
66

An Improved Methodology for Resilient Design Implementation

ANDREW B. KAHNG, University of California, San Diego
SEOKHYEONG KANG, Ulsan National Institute of Science and Technology
JIAJIA LI, University of California, San Diego
JOSE PINEDA DE GYVEZ, NXP Semiconductors

Resilient design techniques are used to (i) ensure correct operation under dynamic variations and to (ii) im-
prove design performance (e.g., timing speculation). However, significant overheads (e.g., 16% and 14%
energy penalties due to throughput degradation and additional circuits) are incurred by existing resilient
design techniques. For instance, resilient designs require additional circuits to detect and correct timing er-
rors. Further, when there is an error, the additional cycles needed to restore a previous correct state degrade
throughput, which diminishes the performance benefit of using resilient designs. In this work, we describe
an improved methodology for resilient design implementation to minimize the costs of resilience in terms of
power, area, and throughput degradation. Our methodology uses two levers: selective-endpoint optimization
(i.e., sensitivity-based margin insertion) and clock skew optimization. We integrate the two optimization
techniques in an iterative optimization flow which comprehends toggle rate information and the trade-off
between cost of resilience and margin on combinational paths. Since the error-detection network can result
in up to 9% additional wirelength cost, we also propose a matching-based algorithm for construction of the
error-detection network to minimize this resilience overhead. Further, our implementations comprehend the
impacts of signoff corners (in particular, hold constraints, and use of typical vs. slow libraries) and process
variation, which are typically omitted in previous studies of resilience trade-offs. Our proposed flow achieves
energy reductions of up to 21% and 10% compared to a conventional (with only margin used to attain ro-
bustness) design and a brute-force implementation (i.e., a typical resilient design, where resilient endpoints
are (greedily) instantiated at timing-critical endpoints), respectively. We show that these benefits increase
in the context of an adaptive voltage scaling strategy.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids—Placement and routing

General Terms: Design

Additional Key Words and Phrases: Resilience, energy reduction, design optimization

ACM Reference Format:
Andrew B. Kahng, Seokhyeong Kang, Jiajia Li, and Jose Pineda de Gyvez. 2015. An Improved methodology
for resilient design implementation. ACM Trans. Des. Autom. Electron. Syst. 20, 4, Article 66 (September
2015), 26 pages.
DOI: http://dx.doi.org/10.1145/2749462

1. INTRODUCTION

IC products in advanced technology nodes are susceptible to dynamic variations that
manifest via supply voltage droop, temperature fluctuation, cross-coupling, aging, and

This paper is an extended and revised version of Kahng et al. [2014].
Authors’ addresses: A. B. Kahng, Department of Computer Science and Engineering, and Electrical and
Computer Engineering, University of California at San Diego; S. Kang, School of Electrical and Com-
puter Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea; J. Li (corre-
sponding author), Department of Electrical and Computer Engineering, University of California at San
Diego; J. Pineda de Gyvez, NXP Semiconductors, Eindhoven, The Netherlands; corresponding author’s
email: jil150@ucsd.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2015 ACM 1084-4309/2015/09-ART66 $15.00

DOI: http://dx.doi.org/10.1145/2749462

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:2 A. B. Kahng et al.

other mechanisms. To ensure correct functionality and robustness, traditional IC im-
plementation methodologies build guardband into clock frequencies and design sign-
offs—notably, timing signoff at slow corners and for hold-time correctness. However, it
is well recognized that designing for worst-case conditions incurs considerable power
and performance overheads. Better Than Worst-Case design [Austin et al. 2005], where
an error checker and corresponding recovery mechanism enable typical-case optimiza-
tion, can significantly reduce overdesign compared to traditional methodologies. A
similar idea for guardband reduction has been proposed by Bowman et al. [2009b],
where several techniques for dynamic variation tolerance (i.e., resilient designs) are
presented.

Resilient designs, as discussed in this work, use variant register (i.e., timing end-
point) circuit designs to trade off design robustness against design quality (perfor-
mance, power, and area); ideally, they can ensure correctness against variation and
improve signoff performance [Choudhury et al. 2010; Das et al. 2009; Ernst et al. 2003;
Ghosh and Roy 2007; Greskamp and Torrellas 2007; Subramanian and Somani 2008].
Razor [Ernst et al. 2003] is a well-known technique for detecting and correcting timing
errors. Razor detects timing violations by supplementing error-tolerant flip-flops with
shadow latches. A shadow latch strobes the output of a logic stage at a fixed delay
after the main flip-flop; if a timing violation occurs, the main flip-flop and shadow
latch will have different values, signaling the need for correction. Correction involves
recovery using the correct value(s) stored in the shadow latch(es) or via instruction
rollback/replay. In the following discussion, we define the maximum timing violation
that a resilient design can tolerate as the safety margin of the corresponding design.

By allowing timing errors, resilient designs are used to improve performance. An ex-
ample is timing speculation [Wan and Chen 2009], which increases the clock frequency
and exploits error detection and recovery mechanisms to correct resulting errors. Tim-
ing improvement from resilient designs can lead to further power and area benefits
over conventional designs. In other words, due to relaxed timing constraints, we can
reduce the power and area of logic cells in the fanin cone of an endpoint at which an
error-tolerant register has been instantiated.

A practical methodology for deployment of resilient designs must overcome a number
of significant overheads of resilience. Notably, resilient designs require additional cir-
cuits or cycles to detect and correct timing errors. Figure 1 shows the structure of Razor,
Razor-Lite [Kim et al. 2013], and TIMBER [Choudhury et al. 2010] flip-flops. All have
additional circuits, and hence power and area overheads, compared to a conventional
flip-flop. For instance, Razor has its shadow latch and other error-tolerant circuits (com-
parator, multiplexer, and OR-gate). When compared to a conventional flip-flop, the total
power overhead of a Razor flip-flop is 30% [Das et al. 2009]. Although the power over-
head has been significantly reduced for each error-tolerant register in a recent work
[Kim et al. 2013], the cost incurred by the error-detection network is still large.

We use the term pure-resilient design to indicate a design that uses only error-
tolerant registers (instead of conventional ones). Our background studies indicate that
in a pure-resilient design, the error-detection network alone can consume up to 9% of
the total wirelength. Furthermore, the additional cycles needed to recover from errors
can lead to performance (throughput) degradation. Moreover, error-tolerant circuits
are vulnerable to hold violations. Designers must ensure that benefits (in terms of
performance, and/or area and power reduction from the error resilience) outweigh the
additional costs of error-tolerant circuits.

A crucial open question is, “What is the minimum achievable cost of (a given amount
of) resilience?” As a step toward answering this question, in this work we perform in-
depth studies of the trade-off between the overhead of error-tolerant circuits and the
cost of the traditional timing optimizations, with the goal of assessing the ‘true’ benefits

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

An Improved Methodology for Resilient Design Implementation 66:3

Fig. 1. Structure of (a) Razor, (b) Razor-Lite, and (c) TIMBER flip-flops.

of resilient design techniques. To our knowledge, no previous work has conducted
such studies to explore the ‘true’ benefits of resilience comprehending all types of
resilience cost and various types of resilient designs. We propose two effective design
optimization techniques—selective-endpoint optimization, and clock skew (useful skew)
optimization—to minimize the costs of resilience, that is, (i) power and area overheads
of resilient circuits, and (ii) throughput degradation due to additional cycles for error
recovery. Based on the optimization, we develop a complete implementation flow (i.e.,
from placement to signoff) for resilient designs. Our flow comprehends the impacts of
signoff corners and process variation, ensuring timing correctness of conventional flip-
flops at the slow corner while optimizing design energy at the typical corner. Since our
selective-endpoint optimization reduces the number of error-tolerant flip-flops and the
applied clock skew optimization is hold-timing aware, we do not specifically optimize
on short-path padding, and small hold penalty is observed. However, our optimization
flow can easily be combined with existing short-path padding optimizations (e.g., [Yang
et al. 2013]). Our contributions include the following.

—We propose an optimization methodology to reduce the cost of resilience. Our method-
ology exploits both error-tolerant registers and clock skew scheduling.

—We study the benefits and cost of resilient design implementations, where we trade
off among (i) power and area overheads of error-tolerant registers, (ii) optimization
of logic cells in the fanin and fanout cones, and (iii) throughput degradation due to
timing errors.

—We propose an implementation flow to construct the error-detection network, which
is required in an actual implementation. We exploit geometric placement information
of the error-tolerant registers to substantially mitigate wirelength overhead of the
error-detection network.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:4 A. B. Kahng et al.

—We perform typical-corner optimization of resilient designs to maximize energy re-
duction. At the same time, our implementations comprehend both multiple signoff
corners and process variation.

—By reducing the number of error-tolerant registers, our optimization minimizes the
cost of short-path padding.

—We assess the opportunities and costs of resilient implementations across differ-
ent error-tolerant register designs as well as in the adaptive voltage scaling (AVS)
context.

The rest of this article is organized as follows. Section 2 presents related works.
Section 3 formulates the problem of minimizing the cost of resilience and describes our
methodology for implementing low-cost resilience. Section 4 presents our experimental
results and analyses, and Section 5 concludes the article.

2. RELATED WORK

A number of resilient design techniques have been proposed that allow timing errors in
conjunction with different error detection and correction mechanisms. These previous
works can be roughly classified into two categories. In the first category, designs use
replica circuits for error masking. These designs typically incur large power and area
overheads due to its additional circuits. In the second category, designs use error-
tolerant registers to detect timing errors. Although circuit power and area overheads
can be smaller, instruction rollback or replay is required to recover from timing errors.
The additional cycles for error recovery lead to throughput degradation.

Replica Circuits for Error Masking. A well-known technique compares output val-
ues in each cycle using redundant hardware circuits. DIVA [Austin 1999] applies a
functional checker to verify the correctness of the core processor’s computation, only
permitting correct results to commit. Paceline [Greskamp and Torrellas 2007] employs
a leader-checker which checks timing errors due to overclocking. CPipe [Subramanian
and Somani 2008] enables reliable overclocking through core-replication. The outputs
of the main combinational logic are compared with those of the duplicated logic in
each cycle. Choudhury and Mohanram [2009] synthesize error-masking circuits and
use 2-to-1 multiplexers to mask errors at the output of critical paths. Similarly, Yuan
and Xu [2013] mask errors by adding redundant approximation logic which has higher
speed than the original circuit. TIMBER flip-flops and latches [Choudhury et al. 2010]
enable online timing error masking via time-borrowing from the succeeding pipeline
stage. This kind of approach provides error resilience with high reliability but also
incurs significant power and area overheads due to the redundant logic circuits.

Error-Tolerant Registers with Error Recovery. Razor and related works [Avirneni
and Somani 2012; Das et al. 2009; Ernst et al. 2003; Kim et al. 2013] replace registers
with specialized flip-flops which detect timing errors by capturing the correct value
at shadow latches with a delayed clock. Razor [Ernst et al. 2003] can correct timing
errors within a specific safety margin of the error-tolerant register. Razor II [Das et al.
2009] provides analysis of the Razor flip-flop—with respect to timing constraints, safety
margin, and clocking scheme—and reduces complexity and area of the Razor flip-flop.
Bubble Razor [Fojtik et al. 2013], which uses two-phase latch timing, stalls the pipeline
based on the propagation of error clock gating control signals (“bubbles”) to mitigate
timing errors. A Markov chain-based analysis for a ring of Bubble Razors is provided
in Zhang and Beerel [2014]. A more recent work Razor-Lite [Kim et al. 2013] further
reduces the area and power penalties of error-tolerant registers. STEM [Avirneni and
Somani 2012] improves the capability of error-detection with a second shadow latch.
Bowman et al. [2009a] introduce two error-tolerant circuits, transition detector with
time-borrowing and double sampling with time-borrowing.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

An Improved Methodology for Resilient Design Implementation 66:5

Resilient Design Optimization. With the preceding error-tolerant registers, various
design-level optimization techniques [Choudhury and Mohanram 2009; Greskamp
et al. 2009; Kahng et al. 2010a, 2010b; Liu et al. 2011, 2012, Wan and Chen 2009; Yuan
and Xu 2013] have been proposed which identify and optimize critical paths that are fre-
quently exercised during operation. These works apply resilient techniques to timing-
critical and/or frequently-exercised paths but typically fail to holistically consider the
‘true’ benefits and costs of the error-tolerant circuits during the optimization. In other
words, the trade-off between the cost of resilience and the costs of margin insertion for
data paths (which will be illustrated later) is ignored. Further, none of these works con-
sider all types of costs in a resilient design (i.e., power and area of resilient circuits and
data paths and throughput degradation) simultaneously. For instance, Choudhury and
Mohanram [2009] and Yuan and Xu [2013] optimize area and power of resilient circuits
but not the costs of data paths; the optimizations in other works [Kahng et al. 2010a; Liu
et al. 2012; Wan and Chen 2009] consider power of data paths and throughput degrada-
tion but not the overhead of resilient registers; Liu et al. [2011] minimizes the number
of error-tolerant registers and the cost of short path padding but without regard to the
overhead of throughput degradation. In addition, some optimizations [Choudhury and
Mohanram 2009; Liu et al. 2011, 2012, Wan and Chen 2009; Yuan and Xu 2013] occur
at the synthesis stage. However, the timing-critical paths can vary after placement
and routing (P&R), and this discrepancy can degrade the solution quality. Our present
work is differentiated by performing optimization during P&R stage that comprehends
the trade-off between the cost of resilience and the cost of margin insertion, as well as
by simultaneously considering (more comprehensively) the costs in a resilient design.

Clock Skew Optimization. Of particular note are clock skew optimizations that have
been proposed by previous works on enhancement of design robustness and timing
speculation. An early work [Fishburn 1990] formulates a linear program to maximize
the minimum timing slack in a design via clock skew scheduling, which improves the
tolerance of the design to variations. Wu and Marculescu [2010] adjust clock laten-
cies to minimize the probability of timing errors being latched by overlapping separate
error-latching windows. Their optimization also prevents errors from propagating along
pipeline stages. Chen et al. [2014] and Ye et al. [2011] propose online clock skew tuning
methods to minimize timing errors during runtime using tunable delay buffers and
clock tuning elements (i.e., circuits with multiple skew configurations), respectively.
However, due to implementation complexity, fine-grained optimization is practically
impossible. Further, clock tuning logic can introduce extra area and power costs. Ye
et al. [2012] propose clock skew scheduling optimization to minimize the error rate in a
resilient design. Based on error probability at each endpoint, they determine skew val-
ues using a gradient-descent method. The work uses Razor flip-flops for timing-critical
endpoints and ignores the trade-off between cost of resilience and data path optimiza-
tion. The optimization also ignores hold constraints, which are critical in a design with
resilient registers, as well as the potential power implications (e.g., for data paths) of
the skew scheduling. Our present work proposes clock skew optimization that maxi-
mizes both setup and hold slacks at all timing-violated paths with comprehension of
toggle rate information. Further, in our work, the improved timing slacks are exploited
to enable removal of error-tolerant registers and power reduction on data paths.

3. LOW-COST RESILIENT DESIGN IMPLEMENTATION

In this section, we define a resilience cost reduction problem and describe our opti-
mization flow for low-cost resilient design implementation. Our flow uses two optimiza-
tion techniques—selective-endpoint optimization (SEOpt) and clock skew optimization
(SkewOpt)—to minimize resilience overheads of energy, area, and throughput degra-
dation. Figure 2 illustrates the basic idea of our optimization approach. In the initial

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:6 A. B. Kahng et al.

Fig. 2. Slack distribution of endpoints in (a) original design; (b) design with only selective-endpoint opti-
mization; and (c) design with combined selective-endpoint and useful skew optimization. Red dotted lines
indicate required safety margin. Design: FPU (OpenSPARC T1). Technology: 28nm FDSOI.

resilient design Figure 2(a), a large number of endpoints have timing violations at
the target frequency (with respect to the safety margin), and error-tolerant registers or
error-masking circuits are used for those endpoints. In our selective-endpoint optimiza-
tion Figure 2(b), we tightly optimize a set of selected endpoints to reduce the resilience
overheads. During clock skew optimization Figure 2(c), we increase timing slacks of
endpoints having timing violations by optimizing the clock-arrival time at individual
endpoints, further reducing the resilience overheads. In our optimization flow, we iter-
atively perform SEOpt and SkewOpt to minimize the cost of resilient design. We will
show in Section 4 that our proposed optimization achieves significant improvement in
terms of area and energy as compared to previous works, that is, (i) conventional re-
silient design implementation and/or (ii) useful skew optimization on resilient designs.

3.1. Resilience Cost Reduction Problem

We solve the following resilience cost reduction problem. Given an RTL design along
with (i) throughput requirements, (ii) power and area overheads as well as safety
margin for each type of error-tolerant register, and (iii) number of cycles needed to
recover from an error, implement the design to attain minimum energy, comprehending
the energy penalties of additional circuits and the throughput degradation due to
instruction rollback or replay.

We calculate design energy based on total power and throughput information, that
is,

Energy = Power
Throughput

. (1)

We further estimate the throughput based on error rate information as

Throughput = 1 − ErrorRate
T

+ ErrorRate
θ × T

, (2)

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

An Improved Methodology for Resilient Design Implementation 66:7

Fig. 3. (a) Illustration of the trade-off between cost of resilience and of data path optimization. (b) With
reduced number of Razor flip-flops, resilience cost decreases but power of data paths increases. Design: FPU
(OpenSPARC T1). Technology: 28nm FDSOI.

where T is the clock period, and θ is the number of cycles needed to recover from an
error. For an accurate design, the throughput is 1/T .

We further estimate the error rate based on toggle information of flip-flops (including
toggles of both negative-slack and positive-slack fanin paths) as

ErrorRate = α ×
∑

(hf f ×
∑

hp neg∑
hp all

)∑
hf f

, (3)

where hf f is the toggle rate of a flip-flop, hp neg and hp all are, respectively, the toggle
rates of negative-slack fanin paths and all fanin paths to the flip-flop, and α is a
parameter to compensate pessimism due to (i) the fact that multiple errors can occur
in one cycle and (ii) the existence of false paths. We empirically use α = 0.35 in our
experiments.

3.2. Selective-Endpoint Optimization

We now describe selective-endpoint optimization (SEOpt) for reduction of resilience
cost (primarily area, power, and throughput degradation). SEOpt trades off between
the costs of resilience and of data path optimization. We note that ours is the first
work to consider such a trade-off in resilient design optimization. As illustrated in
Figure 3(a), increasing the timing margin at an endpoint allows for replacement of
the error-tolerant register with a conventional one and for removal of replica cir-
cuits. However, these margins incur area and power costs in combinational logic cones.
Figure 3(b) shows the example of the OpenSPARC T1 FPU: as we reduce the number
of Razor flip-flops from 300 to zero, resilience cost decreases while power of the non-
resilient part increases. This results in an observed unimodal behavior of the design
energy change. In this work, we seek the subset of endpoints for margin insertion that,
when optimized (i.e., replaced with conventional registers) in this way, leads to mini-
mum design energy. Two key questions are (i) which endpoints should be optimized?,
and (ii) how many endpoints should be optimized?.

For Question (i), area and power of combinational cells in the fanin cone of an end-
point will increase when we add slack margin for the endpoint. Further, each endpoint
will exhibit a different cost versus margin relationship. Therefore, to reduce the op-
timization cost, we should preferentially optimize endpoints which are less sensitive
to slack margin insertion. In SEOpt, we evaluate sensitivity functions for endpoints
to estimate the potential optimization cost and guide the selection of endpoints for
optimization. That is, a given sensitivity function of an endpoint reflects the available
performance versus power and/or area trade-off of the corresponding fanin cone. We
observe that the optimization cost increases significantly for an endpoint which (i) is
timing-critical, (ii) has a large number of timing-critical fanin cells (i.e., negative-slack

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:8 A. B. Kahng et al.

cells in the fanin cone of the endpoint), and (iii) has a fanin cone with large power
(e.g., due to high toggle rate). We therefore use slack at endpoint slack(p), number of
timing-critical fanin cells numcri(p), and power of timing-critical fanin cells power(c)
to evaluate the sensitivity of each endpoint. We study sensitivity functions for a given
timing endpoint p with different combinations of these parameters, and the following
five empirically show good results:

SF1(p) = |slack(p)|, (4)

where we consider timing critically at the endpoint;

SF2(p) = |slack(p)| × numcri(p), (5)

where we consider slack at the endpoint and the number of negative-slack cells in the
fanin cone;

SF3(p) = |slack(p)| × numcri(p)
numtotal(p)

, (6)

where we consider slack at the endpoint and portion of negative-slack cells over all
cells in the fanin cone;

SF4(p) = |slack(p)| ×
∑

c∈ f anin(p)

power(c), (7)

where we consider slack at the endpoint and power of timing-critical fanin cells; and

SF5(p) =
∑

c∈ f anin(p)

(|slack(c)| × power(c)), (8)

where we consider the products of slack and power of timing-critical fanin cells.
To study the performance of each sensitivity function, we sort the endpoints in in-

creasing order of their estimated sensitivities, based on the given sensitivity function.
We then optimize the top η% endpoints of the sorted list, where we increase η from 0
to 100 with a step size of 5. Figure 4 shows power and area resulting from selective-
endpoint optimizations based on the five sensitivity functions on FPU in a foundry
28nm FDSOI technology. In this example, the safety margin is 10% of the clock pe-
riod.1 In all experiments, we assume a switching activity of 0.2 at primary inputs
and propagate activities using a commercial P&R tool. We then dump out a switching
activity interchange format (SAIF) file and use it for power analysis and error rate
estimation. Note that our optimization framework can be extended to vector-based sce-
narios, where we generate SAIF file from the value change dump (VCD) file derived
from gate-level simulation. We observe in Figure 4 that for a given number of endpoints
to optimize, SEOpt based on SF2 and SF5 incurs smaller power and area penalties. We
use SF5 in the experiments reported in Section 4.2

For Question (ii), optimizing more endpoints reduces the number of error-tolerant
registers required. However, the cost of this optimization (i.e., area and power penalty
on data paths) also increases. We iteratively increase the number of endpoints to be
optimized and select the solution with minimum cost (e.g., a function of area and/or
power).

1In Choudhury et al. [2010], safety margins of 10%, 20%, and 30% of clock period are studied.
2Although the best sensitivity function might vary in a different technology/library or with a different
implementation tool, one can apply the same evaluation method given any specific design enablement,
that is, to pick the most successful sensitivity function from among various options based on the selected
parameters.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

An Improved Methodology for Resilient Design Implementation 66:9

Fig. 4. Cell area and total power resulting from selective-endpoint optimization with different sensitivity
functions. Design: FPU (OpenSPARC T1). Technology: 28nm FDSOI.

3.3. Clock Skew Optimization

To further reduce the number of error-tolerant registers and minimize timing errors, we
apply clock skew optimization (SkewOpt), which maximizes slacks at timing-violated
endpoints. In SkewOpt, we formulate the clock skew optimization problem as a maxi-
mum mean weight cycle problem [Albrecht et al. 2002]. This is because the maximum
achievable timing slack of a given path is determined by the maximum average slack of
a cycle (i.e., a loop formed by timing paths) which contains that path. We use the para-
metric shortest path algorithm [Young et al. 1991] to determine the maximum mean
weight cycle. The algorithm, as we have implemented it, is described in Algorithm 1.
We first construct a graph G where each endpoint corresponds to a vertex and each
timing path corresponds to two edges (i.e., one for setup and one for hold) (Line 1).
The weights of edges indicate setup/hold slacks of timing paths in the corresponding
FF-to-FF logic cones.

We optimize setup timing slacks of endpoints with error-tolerant registers (with
respect to hold constraints and setup constraints on other paths). We classify edges
in the graph into two categories—(i) parameterized edges and (ii) nonparameterized
edges—where timing corresponding to parameterized edges will be optimized, while
nonparameterized edges will serve as constraints during the optimization. We define
parameterized edges based on setup constraints on paths having timing violations
with respect to the safety margin, and nonparameterized edges based on hold/setup
constraints on the remaining paths. We formulate the constraints in SkewOpt as

lq + (T − dq − dmax
p,q − tsetup

q − tmargin
p,q)︸ ︷︷ ︸

sp,q

−λ ≥ lp (q ∈ R), (9)

lq + (T − dq − dmax
p,q − tsetup

q − tmargin
p,q)︸ ︷︷ ︸

sp,q

≥ lp (q �∈ R), (10)

lp + (dp − dmin
p,q − thold

q − dq)︸ ︷︷ ︸
sp,q

≥ lq (∀q), (11)

where T is the clock period; lp is the clock arrival time of endpoint p; dp is the clock-to-
Q delay of p; dmax

p,q and dmin
p,q are, respectively, the maximum and minimum path delay

from p to q; tsetup
q and thold

q are the setup and hold times of q; and tmargin
p,q is the required

safety margin between p and q. R is the set of endpoints which use error-tolerant
registers, and λ is the parameter which will indicate the slack change. Constraint (9)
corresponds to a parameterized edge in the constructed graph with an edge weight
of (sp,q − λ). Constraints (10) and (11) are, respectively, induced by setup and hold

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:10 A. B. Kahng et al.

ALGORITHM 1: Clock Skew Optimization (SkewOpt)

Procedure SkewOpt(N)
1. G(V, E) ← construct graph corresponding to N // N is the input netlist
2. Initialize solution graph G′(V, ∅)
3. V ← {r} ∪ V ; E ← {(r, p)} ∪ E, ∀p �= r; w(r, p) ← 0, ∀p �= r
4. ET ← {(r, p)}, ∀p �= r
5. Update p w(p), ∀p ∈ V // p w(p) = ∑

w(pi, pj), ∀(pi, pj) ∈ shortest path (SP) from r to p
6. while |E| > 1 do
7. λmin ← +∞
8. for all (p, q) ∈ E for which (p, q) �∈ ET do
9. λp,q ← Solve p w(p) + w(r, q) = p w(q)
10. if λp,q < λmin then
11. λmin ← λp,q
12. emin ← (p, q)
13. end if
14. end for
15. ET ← ET ∪ {(p, q)}
16. λ ← λmin
17. Remove all edges from ET that have the same head vertex as emin
18. if there is a cycle in ET then
19. slack(p, q) ← λmin, ∀(p, q) ∈ cycle
20. Add all edges on cycle to G′

21. E ← E \ {(p, q) | (p, q) ∈ cycle}
22. Contract all vertices on cycle into pnew
23. Update E and ET
24. end if
25. end while
26. Traverse G′ to calculate lq based on slack(p, q) and lp
27. Nsol ← apply lp, ∀p to N
28. return Nsol

constraints on a given nonparameterized edge in the constructed graph with an edge
weight of sp,q.

In the graph G(V , E), we always maintain a tree (V , ET) for storing edges corre-
sponding to timing-critical paths. We initialize the tree by inserting a dummy vertex
(i.e., root r) and dummy edges connecting r and other vertices (Lines 3–4). In Line 5,
p w(p) is the total weight along the shortest path (i.e., path with the minimum total
weight) from r to p in G. Then, we iteratively add edges corresponding to the most
timing-critical paths to the tree (Lines 7–15) while removing any dummy edges that
have the same head vertex as an added edge (Line 17). When adding an edge to the
tree results in a cycle3, we coalesce the cycle (including vertices and edges on the cycle)
into one vertex (Lines 18–24). The edges on the cycle are added to the solution graph,
and the optimized slacks are stored. To each parameterized edge, a weight is assigned
equal to the summation of weights (i.e., slacks) on the cycle divided by the number of
parameterized edges on the cycle. We assign zero slack to the nonparameterized edges
on the cycle. That is, timing paths with conventional registers as endpoints will have
zero slack with respect to the safety margin if they are in a maximum mean weight
cycle that contains critical paths with error-tolerant registers as endpoints. Note that
assigning new weights indicates a change of clock arrival times. Therefore, we update
the weights of edges incident to vertices on the cycle. We then optimize slacks on the

3Since we always add the edge corresponding to the most timing-critical path to the tree, the resulting cycle
is the most critical maximum mean weight (i.e., slack) cycle.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

An Improved Methodology for Resilient Design Implementation 66:11

updated graph. We iteratively determine and optimize the most critical maximum
mean weight cycle until there is only one edge in the graph (i.e., no more cycles can
be found). Last, we traverse the solution graph and calculate the clock arrival times
based on the optimized path slacks (Line 26).

To further enable error-rate awareness and reduce the cost of throughput degrada-
tion, we extract toggle-rate information of each timing path and replace Constraint (9)
by

lq + sp,q

1 + β × h(p, q)
− λ ≥ lp (q ∈ R), (12)

where h(p, q) indicates the toggle rate of the maximum-delay path between endpoints
p and q, and β is a weighting factor (we use β = 2 in our experiments).

3.4. Proposed Optimization Flow

As mentioned in Section 3.2, SEOpt reduces the cost of resilience via optimizations on
data paths. However, such optimization incurs power and area overheads. By contrast,
SkewOpt migrates timing slacks from timing non-critical paths to timing-critical paths,
which does not incur power and area penalty. But, SkewOpt cannot generate additional
slacks, hence its performance highly depends on the topology of the sequential graph.
For example, SkewOpt might not perform well when there are many cycles consisting
of timing-critical paths. In this work, we combine the SEOpt and SkewOpt methods
and execute them iteratively. The basic idea is that we use SEOpt to create timing
slacks on data paths with low power penalty. We then apply SkewOpt for an improved
distribution of timing slacks. In this way, we reduce the number of error-tolerant
registers and minimize error rates of a resilient design without incurring large power
and area penalties.

Algorithm 2 describes our combined optimization, which we call CombOpt, to reduce
the error-resilience overhead. The procedure takes as input a netlist N which has
error-tolerant registers at endpoints with timing violations. The procedure runs static
timing analysis (STA) and computes a sensitivity value for each endpoint p (Lines
1–8). The procedure finds all fanin cells by tracing backward from the endpoint register
using depth-first search. During the fanin-cone tracing, we count only the timing-
critical fanin cells, since noncritical fanin cells have little effect on the cost of endpoint
optimization. The procedure optimizes the top k endpoints according to the sensitivity
in each iteration (Lines 12–13). TimingOpt(Ni−1, Pi) (Line 13) represents a timing
optimization on the set of endpoints Pi in netlist Ni−1. We perform SkewOpt after
optimization on the fanin cones of the top k endpoints (Line 14). ISTA(Ni, Pi) in Line
15 indicates incremental static timing analysis (STA) after optimization. If the timing
slack of endpoint p becomes positive, the procedure replaces the error-tolerant register
of p with a conventional one (Line 18). Then, the cost of the netlist (COST(Ni)) is up-
dated. After the iterations of endpoint optimization, the procedure finds a netlist (Nmin)
which has a heuristically minimized cost in terms of area and/or power consumption.

3.5. Construction of Error-Detection Network

To detect timing errors, resilient designs typically connect all error-detection signals
of error-tolerant registers via the error-detection network (e.g., an OR tree). There
are two basic types of error-detection networks. In centralized pipeline recovery, one
error-detection network connects to all error-tolerant registers. In distributed pipeline
recovery, a separate error-detection network can be applied to each pipeline stage [Das
et al. 2006]. For a design with large number of pipeline stages, centralized pipeline
recovery can incur large cost in terms of wirelength, area, and power, compared to
the distributed strategy. To be conservative about the resilience cost, in this work, we

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:12 A. B. Kahng et al.

ALGORITHM 2: Combined Optimization (CombOpt)

Procedure CombOpt(N)
1. Run STA to initialize slack values for the netlist N
2. P ← ∅
3. for all timing endpoints p in the netlist N do
4. if slack(p) < safety margin then
5. Compute sensitivity value for endpoint p
6. P ← P ∪ {p}
7. end if
8. end for
9. m ← |P|/k // m indicates the number of iterations
10. Cmin ← ∞
11. for i = 0 ; i < m ; i ← i + 1 do
12. Pick the top k endpoints Pi with minimum sensitivity in P
13. Ni ← TimingOpt(Ni−1, Pi)
14. Ni ← SkewOpt(Ni−1)
15. Run ISTA(Ni, Pi)
16. for all endpoint p in P do
17. if slack(p) ≥ 0 then
18. Replace error-tolerant register by a conventional one at endpoint p
19. end if
20. end for
21. Ci ← COST(Ni)
22. if Ci < Cmin then
23. Cmin ← Ci
24. Nmin ← Ni
25. end if
26. P ← P − Pi
27. Update sensitivity values for all endpoints in P
28. end for
29. return Nmin

assume a centralized pipeline recovery scheme. We also note that in a resilient design
with distributed pipeline recovery, our OR tree insertion algorithm can be applied to
each pipeline stage, since all registers in the same pipeline stage are connected together
with an error-detection network.

For a design in which the usage of error-tolerant registers is defined before synthe-
sis, the construction of the error-detection network can be accomplished by commercial
SP&R tools. However, in our optimization flow, the usage of error-tolerant registers
is defined during the placement stage, where an algorithm is required to guide the
construction of error-detection network. Further, the size of the error-detection net-
work increases with the number of error-tolerant registers in a resilient design, and
this can increase cost. Our initial studies show that in a pure-resilient design, when
we construct the error-detection network based on a random clustering method, the
wirelengths of the error-detection nets can contribute up to 9% of the design’s total
wirelength. To minimize the overhead, we develop a matching-based clustering al-
gorithm and use a commercial router to construct the OR tree. Figure 5 depicts our
implementation flow (red dotted box). Based on the locations of error-tolerant flip-flops
extracted from an initial placement, we construct the OR tree bottom up. We heuris-
tically cluster error-tolerant flip-flops and/or OR gates by iteratively applying (i) the
Hungarian method4 to achieve an assignment (in which cycles are considered to be

4http://www.informatik.uni-freiburg.de/stachnis/index.html.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

An Improved Methodology for Resilient Design Implementation 66:13

Fig. 5. Implementation flow. OR tree insertion flow is indicated by the red dotted box.

ALGORITHM 3: OR Tree Insertion

Procedure ORTreeInsertion(N)
1. Q ← registers with timing violations w.r.t. required margin in N
2. Nsol ← N
3. while |Q| > 1 do
4. Compute distance matrix D where Di, j = dist(ci, c j) (c{i, j} ∈ Q)
5. Sol ← apply Hungarian method on D
6. for all cycle in Sol do
7. Qlocal ← cells on the cycle
8. while |Qlocal| > 1 do
9. (c1, c2) ← find the nearest pair of cells in Qlocal
10. cnew.x = c1 .x+c2 .x

2
11. cnew.y = c1 .y+c2 .y

2
12. Insert OR cell cnew to Nsol
13. Connect outputs of c1 and c2 to inputs of cnew
14. Qlocal ← Qlocal ∪ {cnew} \ {c1, c2}
15. end while
16. Q ← Q∪ {cnew}
17. end for
18. end while
19. return Nsol

clusters of flip-flops and/or OR gates) and (ii) a nearest-neighbor method to build an
OR tree within a given cluster. Our OR tree insertion (i.e., clustering of error-tolerant
flip-flops and insertion of OR gates) algorithm is described in Algorithm 3.

In the construction of the error-detection network, we start with a synthesized netlist
which has only conventional flip-flops. Based on the timing information extracted from
the initial placement, all flip-flops having negative slacks with respect to safety mar-
gin are set to be error-tolerant flip-flops (Line 1). We then calculate the Manhattan
distances between each pair of error-tolerant flip-flops and construct a distance matrix
accordingly. In the distance matrix, each row and each column corresponds to an error-
tolerant flip-flop such that the matrix entry Di, j is the distance dist(ci, c j) between the
ith and jth flip-flops (Line 4). To avoid a trivial assignment, we define dist(ci, ci) = +∞
for all i. Since both rows and columns correspond to the same set of error-tolerant
flip-flops, the distance matrix D is a symmetric square matrix. We apply the Hungar-
ian algorithm on the distance matrix to obtain a matching solution with minimum
total distance (Line 5). The solution matrix (Sol) is a permutation matrix, that is, there

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:14 A. B. Kahng et al.

Fig. 6. Our proposed OR tree insertion flow achieves an average of 29% wirelength reduction for the
error-detection network, compared to a reference flow. RSMT cost is a (loose) lower bound.

is exactly one ‘1’ in each row and each column; this permutation can be decomposed
into cycles that we consider clusters.5 Within each cycle (i.e., cluster), we use a nearest
neighbor-based heuristic to construct an OR tree (Lines 8–14). Then, in the next iter-
ation, we form a new distance matrix where each row and column correspond to one
cluster from the previous iteration. The location of each cluster is defined by its center
coordinates (i.e., the x and y coordinates of the cluster are, respectively, the averages
of the x and y coordinates of all cells in the cluster). We continue the construction of
the error-detection network until all error-tolerant flip-flops are connected.

Figure 6 compares the wirelength of error-detection nets between our proposed OR
tree insertion flow and a reference flow which performs ECO cell and net insertions
to construct the error-detection network. The reference flow also uses the nearest-
neighbor clustering method for each level of the OR tree. Both the proposed and the ref-
erence optimization methods construct an OR tree with only 2-input OR gates. A lower
bound for the wirelength is given by the rectilinear Steiner minimum tree (RSMT)6

over all error-tolerant flip-flops. However, this lower bound is far from achievable due
to congestion induced by other nets and power/ground distribution. We compare wire-
length values for four pure-resilient designs. The figure shows that our proposed flow
achieves an average of 29% wirelength reduction compared to the reference flow.

Note that when SEOpt replaces an error-tolerant flip-flop with a conventional flip-
flop, we need to modify the OR tree, as shown in Figure 7. The figure shows two cases
of the flip-flop replacement. When the flip-flop (u2) is replaced with a conventional
one, we remove the connected OR gate (u1) and modify the OR tree. The steps of the
modification are as follows.

(1) Detach nets (n1, n2, and n3) from the OR gate output (u1/Z) and flip-flop error
detection pins (u2/ED and u3/ED).

(2) Delete nets (n2 and n3) which are connected to the OR gate.
(3) Delete the OR gate instance (u1).
(4) Attach net n1 to another flip-flop (u3/ED) or OR gate (u3/Z).
(5) Replace the error-tolerant flip-flop (u2) with a conventional flip-flop.
(6) Refine placement and update timing.

5For example, if the solution Sol contains the matching edges (ci0 , ci1), (ci1 , ci2), . . . , (cin−1 , cin) and (cin, ci0),
this is a cycle in the permutation defined by Sol. We heuristically consider each cycle as a cluster of the ith

0 ,
ith
1 , . . . , ith

n cells.
6http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

An Improved Methodology for Resilient Design Implementation 66:15

Fig. 7. Replacement of an error-tolerant flip-flop with a conventional flip-flop for u2. Note that for readabil-
ity, nets connected to D, Q, and CP pins of flip-flops are not shown.

3.6. Typical-Corner Optimization

To accurately assess the benefits and overheads of resilience approaches, it is important
to consider impacts of signoff corners and process variation during implementation.
For paths with conventional registers as endpoints, we ensure that there is no timing
violation at the slow corner. However, since error-tolerant registers can detect and
correct timing errors, we can allow some amount of negative timing slack7 for paths
with error-tolerant registers as endpoints, and we should optimize these paths at the
typical corner. Our process-variation-aware implementation is shown in Figure 8. In
the figure, the error-detection window indicates the timing interval, or safety margin,
during which a error-tolerant register can detect timing errors. The right-hand side of
the figure indicates larger timing slacks at endpoints. When an endpoint has no timing
violation at the slow corner (SS, 125◦C in our experiments), we use the conventional
flip-flop for that endpoint. Introduction of a guardband can enhance design robustness
and enable adaptive voltage scaling. Error-tolerant registers can be used for other
endpoints. Note that we evaluate error rate at the typical corner (TT, 25◦C in our
experiments). Therefore, when an endpoint has negative slack with respect to the
typical corner, this leads to throughput degradation.

We implement resilient designs at the typical corner, but with CombOpt, there will
also be conventional flip-flops in the design. To ensure timing correctness of conven-
tional flip-flops at the slow corner, we estimate slow-corner path delays and apply
maximum-delay constraints correspondingly. Specifically, we perform timing analysis
at both slow and typical corners, then calculate maximum-delay constraints based on
the ratio between delay values at typical and slow corners, as shown in Equation (13).
We perform the timing analysis and update the maximum-delay constraints before
each iteration of the CombOpt and at the pre-placement, pre-CTS, pre-routing and
post-routing (i.e., before signoff) stages.

max delay = (clock period − guardband) × delay TT
delay SS

. (13)

7The maximum allowable negative slack is determined by the design of the error-tolerant register.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:16 A. B. Kahng et al.

Fig. 8. Illustration of how we consider process variation in our implementations. The slack values shown
here are not representative of actual values in 28nm FDSOI.

3.7. Optimization with TIMBER Flip-Flops

We now discuss optimization steps that are specific to TIMBER-based designs
[Choudhury et al. 2010]. As described in Section 3.4, our optimization starts with
a netlist in which all endpoints with timing violations use error-tolerant registers.
To use TIMBER flip-flops, there are two additional constraints for selection of end-
points [Chandra and Choudhury 2014; Fabrie 2014]. First, since TIMBER flip-flops
borrow timing from their fanout timing paths to mask timing errors, we must avoid a
loop of TIMBER flip-flops within which continuous time borrowing can cause timing
failure. Second, additional timing slacks are required at endpoints with conventional
flip-flops to compensate the accumulated time borrowings of TIMBER flip-flops in pre-
vious stages. Thus, a larger number of chained TIMBER flip-flops will lead to tighter
timing constraints on the following timing paths and corresponding increased power
and area cost. Moreover, a larger number of chained TIMBER flip-flops requires more
complex clock delay circuits, which also incurs area and power cost. In our study, we
limit the chained TIMBER flip-flops to be less than three stages (i.e., assuming two
error-detection intervals).

To address these additional constraints, we select endpoints based on sensitivity
functions which indicate power changes due to the usage of TIMBER flip-flops. A
higher sensitivity of an endpoint indicates that greater power reduction is expected
from timing margin recovery with TIMBER. Since the maximum stage number of
chained TIMBER flip-flops is two, we formulate the optimization as two maximum-
weight independent set (MWIS) problems in sequence such that no TIMBER flip-flops
are adjacent after the first-stage optimization, and no chained TIMBER flip-flops with
more than two stages after the second-stage optimization.

We formulate the MWIS problem as an Integer Linear Program (ILP).

Maximize
∑

pi∈P SF(pi) × Bi

Such that Bi + Bj ≤ 1, (pi and pj are adjacent in G)
Bi = 0 or 1,

(14)

in which SF(pi) is the sensitivity function of endpoint pi, P is the set of endpoints, and
Bi is a binary variable indicating whether pi uses a TIMBER flip-flop (i.e., Bi = 1) or not
(i.e., Bi = 0). The constraints specify that no TIMBER flip-flops are adjacent in graph G.
Note that in the first-stage optimization, G is the sequential graph extracted from the
netlist. In the second-stage optimization, we update graph G such that we remove the
selected vertices from the first-stage optimization. Further, for each removed vertex,
we connect each of its incoming vertices to its outgoing vertices.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

An Improved Methodology for Resilient Design Implementation 66:17

Fig. 9. Scenarios of sensitivity-function calculation for selection of TIMBER flip-flops.

To describe the calculation of sensitivity functions, we first define function f (c, t) as

f (c, t) =
{

|slack(c) − t| × power(c), if slack(c) < t

0, otherwise,
(15)

in which c is a cell in the netlist, slack(c) and power(c) are, respectively, the worst
timing slack and power of c, and t is a constant timing interval.

We assume that all endpoints in the initial netlist use conventional flip-flops. By
replacing an endpoint with a TIMBER flip-flop, we can recover timing margins in the
fanin timing paths by one error-detection window. But this also leads to additional
margin insertion, which is equal to one error-detection window in the fanout paths
(as shown in Figure 9(a)). To estimate the power change from such timing margin
migration, we define the sensitivity of endpoint p as

SFTBF a(p) =
∑

c∈cone(c,p)

f (c, tED) −
∑

c∈cone(p,c)

f (c, tED), (16)

in which cone(c, p) (respectively, cone(p, c)) indicates the combinational logic cone be-
tween conventional flip-flops and p (respectively, p and conventional flip-flops), and tED
indicates the duration of the error-detection window.

In the second optimization stage, some of the endpoints have been selected to use
TIMBER flip-flops. Therefore, to calculate the sensitivity function values for the re-
maining endpoints, there are four scenarios, as shown in Figure 9. Endpoints in
Figure 9(a) are not promising; otherwise, they would have been selected in the first
optimization stage. Selection of endpoints in Figure 9(b) will violate the constraint that
there are no chains of more than two TIMBER flip-flops. Based on analysis similar to
that shown previously, we calculate the sensitivity functions corresponding to scenarios
Figures 9(c) and 9(d) as follows.

SFTBF c(p) =
∑

c∈cone(t,p)

f (c, 2 × tED) +
∑

c∈cone(c,p)

f (c, tED). −
∑

c∈cone(p,c)

f (c, 2 × tED). (17)

SFTBF d(p) =
∑

c∈cone(c,p)

f (c, tED) −
∑

c∈cone(p,c)

f (c, tED) −
∑

c∈cone(t,−)

f (c, tED). (18)

Here, cone(t, p) indicates the combinational logic cone between TIMBER flip-flops and
p, and cone(t,−) indicates the fanout cone of TIMBER flip-flops which are endpoints of
the fanout timing paths of p.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:18 A. B. Kahng et al.

Table I. Testcases from OpenSPARC T1

module description # of cells area (μm2)
FPU floating point adder 12,986 34,633
EXU integer execution 17,614 58,721
MUL integer multiplier 13,162 40,693
SPU stream processing 8,066 28,150

Table II. Penalties of Error-Tolerant Flip-Flops

design Razor Razor-Lite TIMBER
power penalty 30% [Das et al. 2009] ∼0% [Kim et al. 2013] 100% [Choudhury et al. 2010]
area penalty 182% [Kim et al. 2013] 33% [Kim et al. 2013] 255% [Chen et al. 2013]

of recovery cycles 5 [Wan and Chen 2009] 11 [Kim et al. 2013] 0 [Choudhury et al. 2010]

Fig. 10. Actual error rates vs. estimated error rates at different voltages.

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. Experimental Setup

We implement experiments with four submodules (Table I) from the OpenSPARC T1
processor8. The modules are implemented in a foundry 28nm FDSOI technology; syn-
thesis is performed with the Synopsys Design Compiler H-2013.03-SP39, placement
and routing are performed with the Cadence EDI System 13.1.10 We use three error-
tolerant flip-flops in our experiments, with overheads of power, area (estimated based
on extra transistor count), and throughput, as given in Table II.

In our experiments, (i) we model power penalty by multiplying the total power of
the error-tolerant flip-flops by the corresponding power overhead; (ii) we model area
overhead by scaling the size of flip-flops in LEF; and (iii) we model the safety margin
and additional hold margin of error-tolerant flip-flops by adding constant shifts to setup
and hold constraint values in the Liberty model. To validate our estimation of error
rate (Equation (3)) and determine α, we perform gate-level simulation using Cadence
NC-Verilog v8.2.10 Figure 10 compares the actual error rates and estimated error rates
at different supply voltages based on input vectors with random values. Our estimated
error rates roughly match the actual values. To find timing slack and power values
at specific voltages, we prepare Synopsys Liberty (.lib) files containing 90 commonly
used cells (40 combinational and five sequential, with dual-VT flavors) for each value of
supply voltage from 1.20V to 0.50V in 20mV increments, using Synopsys SiliconSmart
v2013.06-SP1.9

8http://www.sun.com/processors/opensparc/.
9http://www.synopsys.com/.
10http://www.cadence.com/.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

An Improved Methodology for Resilient Design Implementation 66:19

Fig. 11. Energy and area results from different implementation methodologies: pure-margin (PM), brute
force (BF), and CombOpt (CO).

4.2. Methodology Comparison

In our first experiment, we compare design energy and area resulting from CombOpt to
(i) pure-margin designs11 and (ii) a brute-force methodology, that is, a typical resilient
design implementation, where resilient endpoints are (greedily) instantiated at timing-
critical endpoints.12 We use Razor flip-flops for error resilience in this experiment.
We compare our methodology at three different slow corners, where corresponding
SS corners are at 1σ , 2σ , and 3σ . The clock period for all implementations is 0.9ns.
We use the minimum voltage that satisfies timing constraints at the slow corner for
pure-margin implementations; for brute-force and CombOpt implementations, we use
a discretized exhaustive search to determine the signoff voltages (i.e., we search for
the signoff voltage that achieves minimum energy within -80mV of the signoff voltage
of pure-margin, with a step size of 20mV). The runtimes for FPU, EXU, MUL, and
SPU are, respectively, 30min, 20min, 60min, and 7min per iteration of CombOpt on a
2.5GHz Intel Xeon server with four threads. We perform 10 iterations of optimization
on each design in the experiments.

Figure 11 shows that the benefits of CombOpt increase with a larger process vari-
ation. In the figure, small, medium, and large margins, respectively, indicate 1σ , 2σ ,

11We define a pure-margin design as one wherein only timing margins are inserted to ensure correct operation
under dynamic variation.
12We implement designs without considering the safety margin, then replace with error-tolerant registers
any endpoints having timing violations with respect to the safety margin.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:20 A. B. Kahng et al.

Table III. Impact of SkewOpt

design MUL SPU
w/o brute force+ w/o brute force+

flow CombOpt SkewOpt SkewOpt CombOpt SkewOpt SkewOpt
total energy (mJ) 26.19 27.07 27.54 6.12 6.18 6.28

throughput penalty (mJ) 1.14 1.16 0.92 0.05 0.08 0.05
of error-tolerant flip-flops 660 780 1003 225 269 465

total cell area (μm2) 23200 24315 26352 11922 12324 13931
of hold buffers 214 321 445 345 107 220

and 3σ for SS corner. We observe that CombOpt achieves up to 10% (8% on average)
energy reduction compared to the brute-force method, and up to 21% (12% on average)
energy reduction compared to the conventional pure-margin method. With larger pro-
cess variation, brute-force has larger energy cost due to throughput degradation (e.g.,
FPU and EXU), while CombOpt is able to jointly minimize the number of error-tolerant
flip-flops and error rate, thus achieving greater improvement over brute force.

The additional circuits for error detection typically cause resilient designs to have
larger area than conventional designs. We observe that the brute-force method leads
to an average of 45% area overhead. Using CombOpt, we reduce the area overhead
to 23%. In the regime of “dark silicon” [Esmaeilzadeh et al. 2011], energy cost is
“more expensive” than area cost, and our optimization thus focuses mainly on energy
reduction.

Figure 11 also shows the comparison of error rates for designs resulting from
CombOpt and brute force. We observe that CombOpt achieves smaller error rates
on most of the test cases. However, our optimization does not explicitly minimize the
error rate of a design, but rather the design energy considering the trade-off between
cost of resilience and margin on combinational paths. For example, although for MUL
with small margin CombOpt leads to a larger error rate than that resulting from brute
force, the power of combinational paths (i.e., indicated by energy w/o resilience) is
significantly reduced in CombOpt, which leads to smaller design energy.

4.3. Impact of Clock Skew Optimization

As discussed in Section 3, SkewOpt improves slacks of all timing-violating paths with
respect to the safety margin to minimize the error rate. Moreover, the improved timing
slacks are further exploited to enable removal of error-tolerant registers and power
reduction on data paths. To assess the impact of clock skew optimization, we perform
optimization without SkewOpt and compare the outcomes with those of CombOpt. As
shown in Table III, CombOpt achieves reduced design energy (in terms of both through-
put penalty and power of circuit), total cell area, and number of error-tolerant flip-flops
as compared to the optimization without SkewOpt. Further, since SkewOpt compre-
hends hold constraints, performing optimization with SkewOpt does not increase the
number of hold buffers significantly. For the MUL test case, applying SkewOpt even
reduces the number of hold buffers due to the decreased number of error-tolerant
flip-flops. Table III further compares our optimization solution (CombOpt) to that of
a conventional resilient design implementation with application of SkewOpt at the
post-placement stage. We observe from the fourth and seventh columns of Table III
that although SkewOpt alone reduces the throughput penalty, ignoring the trade-off
between data path optimization and cost of resilience (which is captured by SEOpt)
leads to more error-tolerant flip-flops and significant area and power overheads. Specif-
ically, for MUL, CombOpt achieves 5% and 13% more reduction in energy and area,
respectively, as compared to brute force+SkewOpt.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

An Improved Methodology for Resilient Design Implementation 66:21

Fig. 12. Impacts of hold margin and error-detection network. Design: MUL (OpenSPARC T1). Technology:
28nm FDSOI.

4.4. Impacts of Short Path Padding and Error-Detection Network

A common observation is that resilient designs require a large hold margin, which ne-
cessitates more buffers for short-path padding. We include this overhead by assuming
that the required hold margin for a resilient design is equal to its safety margin, that is,
15% of the clock period. Further, the error-detection network (i.e., OR tree) incurs addi-
tional energy and area penalties. We evaluate short-path padding and error-detection
network overheads by removing the additional hold margin and/or error-detection net-
work in the implementations, and then assessing energy and area differences.

Figure 12 shows the energy and area outcomes for MUL. All implementations are
optimized with CombOpt. For the without hold case, we ignore the additional hold
margin during the implementation; for the without OR tree case, we remove the error-
detection network at the post-routing stage and perform an incremental optimization;
and for the without hold & OR tree case, we ignore the additional hold margin during
the implementation and remove the error-detection network at the post-routing stage.

Since CombOpt significantly reduces the number of error-tolerant flip-flops (Razor in
this example) and the size of the error-detection network, the energy and area cost of
short-path padding and error-detection network is small. The short-path padding leads
to 4% energy and 2% area cost; and the error-detection network leads to <1% energy and
2% area cost. Another reason for the small energy cost of the error-detection network is
its low activity. Figure 13 shows an example CombOpt implementation result in which
the area overhead of hold buffers and OR gates is only 2.7%.

4.5. Typical-Corner Optimization

Because resilient designs can detect and recover from timing errors, it is not necessary
to optimize them at the slow corner. Furthermore, power analysis (especially error
rate estimation) of resilient designs at the slow corner (which is the case in [Kahng
et al. 2014]) can be pessimistic. We assess the pessimism of slow-corner optimization by
performing error rate estimation and energy analysis (of designs shown in Figure 11)
at the slow corner.

As shown in Table IV, energy can be overestimated by up to 21% when we perform
an energy analysis at the slow corner for resilient designs. This is mainly caused by
the overestimated error rates.

4.6. Validation with Different Switching Activities

To validate our proposed optimization and study the impact of switching activity on
energy consumption, we analyze the energy of an implemented design (MUL) across a
range of switching activity assumptions. Figure 14 shows that CombOpt can achieve
minimum energy when the activity factor is no lower than 5%. With a lower activity

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:22 A. B. Kahng et al.

Fig. 13. Layout of CombOpt result for the SPU testcase with 3σ corner. Razor flip-flops are in blue; conven-
tional flip-flops are in purple; OR gates are in red; and hold buffers are in green.

Table IV. Pessimism of Slow-Corner Optimization

design FPU EXU MUL SPU

typical-corner analysis (TT, 25◦C)
total energy (mJ) 9.21 32.12 26.19 6.12

throughput penalty (mJ) 0.63 0.29 0.54 0.05

slow-corner analysis (SS w/ 3σ , 125◦C)
total energy (mJ) 10.60 34.50 31.62 6.36

throughput penalty (mJ) 1.46 1.77 5.36 0.14

Fig. 14. Energy consumption with different switching activity factors. Design: MUL (OpenSPARC T1).
Technology: 28nm FDSOI.

factor (e.g., 1%), error rate decreases and the benefits of CombOpt over the brute-force
method become smaller. Compared to pure margin, CombOpt achieves reduced energy
of combinational cells through SEOpt. However, with a low activity factor, clock energy
dominates, and thus the benefits of CombOpt also decrease.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

An Improved Methodology for Resilient Design Implementation 66:23

Table V. Comparison among Error-Tolerant Flip-Flops

design Razor-Lite Razor TIMBER

method brute-force
total energy (mJ) 27.71 28.78 33.62

energy w/o resilience (mJ) 27.16 26.87 29.74
energy w/ additional circuits (mJ) 0.00 1.32 3.87

energy w/ throughput penalty (mJ) 0.55 0.59 0.00
of error-tolerant flip-flops 931 924 575

total cell area (μm2) 21064 26814 26700

method CombOpt
total energy (mJ) 26.14 26.19 28.20

energy w/o resilience (mJ) 25.55 24.51 27.43
energy w/ additional circuits (mJ) 0.00 1.14 0.77

energy w/ throughput penalty (mJ) 0.60 0.54 0.00
of error-tolerant flip-flops 627 660 128

total cell area (μm2) 19164 23200 20464

4.7. Study of Different Error-Tolerant Flip-Flops

We also study the cost of different error-tolerant flip-flops. We compare designs im-
plemented with Razor, Razor-Lite, and TIMBER types of error-tolerant flip-flops. We
implement the designs with the brute-force methodology previously mentioned, and
CombOpt.

Table V shows results for MUL, where the slow corner is at SS with 3σ and all
designs are implemented using CombOpt. We observe that although Razor-Lite has
negligible energy and area overheads, it leads to 11% more energy penalties due to
throughput degradation compared to Razor. The small number of TIMBER flip-flops
is due to additional constraints described in Section 3.7. Further, TIMBER flip-flops
require additional timing margin on fanout timing paths to compensate timing errors,
which leads to larger energy of combinational cells compared to Razor and Razor-Lite.
Note that we also consider the area and power overheads of error relay logic13 between
two stages of TIMBER flip-flops [Fabrie 2014]. We group the TIMBER flip-flops which
share the same fanin TIMBER flip-flops and insert the error relay logic for each group.
We also observe that CombOpt significantly reduces the number of error-tolerant flip-
flops (by 33%, 29%, and 77% for Razor-Lite, Razor and TIMBER14, respectively). Such
reductions can enable to the energy- and area-feasibility of resilient designs.

4.8. Energy Reduction from Adaptive Voltage Scaling

In our last experiment, we study the energy reduction of resilient design in an adap-
tive voltage scaling context. We compare energy of designs implemented with the
brute-force method and our CombOpt at different supply voltages. Note that to allow
voltage downscaling, we build a margin of 25% of the clock period into the paths that
have conventional flip-flops as endpoints. In addition, for each test case, we implement
a pure-margin design that satisfies timing constraints at minimum voltage as a refer-
ence. Figure 15 shows results for our four test cases. The designs implemented with

13Based on the error-detection signal of a TIMBER flip-flop, an error relay logic determines the number of
time intervals to mask timing errors of the TIMBER flip-flop in the successive stage.
14We observe similar improvement (i.e., 7% energy reduction) on an industrial processor (with 13K instances
and 1,642 flip-flops) at 40nm technology compared to the brute-force method. In the example, the number of
TIMBER flip-flops is reduced from 363 to 10, in which cells in the fanin cones of the selected 10 endpoints
consumes 56% of total power in the corresponding conventional design.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:24 A. B. Kahng et al.

Fig. 15. Energy consumption with voltage scaling and minimum achievable energy for each method.

CombOpt achieve significant energy reduction with voltage scaling. This is because
our optimization comprehends the toggle information and trade-off between power
consumption on combinational cells and error-tolerant registers; this results in less en-
ergy penalty from throughput degradation and additional circuits. Note that although
throughput degradation increases at lower supply voltages, the total power also re-
duces. This leads to the observed decrease in energy cost of throughput degradation at
lower supply voltages for most cases. However, further downscaling of the supply volt-
age is limited by the paths with conventional flip-flops as endpoints. We also observe
that the benefits of resilience can be design-dependent: a design with larger error rate
(e.g., FPU) derives less benefit from resilience because of large recovery overheads.
From our proposed optimization (CombOpt), we achieve 8% and 17% energy reduc-
tions on average compared to the brute-force and conventional (pure-margin) methods,
respectively.

5. CONCLUSIONS

By allowing timing errors, resilient design techniques can reduce design effort and
obtain power and area benefits over conventional designs which always operate cor-
rectly. However, throughput and circuit power and/or area overheads can diminish the
benefits of resilient design.

In this work, we provide a new design flow for mixing of resilient and nonresilient
circuits within a given implementation so as to minimize the overhead of error re-
silience. We propose a selective-endpoint optimization which reduces timing-critical
endpoints with small cost of timing optimization. We also propose a clock skew opti-
mization, specifically targeted to a resilient design methodology, which improves ro-
bustness to process, voltage, and temperature variations. In addition, we propose a
matching-based algorithm to construct the error-detection network with substantially
reduced wirelength cost. Our implementations further account for the impacts of sign-
off corners and process variation. Our proposed optimization techniques achieve signif-
icant energy reductions—up to 21% and 10%—compared to conventional (pure-margin)

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

An Improved Methodology for Resilient Design Implementation 66:25

design and a brute-force resilience implementation, respectively. In an adaptive voltage
scaling context, our method shows further benefits of error resilience.

A number of research directions remain open. In particular, our ongoing work seeks
to (1) find an improved sensitivity metric to determine the minimum set of endpoints
to optimize for minimum power and area, and to (2) build a unified framework for
simultaneous data- and clock-path optimization.

ACKNOWLEDGMENTS

We are deeply grateful to Dr. Hamed Fatemi of NXP Semiconductors for enabling our experimental studies
with an industrial platform. We also thank Dr. Vikas Chandra of ARM, Mihir Choudhury of IBM, and
Sebastien Fabrie of NXP Semiconductors for useful discussions about optimization of TIMBER-based designs.

REFERENCES

C. Albrecht, B. Korte, J. Schietke, and J. Vygen. 2002. Maximum mean weight cycle in a digraph and
minimizing cycle time of a logic chip. Discrete Appl. Math. 123, 1–3 (2002), 103–127.

T. M. Austin. 1999. DIVA: A reliable substrate for deep submicron microarchitecture design. In Proceedings
of the ACM/IEEE 32nd Annual Symposium on Microarchitecture. 196–207.

T. M. Austin, V. Bertacco, D. Blaauw, and T. Mudge. 2005. Opportunities and challenges for better than
worst-case design. In Proceedings of the IEEE Asia and South Pacific Design Automation Conference.
2–7.

N. D. P. Avirneni and A. K. Somani. 2012. Low overhead soft error mitigation techniques for high-performance
and aggressive systems. IEEE Trans. Comput. 61, 4 (2012), 488–501.

K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson, S. L. Lu, T. Karnik, and V. K. De. 2009a.
Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance. IEEE J.
Solid-State Circuits 44, 1 (2009), 49–63.

K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T. Karnik, V. De, and S. Borkar. 2009b. Circuit techniques
for dynamic variation tolerance. In Proceedings of the ACM/IEEE Design Automation Conference. 4–7.

V. Chandra (ARM) and M. Choudhury (IBM). 2014. Personal communication. (June 2014).
C.-H. Chen, Y. Tao, and Z. Zhang. 2013. Efficient in situ error detection enabling diverse path coverage. In

Proceedings of the IEEE International Symposium on Circuits and Systems. 773–776.
H. Chen, S. Roy, and K. Chakraborty. 2014. DARP: Dynamically adaptable resilient pipeline design in

microprocessors. In Proceedings of the IEEE Design, Automation and Test in Europe. 1–6.
M. Choudhury, V. Chandra, K. Mohanram, and R. Aitken. 2010. TIMBER: Time borrowing and error relaying

for online timing error resilience. In Proceedings of the IEEE Design, Automation and Test in Europe.
1554–1559.

M. R. Choudhury and K. Mohanram. 2009. Masking timing errors on speed-paths in logic circuits. In
Proceedings of the IEEE Design, Automation and Test in Europe. 87–92.

J. Cong, H. Duwe, R. Kumar, and S. Li. 2014. Better-than-worst-case design: Progress and opportunities. J.
Comput. Sci. Technol. 29, 4 (2014), 656–663.

S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, and T. Mudge. 2006. A self-tuning DVS
processor using delay-error detection and correction. IEEE J. Solid-State Circuits 41, 4 (2006), 792–804.

S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. M. Bull, and D. T. Blaauw. 2009. Razor
II: In situ error detection and correction for PVT and SER tolerance. IEEE J. Solid-State Circuits 41, 1
(2009), 32–48.

D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T.
Mudge. 2003. Razor: A low-power pipeline based on circuit-level timing speculation. In Proceedings of
the IEEE/ACM International Symposium on Microarchitecture. 7–18.

H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. 2011. Dark silicon and the end
of multicore scaling. In Proceedings of the IEEE International Symposium on Computer Architecture.
365–376.

S. Fabrie. 2014. NXP Semiconductors. Personal communication. (May–July 2014).
J. P. Fishburn. 1990. Clock skew optimization. IEEE Trans. Comput. 39, 7 (1990), 945–951.
M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. M. Harris, D. Blaauw, and D. Sylvester. 2013. Bubble razor:

Eliminating timing margins in an ARM cortex-M3 processor in 45 nm CMOS using architecturally
independent error detection and correction. IEEE J. Solid-State Circuits 48, 1 (2013), 66–81.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

66:26 A. B. Kahng et al.

S. Ghosh and K. Roy. 2007. CRISTA: A new paradigm for low-power and robust circuit synthesis under
parameter variations using critical path isolation. IEEE Trans. Comput.-Aid. Desi. Integr. Circuits Syst.
26, 11 (2007), 1947–1956.

B. Greskamp and J. Torrellas. 2007. Paceline: Improving single-thread performance in nanoscale CMPs
through core overclocking. In Proceedings of the IEEE International Conference on Parallel Architecture
and Compilation Techniques. 213–224.

B. Greskamp, L. Wan, U. R. Karpuzcu, J. J. Cook, J. Torrellas, D. Chen, and C. Zilles. 2009. BlueShift:
Designing processors for timing speculation from the ground up. In Proceedings of the IEEE International
Symposium on High Performance Computer Architecture. 213–224.

A. B. Kahng, S. Kang, R. Kumar, and J. Sartori. 2010a. Recovery-driven design: A methodology for power
minimization for error tolerant processor modules. In Proceedings of the ACM/IEEE Design Automation
Conference. 825–830.

A. B. Kahng, S. Kang, R. Kumar, and J. Sartori. 2010b. Slack redistribution for graceful degradation under
voltage overscaling. In Proceedings of the IEEE Asia and South Pacific Design Automation Conference.
825–831.

A. B. Kahng, S. Kang, and J. Li. 2014. A new methodology for reduced cost of resilience. In Proceedings of
the ACM Great Lakes Symposium on VLSI. 157–162.

S. Kim, I. Kwon, D. Fick, M. Kim, Y.-P. Chen, and D. Sylvester. 2013. Razor-lite: A side-channel error-detection
register for timing-margin recovery in 45nm SOI CMOS. In Proceedings of the IEEE International Solid-
State Circuits Conference. 264–265.

Y. Liu, R. Ye, F. Yuan, R. Kumar, and Q. Xu. 2012. On logic synthesis for timing speculation. In Proceedings
of the IEEE International Conference on Computer-Aided Design. 591–596.

Y. Liu, F. Yuan, and Q. Xu. 2011. Re-synthesis for cost-efficient circuit-level timing speculation. In Proceedings
of the ACM/IEEE Design Automation Conference. 158–163.

V. Subramanian and A. K. Somani. 2008. Conjoined pipeline: Enhancing hardware reliability and perfor-
mance through organized pipeline redundancy. In Proceedings of the IEEE Pacific Rim International
Symposium on Dependable Computing. 9–16.

L. Wan and D. Chen. 2009. DynaTune: Circuit-level optimization for timing speculation considering dynamic
path behavior. In Proceedings of the IEEE International Conference on Computer-Aided Design. 172–
179.

K-.C. Wu and D. Marculescu. 2010. Clock skew scheduling for soft-error-tolerant sequential circuits. In
Proceedings of the IEEE Design, Automation and Test in Europe. 717–722.

Y.-M. Yang, I. H.-R, Jiang, and S.-T. Ho. 2013. PushPull: Short path padding for timing error resilience
circuits. In Proceedings of the IEEE International Symposium on Physical Design. 50–57.

R. Ye, F. Yuan, and Q. Xu. 2011. Online clock skew tuning for timing speculation. In Proceedings of the IEEE
International Conference on Computer-Aided Design. 442–447.

R. Ye, F. Yuan, H. Zhou, and Q. Xu. 2012. Clock skew scheduling for timing speculation. In Proceedings of
the IEEE Design, Automation and Test in Europe. 929–934.

N. E. Young, R. E. Tarjan, and J. B. Orlin. 1991. Faster parametric shortest path and minimum balance
algorithms. Networks 21, 2 (1991), 205–221.

F. Yuan and Q. Xu. 2013. InTimeFix: A low-cost and scalable technique for in-situ timing error masking in
logic circuits. In Proceedings of the ACM/IEEE Design Automation Conference. 183:1–183:6.

G. Zhang and P. A. Beerel. 2014. Stochastic analysis of bubble razor. In Proceedings of the IEEE Design,
Automation and Test in Europe. 109:1–109:6.

Received July 2014; revised December 2014, March 2015; accepted March 2015

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 66, Pub. date: September 2015.

