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Matching-Based Methods for High-Performance 
Clock Routing 

Jason Cong, Member, IEEE, Andrew B. Kahng, Associate Member, IEEE, and Gabriel Robins, Member, IEEE 

Abstract-Minimizing clock skew is important in the design 
of high performance VLSI systems. We present a general clock 
routing scheme that achieves very small clock skews while still 
using a reasonable amount of wirelength. Our routing solution 
is based on the construction of a binary tree using geometric 
matching. For cell-based designs, the total wirelength of our 
clock routing tree is on average within a constant factor of the 
wirelength in an optimal Steiner tree, and in the worst case is 
bounded by O ( a  . &) for n terminals arbitrarily distrib- 
uted in the 1, X l2 grid. The bottom-up construction readily 
extends to general cell layouts, where it also achieves essentially 
zero clock skew within reasonably bounded total wirelength. 
We have tested our algorithms on numerous random examples 
and also on layouts of industrial benchmark circuits. The re- 
sults are promising: our clock routing yields near-zero average 
clock skew while using total wirelength competitive with pre- 
viously known methods. 

I. INTRODUCTION 
IRCUIT speed is a major consideration in the design C of high-performance VLSI systems. In a synchronous 

VLSI design, limitations on circuit speed are determined 
by two factors: the delay on the longest path through com- 
binational logic, and the maximum clock skew among the 
synchronizing components. With advances in VLSI fab- 
rication technology, the switching speed of combinational 
logic increases dramatically. Thus, the clock skew in- 
duced by non-symmetric clock distribution has become a 
more significant limitation on circuit performance. 

Minimization of clock skew has been studied by a num- 
ber of researchers in recent years. H-tree constructions 
have been used extensively for clock routing in regular 
systolic arrays [2], [ l l ] ,  [15], [34]. Although the H-tree 
structure can significantly reduce clock skew [ 113, [34], 
it is applicable primarily when all of the synchronizing 
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components are identical in size and are placed in a sym- 
metric array. Ramananathan and Shin [23] proposed a 
clock distribution scheme for building block design where 
all blocks are organized in a hierarchical structure. They 
assume that all clock entry points are known at each level 
of the hierarchy and, moreover, that the number of blocks 
at each level is small since an exhaustive search algorithm 
is used to enumerate all possible routes. Fishburn [14] 
gave methods to maximize the margin of error in clocking 
constraints, and to minimize the clock period while avoid- 
ing clock hazards, or race conditions. This is accom- 
plished via a linear programming formulation. However, 
the approach assumes that the entire clock tree topology 
is already known. 

Jackson, Srinivasan, and Kuh [18] presented a clock 
routing scheme for circuits with many small cells. Their 
algorithm recursively partitions a circuit into two equal 
parts, and then connects the center of mass of the whole 
circuit to the centers of mass of the two sub-circuits. Al- 
though it was shown that the maximum difference in path 
length from the root to different synchronizing compo- 
nents is bounded by O ( m )  in the average case, small 
examples exist for which the wirelengths between clock 
source and clock pins can vary by as much as half the chip 
diameter. 

In this paper, we first study the problem of high-per- 
formance clock routing for cell-based designs, i.e., cir- 
cuits with many small cells, such as with standard-cell or 
sea-of-gates design styles. We then extend our method to 
general cell (also known as building-block) layouts, where 
the wiring is restricted to specific channels. In either of 
these scenarios, the H-tree approach cannot be used since 
synchronizing components may be of different sizes and 
may be in arbitrary locations in the layout. The method 
of [23] cannot be applied either, since there is no natural 
hierarchical structure associated with the design and the 
number of synchronizing components is typically too large 
to allow exhaustive examination of all possible routes. 
The algorithm of [ 181 is not completely satisfactory since 
large skews may result even for small examples, while the 
approach of [14] does not construct an actual clock rout- 
ing topology. With this in mind, the goal of our present 
work is to develop a clock routing methodology which 
minimizes skew while incurring little added wiring ex- 
pense. 

We present a basic algorithm and several variants, 
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which minimize skew by constructing a clock tree that is 
balanced with respect to root-leaf pathlengths in the tree 
(these notions will be formalized below). The approach is 
based on geometric matching: we start with a set of trees, 
each containing a single terminal of the clock signal net. 
At each level, we combine the trees into bigger trees using 
the edges of geometric matching. The end result is a bi- 
nary tree whose leaves are the terminals in the clock sig- 
nal net and whose root is the clock entry point. Our 
method is particularly suitable for designs which employ 
a single large buffer to drive the entire clock tree, rather 
than a buffer hierarchy. There are a number of reasons for 
such a design choice, as discussed in [2]. We note that 
the recently announced DEC Alpha processor uses such a 
single-buffer design style [ 121. 

In the cell-based design regime, our algorithm guaran- 
tees perfect pathlength balanced trees for inputs of four or 
less pins. Extensive experimental results indicate that even 
for large clock signal nets, the maximum difference of 
pathlengths in the clock tree constructed by our algorithm 
remains essentially zero. This performance is obtained 
without undue sacrifice of wirelength: we prove that on 
average the total wirelength in our clock tree construction 
is within a constant factor of the wirelength in the optimal 
Steiner tree. Furthermore, our worst-case clock tree cost 
is bounded by O(m &) for n terminals in the lI X 
l2 grid,' which is the same bound as for the worst-case 
cost of the optimal Steiner tree. 

Since the work in [ 181 addresses minimum-skew clock 
routing for cell-based designs, we implemented the al- 
gorithm of [ 181 for comparison purposes. For uniformly 
random sets of up to 1024 pins in the l1 x l2 grid, our 
method produced clock routings with near-zero clock 
skew both in the average case and worst case, with total 
wirelength of the clock tree significantly lower than that 
produced by the method of [ 181. In addition, our routing 
results for layouts of the MCNC Primary1 and Primary2 
benchmarks are significantly better than those reported by 
[ 181 ; we obtain perfectly balanced root-leaf pathlengths 
in the clock tree using several percent less total wire than 
the method of [18]. Actual clock skews for our bench- 
mark routings, as determined by SPICE simulation, are 
reasonable. 

We then apply our method to general cell design, by 
extending the notion of matching to arbitrary weighted 
graphs. In this scenario our algorithm produces a clock 
routing tree that is embedded in the channel intersection 
graph [lo] of an arbitrary building-block layout. The clock 
routing trees produced by our method attain almost zero 
skew with only modest wirelength penalty. Experimental 
results show that the pathlength skew of our routing tree 
is less than 2% of the skew for a heuristic Steiner tree. 
This is achieved on average with less than 50% increase 
in wiring cost over the Steiner tree. 

'The I ,  x l2 grid consists of all lattice points (1, y) with x ,  y integers and 
o d x z s l ' , o d y z s 1 2 .  

The remainder of this paper is organized as follows. 
Section I1 defines a number of basic concepts and gives a 
precise formulation of our skew minimization problem. 
In Section 111, we present the clock routing algorithm in 
detail for cell-based designs; Section IV extends the al- 
gorithm to general cell layouts. Experimental results of 
our algorithm and comparisons with previous methods are 
presented in Section V, and Section VI concludes with 
possible extensions of the method. Early versions of this 
paper were presented in [19] and [8]. 

11. PRELIMINARIES 
A synchronous VLSI circuit consists of two types of 

elements, synchronizing elements (such as registers) and 
combinational logic gates (such as NAND gates and NOR 
gates). The synchronizing elements are connected to one 
or more system-wide clock signals. Every closed path in 
a synchronous circuit contains at least one synchronizing 
element (Fig. 1). The speed of a synchronous circuit is 
mainly determined by the clock periods. It is well known 
[ 11, [ 181 that the clock period C, of each clock signal net 
satisfies the inequality: 

CP td + tskew + tsu + th 

where td is the delay on the longest path through combi- 
national logic, tskew is the clock skew, tsu is the set up time 
of the synchronizing elements (assuming that the syn- 
chronizing elements are edge triggered), and tds is the 
propagation delay within the synchronizing elements. 

The term td  itself can be further decomposed into td  = 

ciated with the interconnect 6f the longest path through 
combinational logic, and td is the delay through the 
combinational logic gates on this path. As VLSI feature 
sizes become smaller, the terms t,,, tds, and td-gates 
all decrease significantly. Therefore, as noted above, 
td-interconnec, and tskew become more dominant factors in de- 
termining circuit performance. It was noted in [ll that t&w 
may account for 10% or more of the system cycle time. 
The objective of this paper is to minimize tskew, while we 
have subsequently addressed the problem of minimizing 
td-inrerconnect in a different work [9]. 

Given a routing solution for a clock signal net, the clock 
skew is defined to be the maximum difference among the 
delays from the clock entry point (CEP) to synchronizing 
elements in the net. The delay from the CEP to any syn- 
chronizing element depends on the wirelength from the 
CEP to the synchronizing element, the RC constants of 
wire segments in the routing, and the overall topology of 
the routing solution. Usually, the clock routing may be 
described as an RC tree [24], and we commonly use the 
first-order moment of the impulse response (also called 
Elmore delay) to approximate delay in an RC tree. The 
formulas derived by Rubinstein, Penfield and Horowitz 
[24] give both upper and lower bounds on delay in an RC 
tree. 

However, although both the formula for Elmore delay 

td-interconnect -k tr-garrs, where td interconnect is the delay asso- 
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Fig. 1 .  A typical combinational circuit. 

and those in [24] are very useful for simulation or timing 
verification, they involve sums of quadratic terms and are 
more difficult to compute and optimize during layout de- 
sign. Thus, a simpler, linear RC model is often used (e.g., 
[23] ,  [22] )  so that wirelength between CEP and the syn- 
chronizing elements approximate the circuit delay. In this 
paper, we also use wirelength as a simple approximation 
of delay in a routing solution. The clock skew is hence 
defined to be the maximum difference in wirelength from 
the CEP to synchronizing elements in the clock signal net. 
We now give several definitions, along with a formal 
statement of the skew minimization problem. 

A clock routing solution is represented by a rooted 
(Steiner) tree in the layout whose root is the CEP and 
whose leaves are synchronizing elements in the clock sig- 
nal net. The length, or cost, of an edge in the tree is the 
Manhattan distance between the two endpoints of the 
edge, and the tree cost is the sum of all edge costs in the 
tree. 

Dejinition: The pathlength skew of a tree is the maxi- 
mum difference of the pathlengths in the tree from the root 
to any two leaves. 

A tree is called a peqect pathlength balanced tree if its 
pathlength skew is zero. It is not difficult to construct a 
perfect pathlength balanced tree if we are allowed to use 
an arbitrary amount of wire. However, a routing tree with 
very high cost may distort the clock signal due to longer 
signal rise and fall times. Thus, we wish to construct a 
clock routing tree whose pathlength skew is as small as 
possible, without making the total tree cost too large. With 
this in mind, we formulate the clock routing problem as 
follows : 

The Pathlength Balanced Tree (PBT) Problem: Given 
a set of n terminals, N ,  and real numbers B and S ,  find a 
clock routing tree connecting N such that the pathlength 
skew of the tree is bounded by S and the tree cost is 
bounded by B .  

The following is immediately evident: 

Theorem I: the PBT problem is NP-hard. 
Proof: Set S = 00 so that the PBT problem simpli- 

fies to the minimum rectilinear Steiner tree problem, 
0 

Our objective is to give a heuristic algorithm for the 
PBT problem. For cell-based design methodologies, we 
wish to construct a clock tree with pathlength skew as 
small as possible, using wirelength as close as possible to 
that in an optimal Steiner tree. Specifically we would like 
to obtain a clock routing solution in the 1, X l2 grid which 

which is known to be NP-complete [17] .  

uses O(m - &) total wirelength because an optimal 
Steiner tree will also use 0<J1112 - &) wirelength in the 
average case [28] .  

111. A CLOCK ROUTING ALGORITHM FOR CELL-BASED 
DESIGN 

For cell-based design, point-to-point interconnection 
cost is closely approximated by (Manhattan) geometric 
distance. Thus, in developing our clock routing algorithm 
for cell-based layouts, we introduce the notion of a geo- 
metric matching: 

DeJnition: Given a set of 2k terminals, a geometric 
matching on this set consists of k line segments between 
terminals, with no two of the k segments sharing an end- 
point. 

Each line segment in the matching defines a matching 
edge. The cost of a geometric matching is the sum of the 
costs of its matching edges. A geometric matching on a 
set of terminals is optimal if its cost is minimum among 
all possible geometric matchings. An example of an op- 
timal geometric matching over four terminals is shown in 
Fig. 2 .  

To construct a tree by iterative matching, we begin with 
a forest of n isolated terminals (for convenience, assume 
that n is a power of 2) ,  each of which is considered to be 
a tree with CEP equal to the location of the terminal itself. 
The minimum-cost geometric matching on these n CEPs 
yields n / 2  segments, each of which defines a subtree with 
two nodes. The optimal CEP into each subtree of two 
nodes is the midpoint of the corresponding segment, i.e., 
such that the clock signal will have zero skew between 
the segment endpoints. 

In general, the matching operation will pair up the 
CEP’s (roots) of all trees in the current forest. At each 
level, we choose the root of each new merged tree to be 
the balance point which minimizes pathlength skew to the 
leaves of its two subtrees (see Fig. 3) .  The balance point 
is the point p along the “straightline” connecting the roots 
of the two subtrees, such that the maximum difference in 
pathlengths from p to any two leaves in the combined tree 
is minimized. Computing the balance point requires con- 
stant time if we know the minimum and maximum root- 
leaf pathlengths in each of the two subtrees, and these 
values can be maintained incrementally using constant 
time per each node added to the clock tree. 

Notice that at each level of the recursion, we only have 
to match half as many nodes as in the previous level. 
Thus, after [log n1 matching iterations, we obtain the 
complete clock tree topology. In practice, we actually 
compute min-cost maximum cardinality matchings, i.e., 
if there are 2m + 1 nodes, we find the optimal m-segment 
matching and match m + 1 CEPs at the next level. Fig. 
4 describes of our clock routing algorithm ALGl for cell- 
based design. 

The following two results show that ALGl indeed uses 
a reasonable amount of wirelength. We prove that our 
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Fig. 2. An optimal geometric matching over four terminals. 

Fig. 3. ALGl execution on a set of 16 terminals. Solid dots denote ter- 
minals, and hollow dots represent the balance points of the corresponding 
edges. At each level a geometric matching is computed on the balance 
points of the previous level. Note that although edges are depicted as 
straight lines, they are actually muted rectilinearly. 

clock tree cost grows at the same asymptotic rate as the 
worst-case optimal Steiner tree cost over n terminals; we 
also show that our tree cost is on average within a constant 
factor of the optimal Steiner tree cost. 

Theorem 2: For n terminals arbitrarily distributed in 
the l1 X l2 grid, the maximum total wirelength of Tac1 
is 0(J1,1, - &>. 

Proof: For n terminals in the l1 x l2 grid, the worst- 
case cost of an optimal matching is O(m * &) [31]. 
Since the clock tree is formed by the edges of a matching 
on n terminals, plus the edges of a matching on n/2  ter- 
minals, etc., the total edgelength in the tree is 

= O(J1112 * &) 0 

This is of the same order as the maximum possible total 
edge length for the optimal Steiner tree on n terminals 
[28]. Note that Theorem 2 does not directly relate the cost 
of our clock routing construction to the cost of the optimal 
Steiner tree; this is partially addressed by the following. 

ALG1: A Clock Routing Algorithm for Cell-Based Design! 
Input: A set of terminals N 
Output: A clock tree topology TALG~ with root CEP 
T = 0  
P = N  
While [PI > 1 

M = the edges of the optimal geometric matching over P 
P=O 
For (pl,a) E M  Do 

TI = the subtree of T rooted at p1 
T2 = the subtree of T rooted at pz 
p = a point lying between p1 and p2 on the line 

containing p1 and pz, such that p minimizes skew 
of the tree 2’1 UT2 U{@,pl),@,pz)} rooted at p 

P = P U { p }  
T = T U  {@,PI), @,pz)} 

P = P plus a possible unmatched node if IPI is odd 
CEP = root of T = single remaining point in P 
Output clock routing tree = TAG] = T 

Fig. 4. The matching-based clock tree routing algorithm. 

Theorem 3: For random sets of terminals chosen from 
a uniform distribution in the lI x l2 grid, the total edge- 
length of the ALGl clock tree will be on average within 
a constant factor of the total edgelength of the optimal 
Steiner tree. 

Proof: The minimum Steiner tree cost for n termi- 
nals randomly chosen from a uniform distribution in the 
lI X l2 Manhattan grid grows as /3 - & for some 
constant /3 [28]. The claim follows from the O ( a  - 
&) worst-case bound on the minimum-cost matching at 

The balancing operation to determine the CEP of a 
merged tree is necessary because the root-leaf pathlength 
might vary between subtrees at a given stage of the con- 
struction. In general, when we merge subtrees TI and T2 
into a higher level subtree T, the optimal entry point of T 
will not be equidistant from the entry points of TI and T2 
(this can be seen in the example of Fig. 3). Intuitively, 
balancing entails “sliding” the CEP along the “bar of the 
H.” However, it might not always be possible to obtain 
perfectly balanced pathlengths in this manner (see Fig. 
5 ) .  

We therefore use a further optimization, which we call 
H-Jipping: for each edge e added to the layout which 
matches CEPs on edges el and e2, replace the “H” formed 
by the three edges e ,  e l ,  and e2 by the “H” over the same 
four terminals which (i) minimizes pathlength skew, and 
(ii) to break ties, minimizes tree cost. We now prove that 
for four terminals it is always possible find an “H” ori- 
entation which achieves zero clock skew, and we also 
bound the increase in wirelength caused by H-flipping for 
nets of size four. As discussed below, extensive empirical 
tests confirm that even for very large inputs, the H-flipping 
refinement almost always yields perfectly path-balanced 
trees with essentially no increase in wirelength. 

If a net is of size two, ALGl selects the midpoint of 
the segment connecting the two terminals as the balance 
point, and this clearly yields a perfect pathlength balanced 
tree. Now we show that for nets of size four, ALGl with 

any level of the construction [31]. 
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Fig. 5. Example of flipping an H to minimize clock skew: the tree on the 
left has no zero-skew balance point along the middle segment of the “H”, 
while the tree on the right does. 

the H-flipping refinement also yields perfect pathlength 
balanced trees (a net of size three can be treated as a net 
of size four in which two terminals coincide). 

Let a, b, c ,  and d be the terminals in a net of size four. 
Without loss of generality, assume that ab and cd are the 
edges in an optimal matching and ab 2 cd. (for conven- 
ience, we use ab to denote both the segment ab and also 
its length. Let ml and m2 be the midpoints of ab and cd, 
respectively. According to ALG1, ml is chosen to be the 
root of the subtree for a and b, and m2 is chosen to be the 
root of the subtree for c and d .  Then, the algorithm tries 
to choose the balance point p on segment m1 m2 such that 

ab cd 
- + pml = - + pm2. 
2 2 

It is easy to see that if m1m2 1 (ab - c d ) / 2 ,  we can 
always choose p satisfying (1). In this case, the path- 
lengths from p to all four terminals are the same, so that 
we have a perfect pathlength balanced tree. However, if 
ml m2 < (ab - c d ) / 2 ,  we perform H-flipping and replace 
ab and cd by ad and bc. Then the midpoint nl on bc is the 
root of the subtree for b and c, and the midpoint n2 on ad 
is the root of the subtree for a and d .  We then seek p f  on 
n1n2 such that 

ad bc - + p’nl  = - + p f n 2 ,  
2 2 

According to the following lemma, we are guaranteed to 
find p’  on nl n2 satisfying (2) .  

Lemma 1: If m1m2 < (ab - c d ) / 2  then n1n2 2 

Proof: If we have both mlm2 < (ab - c d ) / 2  and 
(bc - a d ) / 2 .  

n1n2 < (bc - a d ) / 2  then (see Fig. 6): 

ab - cd bc - ad 
2 2 ’  

m1m2 + n1n2 < ~ + ~ 

therefore, 

(3 )  
ab + bc cd + ad > m1m2 + n1n2 + ~ 

2 2 .  

Let x be the midpoint of bd. Using similar triangles and 
the triangle inequality, we obtain 

ab cd 
- = xn2 I n1n2 + xnl = nln2 + - 
2 2 

d 

a ml b 
Fig. 6. Illustration for the proof of Lemma 1 .  

so that 

ab + bc cd + ad 
I m1m2 + n1n2 + ~ 2 2 ’  

contradicting ( 3 ) .  Therefore if m1m2 < (ab - c d ) / 2  
0 

Lemma 1 implies that we can always choose the bal- 
ance point p f  on nl n2 after H-flipping. Therefore, ALGl 
always constructs a perfect pathlength balanced tree for a 
net of size four. The following lemma shows that when 
we replace ab and cd by ad and bc in the H-flip, the 
wirelength increase is bounded by a constant factor. 

Lemma 2: If m1m2 < (ab - c d ) / 2  then bc + ad 5 
3(ab + cd) .  

Proof: Let x be the midpoint of bd. Again applying 
similar triangles and the triangle inequality, we obtain (see 
Fig. 7): 

we must have n1n2 2 (bc - a d ) / 2 .  

bc cd 
- 2 = xm2 I xd + dm2 = xd + - 2 

and 

ad ab 
- = xml I xb + bml = xb + - 2 
2 

so that 

(4) 
bc + ad ab + cd 

~ b d + -  
2 2 -  

Let y be the intersection of bd and ml m2. We then have 

ab 
by I m l y  + m l b  = m l y  + - 2 

cd 
dy I m2y + m2d = m2y + - 2 

and 
bc ad 
2 2 (5 )  - = XQ I m1m2 + xml = mlm2 + - 

a b + c d  a b - c d  a b + c d  
2 

+-=ab. 
2 e -  bd I mlm2 + - 2 
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d matching algorithm runs within monotonically non-de- 
creasing time S(n) = Q(n),  we may write S(n) = n - T(n) 
where T(n) = S(n) / n  is monotonically non-decreasing, 
and hence the total time required by ALGl is 

S(n) + S(;) + s(a) + - - e  

= n .  q n )  + 5 T ( i )  + 
n n 

I n * T(n) + - * T(n) + - - T(n) + - * * 
2 4 

= q n )  - (n + + 4 + - - - 

I 2n - T(n) = 2S(n) = O(S(n)) 

T ( : )  + e - .  

) a ml b n n  
Fig. 7.  Illustration for the proof of Lemma 2. 

Thus, from (4) and ( 5 )  we have 

bc + ad ub + cd < 3(ab + c d )  i.e., the time complexity of ALGl is asymptotically equal 
2 2 -  2 to the time complexity of the underlying matching algo- 

s u b + -  

rithm. or bc + ad c 3(ab + c d ) .  

Iv .  A CLOCK ROUTING ALGORITHM FOR GENERAL Together, these lemmas imply: 

Theorem 4: It is always possible to find an “H” ori- CELL DESIGN 
entation over four terminals which achieves zero clock 
skew, using at most a constant factor extra wirelength. 

We now briefly discuss complexity issues and the re- 

The same idea of bottom-up iterative matching which 
we developed in the preceding section may be easily gen- 
eralized to clock routing in block layouts. In this section, 

quirement of an efficient implementation. Since our 
method is based on geometric matching, its time com- 
plexity depends on that of the matching subroutine. A 
well-known algorithm for general weighted matching re- 
quires time O(n3) [16], [21]. By taking advantage of the 
planar geometry, the algorithmic complexity can be re- 
duced to O(n2.5 log n) [33]. However, even this may be 
excessive for large problem instances. 

In order to solve problems of practical interest, and 
since there is no clear relationship between the optimality 
of the matching and the magnitude of the skew of the re- 
sulting clock tree, we may choose to speed up the imple- 
mentation by using efficient geometric matching heuris- 
tics [3], [29], [30]. Although most of these methods were 
designed for the Euclidean plane, they also perform well 
in the Manhattan metric, especially if their output is fur- 
ther improved by uncrossing pairs of intersecting edges in 
the heuristic matching (in any metric, this reduces the 
matching cost due to the triangle inequality; to this end, 
note that k intersections of n line segments may be found 
efficiently in time O(n log n + k )  [7]). 

We shall later discuss empirical results from implemen- 
tation of ALGl based on three matching methods which 
require time O(n),  O(n log n) and O(n log2 n) ,  respec- 
tively. Each of these three matching heuristics yields very 
good clock routing solutions. 

The basic approach of ALGl thus consists of rlog n1 
applications of the matching algorithm. H-flipping re- 
quires constant time per node, and therefore does not add 
to the asymptotic time complexity. If the underlying 

we extend our method to such general cell designs, where 
a circuit is partitioned into a set of arbitrarily-sized rect- 
angular cells (also referred to as blocks). Blocks may be 
of widely varying sizes, and are not necessarily placed in 
any regular arrangement. The routing is carried out in the 
channels between blocks, with routing over blocks pro- 
hibited. For this design style, the approximation of rout- 
ing cost by geometric distance, which we used for cell- 
based design in the previous section, does not apply. The 
feasible routing regions are represented by the channel in- 
tersection graph (CIG) [ lo], which represents the avail- 
able routing channels induced by a module layout. To 
capture the locations of clock pins within channels, we 
use the augmented channel intersection graph (ACIG), 
which is constructed as follows: for each pin incident to 
a routing channel, introduce a new node into the channel 
intersection graph which breaks the channel edge into two 
new edges (see the top left of Fig. 9). 

Our goal is still to construct a clock signal tree with 
both skew and total wirelength as small as possible, ex- 
cept that routing of tree edges is now restricted to lie 
within prescribed routing channels. Given a graph G with 
positive edge costs, we let minpathG(x, y) denote the min- 
imum cost path between nodes x and y, and use distG(x, 
y) to denote the cost of minpathG(x, y). The notion of a 
matching may be extended to arbitrary weighted graphs 
as follows: 

DeJinition: Given a graph G = (V,  E) with a positive 
cost function on the edges, a generalized matching M in 
G is a set of shortest paths connecting m mutually disjoint 
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node pairs, i.e., M = {minpathG(xl, yl), minpathG(x2, 
Y 2 ) ,  * - - , minpathG(x,, x,,,)}, where the x,’s and yl’s  are 
all distinct. 

A generalized matching on a set of nodes N E Y in G 
is complete if m = L (N I /2J . The cost of a generalized 
matching M is the sum of the costs of the shortest paths 
in the matching, i.e., cost(M) = CyEl distG(xI, y,). An 
optimal complete generalized matching on N E Y is one 
with least cost. We can show the following properties of 
optimal complete generalized matchings: 

Lemma 3: Each edge of G belongs to at most one 
shortest path in an optimal complete generalized matching 
onN E Vin G. 

Proofi Let M be an optimal complete generalized 
matching on N. Suppose that edge e appears in both 
minpathG(x,, y,) and minpathG(x,, y,), where (x,, y,) and 
(x,, y,) are in M and i # j (see Fig. 8). Because (x,, y,) 
and (x,, y,) E M are shortest paths in G, we have 

d i s t ~  (4, 5) + disk- (Yl, y,) 

5 distc(x1, Y,)  

+ distG(x,, y,) - 2 * cost(e). 

Therefore, replacing minpathG (x,, y,) and minpathG (x,, y,) 
by minpathG(xl, x,) and minpathG(y,, y,) would yield a 
complete generalized matching on N with smaller cost, a 
contradiction. 0 

Henceforth, we will assume that there are b blocks in 
the design. G is the underlying augmented channel inter- 
section graph and we assume that the n clock terminals 
are embedded on edges of G. 

Lemma 4: The routing cost between any two clock ter- 
minals in G is bounded by l1 + 12. 

Proofi Let x and y be two clock terminals in G. Let 
P I  be any monotone (staircase) path passing through x and 
connecting two opposite comers w and w’ of the layout 
grid. Clearly, cost(P1) = l1 + 12. Similarly, let P2 be a 
monotone path passing through y and connecting w and 
w’. Then, cost(P1) + cost(P2) = 2 - (II + 12) .  Since at 
least one of w or w’ can be reached from both x and y with 
cost at most l1 + 12, the shortest path between x and y has 
cost no more than I ,  + l,. 0 

Proofi Let x and y be two clock terminals in G. Let 
P I  be any monotone (staircase) path passing through x and 
connecting two opposite comers w and w’ of the layout 
grid. Clearly, cost(P1) = lI + 12. Similarly, let P2 be a 
monotone path passing through y and connecting w and 
w’. Then, cost(Pl) + cost(P2) = 2(11 + 12). Since at least 
one of w or w’ can be reached from both x and y with cost 
at most l1 + 12, the shortest path between x and y has cost 
no more than l1 + 12. 0 
It is clear from Lemma 4 that an optimal complete gen- 
eralized matching on the clock terminals in G has cost no 
more than (II + 12) - Ln/2J . 

As in the previous section, our basic strategy is to con- 

Fig. 8. Each edge belongs to at most one sholtest path in an optimal com- 
plete generalized matching. 

struct a clock tree by computing a sequence of generalized 
matchings on the clock terminals. We begin with a forest 
of n isolated clock terminals in G (again for convenience, 
we assume that n is a power of 2), each of which is a 
degenerate tree with CEP being the terminal itself. The 
optimal complete generalized matching on these n termi- 
nals yields n / 2  paths, each of which defines a subtree. 
The optimal CEP into each subtree is the midpoint of the 
corresponding path, so that the clock signal will have zero 
skew between the two terminals. At each level, we com- 
pute an optimal generalized matching on the set of CEPs 
(roots) of all subtrees in the current forest and merge each 
pair of subtrees into a larger subtree. As before, the root 
(CEP) of the resulting tree is chosen to be the balance 
point on the path connecting the two subtrees such that 
the pathlength skew in the resulting tree is minimized (see 
Fig. 9). 

Notice that at each level of the recursion, we only have 
to match half as many nodes as at the previous level. Thus, 
in [log n l  matching iterations, we obtain a complete 
clock tree topology. If n is not a power of 2, then as noted 
in the discussion of ALGl, there will be an odd number 
2m + 1 of nodes to match at some level. For such cases, 
we compute an optimal maximum-cardinality generalized 
matching on 2m nodes, and then match m + 1 nodes at 
the next level. Fig. 10 gives a formal description of our 
clock routing algorithm ALG2 for general cell design. 

The worst-case clock tree cost produced by the algo- 
rithm can be bounded as follows: 

Theorem 5: Given b blocks in the I ,  x l2 grid and n 
terminals of a clock signal net, the cost of the clock tree 
created by ALG2 is at most (11 + 12) - n.  

Proofi By Lemma 4,. the cost of a generalized 
matching on n terminals is bounded by (11 + 12) - Ln/2 J . 
After each iteration, the number of nodes to be matched 
is reduced by half. Therefore, the total clock tree cost is 
bounded by 

n n 
4 ( I ]  + 12) * j + (11 + 12) * - + * * 

I (11 + 12) * n. 

0 

In order to compute an optimal generalized matching 
on a set of nodes N in G, we construct a weighted com- 
plete graph G’ on N such that weight(x, y) = distG(x, y) 
for each pair of nodes x and y in N. This can be accom- 
plished by applying an O( IE 1 - 1 V 1 + 1 Y 1 2 )  implemen- 
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I T  I n  

Fig. 9. ALG2 execution on a random module placement with an %terminal 
net. Solid dots are roots of subtrees in the previous level; hollow dots are 
roots (CEPs) of new subtrees computed at the current level. At each level 
an optimal generalized matching is computed on the solid points. For clar- 
ity, only the newly added wires are highlighted at each level. 

ALGS: A Clock Routing Algorithm for General Cell Designs 
Input: A set of terminals N embedded in a CIG G 
Output: A clock tree topology TALGZ with root CEP 
T = O  
P = N  
While IPI > 1 

M = opt complete generalized matching on P 
P=O 
For   PI,^) E Do 

‘2’1 = subtree of T rooted at p1 
T2 = subtree of T rooted at pz 
p = balance point on minpth&l,pz) minimizing the 

skew of the tree TI U 2‘2 U rninpathc(p1,pz) 
P = P U { p }  
T = T U  { { P ? P l ) >  { P , p z ) )  

P = P plus an unmatched node if IPI is odd 
CEP = Root of T = single remaining point in P 
Output clock routing tree =  TAG^ = T 

Fig. 10. The matching-based clock tree algorithm for general cell design. 

tation of Floyd’s all-pairs shortest path algorithm [25] to 
the graph G = (V, E ) .  Note that G is a planar graph and 
therefore [ E  I = O( I VI) .  Since for the augmented channel 
intersection graph we have I VI = O(b + n), and typically 
b > n, the overall time complexity for this step is O(b2). 
We may then apply an O(n3) algorithm for computing an 
optimal complete matching in general graphs [2 11. How- 
ever, this complexity will result in long runtimes for large 
problem instances. Therefore, in order to achieve an ef- 
ficient implementation, we use the greedy matching heu- 
ristic [26]. Such a heuristic matching may be improved 
by removing overlapping edges of shortest paths, as de- 
scribed in the proof of Lemma 3, so that no edge is used 
in more than one shortest path. The time complexity of 
each iteration of ALG2 is dominated by the O(b2) all-pairs 
shortest paths computation, which we invoke [log n ]  

times, so that the overall time complex‘ity of ALG2 is 
O(b2 - log n). This complexity is reasonable since the 
number of blocks is typically not large. 

V. EXPERIMENTAL RESULTS 
Both ALGl and ALG2 were implemented in ANSI C 

for the Sun-4, Macintosh, and IBM 3090 environments. 
This section summarizes the simulation results. 

5.1. Empirical Data for Cell-Based Designs 
We have implemented three basic heuristic variants of 

ALG 1, corresponding to different matching subroutines. 
The first heuristic variant (SP) uses the linear-time space 
partitioning heuristic of [30] to compute an approximate 
matching; the second variant (GR) uses an O(n log2 n) 
greedy matching heuristic 1291; and the third variant 
(SFC) uses an O(n log n) spacefilling curve-based method 
[3]. We have further tested these three variants by running 
each both with and without two refinements: (1) removing 
all edge crossings in the heuristic matching, and (2) per- 
forming “H-flipping” as necessary. Either of these op- 
timizations can be independently added to any of the three 
variants, yielding a total of twelve distinct versions of the 
basic algorithm. The variants of the algorithm are denoted 
and summarized as follows: 

SP: Use the space-partitioning matching heuristic of 
[30], which induces the matching through recursive 
bisection of the region (rather than bisection of the 
set of terminal locations). 
GR: Use a greedy matching heuristic, which always 
adds the shortest edge between unmatched terminals 

SFC: Use a space-filling curve to map the plane to 
a circle, then choose the better of the two embedded 
matchings (i.e., either all odd edges or all even edges 
in the induced Hamiltonian cycle through the termi- 
nal locations) [3]. 
SP+E, GR+E, SFC+E: Same as SP, GR, and SFC, 
respectively, except that the heuristic matching cost 
is further improved by edge-uncrossing . 
SP+H, GR+H, SFC+H: Same as SP, GR, and 
SFC, respectively, except that pathlength skew is 
further reduced by H-flipping. 
SP+E+H, GR+E+H, SFC+E+H: Same as SP, 
GR, and SFC, respectively, except that both edge- 
uncrossing and H-flipping are performed. 

1291. 

For comparison, we also implemented 

MMM: The method of means and medians, similar 

The algorithms were tested on random sets of up to 1024 
terminals generated from a uniform distribution in the 
loo0 x loo0 grid (i.e., l I  = l2 = 10oO). Results for a 
sample run with 50 random terminal sets at each cardi- 
nality are summarized here: Table I compares the average 
tree costs and Table I1 compares the average clock skews 

to that of Jackson, Srinivasan and Kuh [18]. 
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TABLE I 
AVERAGE TREE COSTS, IN GRID UNITS, FOR THE VARIOUS HEURISTICS 

1165 

PtS MMM SP GR SFC SP+E GR+E SFC +E 

4 
8 

16 
32 
64 

128 
256 
512 

1024 

1197 
2136 
3506 
5598 
8377 

12276 
17874 
25093 
36765 

1155 
2075 
3582 
5922 
9184 

13793 
20765 
30443 
44304 

1136 
2032 
3409 
548 1 
8526 

12632 
18625 
27055 
38688 

1140 
203 1 
3527 
5788 
9048 

13656 
20354 
296 18 
42750 

1129 
1990 
3343 
5342 
8100 

11912 
17573 
25341 
36444 

1129 
1990 
3326 
5277 
8032 

11725 
17024 
24548 
35086 

1130 
1992 
3343 
5326 
8068 

11976 
17768 
25720 
37056 

~~~~~ 

PtS SP+H GR+H SFC + H SP+E+H GR+E+H SFC +E+H Meta 

4 
8 

16 
32 
64 

128 
256 
512 

1024 

1125 
2027 
3502 
5860 
9226 

13997 
21307 
31646 
46417 

1125 
2028 
3416 
5628 
8794 
3315 

1961 1 
29175 
42110 

1125 
1994 
3428 
5577 
8748 

13159 
19713 
28688 
41540 

1125 
1971 
3333 
5329 
8076 

11871 
17457 
25 188 
36276 

1125 
1979 
3322 
5273 
7982 

11697 
16955 
24465 
34965 

1125 
1980 
3329 
5304 
8047 

11914 
17629 
25483 
36814 

1125 
1960 
3268 
5151 
7844 

11566 
16919 
24480 
34992 

TABLE I1 
AVERAGE SKEW VALUES, IN GRID UNITS, FOR THE VARIOUS HEURISTICS 

PtS MMM SP GR SFC SP+E GR+E SFC+E 

4 
8 

16 
32 
64 

128 
256 
512 

1024 

112.31 
186.10 
234.72 
262.61 
229.15 
201.55 
183.28 
153.90 
125.34 

3.98 
45.79 
70.93 

143.85 
179.83 
226.61 
286.90 
321.23 
339.34 

15.52 
76.71 

141.22 
200.33 
273.04 
314.05 
324.57 
399.29 
402.59 

0.00 
4.26 

19.47 
28.29 
51.36 
64.86 
85.10 
85.46 
89.75 

0.00 
0.66 
4.01 
8.14 
6.93 

11.52 
17.25 
14.79 
17.14 

0.00 
0.66 
3.54 
7.85 
8.65 

14.18 
13.85 
15.26 
16.71 

0.00 
0.66 
3.66 
6.14 
5.29 

11.26 
15.04 
15.73 
15.35 

P t S  SP+H GR+H SFC+H SP+E+H GR+E+H SFC+E+H Meta 

4 0.00 
8 3.38 

16 1.80 
32 3.53 
64 13.17 

128 20.79 
256 41.79 
512 76.35 

1024 75.92 

0.00 
0.12 
3.80 
8.64 

27.69 
40.34 
51.87 
90.66 
94.99 

0.00 
0.00 
0.12 
0.00 
1.26 
3.18 
7.49 

13.51 
16.62 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.39 
0.44 

0.00 
0.00 
0.00 
0.00 
0.00 
1.02 
0.92 
0.62 
0.08 

for all heuristics. The data in the tables is given in grid 
units. 

The computational results indicate that both optimiza- 
tions (edge-uncrossing and H-flipping) significantly im- 
prove both skew and total wirelength. When the refine- 
ments are combined, average pathlength skew essentially 
vanishes, and the wirelength of several variants is 
superior to the output of MMM. The best variant appears 
to be GR +E +H, which is based on the greedy matching 
heuristic together with edge-uncrossing and H-flipping . 
Note that the cost of the greedy matching is asymptoti- 
cally as good as that of the optimal matching [26]. Tables 
111 and IV highlight the contrast between GR+E+H and 
MMM, showing minimum, maximum and average values 

0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.24 0.00 
0.00 0.00 
0.39 0.00 
0.38 0.00 

TABLE 111 
MINIMUM, AVERAGE, AND MAXIMUM SKEW VALUES, IN GRID UNITS, FOR 

GR+E+H AND MMM 

MMM GR+E+H 

PtS min ave max min ave max 

0 0.00 0 
8 46 186.10 407 0 0.00 0 

16 86 234.72 416 0 0.00 0 
32 118 262.61 540 0 0.00 0 
64 141 229.15 337 0 0.00 0 

128 120 201.55 282 0 1.02 30 
256 127 183.28 250 0 0.92 46 
512 103 153.90 203 0 0.62 31 

1024 94 125.34 167 0 0.08 4 

4 2 112.31 379 
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Fig. 1 1 .  Overall pathlength skew comparisons between ALGl (GR+E+H) 

and MMM. 
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net size 
Fig. 12. Overall tree cost comparisons between ALGl (GR+E+H) and 

MMM . 

TABLE IV 
MINIMUM, AVERAGE, AND MAXIMUM TOTAL WIRELENGTH VALUES, I N  

GRID UNITS, FOR GR + E + H AND MMM 

MMM GR+E+H 

Pts min ave max min ave max 

4 656 1197 1823 555 1125 1668 
8 1089 2136 2943 1123 1979 2810 

16 2841 3506 4221 2793 3322 3993 
32 4813 5598 6216 4695 5273 5866 
64 7624 8377 9266 7372 7982 8556 

128 11439 12276 13136 11052 11697 12243 
256 17220 17874 18549 16379 16955 17543 
512 25093 25666 26291 23866 24465 25325 

1024 36126 36765 37561 34231 34965 36179 

for both total wirelength and skew. Figs. 11 and 12 depict 
these same comparisons graphically. 

As noted in [20], any set of approximation heuristics 
induces a meta-heuristic which returns the best solution 
found by any heuristic in the set; we also implemented 
this (denoted as “Meta”), which returns the minimum- 
skew result from all of the other variants. Interestingly, 
in our experience Meta always returns a perfect path- 
length balanced tree, i.e., for each problem instance, at 
least one of the other heuristic variants will yield a zero 
clock skew solution. This is very useful, especially when 
the heuristics are of similar complexity. For example, we 
can solve the Primaryl benchmark using all twelve meth- 
ods in under two minutes on a Sun-4/60 workstation. 

Fig. 13 and 14 illustrate the output of variant 
GR + E  +H on the Primary 1 and Primary2 benchmarks, 
using the same placement solutions as in [18]; note that 
although edges are depicted as straight lines in these dia- 
grams, they are actually routed rectilinearly. Table V 
compares the results of GR+E+H and the results of [18] 
which were provided by the authors [27]: GR+E+H 

Y 

6.00 1 I I I I t l  

5 5 0  

5.00 

450 

4.00 

350 

3.00 

2.50 

2.00 

- 

- 

- 

- 

- 

- 

- 

- 

150 - 

l.00 - 

/ 0.00 t 
I I  I I I I I 
0.00 I .lo 2.00 3 .00 4.00 5 .00 

Fig. 13. Output of variant GR+E+H on the Primaryl benchmark layout. 

Y 

I I I I I T 
i 

i 

i 1 
0.001 ‘ I I I I I A  x 

0.00 2.00 4.00 6.00 8.00 10.00 

Fig. 14. Output of GR+E+H on the Primary2 benchmark layout. 

completely eliminates pathlength skew while using 5 %- 
7% less wirelength. To confirm the correlation between 
the linear delay model and actual delay, we ran SPICE 
simulations on the Primaryl and Primary2 clock trees us- 
ing MOSIS 2.0-pm CMOS technology parameters and 
0.3-pF sink loading capacitance); the simulated skews of 
our clock trees for Primaryl and Primary2 were 181 ps 
and 741 ps, respectively’. Notice that this clock skew was 

’Vias and parasitic difference between metal layers were not considered 
in our simulation because detailed layer assignment has not been deter- 
mined at this stage of clock routing. 
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TABLE V 

STANDARD DEVIATION OF THE PATH LENGTH, AND “COST” DENOTES THE TOTAL WIRELENGTH 
COMPARISONS OF GR+E+H AND MMM ON ~ I M A R Y I  AND PRIMARYZ. “SKEW (STD)” DENOTES THE 

Skew 
Skew (STD) Cost (STD) cost Reduction Reduction 

MMM MMM GR+E+H GR+E+H Skew (STD) Cost (%) 

Primary 1 0.29 161.7 0.00 153.9 0.29 4 .8  
Primary2 0.74 406.3 0.00 316.7 0.74 7.3 

TABLE VI 
AVERAGE CLOCK TREE COSTS AND PATHLENGTH SKEWS, IN GRID UNITS, OF 

ALGZ AND THE STEINER TREE HEURISTIC, RESPECTIVELY. 

Skew Cost 
# of Net 

Modules Size Steiner ALGZ Steiner ALGZ 

16 4 511.0 0.8 1537 1921 
16 8 794.9 12.9 2328 3478 
16 16 1101.5 22.1 3332 5873 
32 4 445.0 0 .4  1401 1729 
32 8 804.4 4.4 2261 3407 
32 16 1136.9 12.0 3357 5847 

obtained simply by balancing CEP-leaf pathlengths; as 
discussed in Section VI, more sophisticated delay models 
can yield a better choice of balance points in the match- 
ing-based construction. 

5.2. Empirical Data for General Cell Designs 
We have tested ALG2 on two sets of test cases. One 

set of examples contains clock nets of sizes 4, 8, and 16 
on 16 blocks, and the other set contains clock nets of sizes 
4, 8, and 16 on 32 blocks. Block sizes and layouts were 
assigned randomly in the grid by creating a fixed number 
of non-overlapping blocks, with length, width, and lower- 
left coordinates all chosen from uniform distributions on 
the interval [0, 1OOOJ (i.e., l1 = l2 = 1OOO). 

For each net size (and block number), 100 instances 
were generated randomly, and we compared the skew and 
cost of the ALG2 routing trees with those produced by the 
1-Steiner heuristic [20]. Results are shown in Tables VI 
and VII. The skew of our clock tree is very close to zero. 
In no case is it more than 2% of the skew of the Steiner 
tree routing. The increase in total wirelength of our rout- 
ing tree varies from 24% to 77 % when compared with the 
Steiner tree. The data in the tables is given in grid units. 

As with the cell-based layout benchmarks, we ran 
SPICE simulations on a number of examples (again using 
MOSIS 2.0-pm CMOS technology and 0.3-pF gate load- 
ing capacitance). The actual skew of our clock tree is con- 
sistently much smaller than that of a Steiner tree. For a 
typical 16-pin clock net in a 16-block design, the skews 
of our clock tree and the Steiner tree are 18 and 69 ps, 
respectively. 

For the routing tree produced by ALG2, we may have 
overlapping edges in a channel because matching paths at 
different levels may use the same channel. However, by 
Lemma 3, no channel segment will appear in more than 

TABLE VI1 
AVERAGE CLOCK TREE COSTS AND PATHLENGTH SKEWS, OF ALG2 OUTPUT, 
NORMALIZED ( P E R  INSTANCE) TO CORRESPONDING HEURISTIC STEINER TREE 

VALUES. 

Net Pathlength Tree Edge Density 
Modules Size Skew cost in Channels 

# of 

16 4 0.00 1.26 1.24 
16 8 0.02 1.49 1.40 
16 16 0.02 1.77 1.63 

32 4 0.01 1.24 1.21 
32 8 0.01 1.52 1.36 
32 16 0.01 1.74 1.48 

a single path in a matching. Therefore, there are at most 
rlog nl overlapping edges in each channel. The last col- 

umn in Table VI1 shows the average edge density in chan- 
nels, computed as the average of non-zero local column 
densities over all columns in all channels. 

VI. REMARKS AND EXTENSIONS 
We recommend that the global clock routing of ALGl 

or ALG2 be performed before other wiring, following 
standard practice. In this way, there are no wire-crossing 
conflicts since two layers of metal are used, one for hor- 
izontal wires, and the other for vertical wires. The exact 
routing of the clock tree topology may be determined in 
the detailed routing step. 

For cell-based design, we can realize additional wire- 
length savings in our clock tree routing by varying the 
geometric embedding of individual wires in the layout. In 
the Manhattan metric, the “balance point” of a wire con- 
necting two terminals is not unique but is rather a locus 
of many possible terminals (Fig. 15), with the extremes 
corresponding to the two L-shaped wire orientations. Our 
current implementation sets the balance point of a seg- 
ment to be its “Euclidean” midpoint, but this is not nec- 
essarily an optimal choice. Using a graph-theoretic for- 
mulation, we can easily derive a polynomial-time method, 
based on general graph matching, for finding the optimal 
set of balance points within these loci. 

The wire embedding at each level of our algorithm may 
also benefit from lookaheud of one or more levels, i.e., 
when we reach a situation where pathlength skew cannot 
be eliminated even via the utilization of an H-flip, we can 
go back one or two levels in the subtrees involved and try 
different H-flips during previous iterations on those sub- 
trees. In our experience, this strategy easily allows com- 
plete elimination of clock skew at the current level, and 
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Fig. 15. Further optimizations are possible by matching over the loci of 

balance point candidates. 

requires only a constant amount of computation provided 
the lookahead depth (i.e., number of levels) is bounded 
by a constant. With respect to Fig. 15, note that because 
the routing layers have different electrical characteristics, 
the choice of balance points must be optimized both with 
respect to locations and the actual embeddings of the wires 
incident to the balance point. If the layer assignment is 
prescribed, the balance point computation is straightfor- 
ward. Alternatively, deciding between various optional 
embeddings may be accomplished using one level of 
lookahead as in [32]. 

Another important extension lies in the selection of the 
CEP at each level. Instead of using the linear delay model 
to select a CEP, we may use a more accurate distributed 
RC model, to select the CEP so that clock skew is reduced 
by as much as possible. This is a strictly local modifica- 
tion of our method and does not affect the execution of 
the rest of the algorithm (or any variant). Such an exten- 
sion applies to both ALGl and ALG2, and is particularly 
useful when varying capacitative loadings exist at the ter- 
minals of the clock net. Since our algorithm operates in a 
bottom-up fashion, and since we treat each level inde- 
pendently, our method is able to accommodate variable 
gate loading very na t~ra l ly .~  

’We note that Tsay 1321 recently gave a clock routing algorithm which 
uses a bottom-up construction approach similar to the one described in this 
paper. Tsay’s algorithm incorporates one level of look-ahead and the in- 
troduction of “extra” wire to achieve an exact zero-skew tree with respect 
to the Elmore delay model [13]. At each step, Tsay’s method combines a 
pair of zero-skew trees to yield a new zero-skew tree of larger size. The 
linear-time ‘‘Deferred-Merge Embedding” (DME) algorithm of [4]-[6] 
generalizes look-ahead in maintaining all loci of CEP’s that are compatible 
with a zero-skew tree construction. DME thus reduces the cost of an initial 
clock tree topology computed by any previous method, while maintaining 
exact zero clock skew. In regimes where the linear delay model applies, 
the DME method produces the optimal (i.e., minimum-cost) zero-skew 
clock tree with respect to the prescribed topology, and this tree will also 
enjoy optimal source-terminal delay [4], [5].  It is noteworthy that with 
respect to DME, our present matching-based approach yields topologies 
which lead to lower cost trees than such other initial topologies as those of 
[61, [181, P21. 

Finally, we mention that the PBT problem is interesting 
from a theoretical standpoint: the tradeoff between path- 
length balance and total edgelength appears important not 
only for clock skew minimization, but also for a number 
of applications in areas ranging from computational ge- 
ometry to network design. 

In summary, we have presented a bottom-up approach 
for constructing clock routing trees, for both cell-based 
and general cell designs. Skew minimization is achieved 
by constructing the clock tree iteratively through geomet- 
ric or graph matchings, while carefully balancing the 
pathlengths from the root to all leaves at each level of the 
construction. We verified our algorithm on numerous ran- 
dom examples, on industry benchmark circuits, and by 
SPICE timing simulations; the results show near-zero av- 
erage clock skew while using total wirelength that com- 
pares favorably with previous work. 
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