
1288 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 8, AUGUST 2013

Short Paper

Many-Core Token-Based Adaptive Power Gating

Andrew B. Kahng, Seokhyeong Kang, Tajana Simunic Rosing, and
Richard Strong

Abstract—Among power dissipation components, leakage power has
become more dominant with each successive technology node. Leakage
energy waste can be reduced by power gating. In this paper, we extend
token-based adaptive power gating (TAP), a technique to power gate
an actively executing core during memory accesses, to many-core Chip
Multi-Processors (CMPs). TAP works by tracking every system memory
request and its estimated time of arrival so that a core may power gate
itself without performance or energy loss. Previous work on TAP [11]
shows several benefits compared to earlier state-of-the-art techniques [10],
including zero performance hit and 2.58 times average energy savings for
out-of-order cores. We show that TAP can adapt to increasing memory
contention by increasing power-gated time by 3.69 times compared to a
low memory-pressure case. We also scale TAP to many-core architectures
with a distributed wake-up controller that is capable of supporting
staggered wake-ups and able to power gate each core for 99.07% of
the time, achieved by a non-scalable centralized scheme.

Index Terms—Adaptive power gating, energy savings, low power
design, many-core architecture.

I. Introduction

During every cycle that a core is on, even when stalled, leak-
age power is consumed via gate leakage, gate-induced drain
leakage, junction leakage, and subthreshold leakage. A core
may stall quite often if it is intensely accessing the memory
subsystem, as every time a thread makes a memory request
that misses in the L1 cache, the core is subjected to a variable
access latency. This variable latency often translates into a
core stall during which no forward thread progress occurs and
energy is wasted. For a 32-nm out-of-order EV6 core, stall
energy can be up to 39.1% of total energy consumption for
the Spec2006 benchmarks [17].

Power gating is a technique that drastically reduces leakage
power by cutting off the current path from supply to ground
through introduction of a transistor switch between them. At
one end of the spectrum, functional unit power gating reduces
power consumption of unused core functional units [25] with
wake-up latencies of several nanoseconds. At the other end,
entire cores may be power gated and woken up, with latencies
of several tens of microseconds to account for saving and
restoring all core state from memory [22]. An intermediate
mechanism, memory access power gating [10], provides the
ability to power gate an entire core, wake up a power-gated

Manuscript received June 25, 2012; revised October 2, 2012 and December
27, 2012; accepted January 15, 2013. Date of current version July 15, 2013.
This work was supported in part by MARCO FCRP (GSRC and MuSyC
centers), Qualcomm, Oracle, Huawei, and NSF under Grant SHF-0916127,
Grant SHF-1218666, Grant SHF-1116667, and Grant CCF-1162085. This
paper was recommended by Associate Editor Y. Shin. The authors would
like to thank K. Jeong for his early work on this project [10].

The authors are with the University of California, San Diego, CA 92093
USA (e-mail: abk@ucsd.edu; shkang@vlsicad.ucsd.edu; tajana@ucsd.edu;
rstrong@eng.ucsd.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2257923

core in about 10 ns, and maintain the core’s architectural and
cache state.

In this paper, we extend token-based adaptive power gating
(TAP) [11] to many-core architectures. TAP deterministically
applies power gating during core stalls that are caused by the
variable latency of requests to the memory subsystem. TAP
achieves this by providing the capability to track every ongoing
memory request and the expected response time for each
memory access that misses in the L1 cache. An expected lower
bound on latency is sent to each core’s programmable power
gating switch (PPGS) by modifying the cache controllers to
send a token on any miss where the token includes an estimate
of the access latency of a next-level memory hit. The result is
that TAP can support power gating with no performance loss.

Previous work on TAP [11] assumes a centralized wake-up
controller (WUC), which is a critical limiter to the scalability
of the system. During each power-gating action, the core must
communicate with the WUC to ensure that it can safely use
its wake-up mode without violating voltage noise constraints.
We replace the WUC with a distributed wake-up scheme that
assigns cores to predetermined, recurring wake-up slots that
enforce safe wake-up modes across the CMP. Such a scheme
is shown to operate nearly as efficiently as an ideal WUC. Our
key contributions are the following.

1) We introduce a distributed wake-up scheme to control
core wake-up modes in many-core designs that sacrifices
only 0.93% of power-gated time.

2) We demonstrate that TAP can adapt to an increase in
memory contention by increasing power-gated time by
3.69 times as the number of threads increases from 1 to
32.

3) We design and implement a staggered wake-up scheme
capable of reducing wake-up latency by up to 58.2%.

II. Related Work

Power gating has been studied at both circuit and architec-
tural levels. Circuit-level papers typically analyze different cir-
cuit techniques aimed at reducing wake-up latency, efficiently
retaining logic states, minimizing ground bounce, and achiev-
ing resilience to process variation. Microarchitectural works
typically examine questions related to use of different power-
gating modes, what to power gate, predicting when to power
gate, and control algorithms to avoid energy penalties from
poor power-gating decisions. The following briefly reviews
representative works in these two areas.

In the realm of circuit innovation, the pioneering work
in [8] has been followed by many works on fundamental
circuit design issues related to power gating, including switch-
cell sizing, data-retention methods, physical-implementation
methodologies, and mode-transition noise analysis and reduc-
tion. The recent survey in [23] gives an excellent summary of
the history and highlights of power-gating techniques.

Agarwal et al. [4] and Singh et al. [24] examine multiple
sleep modes that feature different wake-up overheads and
leakage power savings. To minimize ground bounce during
mode transition, Kim et al. [12] control turn-on voltage
(VGS), which makes sleep transistors turn on in a non-uniform

0278-0070/$31.00 c© 2013 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 8, AUGUST 2013 1289

stepwise manner. Chowdhury et al. [6] propose a tri-mode
power-gating technique using PMOS switches in parallel
with NMOS footer switches. Finally, Zhang et al. [26] pro-
pose a multimode power-gating technique using three NMOS
switches with different sizes and threshold voltages. Using
various combinations of the three switches, they can provide
multiple power-gating modes with different leakage savings.

In the microarchitectural arena, Hu et al. [9] propose use
of power gating to reduce functional unit leakage power when
applications underutilize their functional units. They [9] also
develop equations to estimate the break-even points for power
gating an out-of-order superscalar processor. Lungu et al. [18]
show that in many cases, the predictor of [9] can lead to
increased energy consumption. Madan et al. [19] extend the
idea of [18] to the core level and propose a guard mechanism
that reduces harmful use of power gating.

Power-gating technology is also readily visible in leading
commercial products. The recent Nehalem architecture em-
ploys power gating at the core level to reduce leakage power
on idle cores, but 100 ms is required to wake up a core [13],
[16]. AMD [22] has improved this power-gating technique by
optimizing the wake-up sequence to skip built-in self-tests
(BIST) and restoration of cache state; this results in wake-
up times as short as 75 μs. In today’s systems, the operating
system (OS) typically power gates the cores in the idle loop,
missing out on power gating long memory accesses.

Li et al. [14] consider a scheme that directs core DVFS
behavior based on signals from the L2-cache and estimates
of instruction-level parallelism to reduce energy consumption
on memory bound applications, but does not consider power
gating. Our early work on memory access power gating
[10], provides a mechanism to power gate an entire core,
wake up a power-gated core in about 10 ns, and maintain the
core’s architectural and cache state. It uses a combination of
a PPGS, state-retention cells, and source biasing to enable
the core to efficiently enter and exit a power-gated state.
The mechanism is shown to be capable of reducing leakage
power during memory accesses. A similar work on memory
access aware power gating for MPSoCs [15], examines the
potential to power gate an in-order core while monitoring a
single memory bus and estimating memory latencies. TAP
[11] extends memory access power gating to out-of-order
execution and considers using staggered wake-up for cores,
but avoids questions about the scalability of TAP to many-core
architectures. By contrast, our present work addresses the
scalability of TAP to many-core designs.

III. System Design

A memory access power-gating controller must provide
three functions. First, the controller should be able to predict
the expected duration of core stalls. Second, the controller
must assign a core’s PPGS [10] a wake-up mode that does
not violate supply voltage noise constraints of the system
when waking up a core. Last, the controller must retain
essential core architectural and performance-related state.
Together, these functions allow for energy savings and
minimal performance hit without violating voltage noise
constraints. The rest of this section describes how our system
provides these three functions.

A. Token-Based Latency Monitoring

TAP informs each PPGS about expected memory latency
by modifying the cache controllers to send tokens on cache

Fig. 1. Diagram depicting the core going through various power states
(power gated, stalled, active, woken up) as the PPGS power gates the core on
a memory access.

misses that include an estimate of the lower-bound access
latency of a next-level memory hit derived from Table I and
a time stamp of creation.1 The controllers send the tokens
to the PPGS of the core that requested the memory access.
Once the PPGS receives the token, it looks at the lower-
bound latency to satisfy the request and power gates the core
if the core is both stalled and idle long enough to save energy.
Should the core receive more than one token for simultaneous
memory requests, it tracks each expected response separately
and schedules the resumption of core execution to satisfy
the earliest response. If a token is delayed in the memory
subsystem by a controller or queue, the PPGS can compare
its arrival time with its generation time stamp and previous
tokens to determine whether the token should be ignored.

Whenever a memory request misses all the way to the
memory controller, the response latency experiences a sig-
nificant amount of variability. This variability is caused by
the complexity of DRAM memory [27], which includes bank
queues, availability of the data in the row-buffer, writing wrong
address row-buffers, accessing the column in the row-buffer,
and channel contention between banks. TAP adapts to memory
variability by adding a special token. As soon as the last-level
cache experiences a miss, a token is sent to the requesting
core’s PPGS with an estimated completion time of “unknown”.
This is a directive to the PPGS to start power gating its
core immediately and to expect one additional token with the
ETA of the memory response. Once the memory controller
submits the memory access to one of the banks and determines
whether the access is a row-buffer hit or miss, it sends the
second ETA token to the core’s PPGS with the ETA of the
response assuming that there is no memory channel contention.
The PPGS receives the second token before the response and
schedules core wake-up for the appropriate time.

Fig. 1 shows a timing-accurate diagram of a PPGS power
gating the core in response to messages from the TAP tech-
nique. At time 0 ns, a memory request occurs that will miss
in the cache hierarchy and cause a memory access. The PPGS
then receives tokens for the L1, L2, and L3 misses. Just after
receiving the L2 token, the core stalls due to a dependency.
After the L3 token is received, the PPGS decides to power
gate the core and saves all core state. The core is then power
gated and the memory controller (MC) sends a updated ETA
for the memory response. At 70 ns, the PPGS begins waking
up the core. At 78 ns, the core state is restored and the pipeline
is restarted. The memory response comes back at 81 ns and
the core resumes execution as if nothing happened.

1A cache controller sitting on the core side of a shared NUCA cache would
require a per-bank lower-bound access latency.

1290 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 8, AUGUST 2013

Fig. 2. Wake-up slot assignments with different number of slots(η). (a) η =
9. (b) η = 5. (c) η = 3.

B. Distributed Staggered Wake Up

Previous work [10] designed its WUC for the worst case
when all cores wake up simultaneously. However, wake-up
latency is significantly reduced when we stagger the wake-
up sequence so that two cores wake up at slightly different
times (e.g., offset by 1 ns). In such a case, stagger reduces
the worst-case peak current and voltage noise that a core may
experience. We now consider how to integrate stagger into a
many-core design; analysis of the benefit of stagger is given
in Section IV-B.

To use staggered wake up, a controller must give wake-
up modes and times to each core. For a large multicore
system (e.g., 64 cores), a given core’s PPGS may not tolerate
the latency to communicate with a centralized WUC due
to propagation and queuing delay across the chip. How-
ever, we observe that non-adjacent cores do not signifi-
cantly affect core wake-up latency, and with proper guard-
band, only adjacent cores (eight cores at most) need to be
considered.

This observation motivates a distributed design that assigns
each core to a recurring wake-up slot. In this scheme, each
core is given a recurring slot at which it can start waking
up. To avoid any performance hit, a core should select a slot
before the deadline to start waking up. The average wake-up
delay for a core is defined by two degrees of freedom: the
number of unique wake-up slots, η, and the stagger between
two adjacent wake-up slots, ψ. The worst-case reduction in
power-gated time occurs when a core predicts that it would
need to wake up ε seconds before its assigned slot such that
ε < ψ, causing the core to wake up η ∗ ψ − ε seconds
earlier. Given a core that wakes up at any time, uniformly at
random, the average expected reduction in power-gated time is
η∗ψ

2 .
Values of η and ψ should be chosen to maximize a core’s

power-gated time and minimize the safe wake-up latency of
the core. Given η, wake-up slots should be assigned to cores
to minimize the number of adjacent woken-up cores. Fig. 2
shows three ways of assigning wake-up modes to cores such
that the number of adjacent woken-up cores is minimized
with a preference given to cores waking up simultaneously
in the diagonal position. An increase in η and ψ reduces
the maximum number of simultaneous core wake-ups and the
minimum safe wake-up latency. At the same time, increasing
these two parameters increases average expected reduction
in power-gated time. According to our simulations, system
energy savings are maximized when η and ψ equal 5 (no
simultaneous wake-ups) and 0.9 ns, respectively. This setting
results in a 10.3 ns minimal wake-up latency and 2.25 ns ±
1.30 ns average reduction in power-gated time per core power-
gating opportunity, compared to 9.6 ns with 0.9 ns stagger for
an ideal centralized WUC, when simulated on GEM5 [5] with
the Spec2006 benchmarks.

Fig. 3. Interface for power gating and data retention.

C. Core State Retention and Restoration

To avoid losing core state that is required for correct and
efficient execution, essential sequential and SRAM cells must
be retained. We use the technique from [10] that replaces a
subset of sequential cells with live-slave retention flip-flops [7]
that can be triggered to retain their logical values before a
power-gating action at a cost of 20% increase in area and
power versus a normal flip-flop. Only those sequential cells
comprising the architectural registers necessary to refill the
pipeline are selected, which results in a 3.4% area overhead
for the processor. SRAM cells’ state is retained through source
biasing [21] in which the supply voltage is reduced to 50% of
nominal so that SRAM leakage is reduced, but logical state
is maintained. This technique enables saving contents of L1
caches, TLBs, branch predictor state, physical registers, etc.
To provide supply power during power gating, a separate non-
collapsible voltage domain provides power to the retention
flip-flops and SRAM cells. Thus, as the power is gated from
combinational logic and non-essential sequential cells, the
separate voltage rail provides power to maintain core state. The
overhead from multipower domains and separate voltage rails
already exists for power gating cores today. Additional cycles
are required for the power gating and wake-up sequence, and
to disable/enable the clock, trigger data retention, refill the
pipeline, and de-assert/assert the clamps. We model the power-
down and wake-up sequence as in [10]. Fig. 3 shows an in-
order core implementation for the power gating and restoration
with retention flip-flops.

IV. Results

Table I summarizes all system parameters in our experi-
ments. Unless otherwise stated, our results assume a 32-nm
HP circuit technology, a 10.2 ns wake-up mode, and an out-
of-order CMP. The following overheads were considered when
calculating the reported results: core wake-up energy, core
wake-up delay, core pipeline-refill latency, retention overhead
of live-slave retention cells, SRAM leakage during source
biasing mode of operation, and voltage noise safety.

We simulate the system with the GEM5 simulator [5].
GEM5 features cycle-level models of an out-of-order core,
the cache hierarchy, and the interconnect. We integrate GEM5
with DRAMSim2 [1] to provide cycle-level modeling of the
memory subsystem including the memory controller, DRAM
modules, and shared channels used for communication.

We use McPAT [17] to model dynamic power, leakage
power, peak power, and area. We update McPAT’s tech-
nology.cc file to accurately reflect the ITRS 2010 update
report [2].

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 8, AUGUST 2013 1291

TABLE I

System Configuration Values

parameter value notes

EV6 core model DEC-Alpha EV6
EV6 core clock 3.3 GHz–1.9 GHz

EV6 execution 6-way out-of-order
EV6 functional units 6ALU,2IMULT

2FPALU
ICache/DCache 32KB-8way 1 cycle
L2 Cache 256KB-8way 4 ns Private per core
L3 Cache 8MB-16way 13 ns Shared
Memory DDR3 2GB 50 ns
Core-to-L1 token latency 0.5 ns controller delays
Core-to-L2 token latency 4.5 ns controller delays
Core-to-L3 token latency 17.5 ns controller delays
Core-to-centralized-WUC latency 5 ns controller delays
PPGS wake-up modes 4.5 ns–16.9 ns SPICE
EV6 pipeline refill latency 2.12 ns 7 pipeline stages
EV6 core wake-up energy (EWE) 15,358pJ Charge cells
EV6 leakage power (ELP) 0.916 Watts McPAT [17]
EV6 PG leakage reduction (ELPR) 97.65% [7]
EV6 PG break even point 17.17 ns EWE/(ELPR ∗ ELP)
EV6 DFLT core wake-up latency 10.2 ns SPICE
EV6 FUPG wake-up energy 9641pJ McPAT, ITRS [2]
EV6 FUPG wake-up latency 6.4 ns SPICE

Fig. 4. TAP adapting to increasing memory contention. The left y-axis
shows the duration of the stall in nanoseconds, while the right y-axis shows
the percentage of time that TAP can power gate as a function to the number
of STREAM threads.

A. Adapting to Memory Contention.

We show how TAP adapts to a system facing increased
memory contention for the multithreaded memory benchmark
STREAM running on a CMP with up to 32 cores. STREAM
is a memory-intense benchmark used to measure sustained
memory bandwidth and computation rates for simple vector
kernels [3]. We modify STREAM to act as a parallel memory
benchmark such that more threads cause more simultaneous
requests to the memory subsystem. Increasing STREAM’s
thread count causes more queuing of memory requests, longer
delay per request, and more frequent stalling of each core. A
good power-gating technique should be able to power gate the
core more often to reduce power consumption.

Fig. 4 depicts both average duration of core stalls and the
percentage of total simulation time TAP power gates the core.
First, we note that as the number of threads increases, the
average duration of a core stall increases. From one to 32
threads, average core-stall duration increases2 by 7.82× from

2From one to two threads, core-stall duration decreases. This happens
because more threads increase the amount of available cache (more cores)
while increasing the number of simultaneous memory requests.

36.77 ns to 287.63 ns. The increase in the average core-stall
duration is caused by more threads making parallel requests
to the memory subsystem at once, fewer row-buffer hits, and
memory channel contention. As cores experience increased
memory latency, TAP power gates the core longer. From one
to 32 threads, TAP power gates cores 3.69 times longer from
9.08% to 33.50% of simulation time. However, TAP power
gates its core less for four threads than for two even though
average core-stall time increases. This is because TAP uses a
conservative lower-bound estimate of memory-response time
and does not account for all memory scheduling possibilities.
The benefit of this conservative policy is the absence of any
application performance hit.

B. Distributed, Staggered Wake Up

For a 16-core system with multiple cores waking up simulta-
neously, voltage noise on the power distribution network can
cause unsafe voltage drops on neighboring active cores. By
introducing a sub-nanosecond stagger between any two adja-
cent cores waking up, worst-case inrush current and resulting
voltage noise are reduced. The result is a faster wake-up mode
and increased energy savings on the chip. Hence, cores should
wake up staggered by at least a fraction of a nanosecond.

Fig. 5 shows SPICE simulation of the effect of stagger on
core wake-up latency for no-stagger, 0.3 ns-stagger, 0.6 ns-
stagger, and 0.9 ns-stagger for CMPs composed of 16 EV6
cores as 0 to 14 cores are idle. Staggered wake up can reduce
the variance between the min and max wake-up latency when
most cores are actively executing or waking-up. For the 16-
core CMP with no cores idle and no stagger, the max and min
wake-up latency is 18.4 ns and 9.7 ns, whereas, a staggered
wake up of 0.9 ns decreases the max and min values to 10.7
ns and 8.6 ns, respectively. As more cores go idle, staggered
wake up has less impact on reducing the variance of wake-
up latency because cores are less likely to interfere with each
other, and the core’s location becomes the dominant factor in
wake-up latency. For example, when 14 cores are idle in a 16-
core CMP, the min and max wake-up latencies are both 4.5
ns and 9.1 ns, respectively, in both the no-stagger and 0.9 ns-
stagger cases. Lastly, stagger reduces the maximum wake-up
latency as more cores are active. An example of this is for the
16-core case when no core is idle; maximum wake-up latency
is 18.4 ns without stagger and 10.7 ns with 0.9 ns stagger, a
reduction of 58.2%. Thus, stagger relaxes the guardband on
wake-up latency.

Fig. 6 shows the energy impact of staggered wake up for a
CMP with 16 EV6 cores. The largest improvement in energy
savings is 3.14% for mcf as energy savings increase from
18.92% to 22.06% for staggered wake ups of 0.0 ns and 0.9
ns respectively. On average, energy savings go from 3.52% to
4.34% as stagger increases from 0 ns to 0.9 ns. Staggered wake
up does not cause any decrease in energy savings. Although
cores may have to wake up at slightly different times, the
savings in latency with which they wake up is much greater
than the stagger offset of 0.9 ns.

To have cores safely and reliably use staggered wake up,
a controller or scheme is required to control the wake-up
behavior of all cores. A centralized WUC would be able to
use more aggressive wake-up modes and power gate the core
for longer, but such a design does not scale to many cores.
By contrast, the distributed wake-up control of Section III
can scale to many-core designs, but sacrifices some power-
gating time waiting for an assigned wake-up slot. Fig. 7 shows

1292 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 8, AUGUST 2013

Fig. 5. Improvement in core wake-up latency with increased stagger for a
16 EV6 core CMP as 0 to 14 cores are idle. The average latency is shown
with bars denoting the min and max safe wake-up modes.

Fig. 6. Improvement in energy savings with staggered wake ups in an 16
EV6 core CMP. Benchmarks with less than 0.2% energy savings filtered.

Fig. 7. Comparison of power-gated time using staggered wake up with a
centralized WUC versus a distributed WUC.

the difference of application power-gated time for a subset
of the SPEC2006 benchmarks3 in a 16-core architecture. Our
simulations show that the distributed wake-up control has a
maximum decrease in power-gated time of 2.68% (0.93%
on average) for the benchmark lbm. This indicates that the
difference in energy savings between a distributed scheme and
a centralized WUC would be negligible, but that a distributed
scheme scales to many-core architectures.

V. Conclusion

With each new generation of microprocessors, leakage
power becomes an increasingly dominant issue. In this pa-
per, we extend TAP [11] to many-core designs through a
distributed, staggered wake-up scheme. Our system can adapt

3We use the Simpoint methodology [20] with 100M-instruction representa-
tive regions for each application.

to different levels of memory contention by increasing power-
gated time by 3.69 times of total execution time as the
number of threads increases from one to 32. We demon-
strated that a wake-up stagger of 0.9 ns reduced core wake-
up latency by up to 58.2% (7.7 ns). Finally, a distributed
wake-up scheme that uses staggered wake-up can power gate
cores for 99.07% of the time achieved by an ideal central-
ized scheme, while still being able to scale to many-core
designs.

References

[1] DRAMSim2. (2011) [Online]. Available: http://www.ece.umd.edu/dramsim/
[2] International Technology Roadmap for Semiconductors. (2010) [Online]. Avail-

able: http://www.itrs.net/
[3] STREAM: Sustainable Memory Bandwidth in High Performance Computers.

(2011) [Online]. Available: http://www.cs.virginia.edu/stream/
[4] K. Agarwal, H. Deogun, D. Sylvester, and K. Nowka, “Power gating with

multiple sleep modes,” in Proc. Int. Symp. Quality Electron. Des., 2006, pp.
633–637.

[5] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt, “The M5 simulator: Modeling networked systems,” IEEE Micro., vol.
26, no. 4, pp. 52–60, Jul.–Aug.2006.

[6] M. H. Chowdhury, J. Gjanci, and P. Khaled, “Innovative power gating for
leakage reduction,” in Proc. IEEE Int. Symp. Circuits Syst., May 2008, pp.
1568–1571.

[7] D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power Methodology Manual,
Berlin, Germany: Springer, 2007.

[8] M. Horiguchi, T. Sakata, and K. Itoh, “Switched-source-impedance CMOS circuit
for low standby subthreshold current giga-scale LSI’s,” IEEE J. Solid-State
Circuits, vol. 28, no. 11, pp. 1131–1135, May 1993.

[9] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose,
“Microarchitectural techniques for power gating of execution units,” in Proc. Int.
Symp. Low Power Electron. Des., 2004, pp. 32–37.

[10] K. Jeong, A. B. Kahng, S. Kang, T. S. Rosing, and R. Strong, “MAPG:
Memory access power gating,” in Proc. Des., Autom. Test Eur., 2012, pp.
1054–1059.

[11] A. B. Kahng, S. Kang, T. S. Rosing, and R. Strong, “TAP: Token-based adap-
tive power gating,” in Proc. Int. Symp. Low Power Electron. Des., 2012, pp.
203–208.

[12] S. Kim, S. V. Kosonocky, and D. R. Knebel, “Understanding and minimizing
ground bounce during mode transition of power gating structures,” in Proc. Int.
Symp. Low Power Electron. Des., 2003, pp. 22–25.

[13] R. Kumar and G. Hinton, “A family of 45nm IA processors,” in Proc. IEEE Int.
Solid-State Circuits Conf., Feb. 2009, pp. 58–59.

[14] H. Li, C. Cher, T. N. Vijaykumar, and K. Roy, “VSV: L2-miss-driven variable
supply-voltage scaling for low power,” in Proc. IEEE Int. Symp. Microarch., Dec.
2003, pp. 19–28.

[15] Y. Lin, C. Yang, J. Huang, and N. Chang, “Memory access aware power
gating for MPSoCs,” in Proc. Asia South Pacific Des. Autom. Conf., 2012, pp.
121–126.

[16] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis, “Power
management of datacenter workloads using per-core power gating,” IEEE Comput.
Arch. Lett., vol. 8, no. 2, pp. 48–51, Feb. 2009.

[17] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“McPAT: An integrated power, area, and timing modeling framework for multicore
and manycore architectures,” in Proc. IEEE/ACM Int. Symp. Microarch., Dec.
2009, pp. 469–480.

[18] A. Lungu, P. Bose, A. Buyuktosunoglu, and D. J. Sorin, “Dynamic power gating
with quality guarantees,” in Proc. Int. Symp. Low Power Electron. Des., 2009, pp.
377–382.

[19] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram, “A guarded power
gating for multi-core processors,” in Proc. Int. Symp. High-Performance Comput.
Arch., 2011, pp. 291–300.

[20] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder, “Using
SimPoint for accurate and efficient simulation,” in Proc. Int. Conf. Meas. Modeling
Comput. Syst., 2003, pp. 318–319.

[21] H. Qin, Y. Cao, D. Markovic, A. Vladimirescue, and J. Rabaey, “SRAM leakage
suppression by minimizing standby supply voltage,” in Proc. Int. Symp. Quality
Electron. Des., 2004, pp. 55–60.

[22] A. Rogers, D. Kaplan, E. Quinnell, and B. Kwan, “The Core-C6 (CC6) sleep state
of the AMD Bobcat x86 microprocessor,” in Proc. Int. Symp. Low Power Electron.
Des., 2012, pp. 367–372.

[23] Y. Shin, J. Seomun, K.-M. Choi, and T. Sakurai, “Power gating: Cir-
cuits, design methodologies, and best practice for standard-cell VLSI de-
signs,” ACM Trans. Design Autom. Electron. Syst., vol. 15, no. 4, pp. 1–37,
2010.

[24] H. Singh, K. Agarwal, D. Sylvester, and K. Nowka, “Enhanced leakage reduction
techniques using intermediate strength power gating,” IEEE Trans. Very Large
Scale Integr., vol. 15, no. 11, pp. 1215–1224, Nov. 2007.

[25] O. Wechsler, “Setting new standards for energy-efficient performance,” Technol. In-
tel Mag., 2006 [Online]. Available: http://www.intel.com/pressroom/kits/core2duo/
pdf/ICM whitepaper.pdf

[26] Z. Zhang, X. Kavousianos, K. Chakrabarty, and Y. Tsiatouhas, “A robust and
reconfigurable multi-mode power gating architecture,” in Proc. Int. Conf. VLSI
Des., 2011, pp. 280–285.

[27] H. Zheng and Z. Zhu, “Power and performance trade-offs in contemporary DRAM
system designs for multicore processors,” IEEE Trans. Comput., vol. 59, no. 8,
pp. 1033–1046, Aug. 2010.

