
21

Application-Specific Cross-Layer Optimization Based on Predictive
Variable-Latency VLSI Design

VIVEK K. DE, Intel Labs
ANDREW B. KAHNG, University of California, San Diego
TANAY KARNIK, Intel Labs
BAO LIU, MILAD MALEKI, and LU WANG, University of Texas at San Antonio

Traditional synchronous VLSI design requires that all computations in a logic stage complete in one clock
cycle. This leads to increasingly pessimistic design as technology scaling introduces increasingly significant
parametric variations that result in an increasing performance variability. Alternatively, by allowing com-
putations in a logic stage to complete in a variable number of clock cycles, variable-latency design provides
relaxed timing constraints for average performance, area, and power consumption optimization. In this ar-
ticle, we present improved variable-latency design techniques including: (1) a generic minimum-intrusion
variable-latency VLSI design paradigm, (2) a signal probability-based approximate prediction logic construc-
tion method for minimum misprediction rate at minimum cost, and (3) an application-specific cross-layer
analysis methodology. Our experiments show that the proposed variable-latency design methodology on av-
erage reduces the computation latency by 26.80%(14.65%) at cost of 0.08%(3.4%) area and 0.4%(2.2%) energy
consumption increase for the interger (floating point) unit of an open-source SPARC V8 processor LEON2
synthesized with a clock-cycle time between 1.97ns(3.49ns) and 5.96ns(13.74ns) based on the 45nm Nan-
gate open cell library, while an automotive application-specific design further achieves an average latency
reduction of 41.8%.

Categories and Subject Descriptors: B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids; C.4 [Performance of Systems – Fault Tolerance]: General

General Terms: Performance, Reliability

Additional Key Words and Phrases: VLSI, CAD, optimization, better-than-worst-case VLSI design, VLSI
statistical timing analysis and optimization

ACM Reference Format:
Vivek K. De, Andrew B. Kahng, Tanay Karnik, Bao Liu, Milad Maleki, and Lu Wang. 2015. Application-
specific cross-layer optimization based on predictive variable-latency VLSI design. ACM J. Emerg. Technol.
Comput. Syst. 12, 3, Article 21 (September 2015), 19 pages.
DOI: http://dx.doi.org/10.1145/2746341

1. INTRODUCTION

VLSI technology scaling has been the driver of the semiconductor industry for
decades. However, in recent years, technology scaling has introduced increasingly
significant parametric variations from the manufacturing process and at the system
runtime which result in subtle signal propagation delay variations at each compo-
nent, and possibly significant accumulated performance variation at the system level

This work is supported by the National Science Foundation, under grant CISE SE-1117975.
Authors’ addresses: V. K. De, Intel Labs, Hillsboro, OR; A. B. Kahng, Computer Science and Engineering
Department, University of California, San Diego, CA; T. Karnik, Intel Labs, Hillsboro, OR; B. Liu (corre-
sponding author), M. Maleki, and L. Wang, Electrical and Computer Engineering Department, University
of Texas, San Antonio, TX; email: bliu@utsa.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2015 ACM 1550-4832/2015/09-ART21 $15.00

DOI: http://dx.doi.org/10.1145/2746341

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

21:2 V. K. De et al.

[Alam 2008; Benini and Micheli 2004; Borkar 2005; Ghosh and Roy 2010; West and
Harris 2011]. This has created an unprecedented reliability challenge, as traditional
synchronous VLSI design requires that all computation in a logic stage complete in
a single clock cycle. As a result, cutting-edge VLSI systems are subject to degraded
reliability (with an increasing timing error rate) and design quality (in terms of area
and power consumption).

A number of adaptive or resilient techniques have been proposed for VLSI design
in the presence of performance variability for timing error resilience, average perfor-
mance improvement, and power consumption reduction. For example, “better-than-
worst-case” design allows the critical-path delay of a combinational logic network to
exceed the clock cycle time [Austin et al. 2004, 2005; Blaauw et al. 2008; Bowman
et al. 2008, 2011; Das et al. 2006, 2009; Ernst et al. 2003, 2004; Fojtik et al. 2012;
Kondo et al. 1997], while logic correctness is still guaranteed as long as all timing er-
rors are identified. An identified timing error can be corrected by computation replay,
for example, at an elevated supply voltage or reduced clock frequency [Blaauw et al.
2008; Bowman et al. 2011; Das et al. 2009], or by local stalling allowing a slow logic
computation to complete in two clock cycles [Fojtik et al. 2012]. Such a variable-latency
VLSI design provides relaxed timing constraints and enables further improvements in
average performance, area, and power consumption optimization.

A critical problem is timing error identification, which can be achieved by detection
techniques which check logic outputs such as in Razor logic [Austin et al. 2004, 2005;
Blaauw et al. 2008; Das et al. 2006, 2009; Ernst et al. 2003, 2004; Fojtik et al. 2012]
or prediction techniques based on logic inputs such as in a telescopic unit [Neres et al.
2009; Benini et al. 1998, 1999; Su et al. 2011]. Timing error detection has certain
performance cost as it is performed after logic completion. The existing timing-error-
prediction-based variable-latency design techniques have only been applied to small
benchmark circuits such as ISCAS’89 and SIS [Neres et al. 2009; Benini et al. 1998,
1999; Su et al. 2011].

Our contributions in this article are as follows.

(1) We present a generic variable-latency design paradigm including a minimum pre-
diction logic network, a small FSM which resets the timing error signal in the
subsequent clock cycle once it rises, and a clock gate.

(2) We present an approximate timing error logic construction algorithm considering
timing-critical-path side input signal probabilities for minimum misprediction rate
at minimum cost.

(3) We present a cross-layer statistical analysis methodology based on behavior/
architecture-level simulation and gate-level signal-probability-based statistical
timing analysis (SPSTA) [Liu 2008].

(4) Our experiments show that the proposed variable-latency design methodology
on average reduces the computation latency by 26.80%(14.65%) at the cost of
0.08%(3.4%) area and 0.4%(2.2%) energy consumption increase for the interger
(floating point) unit of an open-source SPARC V8 processor LEON2 synthesized
with a clock-cycle time between 1.97ns(3.49ns) and 5.96ns(13.74ns) based on the
45nm Nangate open cell library, while an automotive application-specific design
further achieves an average latency reduction of 41.8%.

The rest of this article is organized as follows. We briefly review the nanoscale
VLSI design reliability challenge and the existing resilient VLSI design techniques in
Section 2. We propose our cross-layer variable-latency design methodology in Section 3,
and present our experimental results in Section 4. We conclude in Section 5.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

Application-Specific Cross-Layer Optimization 21:3

2. BACKGROUND

2.1. Nanoscale VLSI Design Challenge

Nanoscale VLSI systems are subject to increasingly prevalent manufacturing defects,
process variations, and system runtime parametric variations such as on-chip tem-
perature, power supply voltage, aging effects, and uncertainties such as radiation and
cosmos ray strikes. Catastrophic manufacturing defects lead to permanent faults. Sys-
tem runtime uncertainties may create soft errors. More subtle process variations and
system runtime parametric variations lead to system performance variation which
may accumulate and result in timing errors. Parametric variations may also degrade
reliability and reduce system lifetime [Alam 2008; Benini and Micheli 2004; Borkar
2005; Ghosh and Roy 2010; West and Harris 2011].

Such parametric variations cannot be reduced below certain levels due to the un-
certainty principle in quantum physics which dominates at nanometer scale. As a
result, improvement in manufacturing technology cannot solve the problem alone, and
design techniques are necessary to achieve reliable nanoscale VLSI systems. Of par-
ticular interest are timing errors resulting from performance variations, which have
become a common problem in recent technology nodes. As technology scales, aver-
age performance improves while the performance variation increases. The traditional
guardbanding-based synchronous design methodology requires a smaller worst-cost
critical-path delay in a combinational logic network than the clock-cycle time, which
is increasingly pessimistic, leading to an increasing performance cost without logic
correctness guarantee.

2.2. Resilient VLSI Design Techniques

Asynchronous design achieves timing error resilience and performance scaling [Furber
and Day 1996; Muller and Bartky 1959; Singh and Nowick 2007; Sutherland 1989].
However, lack of design automation tools prevents its practical use [Hauck 1995; Sparso
and Furber 2001]. Alternatively, variable-latency design is a relatively simple syn-
chronous design paradigm wherein logic computation is allowed to complete in a flexi-
ble number of clock cycles based on a timing error signal. This allows a clock-cycle time
to be less than the worst-case signal propagation path delay in a combinational logic
network, that is, achieving a better-than-worst-case design. With a tiny probability of
timing error occurrence, variable-latency design further achieves average performance
or throughput improvement.

A variable-latency design may include a logically incomplete or fast approximate
logic network besides a complete or slow exact logic network, and a multiplexer which
selects one of the two logic networks based on a timing error signal [Kondo et al. 1997;
Lu 2004]. Or, a logically complete logic network can be simply over-clocked (operate
under a higher clock frequency than allowed by the critical-path delay), forming a
temporally incomplete logic network in which logic correctness is guaranteed by clock
gating based on a timing error signal [Kelly and Phillips 2005; Liu et al. 2012]. Based
on a timing error signal, a microprocessor may flush its instruction pipeline and rerun
the computation at an elevated power supply voltage [Blaauw et al. 2008; Das et al.
2009] or a reduced clock frequency [Bowman et al. 2011]. Or, a timing error signal can
be included in pipeline control logic [Fojtik et al. 2012].

A critical problem is to generate a timing error signal. This problem can be reduced
to that of generating a logic computation completion signal in asynchronous design.
The logic computation completion signal needs to be generated as soon as possible after
the logic computation is complete while, in generating a timing error signal, one only
needs to make a binary decision on whether the current logic computation leads to a

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

21:4 V. K. De et al.

timing error, and the timing error signal needs to be generated within the current clock
cycle.1

The existing logic computation completion signal generation techniques in asyn-
chronous design can be leveraged for generating a timing error signal in variable-
latency design, which is, however, too costly. Except for certain specific arithmetic
components, logic computation completion is detected in asynchronous circuits by en-
coding the logic outputs in a delay-insensitive code [Bose and Rao 1982; Jha and Wang
1993; Verhoeff 1988] such as m-hot code or dual-rail code, constructing a logic network
which allows only unidirectional (e.g., rising) signal transition (as in Domino logic),
and checking whether the logic outputs a legal codeword [Mago 1973]. This leads to
more than double gate count [Liu et al. 2012].

A timing error can be detected more cost efficiently based on time domain redundancy.
In Razor logic [Austin et al. 2004, 2005; Blaauw et al. 2008; Das et al. 2006, 2009; Ernst
et al. 2003, 2004; Fojtik et al. 2012] and Intel error detecting sequential (EDS) design
[Bowman et al. 2008, 2011], logic outputs are sampled at two different time spots for
each clock cycle by a flip-flop and a latch, respectively. Any mismatch between the flip-
flop and latch signals indicates a timing error. This, however, comes with a performance
cost because no signal transition is allowed in the error detection timing window.

While timing error detection is based on checking the combinational logic outputs,
timing error prediction is based on the combinational logic inputs [Benini et al. 1998,
1999; Su et al. 2011]. For cost, part of the existing logic network may be reused,
that is, timing error prediction can be based on signals at some internal nodes in an
existing logic network (which is alternatively called timing error detection in Neres
et al. [2009]).

For example, in a ripple-carry adder, the carry propagation chain is the timing-critical
path. The number of bits that carry propagation crosses determines the computation
latency, which is based on the inputs. For each bit i of the input operands a and b, the
carry propagation signal is given by pi = ai + bi, while the carry generation signal is
given by gi = ai · bi. A carry signal propagates across k bits if gi · pi+1 . . . pi+k = 1. A
variable-latency adder may include a fast and incomplete adder including only carry
chains of a length no more than k, and a slow and complete adder with a predictor
selecting one of the two adders [Kondo et al. 1997; Lu 2004]. There is only a tiny
probability to select the slow and complete adder, which leads to improved average
performance. This variable-latency logic design technique can be extended to other
arithmetic units such as multipliers [Olivieri 2001] and random logic blocks [Ghosh
et al. 2006, 2007].

CRISTA is a generic variable-latency VLSI design methodology which includes three
steps as follows [Ghosh et al. 2006, 2007].

(1) Recursively apply Shannon expansion
f (x1, . . . , xi, . . . , xn)

= xi · f (x1, . . . , xi = 1, . . . , xn)
+ x̄i · f (x1, . . . , xi = 0, . . . , xn)

= xi · CF1 + x̄i · CF2 (1)
and partition the combinational logic network into a timing-critical sub-network
and other non-timing-critical sub-networks whose outputs are joined by multiplex-
ers (Figure 1). A typical CRISTA implementation has n = 4 selected input variables,
and partitions a combinational logic network into 24 = 16 sub-networks. Assuming

1Because a flip-flop can be in a metastable state, the problem of generating a timing error signal, especially
timing error detection, may not be cleanly Boolean.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

Application-Specific Cross-Layer Optimization 21:5

Fig. 1. CRISTA logic.

50% signal (logic one occurrence) probability for the logic inputs and 24 = 16 sub-
networks, the critical sub-network which contains the timing critical path has an
activation probability of 2−4 = 6.25%.

(2) Optimize the combinational logic blocks by gate sizing.
(3) Scale down the power supply voltage and the clock-cycle time while meeting a given

timing yield requirement. Logic computation in the critical sub-network completes
in two clock cycles, while logic computation in the other sub-circuits completes in
one clock cycle.

In variable-latency design by function speculation [Neres et al. 2009], timing error
detection is based on selecting those internal nodes (as speculation points) in a logic
network which cut all timing-critical paths, and comparing their logic values with
their respective approximate logic values. For cost, the approximate logic networks are
achieved by reusing part of the existing logic network, that is, some of the existing
internal nodes are selected for approximate logic. This is similar to generalized bypass
transform [McGeer et al. 1991] or generalized select transform [Berman et al. 1990],
wherein a multiplexer selects between a fast and a slow signal based on a select logic,
with the fast signal coming from part of the existing logic network.

An approximate logic network of a minimal misprediction rate for a speculation point
may not be present in an existing logic network. An alternative timing error prediction
method is (to construct a “hold logic function” for a “telescopic unit”) based on the
critical-path sensitization condition, that is, the side inputs need to take their respective
non-controlling logic values [Benini et al. 1999]. Benini et al. show that constructing the
exact hold logic is NP-complete (as it is equivalent to path sensitization), and present
algorithms for constructing approximate hold logic of zero false negative misprediction
rate. They further present heuristic algorithms which select a subset of the critical-
path side inputs from the critical gates which form the minimum cut of the given
timing-critical paths [Benini et al. 1999]. Su et al. [2011] presented an exact hold logic
recursive formula for netlists including overlapping critical paths, and proposed to
construct an approximate hold logic module by omitting the hold logic components for
which the probability of assertion exceeds a certain threshold.

3. VARIABLE-LATENCY VLSI DESIGN

We formulate the variable-latency VLSI design problem as follows.

Problem 1 (Variable-Latency VLSI Design). Given a traditional synchronous sys-
tem operating under a clock frequency, construct a synchronous system under a higher

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

21:6 V. K. De et al.

Fig. 2. Minimum-intrusion variable-latency VLSI design.

clock frequency achieving the same computation output in a given timeframe, while
allowing the logic computations in a logic stage to complete in a flexible number of clock
cycles such that average performance is maximized or the area/power consumption is
minimized for a given average performance requirement.

We propose a generic minimum-intrusion variable-latency VLSI design paradigm,
a signal-probability-based approximate prediction logic construction method for mini-
mum misprediction rate at minimum cost, and an application-specific cross-layer anal-
ysis methodology as follows.

3.1. Minimum-Intrusion Variable-Latency Design Paradigm

For a given gate-level netlist f , we achieve minimum-intrusion variable-latency design
by constructing a logic computation completion prediction unit and a clock gating
mechanism (Figure 2). In normal operation, the prediction logic p outputs logic one,
drives the en signal to logic one, and enables the clock signal to reach the D flip-flops.
For any slow logic computation which requires more than one clock cycle, the prediction
logic p outputs logic zero, drives the en signal to logic zero, and blocks the clock signal
from reaching the D flip-flops. In the next clock cycle, the inverting D flip-flop and the
OR gate restore the en signal to logic one such that the slow logic computation takes
two clock cycles, and the circuit restores to normal operation. The latch and the AND
gate form a clock gate such that an updated en signal takes effect in the next clock
cycle and the output gclk signal has a fixed (e.g., 50%) duty cycle.

This variable-latency design paradigm (Figure 2) allows logic computation in a logic
stage to complete in one or two clock cycles. To allow logic computation in a logic stage
to complete in n > 2 clock cycles, the OR gate and the flip-flop in Figure 2 need to be
replaced by an FSM which returns to output one in n cycles after p falls.

We predict a timing error occurrence in the current clock cycle and apply global
clock gating before the next clock cycle such that no timing error occurs and no data is

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

Application-Specific Cross-Layer Optimization 21:7

Fig. 3. Timing-critical-path side input-based prediction logic.

corrupt (e.g., the inputs of a slow logic computation hold until the slow logic computation
completes). In comparison, Razor and Intel EDS designs detect a timing error in the
next clock cycle and recover the timing error by moving back to a previous state, such
as by computation replay [Blaauw et al. 2008; Das et al. 2009; Bowman et al. 2011],
or holding the previous state in a latch-based design [Fojtik et al. 2012]. For further
performance improvement, the prediction logic module can be integrated into a pipeline
control logic module.

We construct the prediction logic p as follows. For a given set of critical paths, we
predict activation of any of them based on the critical-path side inputs. Given a critical
path, for each gate in the critical path other than the on-path gate input, the other gate
inputs are off path and are called side inputs. For a signal to propagate through a path,
the side inputs need to take the non-controlling logic value of the gate, for instance,
logic one for an AND gate or logic zero for an OR gate. For multiple critical paths, the
prediction logic p outputs logic zero if any of the critical paths is activated (Figure 3).

p = 0 if
∨

π j∈�c

∧
si∈S(gi),gi∈π j

si = ncv(gi), (2)

where π j ∈ �c is a timing critical path, gi ∈ π j is a gate in path π j , si ∈ S(gi) is an
off-path (side) input of gate gi, and ncv(gi) is the non-controlling logic value of gate gi.

Note that we have if instead of iff (if and only if) in (2). We do not need to take
all critical-path side inputs for the prediction logic p. We only need to take at least
one side input for each critical path. Taking a subset of the critical-path side inputs
gives an approximation prediction logic. An approximation prediction logic needs to
identify all the given timing-critical paths (giving a zero false negative misprediction
rate) such that function correctness is guaranteed for all computations while allowing
some noncritical paths be identified as critical paths (giving a nonzero false positive
misprediction rate), leading to suboptimal performance. Taking a few critical-path side
inputs for prediction logic meets these requirements.

The advantages of this design paradigm include: (1) we apply minimum intrusion to
an existing gate-level netlist, and (2) we achieve minimum cost increase by reusing the
existing logic.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

21:8 V. K. De et al.

For correctness of this design paradigm, let us take a closer look at signal propagation
across a logic gate. Take as an example a two-input AND gate with an on-path input
a and an off-path side input b. When a rises (transits from a controlling to a non-
controlling logic value), then the following occurs.

(1) If b is 0 (controlling logic value), the path through a is not enabled, which p correctly
predicts.

(2) If b is 1 (non-controlling logic value), the path through a is enabled, which p correctly
predicts.

(3) If b rises (transits from a controlling to a non-controlling logic value) before a rises,
the path through a is enabled, which p correctly predicts.

(4) If b rises after a rises, the path through a is not enabled, while another path through
b is more timing critical and needs to be included in the set of timing-critical paths,
and p can correctly predict the path through b based on a taking a non-controlling
logic value.

(5) If b falls (transits from a non-controlling to a controlling logic value) before a rises,
the gate output remains logic zero and no path is enabled across the gate, which p
correctly predicts.

(6) If b falls after a rises, there is a glitch at the gate output which may propagate
through the path. When we reduce the clock-cycle time in variable-latency design,
such a glitch may be in the logic outputs. The prediction logic p predicts such a
glitch by including the path through b in the set of critical paths, and predicting
activation of the path through b based on a taking a non-controlling logic value.

There is further a timing requirement for the prediction logic. The prediction logic
needs to drive the en signal to logic zero, allowing a setup time for the latch before the
clock signal rises. This timing requirement can be easily met by selecting critical-path
side inputs which are closer to the logic inputs with a simple prediction logic p.

3.2. Prediction Logic Construction Methodology

Given a traditional synchronous system operating with a clock-cycle time TCC , a
variable-latency system operates with a reduced clock-cycle time T ′

CC and a clock gating
probability P0(p) = Pr(p = 0). For a computation which takes n clock cycles in the tra-
ditional synchronous system, running in a variable-latency system takes n(1 + P0(p))
clock cycles. The latency reduction is given by

T ′

T
= n(1 + P0(p))T ′

CC

nTCC
= T ′

CC

TCC
(1 + P0(p)). (3)

By timing analysis, we achieve a ranked list of timing-critical paths. For each timing-
critical path π j , we select a subset S′(π j) ⊆ S(π j) of the side inputs as the inputs of
a prediction logic pj , where p = ∧ j pj . The prediction logic pj outputs zero if all the
selected side inputs si ∈ S′(π j) take their respective non-controlling logic values ncv(gi),
where si is an off-path input of gate gi.

P0(pj) = Pr(pj = 0) = Pr

⎛
⎝ ∧

si∈S′(π j)

si = ncv(gi)

⎞
⎠ (4)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

Application-Specific Cross-Layer Optimization 21:9

ALGORITHM 1: Prediction Logic Construction
Input: gate-level netlist G, clock cycle time TCC , timing-critical paths �c,

signal probabilities, cost limit C
Output: prediction logic p for a variable-latency design of average latency T

within cost limit C
1. p = ∅, T = TCC
2. foreach (critical path π j ∈ �c) in descending order of D(π j) {
3. T ′

CC = D(π j+1)
4. foreach (side input si ∈ S(π j)) in ascending order of Pncv(si) {
5. construct prediction logic p′ including si by (2)
6. if (C(p′) > C) return p
7. calculate P0(p′) by (5) and T ′ = T ′

CC(1 + P0(p′))
8. if (T ′ < T) break
9. }
10. update prediction logic p = p′, T = T ′

11. }

Assuming stochastic independence between the side inputs,2 the preceding equation is
simplified as

P0(pj) =
∏

si∈S′(π j)

Pr(si = ncv(gi)) =
∏

si∈S′(π j)

Pncv(si), (5)

while the activation probability for path π j is given by

Pr(π j) =
∏

si∈S(π j)

Pncv(si), (6)

Clearly, we have

P0(pj) ≥ Pr(π j) (7)

since we have zero false negative and allow false positives. To closely approximate
Pr(π j) by P0(pj), we select the side inputs of minimum probability to take their respec-
tive non-controlling logic values.

We further develop an algorithm for selecting side inputs and constructing prediction
logic at minimum cost as follows. Given a ranked list of timing-critical paths, at each
step, we have the choice of improving the runtime speedup based on Eq. (3) by: (1)
reducing the clock-cycle time T ′

CC by selecting a side input of the next timing-critical
path, or (2) reducing the clock gating occurrence probability P0(p) by selecting another
side input of the current timing-critical path or one of the processed timing-critical
paths. In a greedy algorithm, we compare these choices and select the side input that
gives the maximum runtime speedup improvement at each step. However, there are
circumstances that we can only improve the runtime speedup by including multiple
side inputs in a critical path (because including any single side input would make P0(p)
too large). An improved algorithm (Algorithm 1) is as follows. If, by selecting a side
input in the current critical path, we improve the runtime speedup, we proceed to the
next critical path. Otherwise, we continue to select more side inputs in the current
critical path for a smaller P0(p), until we improve the runtime speedup or we reach the
cost limit.

2More accurate signal probability analysis techniques considering signal correlations can be found, for
example, in Liu [2008].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

21:10 V. K. De et al.

3.3. Application-Specific Cross-Layer Analysis

A couple of methodologies are available for timing-critical paths and their side input
signal probabilities, including simulation, STA, SSTA, and signal switching analysis
as in power estimation.

For accuracy, we obtain signal probabilities by simulation, as signal probabilities
strongly depend on workload. Different workloads lead to different signal probabilities
and potentially to different variable-latency designs. Subsequently, variable-latency
design is application specific and best applied to systems of a few specific application
programs such as automotive electronics or embedded systems as part of the Internet
of Things. For a general-purpose system, we may construct a variable-latency system
based on the average workload, which may not be the optimal design for any specific
application program.

For efficiency, we run simulation only at architecture/behavior level for given work-
load and collect signal probabilities at sequential elements and primary inputs. At gate
level, we apply signal-probability-based statistical methods for timing-critical path de-
lays, activation probabilities, and side input signal probabilities.

We have developed a combined statistical timing analysis and signal probability
analysis method, namely signal probability-based statistical timing analysis (SPSTA)
[Liu 2008].

SPSTA leverages the signal probability analysis techniques in VLSI power estima-
tion [Najm 1993]. For example, for an AND gate, its output signal logic one occurrence
probability is given by the product of the signal logic one occurrence probabilities at
the gate inputs; for an OR gate, its output signal logic zero occurrence probability is
given by the product of the signal logic zero occurrence probabilities at the gate inputs.
Given signal probabilities at the logic inputs, signal probability analysis calculates
signal probabilities for all the nodes in a gate-level netlist with a runtime complexity
linear to the size of the netlist. That is, the toggling rate ρ(y) of a signal at the output
of a simple logic gate is given by

ρ(y) =
∑

i

∏
j �=i

Pnc(xj)ρ(xi), (8)

where Pnc(xj) = Pr(xj = vnc(xj)) is the probability for a side input xj to take its non-
controlling logic value vnc(xj). SPSTA extends the signal toggling rate in power esti-
mation to a signal transition occurrence probability (top) function in the time domain.
The time domain integral (area under the curve) of a top function is the signal toggling
rate. The extremes of a top function give the minimum and maximum signal arrival
times, respectively. A top function is computed as follows, similar to a toggling rate.

φ(y) =
∑

i

∏
j �=i

Pnc(xj)φ(xi) (9)

Compared with traditional STA and SSTA techniques, SPSTA gives not only timing-
critical path delays but also their activation probabilities. In particular, SPSTA ex-
cludes false paths (which have zero activation probabilities) by integrating some of the
existing ATPG techniques, such as backtracing and justification, which find any logic
conflict in assigning side inputs to their respective non-controlling logic values.

Further, SPSTA finds timing-critical signal propagation networks besides timing-
critical paths. A timing-critical signal propagation network includes multiple converg-
ing signal propagation paths. This is because, in the presence of performance variabil-
ities, the maximum of multiple input signal arrival times gives the worst-case signal
arrival time at the output of a gate. For example, for an AND gate, two rising input
signals give a larger or equal signal arrival time at the gate output compared with

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

Application-Specific Cross-Layer Optimization 21:11

any single rising input signal, while two falling input signals give a smaller or equal
signal arrival time at the output of the AND gate compared with any single falling
input signal.

4. EXPERIMENTS

In this section, we present our experimental results in evaluating the proposed
minimum-intrusion predictive variable-latency VLSI design methodology.

4.1. Experimental Setup

We run behavioral-level simulation of the design using VCS and C language programs
and generate an SAIF file. We later calculate input signal activation probabilities from
signal switching activity and toggling rates listed in the SAIF file. In application-
specific system design in which the targeted design would operate on a set of deter-
mined programs, running VCS on such programs would be sufficient. However, in
the case of a general-purpose system, a set of benchmark programs characterizing a
workload of a such system can be used (e.g., SPEC). Alternatively, as the embedded ap-
plication domain becomes the fastest expanding market segment in the semiconductor
industry, a number of benchmarks have been developed which characterize embed-
ded systems workloads. For this purpose we make use of the freely available SPEC
MiBench benchmark [Guthaus et al. 2001]. MiBench contains an Automotive and In-
dustrial Control category of programs that characterize typical automotive processes
of applications such as air-bag controllers, engine performance monitors, and sensor
systems. From the Automotive and Industrial Control category we use basicmath, bit-
count, and stringsearch benchmarks. Since networking is becoming more vital as the
number of MCUs increases in automotives, we consider the dijkstra benchmark from
the Network category as well. In cases where cross-layer system optimization is not
pursued, random input signal activation probabilities can be taken into account and
this step can be completely disregarded.

Because we still need to bound the worst-case critical-path delay in this predictive
variable-latency design methodology, we simplify SPSTA by removing any gate delay
variation such that each gate has a fixed minimum/maximum delay based on the
fast/slow cell library. We run Synopsys PrimeTime and generate an SDF file. SPSTA
reads in the SDF file and a Verilog gate-level netlist. We have verified that our modified
SPSTA program outputs the same critical-path delays as PrimeTime.

4.2. Test Cases, Results and Observations

Our first test case is the integer unit of an open-source 32-bit SPARC V8 processor
LEON2 [Gaisler 2015], which includes a simple 5-stage instruction pipeline for fetch,
decoder, execute, memory, and writeback without a multiplier or divider. The integer
unit circuit consists of approximately 10,000 gates. We first perform timing-driven
logic synthesis by running Synopsys Design Compiler based on the Nangate 45nm
open cell library [Silicon Integration Initiative (SI2) 2015] and achieve a gate-level
netlist for a given clock-cycle time. We then apply our predictive variable-latency de-
sign methodology. We have developed a modified SPSTA program for timing analysis
and signal probability analysis. We have verified that our modified SPSTA program
reports the same critical-path delays as PrimeTime. We have also verified that our
modified SPSTA program and VCS logic simulation report the same clock gating prob-
ability for variable-latency designs. We run our modified SPSTA program and print
out the critical-path delays, their activation probabilities, and their side input non-
controlling value signal probabilities for random inputs. For each critical path we find
a side input of minimum non-controlling value signal probability, and calculate an es-
timated variable-latency design average latency (Algorithm 1). For example, for each

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

21:12 V. K. De et al.

Fig. 4. Critical-path delay vs. estimated variable-latency design average latency for the top 97 critical paths
in a LEON2 integer unit gate-level netlist synthesized by Synopsys Design Compiler with a 3.0ns clock-cycle
time.

of the first 97 critical paths in a LEON2 integer unit gate-level netlist synthesized
by Synopsys Design Compiler with a 3.0ns clock-cycle time, Figure 4 gives delay and
average latency T ′

CC(1 + P0(p)) of a predictive variable-latency design estimated based
on the minimum side input non-controlling value signal probabilities. Average latency
values on the plot are calculated for the critical paths being predicted up to that critical-
path delay. The minimum average latency is achieved by predicting the first 14 critical
paths.

We achieve an application-specific predictive variable-latency design in addition to
a generic predictive variable-latency design for each of the 9 LEON2 integer unit
gate-level netlists synthesized by Synopsys Design Compiler with a clock-cycle time
between 1.98ns and 5.96ns. We use random input signal activation probabilities for the
generic design. For application-specific design we use average input signal probabil-
ities calculated from architecture/behavior-level simulation over basicmath, bitcount,
stringsearch, and dijkstra benchmarks [Guthaus et al. 2001]. Figure 5, Table I, and
Table II compare these Synopsys Design Compiler logic synthesis results with their
corresponding variable-latency design improvements in terms of area, average latency,
and energy consumption. The average latency is the maximum true path delay Dtdd
in a traditional timing-driven design, or the maximum delay Dvld of all the true paths
excluding the predicted paths in a variable-latency design which are further affected by
the clock gating probability Pclkgating. The energy consumption is the power consumption
times the clock-cycle time.

We observe that the proposed predictive variable-latency design methodology pro-
vides a quite superior area vs. performance trade-off curve compared with Synop-
sys Design Compiler timing-driven logic synthesis. While Synopsys Design Compiler
timing-driven logic synthesis achieves a minimum average latency of 3.37ns, predic-
tive variable-latency design further reduces it to 2.07ns or by 38.58%. On average, our
proposed predictive variable-latency design reduces the average latency by 26.80% at
a cost of 0.08% area and 0.4% energy consumption increase for the LEON2 proces-
sor interger unit with a clock-cycle time between 1.98ns and 5.96ns. When statistical
cross-layer optimization for an automotive electronic embedded system design is ap-
plied, improvement in average latency is 41.8%. The prediction unit only requires
simple logic such that it introduces minimum area and energy consumption.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

Application-Specific Cross-Layer Optimization 21:13

Fig. 5. Area vs. average latency of 9 LEON2 integer unit gate-level netlists synthesized by Synopsys Design
Compiler and their corresponding variable-latency improvements of random input activation probability and
high activation probability.

Table I. Comparison of LEON2 Integer Unit Gate-Level Netlists Synthesized by Synopsys Design Compiler and
their Corresponding Predictive Variable-Latency Improvements in Terms of Area (μm2), Energy Consumption

(f J), and Average Latency (ns) for Random Logic Inputs

Timing-Driven Design Generic Variable-Latency Design Improvements
CC Avg. Avg. Pred. GCK Avg.
Const. Area Energy Lat. Area Energy Lat. Path Prob. Area Energy Lat.
(ns) (μm2) (f J) (ns) (μm2) (f J) (ns) (#) (%) (%) (%) (%)
3.0 16549.45 6167.4 3.44 16561.82 6191.51 2.07 14 4.9 0.07 0.39 −39.82
3.1 16392.06 6105.45 3.37 16404.43 6128.10 2.287 10 6.9 0.07 0.37 −32.14
3.4 15647.13 5760.62 3.56 15659.50 5780.14 2.79 9 6.6 0.07 0.34 −21.63
4.0 14844.01 5587.2 3.84 14856.53 5610.22 2.733 8 2.4 0.08 0.41 −28.82
4.5 14512.80 5434.65 3.67 14526.73 5457.85 3.273 8 .25 0.09 0.42 −10.82
5.0 14359.35 5393.0 3.92 14377.49 5413.16 3.469 7 7.6 0.12 0.37 −11.51
5.5 14168.74 5371.57 5.21 14181.11 5394.84 3.746 9 .10 0.08 0.43 −28.10
6.0 14130.67 5310.6 5.70 14144.75 5329.27 3.82 14 .09 0.09 0.35 −32.98
6.5 13983.69 5270.98 5.96 13996.06 5298.48 3.85 8 .09 0.08 0.50 −35.40

Also listed are the number of predicted critical paths and the clock gating probability for each variable-
latency design.

Furthermore, to test how our variable latency design performs for a significantly
different set of inputs, we provided very high activation probability on all the in-
puts (75% Stable One and 80% Rising). We gathered new average latency results of
our variable-latency design for each of the 9 LEON2 integer unit gate-level netlists
synthesized by Synopsys Design Compiler with a clock-cycle time between 1.98ns
and 5.96ns. Figure 5 compares the Synopsys Design Compiler logic synthesis results
with their corresponding variable-latency design improvements in terms of area and
average latency of random input activation probability and high activation probabil-
ity. Our results show 12.6% average change in average latency. Reduction in average
latency of our variable-latency design, compared to time-driven design using the Syn-
opsys tools, decreases from 26.8% to 17.48%.

Our second test case is the floating-point unit of an open-source 32-bit SPARC V8
processor LEON2 [Gaisler 2015], which includes a 5-stage pipeline of opcode stage,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

21:14 V. K. De et al.

Table II. Comparison of LEON2 Integer Unit Gate-Level Netlists Synthesized by Synopsys Design Compiler and
their Corresponding Predictive Variable-Latency Improvements in Terms of Area (μm2), Energy Consumption

(f J), and Average Latency (ns) for Automotive Applications

Timing-Driven Design App-Specific Variable-Latency Design Improvements
CC Avg. Avg. Pred. GCK Avg.
Const. Area Energy Lat. Area Energy Lat. Path Prob. Area Energy Lat.
(ns) (μm2) (f J) (ns) (μm2) (f J) (ns) (#) (%) (%) (%) (%)
3.0 16549.45 6167.4 3.44 16654.83 6232.14 1.417 268 4.2 0.63 1.0 −58.8
3.1 16392.06 6105.45 3.37 16494.15 6189.25 1.543 165 4.8 0.61 1.3 −54.2
3.4 15647.13 5760.62 3.56 15723.13 5805.62 1.9 95 4 0.4 0.7 −46.6
4.0 14844.01 5587.2 3.84 14909.11 5619.2 2.12 86 4 0.4 0.5 −44.7
4.5 14512.80 5434.65 3.67 14557.8 5702.37 2.46 56 3.1 0.3 0.5 −32.9
5.0 14359.35 5393.0 3.92 14406.35 5425.56 2.66 45 2.5 0.32 0.5 −32.1
5.5 14168.74 5371.57 5.21 14254.38 5399.54 3.26 16 0.1 0.1 0.5 −37.4
6.0 14130.67 5310.6 5.70 14140.38 5330.68 3.752 18 0.1 0.1 0.3 −34.17
6.5 13983.69 5270.98 5.96 13995.12 5279.38 3.847 10 0.1 0.09 0.51 −35.4

Also listed are the number of predicted critical paths and the clock gating probability for each variable-
latency design.

pre-normalization stage, addition/subtraction stage, post-normalization stage, and
rounding stage. Once again we perform timing-driven logic synthesis by running Syn-
opsys Design Compiler based on the Nangate 45nm open cell library [Silicon Inte-
gration Initiative (SI2) 2015] and achieve a gate-level netlist for a given clock-cycle
time. We then apply our predictive variable-latency design methodology. We applied
our methodology based on Algorithm 1. After running our modified SPSTA program,
we print out the critical-path delays, their activation probabilities, and their side input
non-controlling value signal probabilities for random inputs. For each critical path we
find a side input of minimum non-controlling value signal probability, and calculate an
estimated variable-latency design average latency to the point that no improvement in
average latency can be achieved. We start selecting more side inputs to reach minimum
average latency (Algorithm 1). For example, for each of the first 95 critical paths in a
LEON2 floating-point unit gate-level netlist synthesized by Synopsys Design Compiler
with a 12.0ns clock-cycle time, Figure 6 depicts our methodology and gives the delay
and average latency of a predictive variable-latency design estimated based on the
minimum side inputs’ non-controlling value signal probabilities.

We attained a predictive variable-latency design for each of the 13 LEON2 floating-
point unit gate-level netlists synthesized by Synopsys Design Compiler with a
clock-cycle time between 4.28ns and 15.6ns. Figure 7 and Table III compare these Syn-
opsys Design Compiler logic synthesis results with their corresponding variable-latency
design improvements in terms of area, average latency, and energy consumption. Our
variable-latency design methodology based on Algorithm 1 on average reduces the av-
erage latency by 14.65% at cost of 3.4% area and 2.2% energy consumption for the
floating-point unit with a clock-cyle time between 3.49ns and 13.74ns.

4.3. Further Discussion and Comparison to Existing Variable-Latency Design Techniques

Besides comparing with a mainstream logic synthesizer Synopsys Design Compiler,
we compare the proposed predictive variable-latency design methodology with a few
leading variable-latency design methodologies in literature as follows.

(1) RAZOR and Intel EDS designs are timing-error-detection-based variable-latency
design techniques. In comparison, the proposed methodology is based on tim-
ing error prediction and still requires a timing analysis method to bound the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

Application-Specific Cross-Layer Optimization 21:15

Fig. 6. Critical-path delay vs. estimated variable-latency design average latency for the top 95 critical paths
in a LEON2 floating-point unit gate-level netlist synthesized by Synopsys Design Compiler with a 12.0ns
clock-cycle time.

Fig. 7. Area vs. average latency of 13 LEON2 floating-point unit gate-level netlists synthesized by Synopsys
Design Compiler and their corresponding variable-latency improvements.

worst-case timing performance under parametric variations, the same as in tradi-
tional synchronous design. The proposed methodology gives some of the top critical
paths two clock cycles for a signal to propagate through, thus reducing the timing
error rate due to performance variability compared with traditional synchronous
design. A timing margin �T for performance variation tolerance can be taken
into account in prediction logic construction as in Su et al. [2011]. The proposed
predictive variable-latency design methodology can be extended to combine with a
detective variable-latency design methodology, for example, by deploying a timing
error detection element at the end of a critical path under prediction. This tim-
ing error detection signal is integrated with the timing error prediction logic such
that clock gating is applied only if: (1) a critical/near-critical path p is predicted
to have a signal transition propagating through, and (2) at the end of the path p

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

21:16 V. K. De et al.

Table III. Comparison of LEON2 Floating-Point Unit Gate-Level Netlists Synthesized by Synopsys Design
Compiler and their Corresponding Predictive Variable-Latency Improvements in Terms of Area (μm2), Energy

Consumption (f J), and Average Latency (ns) for Random Logic Inputs

Timing-Driven Design Variable-Latency Design Improvements
CC Avg. Avg. Pred. GCK Avg.
Const. Area Energy Lat. Area Energy Lat. Path Prob. Area Energy Lat.
(ns) (μm2) (f J) (ns) (μm2) (f J) (ns) (#) (%) (%) (%) (%)
4.0 9718.4 3040.2 4.28 10045.15 3098.44 3.4 114 0.1 3.3 1.91 −20.56
5.0 8730.35 2818.65 5.23 9015.05 2866.8 4.0 149 0.6 3.2 1.7 −23.52
6.0 8476.35 2749.38 6.24 9214.7 2857.92 5.2 110 0.3 8 3.9 −16.7
8.0 8366.87 2610.72 8.38 8871.07 2716.8 7.17 130 0.2 6 4.0 −14.42
9.0 8482.33 2639.88 9.25 8971.65 2735.82 8.45 92 0.13 5.7 3.6 −8.6
10.0 8354.24 2663.3 10.27 8799.08 2746.5 9.35 86 0.15 5.3 3.1 −9
12.0 8239.08 2616.6 12.16 8801.35 2733.84 10.88 99 0.25 6.8 4.4 −10.53
14.0 8228.62 2620.24 13.94 8447.32 2664.48 12.02 38 0.5 2.6 1.6 −13.77
14.5 8234.69 2636.1 14.50 8355.94 2667.27 12.4 26 0.8 1.4 1.18 −14.48
15.0 8226.79 2619.15 14.87 8315.44 2645.1 12.5 23 0.9 1.07 0.9 −15.94
15.5 8232.48 2633.91 15.47 8317.36 2660.73 12.43 24 1.0 1.03 0.9 −19.65
16.0 8226.80 2617.44 15.6 8294.87 2641.76 13.75 18 0.5 0.8 0.9 −11.67
16.5 8229.32 2632.08 15.6 8284.5 2655.34 13.78 16 0.5 0.6 0.8 −11.67

Also listed are the number of predicted critical paths and the clock gating probability for each variable-
latency design.

no signal transition is detected. This combined predictive and detective variable-
latency design methodology reduces the misprediction rate without missing any
timing error in prediction, thus further improving average latency. It further im-
proves design reliability under performance variability in that an accurate timing
analysis method giving the worst-case timing performance may not be needed.
This combined predictive and detective variable-latency design requires a smaller
number of timing error detection elements compared with the existing detective
variable-latency designs.

(2) CRISTA is a predictive variable-latency design technique. CRISTA applies Shan-
non expansion for each logic network and inserts a multiplexer for each output bit
which leads to significant area increase. CRISTA has a fixed 6.25% clock gating
probability which affects the performance improvement. For a three-stage pipeline
wherein each stage is an MCNC benchmark circuit, CRISTA achieves an average of
60% power saving with 18% area overhead and 6% performance degration [Ghosh
et al. 2006, 2007].

(3) The telescopic design methods are state-of-the-art variable-latency design methods
[Benini et al. 1998, 1999; Su et al. 2011]. Benini et al. proposed to construct a tele-
scopic unit or hold logic module based on the critical-path sensitization condition
[Benini et al. 1999]. Benini et al. further proposed to find a minimum number of
critical gates which cut all the critical paths, and construct the hold logic based on
some of the critical-gate side inputs [Benini et al. 1999]. Su et al. [2011] further
presented an exact hold logic recursive formula for netlists including overlapping
critical paths, and proposed to construct an approximate hold logic module by
omitting those components for which the probability of assertion exceeds a cer-
tain threshold. Our proposed technique can be taken as a further improvement of
these techniques. We sort the critical-path side inputs by their non-controlling logic
value probabilities, and construct a prediction logic based on the critical-path side
inputs of the minimum non-controlling logic value probabilities. We further cal-
culate the critical-path activation probabilities and side input signal probabilities

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

Application-Specific Cross-Layer Optimization 21:17

by architecture-level simulation and SPSTA [Liu 2008]. SPSTA is an input-aware
statistical timing analyzer which gives signal probabilities and path activation
probabilities besides critical-path delays. While the state-of-the-art telescopic de-
sign methods in Benini et al. [1999] and Su et al. [2011] achieve, respectively, an
average performance improvement of 13.99% and 21.67% with an area overhead of
11.62% and 16.20% for the ISCAS’85 and ISCAS’89 benchmark circuits, we achieve
an average performance improvement of 26.80% (14.65%) with an area overhead
of 0.08% (3.4%) for the LEON2 processor integer (floating point) unit.

We apply the proposed prediction unit construction method after logic synthesis
for accurate timing analysis and a fixed group of timing-critical paths. Subsequent
physical design procedures may introduce timing analysis inaccuracy or even new
timing-critical paths. This can be handled by predicting a few more near-critical paths
or updating the prediction logic in post-route timing optimization or engineer-change-
order (ECO).

5. CONCLUSION

In this article we present an improved variable-latency design methodology includ-
ing: (1) a generic minimum-intrusion variable-latency VLSI design paradigm, (2) a
signal-probability-based approximate prediction logic construction method for mini-
mum false positive misprediction rate at minimum cost, (3) an application-specific
cross-layer analysis methodology. This methodology improves average performance at
minimum area and energy consumption overhead because: (1) a critical path typi-
cally has a tiny activation probability which is the probability for all its side inputs
to have their respective non-controlling logic values, and (2) prediction of critical path
activation requires a simple logic and an area that is linear to the number of inputs.
Our experimental results based on an open-source SPARC V8 processor LEON2 and
the 45nm Nangate open-source cell library show that the proposed variable-latency
design methodology, on average, reduces the expected logic computation latency by
26.80%(14.65%) at average cost of 0.08%(3.4%) area and 0.4%(2.2%) energy consump-
tion increase for the interger (floating point) unit with a clock-cycle time between
1.97ns(3.49ns) and 5.96ns(13.74ns), while improvement in average latency for an au-
tomotive electronic-specific design is 41.8%. Our ongoing research targets integrating
timing error prediction logic into the existing instruction pipeline stall logic for further
performance improvement.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their valuable comments and Jiaxin Guo, Abdullah Al
Owahid, and Mohammed Quiyaam Farooqui for their contribution to the experimental setup.

REFERENCES

M. Alam. 2008. Reliability- and process-variation aware design of integrated circuits. Microelectron. Reliab.
48, 1114–1122.

T. Austin, V. Bertacco, D. Blaauw, and T. Mudge. 2005. Opportunities and challenges for better than worst-
case design. In Proceedings of the Asian and South Pacific Design Automation Conference (ASP-DAC’05).
2–7.

T. Austin, D. Blaauw, T. Mudge, and K. Flautner. 2004. Making typical silicon matter with razor. IEEE
Comput. 37, 3, 57–65.

L. Benini, E. Macii, M. Poncino, and G. D. Micheli. 1998. Telescopic units: A new paradigm for performance
optimization of VLSI designs. IEEE Trans. Comput.-Aided Des. 17, 3, 220–232.

L. Benini and G. D. Micheli. 2004. Networks on chips: A new paradigm for component-based MPSoC design.
http://si2.epfl.ch/∼demichel/publications/archive/2004/mpsoc.pdf.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

21:18 V. K. De et al.

L. Benini, G. D. Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino. 1999. Automatic synthesis of large
telescopic units based on near-minimum timed supersetting. IEEE Trans. Comput. 48, 8, 769–779.

C. L. Berman, D. J. Hathaway, A. S. Lapaugh, and L. Trevillyan. 1990. Efficient techniques for timing
corretion. In Proceedings of the IEEE International Symposium Circuits and Systems (ISCA’90). 415–
419.

D. Blaauw, S. Kalaiselvan, K. Lai, W.-H. Ma, S. Pant, C. Tokunaga, S. Das, and D. Bull. 2008. RAZOR-II:
In-situ error detection and correction for PVT and SER tolerance. In Proceedings of the IEEE Solid State
Circuits Conference (ISSCC’08). 400–401.

S. Borkar. 2005. Designing reliable systems from unreliable components: The challenges of transistor vari-
ability and degradation. IEEE Micro 11, 10–15.

B. Bose and T. R. N. Rao. 1982. Theory of unidirectional error correcting/detecting codes. IEEE Trans.
Comput. C-31, 6, 521–530.

K. A. Bowman, J. W. Tschanz, N. S. Kim, J. Lee, C. B. Wilkerson, S. L. Lu, T. Karnik, and V. K. De. 2008.
Energy-efficient and metastability-immune timing-error detection and instruction-replay-based recov-
ery circuits for dynamic-variation tolerance. In Proceedings of the IEEE Solid State Circuits Conference
(ISSCC’08). 402–623.

K. A. Bowman, J. W. Tschanz, S.-L. L. Lu, P. A. Aseron, M. M. Khellah, A. Raychowdhury, B. M. Geuskens,
C. Tokunaga, C. B. Wilkerson, T. Karnik, and V. K. De. 2011. A 45nm resilient microprocessor core for
dynamic variation tolerance. IEEE J. Solid State Circ. 46, 1, 194–208.

S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, and T. Mudge. 2006. A self-tuning dvs
processor using delay-error detection and correction. IEEE J. Solid State Circ. 41, 4, 792–804.

S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. M. Bull, and D. T. Blaauw. 2009. Razorii:
In situ error detection and correction for PVT and SER tolerance. IEEE J. Solid State Circ. 44, 1, 32–48.

D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flautner. 2004. RAZOR: Circuit-
level correction of timing errors for low-power operation. IEEE Micro 24, 6, 10–20.

D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw, T. Austin, and T. Mudge.
2003. RAZOR: A low-power pipeline based on circuit-level timing speculation. In Proceedings of the 36th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’03). 7.
M. Fojtik, D. Fick, Y. Kim, N. Pincknet, D. Harris, D. Blaauw, and D. Sylvester. 2012. Bubble razor: An

architecture-independent approach to timing-error detection and correction. In Proceedings of the IEEE
Solid State Circuits Conference (ISSCC’12). 488–490.

S. B. Furber and P. Day. 1996. Four-phase micropipeline latch control circuits. IEEE Trans. VLSI Syst. 4, 2,
247–253.

A. Gaisler. 2015. LEON SPARC V8 processors. http://www.gaisler.com/.
S. Ghosh, S. Bhunia, and K. Roy. 2006. A new paradigm for low-power, variation-tolerant circuit synthesis

using critical path isolation. In Proceedings of the IEEE International Conference Computer-Aided Design
(ICCAD’06). 619–624.

S. Ghosh, S. Bhunia, and K. Roy. 2007. Crista: A new paradigm for low-power, variation-tolerant, and adaptive
circuit synthesis using critical path isolation. IEEE Trans. Comput.-Aided Des. 26, 11, 1947–1956.

S. Ghosh and K. Roy. 2010. Parameter variation tolerance and error resiliency: New design paradigm for the
nanoscale era. Proc. IEEE 98, 10, 1718–1751.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. 2001. Mibench: A
free, commercially representative embedded benchmark suite. In Proceedings of the IEEE International
Workshop on Workload Characterization (WWC’01). 3–14.

S. Hauck. 1995. Asynchronous design methodologies: An overview. Proc. IEEE 83, 1, 69–93.
N. K. Jha and S. J. Wang. 1993. Design and synthesis of self-checking VLSI circuits. IEEE Trans. Comput.-

Aided Des. 12, 878–887.
D. R. Kelly and B. J. Phillips. 2005. Arithmetic data value speculation. In Proceedings of the 10th Asia-Pacific

Conference on Advances on Computer Systems Architecture (ACSAC’05). 353–366.
Y. Kondo, N. Ikumi, K. Ueno, J. Mori, and M. Hirano. 1997. An early-completion-detecting alu for a 1GHz

64B datapath. In Proceedings of the IEEE Solid State Circuits Conference (ISSCC’97). 418–497.
B. Liu. 2008. Signal probability based statistical timing analysis. In Proceedings of the Design, Automation,

and Test in Europe Conference (DATE’08). 562–567.
B. Liu, X. Chen, and F. Teshome. 2012. Resilient and adaptive performance logic. ACM J. Emerg. Technol.

Comput. Syst. 8, 3.
S.-L. Lu. 2004. Speeding up processing with approximation circuits. Comput. 37, 3, 67–73.
G. Mago. 1973. Monotone functions in sequential circuits. IEEE Trans. Comput. 22, 10, 928–933.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

Application-Specific Cross-Layer Optimization 21:19

P. C. Mcgeer, R. K. Brayton, A. L. Sangiovanni-Vincentelli, and S. K. Sahni. 1991. Performance enhancement
through the generalized bypass transform. In Proceedings of the IEEE International Conference on
Computer-Aided Design (ICCAD’91). 184–187.

D. E. Muller and W. S. Bartky. 1959. A theory of asynchronous circuits. In Proceedings of the International
Symposium on the Theory of Switching. 204–243.

F. N. Najm. 1993. Transition density: A new measure of activity in digital circuits. IEEE Trans. Comput.-
Aided Des. Integr. Circ. Syst. 12, 2, 310–323.

D. B. Neres, J. Cortadella, and M. Kishinevsky. 2009. Variable-latency design by function speculation. In
Proceedings of the Design, Automation, and Test in Europe Conference (DATE’09). 1704–1709.

M. Olivieri 2001. Design of synchronous and asynchronous variable-latency pipelined multipliers. IEEE
Trans. VLSI Syst. 9, 2, 365–376.

Silicon Integration Initiative (SI2). 2015. Nangate open cell library. http://www.si2.org/openeda.si2.org/
projects/nangatelib/.

M. Singh and S. M. Nowick. 2007. MOUSETRAP: Ultra-high-speed transition signaling asynchronous
pipelines. IEEE Trans. VLSI Syst. 15, 6, 684–698.

J. Sparso and S. Furber. 2001. Principles of Asynchronous Circuit Design – A Systems Perspective. Kluwer
Academic.

Y.-S. Su, D.-C. Wang, S.-C. Chang, and M. Marek-Sadowska. 2011. Performance optimization using variable-
latency design style. IEEE Trans. VLSI Syst. 19, 10, 1874–1883.

I. E. Sutherland. 1989. Micropipelines. Comm. ACM 32, 6, 720–738.
T. Verhoeff. 1988. Delay-insensitive codes – An overview. Distrib. Comput. 3, 1–8.
N. H. E. West and D. M. Harris. 2011. CMOS VLSI Design: A Circuits and Systems Perspective, 4th ed.

Addison-Wesley.

Received June 2014; revised October 2014; accepted March 2015

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 3, Article 21, Pub. date: September 2015.

