,
2006.

[20] H. Imai and T. Asano, “Efficient algorithms for geometric graph search
problems,” SIAM J. Comput., vol. 15, no. 2, pp. 478–494, 1986.

[21] S. Jiang and A. Zakhor, “Application of signal reconstruction techniques
to shot count reduction in simulation driven fracturing,” in Proc. SPIE
PT, vol. 8166. Monterey, CA, USA, 2011, pp. 81660U-1–81660U-14.

[22] S. Jiang and A. Zakhor, “Shot overlap model-based fracturing for edge-
based OPC layouts,” in Proc. SPIE OM XXVII, vol. 9052. San Jose, CA,
USA, 2014, pp. 90520L-1–90520L-19.

[23] A. A. Kagalwalla and P. Gupta, “Effective model-based mask fracturing
for mask cost reduction,” in Proc. DAC, San Francisco, CA, USA, 2015,
pp. 1–6.

[24] A. B. Kahng, X. Xu, and A. Zelikovsky, “Yield- and cost-driven frac-
turing for variable shaped-beam mask writing,” in Proc. SPIE PT,
Monterey, CA, USA, 2004, pp. 360–371.

[25] A. B. Kahng, X. Xu, and A. Zelikovsky, “Fast yield driven fracture
for variable shaped beam mask writing,” in Proc. SPIE PNGLMT XIII,
vol. 6283. Yokohama, Japan, 2006, pp. 62832R-1–62832R-10.

[26] T. Lin, E. Sahouria, N. Akkiraju, and S. Schulze, “Reducing shot count
through optimization-based fracture,” in Proc. SPIE PT, Monterey, CA,
USA, 2011, pp. 81660T-1–81660T-13.

[27] X. Ma, S. Jiang, and A. Zakhor, “A cost-driven fracture heuristics to
minimize external sliver length,” in Proc. SPIE OM XXIV, San Jose,
CA, USA, 2011, pp. 79732O-1–79732O-11.

[28] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dic-
tionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415,
Dec. 1993.

[29] D. W. Matula, G. Marble, and J. D. Isaacson, “Graph coloring algo-
rithms,” in Graph Theory and Computing. New York, NY, USA:
Academic Press, 1972.

[30] J. M. Pavkovich, “Proximity effect correction calculations by the integral
equation approximate solution method,” J. Vac. Sci. Technol. B, vol. 4,
no. 1, pp. 159–163, 1986.

[31] Y. Sato, “Piecewise linear approximation of plane curves by perimeter
optimization,” Pattern Recognit., vol. 25, no. 12, pp. 1535–1543, 1992.

[32] S. F. Schulze, E. Y. Sahouria, and E. A. Miloslavsky, “High-performance
fracturing for variable shaped beam mask writing machines,” in Proc.
SPIE PNGLMT X, vol. 5130. Yokohama, Japan, 2003, pp. 648–659.

[33] B. Yu, J.-R. Gao, and D. Z. Pan, “L-shape based layout fracturing
for e-beam lithography,” in Proc. ASP-DAC, Yokohama, Japan, 2013,
pp. 249–254.

[34] H. R. Zable, A. Fujimura, T. Komagata, Y. Nakagawa, and J. S. Petersen,
“Writing wavy metal 1 shapes on 22-nm logic wafers with less shot
count,” in Proc. SPIE PNGLMT XVII, vol. 7748. Yokohama, Japan,
2010, pp. 77480X-1–77480X-10.

[35] J. Siek, L. Q. Lee, and A. Lumsdaine, The Boost Graph Library:
User Guide and Reference Manual. Boston, MA, USA: Addison-Wesley,
2002.

[36] IBM ILOG CPLEX, V12. 1: User’s Manual for CPLEX, Int. Bus. Mach.
Corporat., Armonk, NY, USA, 2009.

[37] G. Guennebaud and B. Jacob. (2010). Eigen V3. [Online]. Available:
http://eigen.tuxfamily.org

[38] S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD contest in
mask optimization and benchmark suite,” in Proc. ICCAD, San Jose,
CA, USA, 2013, pp. 271–274

[39] OpenAccess API. Accessed on Jan. 2014. [Online]. Available:
http://www.si2.org

[40] L. Dagum and M. Ramesh, “OpenMP: An industry-standard API for
shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, Jan. 1998.

Tuck-Boon Chan (S’09) received the M.S. degree
from National Taiwan University, Taipei, Taiwan, in
2007, and the Ph.D. degree from the University of
California at San Diego, San Diego, CA, USA, in
2014.

He is currently with the Qualcomm Technologies,
Inc. San Diego, CA, USA. His current research
interests include optimize very large scale integra-
tion (VLSI) circuits through design/manufacturing
co-optimization, mitigating VLSI circuit variability,
and improving manufacturing yield.

Puneet Gupta (SM’16) received the B.Tech. degree
in electrical engineering from the Indian Institute of
Technology Delhi, New Delhi, India, in 2000, and
the Ph.D. degree from the University of California
at San Diego, San Diego, CA, USA, in 2007.

He is currently a Faculty Member with the
Electrical Engineering Department, University of
California at Los Angeles, Los Angeles, CA, USA.
He Co-Founded Blaze DFM Inc., Sunnyvale, CA,
USA, (acquired by Tela Inc.) in 2004 and served as
its Product Architect untill 2007. He has authored

over 130 papers, 16 U.S. patents, a book and a book chapter. His current
research interests include building high-value bridges across application-
architecture-implementation-fabrication interfaces for lowered cost and power,
increased yield, and improved predictability of integrated circuits and
systems.

Dr. Gupta was a recipient of the NSF CAREER Award, the ACM/SIGDA
Outstanding New Faculty Award, and SRC Inventor Recognition Award, and
the IBM Faculty Award. He currently leads the IMPACT+ Center which
focuses on future semi-conductor technologies.

Kwangsoo Han (S’11) received the B.S. and M.S.
degrees in electrical engineering from Hanyang
University, Seoul, South Korea. He is currently
pursuing the Ph.D. degree with the VLSI CAD
Laboratory, University of California at San Diego,
San Diego, CA, USA.

His current research interests include design for
manufacturability and very large scale integration
physical design optimization.

Abde Ali Kagalwalla (S’10) received the B.Tech.
degree from the Indian Institute of Technology
Bombay, Mumbai, India, in 2009, and the Ph.D.
degree from the University of California at Los
Angeles, Los Angeles, CA, USA, in 2014, both in
electrical engineering.

He is currently a Software Engineer with the
Computational Lithography Group, Intel, Hillsboro,
OR, USA. His current research interests include
computeraided design of very large-scale inte-
grated circuits, semiconductor design-manufacturing

interface, lithography, and algorithms.

Andrew B. Kahng (M’03–SM’07–F’10) received
the Ph.D. degree in computer science from the
University of California at San Diego (UCSD),
San Diego, CA, USA, in 1989.

He was with the Department of Computer
Science, University of California at Los Angeles,
Los Angeles, CA, USA, from 1989 to 2000. Since
2001, he has been with the Jacobs School of
Engineering, UCSD. His current research inter-
ests include IC physical design, the design-
manufacturing interface, combinatorial optimization,

and technology roadmapping.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

