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Optimal Robust Path Planning in General 
Environments 

T. C. Hu, Andrew B. Kahng, and Gabriel Robins 

Abstract-We address robust path planning for a mobile agent 
in a general environment by finding minimum cost source-des- 
tination paths having prescribed widths. The main result is a 
new approach that optimally solves the robust path planning 
problem using an efficient network flow formulation. Our al- 
gorithm represents a significant departure from conventional 
shortest-path or graph search based methods; it not only han- 
dles environments with solid polygonal obstacles, but also gen- 
eralizes to arbitrary cost maps that may arise in modeling in- 
complete or uncertain knowledge of the environment. Simple 
extensions allow us to address higher dimensional problem in- 
stances and minimum-surface computations; the latter is a re- 
sult of independent interest. We use an efficient implementation 
to exhibit optimal path-planning solutions for a variety of test 
problems. The paper concludes with open issues and directions 
for future work. 

I. INTRODUCTION 
0 EFFECT its goals, an autonomous mobile agent T will execute a sequence of source-destination navi- 

gational tasks in the agent’s configuration space. For each 
navigational task, the motion planning problem asks for a 
minimum-cost feasible path [8], [ 1 11, [25 J ,  [37]. The cost 
of a given solution may depend on many factors, includ- 
ing distance traveled, time or energy expended, and haz- 
ard probabilities encountered along the path. In practice, 
additional constraints might arise from a dynamic envi- 
ronment (e.g., moving obstacles), incomplete knowledge 
of the terrain and a concomitant need to reason under un- 
certainty, or such physical considerations as gravity, fric- 
tion, and the dynamics of the robot agent. A large body 
of work has addressed the motion planning problem; for 
a survey, the reader is referred to Latombe [25] or Mitch- 
ell [31]. We begin our exposition by reviewing several 
major problem formulations and solution methods. 

The basic motion planning problem involves kinematic 
path planning for a rigid-body mobile agent that moves in 
an environment populated by static polygonal obstacles. 
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In this simple paradigm, the agent’s path is defined by a 
sequence of translations and rotations of the rigid body. 
Motion planning then entails computing a path from a 
source to a destination that avoids collisions between the 
agent and the obstacles, i.e., the path must lie entirely in 
the so-called free space. This basic kinematic formulation 
has been augmented in several ways. For example, mul- 
tiple agents may be present: this yields an environment 
with moving obstacles, and motivates the concept of con- 
jguration space-time [30]. The solution space may also 
be limited based on joint articulation, or the physical 
characteristics of control structures. Various classes of 
holonomic and non-holonomic kinematic constraints are 
discussed by Alexander [2], Alexander and Maddocks [3], 
Barraquand and Latombe [5], [6], Canny [8], Canny, 
Donald, Reif, and Xavier [9], Laumond [26], [27], Li, 
Canny, and Sastry [29], and Nelson [34]. An entirely dis- 
tinct field of study incorporates robot dynamics to estab- 
lish additional constraints on (kinematically planned) path 
solutions [25]. For example, gravity and friction coeffi- 
cients will constrain both the path solution and the the 
speed of traversal when the agent must avoid tip-over, 
sliding, and other undesirable phenomena. Note that our 
present work does not model the dynamics of the agent: 
rather, we address a kinematic path planning formulation 
that captures important practical constraints. 

In general, kinematic path planning has been widely 
studied (see, e.g., [8], [25], [37] for surveys); a number 
of special cases have been well solved, and several com- 
plexity bounds have been established. If the path solution 
is not constrained to lie on a grid, Canny [8] showed that 
path planning problems are NP-hard when the dimension 
of the configuration space exceeds three. In the same 
work, Canny also developed the exponential-time road- 
map (or silhouette) method for general kinematic motion 
planning. Exact path planning algorithms for polygonal 
objects navigating among polygonal obstacles were given 
by Avnaim, Boissonnat, and Faverjon [4]. Papadimitriou 
[36] proposed an algorithm that finds a path with cost 
within a factor of 1 + E of optimal, and runs in time 
polynomial in both 1 / E  and the total number of vertices. 
Shortest path planning for a point moving on the boundary 
of a polyhedron has been studied in the computational ge- 
ometry literature as the discrete geodesic problem (e.g., 
[33] and the related work in [32]). One readily observes 
that kinematic planning approaches fall into two main 
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classes: efficient algorithms that have an underlying 
“shortest-path” approach, and exponential-time algo- 
rithms that rely on implicit enumeration techniques, Be- 
fore presenting a more detailed taxonomy of kinematic 
planning solutions, we mention the motivating consider- 
ations that have led to our new combinatorial approach to 
kinematic planning. 

Our work focuses on kinematic planning subject to two 
practical extensions: i) the need to incorporate uncertainty 
into a motion planning formulation and ii) the require- 
ment of an error-tolerant solution. These, respectively, 
yield the notion of a general cost function in a given ter- 
rain, along with the notion of a robust path solution (we 
use the term “robust path” to indicate a path that main- 
tains a prescribed minimum width); Section I1 gives a for- 
mal development of these two concepts. While the com- 
plexity of kinematic planning generally increases as more 
constraints are added to the basic formulation, any strat- 
egy that addresses the basic formulation will usually gen- 
eralize to handle the more complicated formulations (such 
is the case for the new approach given in this paper). Con- 
sequently, we find that approaches in the literature fall 
naturally into only a few main categories. 

The most straightforward path planning algorithms are 
based on graph search approaches. Such methods use the 
vertices of a graph to represent feasible points in the 
agent’s configuration space; edges in the graph represent 
optimum subpaths (also called canonical paths) between 
these configurations. Variations include retraction meth- 
ods based on Voronoi decomposition [35], and approxi- 
mate cell decomposition [30]. For simple problem for- 
mulations, e.g., a point agent and convex polygonal 
obstacles, computational geometry techniques along with 
shortest-path algorithms afford efficient solutions, as sur- 
veyed by Schwartz er al. in [37]. Obviously, the com- 
plexity of any variant is dependent on the number of paths 
computed and the ease of computing each optimum sub- 
path. With a number of formulations, exhaustive graph 
search methods such as depth-first branch-and-bound or 
A* constitute the only known optimal algorithms. As 
noted by Latombe [25], such enumerative approaches 
typically have exponential time complexity, and therefore 
efficient heuristics must be employed. 

A common heuristic for reducing search complexity is 
the hierarchical solution method based on 2k-trees (espe- 
cially quadtrees and octtrees) or dissections into triangu- 
lar or rectanguloid cells [lo], [25]. Unfortunately, the hi- 
erarchical solution approach cannot guarantee optimal 
solutions [4 11. Alternatively, physical analog methods 
might be employed; these commonly involve a potential 
jield that forces the agent to move toward the goal config- 
uration while avoiding contact with obstacles [7], [ 151, 
[24]. Path finding may then be accomplished by varia- 
tional methods (e.g., [38]), or by classical gradient or 
subgradient algorithms. Other work has essentially hy- 
bridized analogs of graph search algorithms (notably the 
best-first and depth-first approaches) with either hierar- 

chical or physical analog formulations. The fundamental 
problem with such methods is that the output can be a 
locally minimum solution that is not globally optimum; 
no efficient variants of the physical analog approach that 
can guarantee a global optimum solution appear possible 

The main contribution of this paper is a new algo- 
rithmic approach to optimal robust path planning in en- 
vironments with arbitrary cost maps. Essentially, we dis- 
card the usual mix of shortest-path algorithms and graph 
search techniques, and instead employ a more general 
combinatorial approach involving network flows [ 121. The 
crucial observation is that a minimum-cost path that con- 
nects two locations s and t corresponds to a minimum- 
cost cut-set that separates two other locations s’ and t’ . 
We obtain our new motion planning methodology by us- 
ing efficient network flow algorithms to exploit this dual- 
ity between connecting paths and separating sets. 

Our approach is guaranteed to find optimum solutions 
to the minimum-cost path and minimum-cost robust path 
problem formulations that we define below. A primary 
attraction is that our algorithm runs in polynomial time; 
in fact, it can be implemented in O(d2  . N 2  . log N )  time 
where N is the number of nodes in a discrete mesh rep- 
resentation of the environment and d is the prescribed path 
width. Experimental results confirm that we can effi- 
ciently find optimal robust paths where current combina- 
torial methods are prohibitively expensive and where 
variational or gradient heuristics only return locally opti- 
mum solutions. Our new approach also has several other 
desirable features: 

1) the intrinsic planarity and geometry of robot motion 
planning yields a layered, bounded-degree network 
representation, resulting in added implementation 
efficiency ; 

2) via incremental flow techniques, the method is suit- 
able for dynamic or on-line problems, as well as 
situations where early knowledge of partial solu- 
tions is helpful (i.e., requiring an anytime algorithm 
[14]); and 

3) the method generalizes to provide a solution to the 
classical Plateau problem on minimal surfaces [39], 
a result which is of independent interest [22], [23]. 

Given these advantages, we believe that our approach 
may well provide a new, practical basis for certain classes 
of autonomous agent path planning problems. 

The remainder of this paper is organized as follows. In 
Section 11, we formally define the problem of robust mo- 
tion planning in a terrain with arbitrary cost function. Sec- 
tion I1 also develops our solution of robust motion plan- 
ning via network flows, and describes an efficient 
implementation. Section 111 gives experimental results 
showing optimal width-d paths in environments ranging 
from random cost maps to the more traditional class of 
maps with solid polygonal obstacles. We conclude in Sec- 
tion I V  with several directions for future research. 

1251. 



HU er a l . :  ROBUST PATH PLANNING IN GENERAL ENVIRONMENTS 711 

11. 

We 
ROBUST PATH PLANNING BY NETWORK FLOWS 
begin this section by establishing notation and ter- 

minology. Our development focuses on the connection- 
separation duality that motivates the network flow ap- 
proach. 

A .  Problem Formulation B 
We say that a subset of the plane is simply connected 

if it is homeomorphic to a disk (i.e., contains no holes); 
a subset of the plane is compact if it is closed and 
bounded. 

Dejinition: A region is a simply-connected, compact 
subset of ‘3’. 

Given a region R ,  we know by the Jordan curve theo- 
rem [13] that the boundary B of R partitions the plane into 
three mutually disjoint sets: B itself; the interior of R ;  and 
the exterior of R .  We consider the problem of computing 
a path in R from source S to destination T ,  where S and T 
are disjoint connected subsets of the boundary B .  A path 
is defined as follows. 

DeJinition: Given a region R with boundary B,  a path 
between two disjoint connected subsets S C B and T C 
B is a non self-intersecting continuous curve P C R that 
connects some point s E S to some point t E T. 

Clearly, the path P partitions R into three mutually dis- 
joint sets: i )  the set of points of R lying strictly on the left 
side of P ,  which we denote by R, (we assume that P is 
oriented in the direction from s toward t ) ;  ii) the set of 
points of R lying on the right side of P, denoted by R,; 
and iii) points of P itself. This is illustrated in Fig. 1. It 
is possible for at most one of RI and R,  to be empty, and 
this happens exactly when P contains a subset of B be- 
tween S and T. More precisely, R, (respectively, R,) is 
empty if P 2 B, (respectively, P 2 Br),  where B, and B,, 
respectively, denote the subsets of the boundary B lying 
clockwise and counterclockwise between S and T,  i.e., B, 

As noted above, the goal of our work is to optimally 
solve motion planning when two practical constraints are 
incorporated: an arbitrary cost function defined over the 
region, and a robust path requirement. An arbitrary cost 
function corresponds to a general environment, which is 
in many ways more realistic than an environment con- 
sisting only of solid polygonal obstacles, and which 
moreover follows very naturally from the mobile agent 
having imperfect (probabilistic, fuzzy, or incomplete) 
knowledge of its surroundings. The imperfection of 
knowledge can be due to a variety of factors, including 
errors in positioning or orientation of the agent, staleness 
of information, and physical limitations of sensors. As an 
example, consider the following scenario: given proba- 
bilistic information about terrain difficulty (e.g., rivers, 
swamps, fields of landmines) and the locations of hostile 
entities, an agent wishes to travel with minimum proba- 
bility of incurring a casualty or other damage. In this 
scenario, each point in the region will have an associated 

= ( B  n RJ - ( S  U T )  and B, = ( B  n R,) - ( S  U T I .  

S 
Fig. 1. A path P between two points s E S and f E T ,  where S and T are 

disjoint subsets of the boundary B of a region R. 

weight, or cost of traversal, corresponding to the level of 
danger. (In what follows, we use the terms “weight” and 
“cost” synonymously.) Multiple objectives may also be 
captured via this formulation: if the agent must reach his 
destination quickly, then the weight function will take into 
account both danger level and the time required to travel 
through each point. Note that this formulation subsumes 
the binary cost function of a basic environment with solid 
polygonal obstacles (cost = 1) and free space (cost = 0). 

Formally, given a region R ,  we define a weight func- 
tion w: R + 3 + such that each point s E R has a corre- 
sponding positive weight w (s). The cost, or weight, of a 
path P E R is defined to be the integral of w over P.  
Optimal motion planning entails minimizing this path in- 
tegral. To find a minimum-cost path P C_ R between two 
points on the boundary of R ,  one might guess that Dijk- 
stra’s shortest path algorithm [12] provides a natural so- 
lution. However, application of Dijkstra’s algorithm re- 
lies on an implicit assumption that the solution can be cast 
as an ideal path, i.e., a path of zero width. The relevance 
of this caveat becomes clear when we consider our second 
extension to the basic formulation-the requirement of a 
robust path solution. 

Due to errors in location, orientation and motion, a ro- 
bot agent is never able to exactly follow a given pre- 
scribed path. A path is error-tolerant if the agent will not 
come to harm when it makes a small deviation from the 
path: in the above scenario, a path that requires the agent 
to tiptoe precisely between landmines is not as error-tol- 
erant as a path that avoids minefields altogether. With this 
in mind, we define a robust path to be one that maintains 
a prescribed minimum width (and that is thereby error- 
tolerant). This prescribed-width formulation also ad- 
dresses the fact that robot agents are physical entities with 
physical dimensions: because physical agents do not oc- 
cupy only point locations in the environment, the mini- 
mum-cost path of zero width that is computed by a short- 
est-path algorithm may be infeasible (e.g., while an insect 
might easily exit a room through a barred window, a per- 
son cannot easily do so). In general, the optimum path for 
an agent of width d, cannot be obtained by simply wid- 
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ening or narrowing the optimum path for an agent of width 

We now establish the relationship between a pre- 
scribed-width path requirement and the concept of d-sep- 
aration [ 191. In the following, we use ball ( x ,  d )  to denote 
the closed ball of diameter d centered at n, i .e.,  the set of 
all points at distance d / 2  or less from x. (Our prescribed- 
width formulation, as well as the definition below of the 
robust path planning problem, assumes that an agent is of 
circular shape. If the agent has a different shape, e.g., an 
arbitrary polygon, then our new &PATH algorithm (Sec- 
tion 11-B) assumes that the agent has width equal to the 
width of its smallest circumscribing disk.) 

Dejinition: Given two disjoint subsets S and T of the 
boundary of a region R, a set of points C R is a width- 
d path between S and T if there exist s E: S, t E T,  and a 
path P from s to t such that 

d2. 

z U r s P  {ball(n, d )  fl R ) ,  

that is, P contains the intersection of R with any disk of 
diameter d centered about a point of P.  

Just as the path P between S and Twill partition R into 
RI, R,, and P ,  the width-d path P G R between S and T 
also papitions R into three sets: i) the set of points El = 
[(R - P )  fl R,] U B,, that is, the union of the left bound- 
ary B, and all points in R that are to the left of P ;  ii) the 
set of points Rr = [(R - p )  fl R,] U B,; and iii) the 
pointset P itself. We now obtain the definition of a 
d-separating path (see Fig. 2). 

Definition: Given two disjoint subsets S and T of the 
boundary of a region R ,  a set of pcints c R is a 
d-separating path between S and T if P is a width-d path 
such that any point of R, is distance d or more away from 
any point of Er. 

A d-separating path p between S and T is a minimal 
d-separating path between S and T if no subset of F sat- 
isfies the preceding definition. Because all points in R have 
positive cost and because we are interested in minimum- 
cost paths, the following discussion refers only to mini- 
mal d-separating paths. Given a specific width d ,  the 
d-robust motion planning problem can now be stated as 
follows. 

d-Robust Motion Planning Problem (RMPP): Given an 
arbitrary region R with boundary B ,  a weight function 
w: R + 9?+, a source S C B ,  a destination T C B ,  and 
a width d, find a d-separating path p C R between S and 
T that has minimum total weight. 

While our formulation specifies an arbitrary weight 
function that is integrated to yield path cost, in most prac- 
tical situations the region is discretized relative to a given 
fixed grid or sampling granularity (see, e.g., [7 ] ) .  Thus, 
in the present work, we will assume a fixed-grid repre- 
sentation R of the environment region R. With this dis- 
crete RMPP formulation, the cost of a path is defined to 
be the sum of the weights of the nodes covered by the 
path. Similarly, the notion of &separation also naturally 
extends to the discrete grid. 

DeBnition: Given a region R ,  a discrete d-separating 

S 

Fig. 2 .  A d-separating path o f  width d between two points s ES and 
t E Tof the boundary of a region R .  Here R, is separated from R, by a 
distance of d. 

path P in the gridded region R is the subset of the grid- 
points of R that is contained in some d-separating path p 
in R (Fig. 3).  

As before, a discrete d-separating path is minimal if no 
subset of it satisfies this definition. Analogously to the 
continuous case, a d-separating path partitions the gridded 
environment into two subsets, such that each gridpoint 
from one partition is a distance of at least d units away 
from any gridpoint in the other partition. We therefore 
have the following problem formulation. 

d-Robust Motion Planning Problem in a Grid 
(RMPPG): Given a weighted gridded region R with 
boundary B C 8, a source S C_ B ,  a destination T G B ,  
and a width d, find a discrete d-separating path P C R 
between S and T that has minimum cost. 

Intuitively, as the granularity quantum approaches zero 
the solution for the RMPPG instance will converge to the 
solution for the corresponding continuous RMPP in- 
stance. At this point, we observe that although RMPPG 
is a very natural problem formulation, it cannot be effi- 
ciently solved by traditional methods. In particular, effi- 
cient graph algorithms such as Dijkstra’s shortest-path al- 
gorithm fail because the optimal d-separating path may 
self-intersect: when the shortest-path algorithm attempts 
to increment a path, it cannot determine how much of the 
increment should be added to the path cost (see Fig. 4).’ 

In the special case where the cost function is binary, 
Dijkstra’s algorithm is applicable via the following well- 
known technique [25]: augment the environment by 
growing each obstacle (as well as the region boundary) 
isotropically by d / 2  units, then set the weight of each 
node in the free area to some constant, while the weight 
of any node in an area covered by an obstacle is set to 
infinity. A minimum-cost prescribed-width path in such 

‘Recall that in an n-node edge-weighted graph G = ( V ,  E )  with identified 
source uo E V ,  the kth phase of  Dijkstra’s algorithm k = I ,  . . * , n finds 
another node uk for which the shortest pathlength do, in G is known; we 
know the optimum 3-r pathlength when uk = t .  Although the RMPPG for- 
mulation above assumes a node-weighted G, we may easily obtain an edge- 
weighted graph (for all U E V ,  add w ( u ) / 2  to the weight of each edge 
incident to U )  to which we may apply Dijkstra‘s algorithm. However, this 
transformation is correct only for computing the optimal zero-width path: 
Dijkstra’s algorithm relies on the fact that d,  can never be strictly less than 
mink (dik + t ik , ) ,  but this may not hold when paths have nonzero width, as 
shown in Fig. 4. 



HU er a l . :  ROBUST PATH PLANNING I N  GENERAL ENVIRONMENTS 779 

T 
P - , - . - 7 - 7 - . - 7 7 - T - . m - R q q q - 7 - 7 7  ,h 

. . . . . . . . . . . . . . . . . . . . .  1 . .  . . . .  , . . _ . . _ I  

1 . . . . . . . . . . . . .  \ . . . . . . . , . . .  . I  
I . . . . . . .  , . .  , . . . . . . . . . . . .  . ‘  
1 . . . . .  , . . ....... , . . . . . . . . .  .’ 
I . . . . . - . . . . . . . . . . I  
I . . . . . .  . . . . . . . . . . . . . . . . . . . I  
I . .  . . . . . . . , . . . . . . . . . . . . . . . . I  
I . . . . . . . . .  . . . . . . . . . . . . . . . I  

. . . . . . . . . . . . . . . . . . .  - I - - - - - - -  -,I . . . . . . . . . . . . . . . . . . . . . . . . . .  l ......, RI . . . . . . . .  m . . . . . . . . .  . .....I P 
1 . . . . . . . . . . . . , . . . . . .  1 . .  . . . .  

I . . . .  . , . . I . .  . ........,. . . . .  - 
P . . . . . . . . .  

I . . . . . . . . . . . . . . . . . . . .  \::::,II . - - - - - - - - - - - - - - - -  , ’  

S 
Fig. 3 .  A dis_cretifed representation R of a region R ,  and a discrete d-sep- 
arating path P in R .  Note thaLp is the set of lattice points covered by the 
continuous d-separating path P in R .  

Fig. 4. An optimal path with nonzero width can intersect itself (in this 
example the center gap is too narrow to allow the path to pass through it); 
efficient shortest-path algorithms fail to solve the robust motion planning 
problem for such instances. 

an augmented environment would correspond to the cen- 
ter P of the d-separating path p that we seek (Fig. 2). 
Unfortunately, this simple transformation fails for arbi- 
trary weight functions: a general environment has no solid 
“obstacles” that can be “grown” in such a fashion. 

In fact, even in the case of a binary cost function, Dijk- 
stra’s algorithm may not be entirely suitable. Recall that 
our path cost model charges only once for each node cov- 
ered by the path, reflecting the original motivation of min- 
imizing the “path integral” of cost. Arguably, this is not 
unreasonable; for example, the cost of traversing a mine- 
field may be very large, but once the mined area is cleared, 
the hazard associated with a second visit is zero. Simi- 
larly, when a path is plowed through snow or when a road 

X Y Z  x‘ 
Fig. 5.  Dijkstra’s algorithm fails for the general robust motion planning 
problem because the cost of edge e = ( y ,  z )  may depend on many previous 
nodes (e.g., x‘) on the path: in this example (shown on the right), the cust 
of incrementing the path by adding the edge e should be S [ Z  - Z fl ( Y  U 
X’)]. rather than a[Z - (2 fl Y ) ] ,  otherwise the cost of the small dark 
region will be charged twice. 

charge more than once for a single visited region depend- 
ing on where the path previously visited (Fig. 5, right), 
and therefore edge costs cannot be fixed a priori. 

To summarize, we see that the traditional Dijkstra- 
based obstacle-growing method fails to solve the robust 
motion planning problem for two reasons: 1) the obstacle- 
growing transformation does not apply to general cost 
functions, and 2 )  fixed edge costs cannot be determined 
when the cost model charges exactly once for each node 
covered by the path. With this in mind, we now use a 
network flow approach to develop an efficient, optimal 
algorithm for the RMPPG problem. 

B. A Network Flow Based Approach 
To solve the robust motion planning problem in a grid, 

we use ideas from network flows in continua [21].* For 
completeness of our exposition, we first review several 
key concepts from the theory of network flows [ 161, [28]. 
A j o w  network 7 = (N, A ,  s, t, c,  c ’ )  is a directed graph 
with node set N ;  a set of directed arcs A C N X N; a 
distinguished source node s E N and a distinguished sink 
node t E N ;  an arc capacity function c: A -+ ‘8’ that 
specifies the capacity c, 2 0 of each arc a, E A ;  and a 
node capacity function e’: N + (32 + that specifies the ca- 
pacity c :  r 0 of each node n, E N .  To handle undirected 
graphs, we may replace each undirected arc a, by two 
directed arcs a, and all, each having capacity c,,. 

A j o w  in 77 assigns to each arc a!, a value cpIJ with the 
constraint that 0 I cpI1 I cl,. An arc ay is called saturated 
if 4, = c,,. We insist onflow conservation at every node 
except s and t, and we require that the flow through each 
node nJ does not exceed the capacity of that node: 

C 411 = 41Jk I c; nJ z s, t. 
I 

is paved, the work is proportional to the actual area 
plowed or paved. Given this path cost formulation, Dijk- 
stra’s algorithm cannot be applied since it requires jixed 
edge costs. Fig. 5 illustrates this, where for the path on 

A node nj is called saturated if C cPjj = cj’ . Since flow is 
conserved at every node, the total amount of flow from 
the source must be equal to the total flow into the sink; 

the left it is appropriate to let the cost of the grid edge 
(y, z )  be G(z - are the sets of 
gridpoints in  ball@, d )  and ball(z, d ) ,  respectively, and 
the weight function i.e., 
@(z) = C z E ~  W(Z). However, this cost definition can 

n Y ) ,  where Y and *We note that Mitchell 1321 also extends the ideas of flows in continua, 
but in a very different way. The results in [32] develop a theory of flows 
in polyhedral domains, with a view to such practical applications as motion 
planning of many agents through a congested region (i.e., “rapid deploy- 
ment”), the routing of multiple wires in a printed circuit board, etc. 

is extended to sets Of 
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we call this quantity the value @ of the flow: 

+ = c & = c djt 
I j 

A flow with the maximum possible value is called a 
maximum flow. An s-t cut in a network is a set ( N I ,  A ’ )  
of nodes N ’  C N and arcs A’ c A such that every path 
from s to r uses at least one node of N ’  or at least one arc 
of A ’ .  The capacity c ( N ’ ,  A ’ )  of a cut is the sum of the 
capacities of all nodes and arcs in the cut. A classical 
result of linear programming duality states that the max- 
imum flow value is equal to the minimum cut capacity; 
this is the max-flow min-cut theorem [ 161. 

Theorem I :  Given a network 7 = ( N ,  A ,  s, t ,  c ,  c ’ ) ,  
the value of a maximum s-r flow is equal to the minimum 
capacity of any s-t cut. Moreover, the nodes and arcs of 
any minimum s-t cut are a subset of the saturated nodes 
and saturated arcs in some maximum s-t flow. 0 

Recall our earlier observation that any s-t path will sep- 
arate, i.e., cut, RI from R,.. In particular, an inexpensive 
s-t path will correspond to an inexpensive cut between 
two appropriately chosen nodes s’ and t’. Since a subset 
of the nodes and arcs saturated by the maximum s‘-t’ flow 
will yield this s’-t’ cut, it is natural for us to derive the 
desired s-t path via a maximum-flow computation in a net- 
work where capacities correspond to travel costs in R. The 
remainder of this section describes how we accomplish 
this. 

To transform robust motion planning in a region R into 
an instance of network flow, we first superimpose a mesh 
network topology over R ,  then assign node weights in this 
network according to the weighting function w :  R + ‘3 + . 
This yields a representation that corresponds to the un- 
derlying RMPPG instance. 

We guarantee a robust path solution by ensuring that 
any separating node set in the mesh topology satisfies the 
prescribed width-d requirement. Toward this end, we de- 
fine the d-neighborhood of a node v in the mesh to be the 
set of all nodes at distance d or less units away from U ,  
and we then modify the mesh topology by connecting each 
node to every other node in its d-neighborhood, where d 
is the prescribed path width. The resulting network is 
called a d-connected mesh, and has the property that no 
node set of width less than d is a separating set. An illus- 
tration of this construction for d = 2 is given in Fig. 6 .  
We note that the concept of a d-neighborhood was first 
investigated by Gomory and Hu [21]. 

Finally, we choose nodes s‘ and t‘ such that the mini- 
mum s’-t’ cut is forced to lie along some path between s 
and t .  We accomplish this by making s‘ and t ’ ,  respec- 
tively, into a source and a sink, then connecting each to 
a contiguous set of nodes corresponding to part of the 
boundary of the original region R. This completes the 
transformation; Fig. 7 gives a high-level illustration of 
the construction. 

Observe that up to this point, we have converted a mo- 
tion planning instance into an undirected, node-capaci- 
rared (node-weighted) flow instance. However, network 
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Fig. 6.  A node and its d-neighborhood (d = 2 ) .  
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Fig. 7 .  A robust motion planning instance transformed into a network flow 
instance. 

flow algorithms typically assume that the input is an arc- 
capacitated network (with infinite node capacities), 
Therefore, in order to use a standard maximum flow al- 
gorithm on our network, we must transform an instance 
having both node and arc capacities into an equivalent 
arc-capacitated maximum flow instance. To accomplish 
this, we use the standard device of splitting each node 
v E N  with weight W ( V )  into two unweighted nodes U ’  and 
U ” ,  then introducing a directed arc from v’ to v ”  with 
capacity w ( u ) .  Also, each arc ( U ,  U )  E A of the original 
network is transformed into two infinite-capacity directed 
arcs (U” ,  U ’ )  and ( U ” ,  U’). Thus, each arc ( U ’ ,  U ” )  of the 
resulting directed network will, when saturated, contrib- 
ute the original node weight W ( U )  to the minimum cut 
value. This transformation is illustrated in Fig. 8 [20]. 
The overall size of the network increases by only a con- 
stant factor via this last transformation, i.e., the final di- 
rected arc-capacitated network will have only 2(NI nodes 
and (NI + 2 ( A (  arcs. Therefore, a maximum flow com- 
putation in the transformed network will be asymptoti- 
cally as fast as in the original network. 

Note that a maximum flow in the arc-capacitated trans- 
formed graph corresponds to a minimum arc-cut in the 
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Fig. 8. Transformation of a node- and arc-capacitated flow network to an 
arc-capacitated flow network: arc capacities c,, remain infinite, while orig- 
inal node capacities (node weights) c,‘ induce directed arc capacities in the 
transformed network. 

transformed graph (by the max-flow min-cut theorem), 
which in turn corresponds to a minimum node-cut in the 
original graph since the transformation preserves minimal 
cut set costs. Moreover, the “width” of the cut can be no 
less than d since, as discussed above, the connection of 
each node to all nodes in its d-neighborhood guarantees 
that any separating node set will have the prescribed 
width. A formal summary of our algorithm, which we call 
d-PATH, is given in Fig. 9. 

We conclude this section with the observation that the 
max-flow min-cut theorem [16] and the existence of effi- 
cient algorithms for maximum flow (e.g., [12], [16]) to- 
gether imply the following. 

Theorem 2: The Q-PATH method of Fig. 9 outputs an 
optimal solution to the RMPPG problem in time poly- 
nomial in the size of the mesh representation of the region 
R. U 

C. A Test Implementation 
There are numerous algorithms for computing maxi- 

mum flows in networks [ 11, [ 161 [2 I]. To demonstrate the 
viability of our approach, we have used an existing im- 
plementation of Dink’s network flow algorithm [ 181. 
Starting with an empty flow, the Dinic algorithm itera- 
tively augments the flow in stages; the optimal flow so- 
lution is achieved when no flow augmentation is possible. 
Each stage starts with the existing flow, and attempts to 
“push” as much flow as possible along shortest paths 
from the source to the sink in a residue network wherein 
each arc has capacity equal to the difference between its 
original capacity and its current flow value. After the cur- 
rent flow has been thus augmented, newly saturated arcs 
are removed and the process iterates. Since there can be 
at most (NI - 1 such stages, each requiring time at most 
O((A1 . INI) ,  the total time complexity of the Dinic al- 
gorithm is O(1Al . /NI2) .  

If we have a total of (NI nodes in our mesh graph, the 
time complexity of the Dink algorithm is O(lNI3) .  In 
practice, more efficient flow algorithms are available [ 11. 
For example, by using the network flow algorithm of [ 171, 
we obtain the following. 

Theorem 3: For a given prescribed path width d ,  the 
&PATH method solves the RMPPG problem in 

O(d’ * IN\’ ’ log ) N l / d 2 )  

time, where IN(  is the number of nodes in the mesh rep- 
resentation of the region R .  

&PATH: Finding a d-rohnst path in a weighted rrgion 
Input: Region R. weight function 11’ : R + P+. width d~ 

grid size y. source s and destination t 011 hoiimdary of X 
Output: A discrrte d-separating path P C R connecting B and t 
Create a &connected mesh topology 7 of size g x g over R 

Assign node weights (capacities) in 77 according to weight fixiction I ( ’  

Set boiindary node weights (capacities) to cy 
Transform node/ar~-rapacitated network r j  into arc-capacitated network ri 
Add source node s’ arid sink node t’ to ?+ 

Connect s‘ to B,. the boundarv nodes of R. clockwise from 5 to f 
Connect t’ to B,, the boundary nodes of R. clockwise from t t o  s 
Set capacitics of all arcs adjacent to s’ or t’ to w 
Compute maximum s’-t’ flow in r i  
Output  all nodes incident to arcs in the mininniin sf-t’ cut of r! 

with all arc capacities bet  to  30 

Fig. 9. Finding a d-separating path of minimum cost in an arbitrary 
weighted region, i.e., an optimal solution to the RMPPG problem. 

Proof: Each node in the mesh has no more than d 2  
adjacent arcs, so that 

A = O ( d 2  * ( N I ) .  

The network flow algorithm of [ 171 operates within time 

O[IAl * PI . log (INI2/IA1)1. 

The overall time complexity of &PATH is therefore 

O ( d 2  * ( N I 2  . log JN(/d2). 0 

If d is constant (i.e., the agent is much smaller than the 
environment size), then the time complexity of &PATH 
becomes O ( ( N ( ’  . log ( N I )  for any fixed d.  The time 
complexity may be further reduced in cases where the ter- 
rain cost function may only take on values from a fixed, 
bounded range. In this case, we may apply the maximum 
flow algorithm of [I] to obtain an overall time complexity 
of 0 ( J N l 2 )  for the &PATH algorithm. 

111. SIMULATION RESULTS 
Our current &PATH implementation uses ANSI C code 

to transform an arbitrary robust motion planning instance 
into a maximum-flow instance; we then use the Fortran- 
77 Dink code of [18] to compute the flow, and invoke 
Mathematica [40] to draw the resulting path. We have 
tested our implementation on three classes of motion 
planning instances: uniformly weighted regions , environ- 
ments with polygonal obstacles, and smooth randomly- 
costed terrains. For each of these input classes, the 
boundary of the region is a rectangle, and we look for a 
width-d path connecting s and t which are, respectively, 
in the top left and bottom right comers of the region. With 
each instance, we tested various values of d. 

A uniformly weighted region has all node weights equal 
to the same constant. In such an instance we expect the 
solution path to resemble a straight line between s and t ,  
with the straightness of the line improving as the mesh 
resolution and the width d both increase. Experimental 
results confirm this behavior. 

Our test environments with polygonal obstacles are 
populated by polygons of random sizes located through- 
out the region. Nodes in  the clear areas are uniformly as- 
signed a small constant weight. while nodes inside the 
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Fig. 10. Robust motion planning in a region with polygonal obstacles. Note 
that the topology of the solutions changes as the prescribed width d is in- 
creased. The solutions shown correspond to widths d = 1 (top left), 
d = 2 (top right), d = 3 (bottom left), and d = 4 (bottom right). 
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Fig. 1 1 .  Robust motion planning in a region with polygonal obstacles 
(continued). The solutions shown correspond to widths d = 5 (top left), 
d = 6 (top right), d = 7 (bottom left), and d = 8 (bottom right). 

obstacles have infinite weight. In such an environment, 
changing the prescribed width d may dramatically affect 
the optimum path topology with respect to the obstacles, 
since long detours may be required in order to avoid nar- 
row passages between objects. This phenomenon was in- 
deed confirmed by our experiments, as illustrated in Figs. 
10 and 11. 
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Fig. 12. A randomly generated smooth terrain and its robust motion plan- 
ning solutions. We see the terrain itself (top left), as well as solutions cor- 
responding to widths d = 1 (top right), d = 2 (bottom left), and d = 3 
(bottom right). 

Finally, we tested our methodology on randomly costed 
terrains, using a mesh resolution of 100 x 100 nodes and 
a range of d values. Each random terrain instance was 
generated as follows. All nodes in the mesh were initially 
assigned a weight of zero, except for a small random sub- 
set of the nodes that were each given a large random po- 
sitive weight. Then, a weight redistribution step was it- 
eratively used to increment each node's weight by a small 
random fraction of the total weight of its immediate 
neighbors until a smoothly costed terrain was obtained. 
Figs. 12 and 13 depict typical &PATH output for the 
RMPPG problem in a random terrain. Regions of greater 
weight are denoted by darker shades, and regions of 
smaller weight are denoted by lighter shades. The opti- 
mum width-d path is highlighted in black. 

We emphasize that even though the Dinic algorithm is 
not ideal for a mesh topology, typical running times used 
to generate and solve all of the above classes of instances 
are on the order of at most a few minutes on a SUN Sparc 
IPC (15.7 MIPS). We therefore conclude that our ap- 
proach constitutes a viable new method for optimal robust 
motion planning in general terrains. 

IV. CONCLUSIONS AND OPEN PROBLEMS 
We have developed a polynomial-time algorithm that 

gives optimal solutions to the robust motion planning 
problem in a discretized environment. Our method is 
based on the duality between connecting paths and sepa- 
rating sets, and relies on a maximum-flow computation to 
find a minimum-cost path of prescribed width in an arbi- 
trarily weighted region. The accuracy of the solution with 
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Fig. 13. A randomly generated smooth terrain and its optimal robust mo- 
tion planning solutions (continued). Here we see the solutions correspond- 
ing to widths d = 4 (top left), d = 5 (top right), d = 7 (bottom left), and 
d = 8 (bottom right). 

respect to the continuous version of the problem depends 
on the grid size, which is intrinsic to the input. It should 
be noted that the underlying network topology does not 
necessarily have to be a mesh. In particular, our &PATH 
approach easily applies to instances where the underlying 
grid resolution varies across the region, with more crucial 
areas of the region being represented more finely, and less 
important areas having coarser resolution in order to in- 
crease efficiency. Our method enjoys a number of addi- 
tional generalizations and applications, including a higher 
dimensional extension that solves a class of discrete in- 
stances of the Plateau problem on minimal surfaces [ 2 2 ] ,  

Chief among the future research goals is improvement 
of the time complexity of the network flow computation; 
substantial improvement is likely since the mesh is a 
highly regular and symmetric network that admits a con- 
cise representation. Additional research might also ad- 
dress more general path planning issues, such as i) incor- 
poration of kinematic and dynamic considerations, ii) use 
of hierarchical approaches as a heuristic speedup, and iii) 
addressing the case where the endpoints of the path are 
not necessarily on the boundary of the region. 

~ 3 1 .  

ACKNOWLEDGMENT 
The authors wish to express their gratitude to Profes- 

sors Sheila Greibach and John Canny, as well as to the 
anonymous referees, for their helpful comments. 

REFERENCES 
[I ]  R. K .  Ahuja, J. B.  Orlin, and R. E. Tarjan, “Improved time bounds 

for the maximum flow problem,” Tech. Rep. CS-TR-I 18-87, Dept. 
Comput. Sci.. Princeton Univ., 1987. 

[2] J. C. Alexander, “On the motion of a trailer-truck, problem 84-12,’’ 
SIAM Rev.,  pp. 578-579, 1985. 

[3] J. C. Alexander and J. H. Maddocks, “On the maneuvering of ve- 
!iicles,” SIAM J .  Appl. Math., vol. 48, pp. 38-51, 1988. 

[4] F. Avnaim, J. D. Boissonnat, and B. Faverjon, “A practical exact 
motion planning algorithm for polygonal objects moving amidst 
polygonal obstacles,” Tech. Rep. 890, INRIA, Sophia-Antipolis, 
France, 1988. 

[SI J .  Barraquand and J .  C .  Latombe, “On non-holonomic mobile robots 
and optimal maneuvering,” Revue d ’lnrelligence Arfijicielle, vol. 3, 

[6] -, “Controllability of mobile robots with kinematic constraints,” 
Tech. Rep. STAN-CS-90-1317, Dept. Comput. Sci., Stanford Univ., 
Stanford, CA, 1990. 

[7] -, “Nonholonomic multibody mobile robots: Controllability and 
motion planning in the presence of obstacles,” in Proc. IEEE Int. 
Conf. Roborics Automat., 1991, pp. 2328-2335. 

[SI J. Canny, The Complexity of Robot Motion Planning. Cambridge, 
MA: MIT Press, 1988. 

[9] J. Canny, B .  Donald, J .  Reif, and P. Xavier, “On the complexity of 
kinodynamic planning, ” in Proc. IEEE Symp. Foundations Comput., 

[ IO] D. W. Cho, “Certainty grid representation for robot navigation by a 
bayesian method,” Robotica, vol. 8,  pp. 159-165, 1990. 

I1 I ]  J.  H. Connell, Minimalisr Mobile Roborics. New York: Academic, 
1990. 

1121 T. H. Cormen, C. E. Leiserson, and R. Rivest, lntroducrion ro Al- 
gorithms. 

[I31 R. Courant and H. Robbins, What is Mathematics? An Elemenrarjl 
Approach to Ideas and Methods. London, England: Oxford Univ. 
Press, 1941. 

[14] T. Dean and M. Boddy, “An analysis of time-dependent planning,” 
in Proc. AAAI, St. Paul, MN, 1988, pp. 49-54. 

[I51 B. R. Donald, “Error detection and recovery for robot motion plan- 
ning with uncertainty,” Ph.D. dissertation, Dept. EE&CS, MIT, 
1987. 

[I61 L. R. Ford and D. R. Fulkerson, Flows in Networks. Princeton, NJ: 
Princeton Univ. Press, 1961. 

[I71 A. V .  Goldberg, E. Tardos, and R. E. Tarjan, “Network flow algo- 
rithms,” Mar. 1989, unpublished. 

[18] D. Goldfarb and M. D. Grigoriadis, “A computational comparison 
of the dinic and network simplex methods for maximum flow,” Ann. 
Operat. Res. ,  vol. 13, pp. 83-123, 1988. 

(191 R.  E. Gomory, T. C. Hu, and J .  M. Yohe, “r-separating sets,” 
Canad. J .  Math., vol. 26, pp.. 1418-1429, 1974. 

[20] D. Gusfield and D. Naor, “Efficient algorithms for generalized cut 
trees,” in Proc. ACM/SIAM Symp. Discrete Algorithms, 1990, pp. 

[21] T. C.  Hu, Integer Programming and Network Flows. Reading, MA: 
Addison-Wesley, 1969. 

[22] T. C. Hu, A. B.  Kahng, and G .  Robins, “Optimal solution of the 
discrete plateau problem,” Tech. Rep. CSD-920006, Comput. Sci. 
Dept., UCLA, Jan. 1992. 

[23] -, “Solution of the discrete plateau problem,” Proc. Nat. Acad. 
Sci. ,  vol. 89 pp. 9235-9236, 1992. 

[24] 0. Khatib, “Real-time obstacle avoidance for manipulators and mo- 
bile robots,” Int. J .  Robotics Res. ,  vol. 5 ,  pp. 90-98, 1986. 

1251 J .  C. Latombe, Robot Motion Planning. Boston, MA: Kluwer Ac- 
ademic, 1991. 

[26] J. P. Laumond, “Feasible trajectories for mobile robots with kine- 
matic and environment constraints,” Preprints Int. Conf. Intell. Syst., 
1986, pp. 346-354. 

[27] -, “Finding collision-free smooth trajectories for a non-holonomic 
mobile robot,” in Proc. IEEE Conf. Foundations Comput. Sci.,  
Milan, Italy, 1987, pp. 1120-1123. 

[28] E. Lawler, Combinatorial Optimization: Networks and Matroids. 
New York: Holt-Rinehart and Winston, 1976. 

[29] Z. Li, J .  F. Canny, and S. S .  Sastry, “On motion planning fordexrer- 
ous manipulation, part i: The problem formulation,” in Proc. IEEE 
Inr. Conf. Roborics Automut., Scottsdale, AZ, 1989, pp. 775-780. 

[30] T. Lozano-Perez, “Spatial planning: A configuration space ap- 
proach,” IEEE Trans. Compuf. ,  vol. C-32, pp, 108-120, 1983. 

[31] J .  S.  B. Mitchell, “An algorithmic approach to some problems in 
terrain navigation,” in Geometric Reasoning, D. Kapur and J. L. 
Mundy, Eds. 

[32] -, “On maximum flows in polyhedral domains,” J .  Comput. Sysr. 
Sci . ,  vol. 40, pp. 88-123, 1990. 

pp. 77-103, 1989. 

Sci . ,  1988, pp. 306-318. 

Cambridge, MA: MIT Press, 1990. 

422-433. 

Cambridge, MA: MIT Press, 1988. 



IEEE TRANSACTIONS O N  ROBOTICS A N D  AUTOMATION, VOL. 9, NO.  6, DECEMBER 1993 

J .  S .  B. Mitchell, D. M. Mount, and C. H.  Papadimitriou, “The 
discrete geodesic problem,” S I A M J .  Comput., vol. 16, pp. 647-668, 
1987. 
W .  Nelson, “Continuous-curvature paths for autonomous vehicles,” 
in  Proc. IEEE Inr. Conf Robotics Automat., Scottsdale, AZ, Apr. 
1989,pp. 1260-1264. 
C. O’Dunlaing and C.  K .  Yap, “A retraction method for planning 
the motion of a disc,” J .  Algorithms, vol. 6, pp. 187-192, 1983. 
C. H. Papadimitriou and K .  Steiglitz, Combinarorial Optimization. 
Englewood Cliffs, NJ: Prentice-Hall, 1982. 
J .  T. Schwartz, M. Sharir, and H. Hopcroft, Pluming,  Geometr?.and 
Complexity of Robot Motion. 
S.  H. Suh and K. G .  Shin, “A variational dynamic programming ap- 
proach to robot-path planning with a distance-safety criterion,” IEEE 
Trans. Robotics Automat., vol. 4 ,  pp. 334-349, 1988. 
T. Tsuchiya, “On two methods for approximating minimal surfaces 
in parametric form,” Mathemat. Computat., vol. 46, pp. 517-529, 
1986. 
S.  Wolfram, Mathemarica: A System for Doing Mathematics by Com- 
puter, Second Edition. 
D. Zhu and J .  C. Latombe, “New heuristic algorithms for efficient 
hierarchical path planning,” IEEE Trans. Robotics Automat., vol. 7 ,  
pp. 9-20, 1991. 

Norwood, NJ: Ablex, 1987. 

Reading, MA: Addison-Wesley, 1991. 

T. C. Hu received the B.S .  degree in engineering 
from the National Taiwan University in 1953 and 
the Ph.D. degree in  applied mathematics from 
Brown University in  1960. 

He has made important contributions in math- 
ematical programming, combinatorial algorithms, 
and VLSI design (four books and over sixty pa- 
pers). His theoretical contributions such as the 
Gomory-Hu cut tree and the Hu-Tucker algo- 
rithm for optimum binary alphabetic trees are well 
known. On the more practical side, he was a con- 

sultant to the Office of Emergency Preparedness, Executive Office of the 
President, and member of a 1972 team that saved the U.S. Government 
over S200.000 per month in communication costs. 

Previously Dr. Hu was an editor of IEEE TRANSACTIONS ON COMPUTERS 
and coedited (with Prof. E. S.  Kuh) VLSI Circuit Layout (IEEE Press) in 
1985. 

Andrew B. Kahng was born in October 1963 in 
San Diego, CA. He received the A.B. degree in 
applied mathematics and physics from Harvard 
College, and the M.S. and P1I.D. degrees in com- 
puter science from the University of California at 
San Diego. 

Since July 1989, he has been an Assistant Pro- 
fessor with the Computer Science Department, 
UCLA, where he has received an NSF Young In- 
vestigator Award. His research interests include 
computer-aided design of VLSI circuits, combi- 

natorial and parallel algorithms, computational geometry, and the theory 
of global optimization. Dr. Kahng is a member of ACM and SIAM. 

Gabriel Robins received the Ph.D. degree from 
the UCLA Computer Science Department. 

Currently, he is an Assistant Professor of Com- 
puter Science at the University of Virginia, Char- 
lottesville. His primary areas of research are VLSI 
CAD and geometric algorithms, with recent work 
focusing on performance-driven routing, Steiner 
tree heuristics, motion planning, pattern recogni- 
tion algorithms, and computational geometry. 

Dr. Robins is a member of ACM, MAA, and 
SIAM. At UCLA, he won the Distinguished 

Teaching Award and held an IBM Graduate Fellowship. He is the author 
of a Distinguished Paper at the 1990 IEEE International Conference on 
Computer-Aided Design, and his Ph.D. dissertation was nominated for the 
ACM Distinguished Dissertation Award. 


