The T-join Problem in Sparse Graphs:
Applications to Phase Assignment Problem in
VLSI Mask Layout*

Piotr Berman', Andrew B. Kahng?, Devendra Vidhani?, and Alexander
Zelikovsky?

! Dept. of Computer Science and Engineering, Pennsylvania State University,
University Park, PA 16802-6106, berman@cse.psu.edu
2 Department of Computer Science, University of California at Los Angeles, Los
Angeles, CA 90095-1596, {abk,vidhani}@cs.ucla.edu
% Department of Computer Science, Georgia State University, University Plaza,
Atlanta, GA 30303, alexz@cs.gsu.edu

Abstract. Given a graph G with weighted edges, and a subset of nodes
T, the T-join problem asks for a minimum weight edge set A such that a
node u is incident to an odd number of edges of A iff u € T. We describe
the applications of the T-join problem in sparse graphs to the phase
assignment problem in VLSI mask layout and to conformal refinement
of finite element meshes. We suggest a practical algorithm for the T-
join problem. In sparse graphs, this algorithm is faster than previously
known methods. Computational experience with industrial VLSI layout
benchmarks shows the advantages of the new algorithm.

1 Introduction

Given a graph G with weighed edges, and a subset of nodes T, the T'-join Problem
seeks a minimum weight edge set A such that a node u is incident to an odd
number of edges of A iff u € T'. One can find a discussion of the T-join problem
in Cook et al. [4], pp. 166-181.

In this work, we develop a new exact algorithm for the 7T-join problem which
is motivated by the applications in VLSI mask layout. Section 2 describes the
context of the phase assignment problem in VLSI phase-shifting masks. The
corresponding graphs are sparse, with a large number (up to millions) of nodes.
Similar graphs appear in conformal refinement of finite element meshes.

A traditional reduction of the T-join problem to minimum weight perfect
matching is too time- and memory-consuming to be practical. In Section 3 we
suggest a new reduction to the perfect matching problem which increases the
size of the graph by at most a factor of two. This reduction is linear and does not
contain any large hidden constants. The achieved runtime is O((nlogn)*/?)a(n),

* This work was supported by a grant from Cadence Design Systems, Inc. P. Berman
was partially supported by NSF Grant CCR-9700053 and A. Zelikovsky was partially
supported by GSU Research Initiation Grant #00-013.

where « is the inverse Ackerman function and n is the number of nodes in G. In
the concluding Section 4 we describe our computational experience with layouts
derived from standard-cell VLSI designs obtained from industry.

2 Phase Assignment in VLSI Phase Shifting Masks

In the manufacture of a given VLSI circuit layout, photosensitive material is
exposed to light that is passed through a mask. Without loss of generality, clear
regions in the mask correspond to desired shapes, or features, in the layout.
Phase-shifting mask (PSM) technology, proposed by Levenson et al. [11] in 1982,
enables the clear regions of a mask to transmit light with prescribed phase shift.
Given two adjacent clear regions with small separation, and respective phase
shifts of 0 and 180 degrees, the light diffracted into the nominally dark region
between the clear regions will interfere destructively; this gives improved image
contrast (i.e., between light and dark) and better resolution of the two features.
PSM is enabling to the subwavelength optical lithography upon which the next
several VLSI process generations depend [17].

Two positive constants b < B define a relationship between manufacturability
of the layout and the distance between any two given clear regions [15]. The
distance between two features cannot be smaller than b without violating the
minimum spacing design rule. If the distance between two features is at least b
but smaller than B, the features are in phase conflict,! which can be resolved by
assigning opposite phases to the conflicting features. In other words, B defines
the minimum spacing when two features have the same phase, while b defines
the minimum spacing when the features have opposite phases. If the distance
between two features is greater than B, there is no phase conflict and any phase
assignment is allowed.

The Phase Assignment Problem: Given a layout, assign phases to all
features such that no two conflicting features are assigned the same phase.

Given a layout, consider the conflict graph G =<V, E > which has a vertex
for each feature, and an edge between two vertices iff the corresponding fea-
tures are in phase conflict. Observe that the Phase Assignment Problem can be
solved iff the conflict graph is bipartite, i.e., has no odd cycles. The only way
to change the conflict graph is to perturb the layout, e.g., perturb the locations
of features such that they are no longer in phase conflict. Thus, if the conflict
graph is not bipartite, we seek a minimal perturbation of the layout such that
the conflict graph in the new layout is bipartite. The following method for layout
modification and phase assignment was proposed in [10], extending work of [15].

(i) given a layout, find the conflict graph G}
(ii) find a (minimum) set of edges whose deletion makes the conflict graph G
2-colorable;

! More precisely, two features are in phase conflict if (i) there is no pair of points,
one from each feature, whose separation is less than b; and (ii) there is some pair of
points, one from each feature, whose separation is less than B.

(iii) assign phases such that only the conflict edges in this (minimum) set connect
features of the same phase; and

(iv) compact the layout with “PSM design rules”, i.e., apply a layout compaction
tool that enforces separation at least B between features that are assigned
the same phase, and separation at least b between features that are assigned
different phases.

In this approach, the key step is determining which set of edges in the conflict
graph correspond to a “minimum perturbation” of the layout.

The Minimum Perturbation Problem: Given a planar graph G =<V, E >
with weighted (multiple) edges, find the minimum-weight edge set M such that
the graph < V, E — M > contains no odd cycles.

The Minimum Perturbation Problem can be reduced to the 7T-join problem
in the following way. We use the following definitions. A geometric dual of an
embedded planar graph G =< V, E > is a multigraph D =< F, E > in which
nodes are the faces of G. If f, g are two faces of G, i.e. two nodes of D, than an
edge of G connects f with g if it belongs to both of them. A reduced dual of G is
a graph D =< F, E > obtained from D by deleting all but one of the edges that
connect a given pair of nodes. The undeleted edge must be the one of minimal
weight.

Lemma 1 The Minimum Perturbation Problem for a planar graph G is equiv-
alent to the T-join problem in the reduced dual graph of G.

Proof. To eliminate all odd cycles it is sufficient to eliminate odd faces of the
planar graph G (see Figure 1). The odd faces of G form odd-degree vertices of D.
Any edge elimination in G corresponds to edge contraction in D. In particular,
if we eliminate a set of edges A in G, then the resulting nodes of (modified) D
will correspond to connected components of < F, A >. Given such a component
with sum of node degrees d and k edges, the corresponding node has degree
d — 2k. Thus A is a feasible solution iff each connected component of < F, A >
contains an even number of odd nodes (odd faces of G). Moreover, for each
feasible solution A C E there exists a feasible solution A C E with weight that
is not larger; we obtain A from A by replacing multiple edges connecting a pair
of nodes/faces f and g with a single edge of minimum weight.

If we define T' to be the set of odd faces of G, then finding the minimum
cost feasible solution is the same as solving the T-join Problem for D. (]

After the Minimum Perturbation Problem is solved, i.e., the set of edges M
is determined and deleted, the valid assignment of phases can be found using
breadth-first search. For each connected component of the conflict graph (the
weight of each edge is set to 1), starting from arbitrary vertex v breadth-first
search determines the distance from v to each other vertex u. If the distance from
v to u is even, then u is assigned the same phase as v; otherwise, u is assigned
the opposite phase. Such breadth-first search can be performed in linear time.

A

\I
NN

| AN

7 %Iz
M AR =

N

1

N

(b)

(© \l,

AN\

%
7z 2 |

N I\
P

NN

() (C] (d)

Fig. 1. From the conflicts between features (a), the conflict graph is derived (b). The
dual graph (c) is constructed. The vertices of odd degree are matched using paths in
the dual graph (d), and the corresponding conflict edges are determined (e). Finally,
the minimum set of conflicts to be deleted is determined (f).

Quadrangulations for Finite Element Meshes

Another application of the sparse T-join Problem is described in [14]. Confor-
mal mesh refinement has gained much attention as a necessary preprocessing
step for the finite element method in the computer-aided design of machines,
vehicles, and many other technical devices. For many applications, such as tor-
sion problems and crash simulations, it is important to have mesh refinements
into quadrilaterals. The problem of constructing a minimum-cardinality confor-
mal mesh refinement into quadrilaterals is well known. This problem is NP-hard
and for meshes without so-called folding edges a 1.867-approximation algorithm
is suggested in [14]. This algorithm requires O(nmlogn) time, where n is the
number of polygons and m the number of edges in the mesh. The asymptotic
complexity of the latter algorithm is dominated by solving a T-join problem in
a certain variant of the dual graph of the mesh. Although the T-join problem
can be solved fast for planar graphs by an application of the planar separator
theorem (see [12] and [2]), our reduction is much simpler and does not contain
any large hidden constants.

3 A Fast Algorithm for the T-join Problem

The T-join problem was solved by Hadlock [8] and Orlova & Dorfman [16] using
the following reduction.

Lemma 2 The T-join problem for a graph with n nodes can be reduced to
Minimum-Weight Perfect Matching problem in a complete graph with |T| nodes.

Proof. Every minimal T-join is the union of edge sets of edge disjoint paths
that, viewed as edges connecting their endpoints, provide a perfect matching
of set T (see [4], p. 168). Thus every minimal 7-join corresponds to a perfect
matching, with the same cost, in a complete graph with node set 7' and edge
weights defined as the shortest path lengths in the original graph. Conversely,
every perfect matching in the new graph yields a T-join considering the paths
that correspond to its edges, and taking the edges of the original graph that
belong to an odd number of these paths, obviously the cost of this 7T-join is not
larger than the cost of the matching. Consequently, the minimum cost perfect
matching must correspond to a minimum cost 7'-join. 0

The reduction defined in Lemma 2 has two drawbacks. First, the reduction
itself can be slow, because finding all pairwise distances between vertices of
T is too time- and memory-consuming. Additionally, the resulting instance of
Minimum-Weight Perfect Matching Problem may have many more edges than
necessary, and thus itself is too difficult to be used in practice. The present work
provides an approach that is much more efficient in the case of sparse graphs
(note that planar graphs are always sparse, because the number of edges is less
than six times larger than the number of nodes).

In this section we present a faster reduction of the T-join problem to the
minimum weight perfect matching problem, which yields a faster exact algorithm
for the T-join Problem in sparse graphs.

3.1 Opportunistic Reductions

In this subsection we describe simplifying, “opportunistic” reductions that serve
to normalize input graphs for the reduction from the T-join problem to perfect
matching that is described later. These reductions do not improve the worst case
performance of algorithms for the 7T-join problem, but nevertheless help in many
real-life instances.

The first opportunistic reduction reduces the T-join problem to instances
with biconnected graphs.

Theorem 1 Consider an instance of the T-join problem described by the graph
< V,E >, edge weight function w and T C V. Assume that < V,E > has
biconnected components < Vi, E, >,...,< Vi, Er >. Then in linear time we
can find sets T; C V; such that A C E is an optimal T -join if and only if for
i=1,...,k, AN E; is an optimal T;-join for < V;, E; > and w)g, .

Proof. If a biconnected component < V;, E; > happens to be a connected
component, then for obvious reasons it suffices to define T; = T' N V;. Similarly,
the claim is trivial if < V, E > is biconnected. Now consider < Vi, E; >, the
first biconnected component reported by Hopcroft’s algorithm (see [1], pp. 180-
187); it is a property of this algorithm that this component contains exactly one
articulation point, say v. Let Eg = E — Ey, and Vo =V — V1 N {v}. We will find
sets 171 and Ty such that A is a T-join for < V, E > if and only if T; N Ej; is a

solution for < V;, E; > for j = 0,1. We have four cases. In the first two, v € T'.
If |T'N V4] is even, v must be incident to an odd number of edges from E;, and
thus to an even number of edges from Fjy. Thus we can set 7y = TNV, and
To =T —Vi. If [T NnV4| is odd, then v must be incident to an even number of
edges in AN E; and thus to an odd number of edges from A N Ey, consequently
we can set Tp =T NVy and Ty = T — Vp. In the remaining two cases, v € T'. If
|T'N Vi| is even, v must be adjacent to an even number of edges from A N E;
and an even number from A N Ey, consequently we can define T; = T'NV; for
j=0,1.If TNV} is odd, v must be incident to an odd number of edges in both
ANEy and AN Ey, so we can define T; =T NV; U {v} for j =0,1.

In this fashion, we can each compute T; as soon as the respective biconnected
component < V;, E; > is reported by Hopcroft’s algorithm. 0

Another opportunistic reduction eliminates nodes of degree 2 that do not
belong to T'.

Theorem 2 Assume that node v € T has exactly two neighbors, v1 and v,.
Consider the graph transformation where edges {v,v1} and {v,v2} are replaced
with edge {v1,vs} with weight w(v,v1) + w(v,v2). Then this edge replacement
defines a 1-1 correspondence between T -joins of the old graph and the new graph.

Proof. The claim follows immediately from the observation that in the
original instance, a solution either contains both e; and ez, or neither of these
edges. O

Because the running time of the most efficient algorithms for minimum weight
perfect matching depends on the maximum edge weight (if we assume that all
weights are integer), we should estimate how much this weight may change. The
reduction implied by Theorem 1 does not change the maximum edge weight at
all, while the reduction implied by Theorem 2 increases the maximum by a factor
smaller than n.

3.2 Reducing T-join to Perfect Matching with Gadgets

In this subsection, we develop a new and more efficient reduction of the T-
join problem to perfect matching, using gadgets. The general outline of our
reduction is the following. For each instance (G, w,T') of the T-join problem we
will construct an equivalent instance (G',w’) of the perfect matching problem.
Each node v will be replaced with a gadget graph G, that is connected with
edges of weight 0. Later we will call these edges connections. Each edge {u,v}
will be replaced with 1, 2, or 3 edges that connect G, with G,,. We will call these
edges replacements. Each replacement has the same weight as the corresponding
original edge.

From the previous subsection, we may assume the following restrictions on
instances of the T-join problem: the graph is biconnected, |T'| is even and posi-
tive, all T-nodes have degree at least 2 and all other nodes have degree at least

3. Henceforth, we will use S to denote V' — T'. The correctness of the translation
is assured by the following strong equivalence condition. For each perfect match-
ing M in G' there exists a solution A in G with 1-1 correspondence between
replacements in M and edges in A where each edge e € A corresponds to one of
its own replacements. Conversely, for every solution A in G there exist a perfect
matching M in G' with such correspondence.

We will assure the strong equivalence using the following lemma.

Lemma 3 Properties (1), (2) and (3) are sufficient to assure strong equivalence
between G and G':

(1) For any edge {u,v}, there is a node which is incident to all replacements of
{u,v}. If this node belongs to G, then we say that {u,v} fans out from v
towards u.

(2) If u € T then G, contains an odd number of nodes, and if u € S then G,
contains an even number of nodes.

(8) Let A, be a set of edges that are incident to some node u of the graph G.
Assume that |Ay| has the same parity as |Gy|. Then all nodes of G, are
included in a matching M, that consists only of the replacements of the
edges of A, and the connections of Gy,.

Proof. Given a matching M in G', we obtain a corresponding T-join A
in G by discarding all connections, and exchanging the replacements for the
“original” edges. Property (1) assures that there is a 1-1 correspondence between
replacements in M and edges in A since only one edge from replacement can
participate in a matching. Note that each replacement can match at most one
node in G,, and connections in G,, can match only even number of nodes. Thus
property (2) assures that if w € T, then A contains an odd number of edges
incident to u, and if u € S, then A contains an even number of such edges.

It remains to show a converse relationship. Consider a T-join A in G.
By property (3), we can find a matching M, for every group of edges G,
so it remains to show that we can combine these matchings together. By
property (1), every edge {v,u} with more than one replacement has all its
replacements incident to a single node; if this node is in G, then this edge
fans out from v toward u. Let us remove from each M, the replacements of
edges that fan out from u and take the union of the reduced M,’s. If a node
w is not matched, it must belong to some G, and its incident edge from M,
was removed, because it was a replacement of an edge that fans out from
u toward some v. However, in this case, {u,v} € A and one of the replace-
ments of this edge must still belong to M, moreover, it must be incident to w. [

Properties (1) and (2) can be immediately verified for a given construction of
graph G'. Property (3) will be proven by induction on the degree of u. However,
as a preliminary step, we must show that we can simultaneously provide a gadget
G, for every node v of G. The limitation is that almost every gadget requires
that a certain number of edges adjacent to v fan out toward v. However, this
requirement never exceeds half of the total number of incident edges (degree of
the node). Thus, before proceeding further, we should show that

Lemma 4 We can fan out the edges of G in such a way that if a node has degree
2k or 2k + 1, at least k edges are fanned out toward it (see Figure 2).

Proof. By induction on number of edges in G. We first consider the case
when G contains a simple cycle. Then we fan out the edges on this cycle so each
is fanned out toward a different node, and remove the edges of this cycle. For
each affected node, the degree decreases by 2, and the number of edges that fan
toward such a node decreases by 1.

If G contains no cycles, then it is a forest; we can take an edge that is incident
to a leaf, fan it out toward its other end and remove this edge. Two nodes are
affected: a leaf which does not have any requirements (k = 0), and the other
node, for which the degree decreased by 1, so that the requirement for more
edges fanned out toward it decreased by 1 as well. O

IR P
S) ’\/\

Fig. 2. An example of graph transformation. In the original graph, node labels indicate
the member of T and S respectively, arrows on edges indicate the direction of the
possible fan out. The thick edges will be fanned out during the transformation.

The gadgets that we use are formed from three kinds of building blocks.
A gadget for node v is defined as the graph H that consists of G,, plus the
adjacent replacement edges. If the replaced edge fans out toward v, we keep all
the replacements, and otherwise we keep only one. Because we define gadgets
first, and assign them to various nodes later, we will use core(H) to denote G,
and rind(H) to denote H — core(H). In general, a gadget H is characterized by
the degree of its node and by the membership of this node in 7" or S. We will use
acronyms to identify gadgets, e.g., T4 are gadgets for elements of 71" that have
degree 4.

We can now formulate the sufficient conditions for the correctness of a gadget
that are implied by Lemma 3. Property (1) of Lemma 3 is assured as follows: a
Ti or Si gadget has |rind(H)| = i; each edge incident to the node represented
by the gadget corresponds to one of the nodes of rind(H); if this edge fans out
toward that node, this node is connected with core(H) by all its replacements,
otherwise it is connected with core(H) by a single edge.

Property (2) is assured simply if |core(H)| is odd for a T' gadget, and even
for an S gadget. Finally, property (3) means that if core(H) C U C H and |U|
is even, then H contains the matching that matches all nodes of U and no other
nodes.

Now we will describe construction of the gadgets. We first define three basic
gadgets, S3, T3 and @, which is actually a variety of T4 (see Fig. 3). Gadget
T2 is a degenerate case, because we do not modify T-nodes of degree 2 (except
than an edge originating in such node may fan out toward its other end). Fig. 3
shows how we form gadgets for all nodes of degree below 7. For nodes of degree
more than 6, the gadgets are constructed recursively using a procedure described
below.

Given two gadgets H and H', we can meld them as follows. Let {x,y} be
a replacement of an edge that does not fan out toward the node of H, and let
y € core(H). Select {z',y'} similarly. Then meld(H, H') is created by discarding
x and ', and by identifying y with y'. Fig. 3 shows several examples of melding.
For i > 7 we define Si as meld(S(i — 2),Q) and T as meld(T (i — 2),Q). The
following lemma validates building larger gadgets by melding the smaller ones.

Lemma 5 We can build new gadgets in the following three ways:

(i) If H is an Si gadget, and H’ is an Sj, then meld(H,H') is a T(i + j — 2).
(ii) If H is an Ti gadget, and H’ is an Tj, then meld(H,H') is a T(i + j — 2).
(iii) If H is an Si gadget, and H’ is an T'j, then meld(H,H'") is a S(i + j — 2).

Proof. Let Hy denote meld(H, H'). We will prove only (i), the other cases
being similar. Property (1) of the gadget correctness is inherited from H and
H', because edges that are fanning out in Hy were fanning out in H or H' and
they are represented as before. One can also see that |rind(Ho)| =i+ j — 2,
so Hy represents a node of degree i + j — 2. Property (2) follows quickly
from the fact that |core(Hp)| = |core(H)| + |core(H')| — 1. To prove property
(3), consider Uy such that core(Hy) C Uy C Hp, such that |Up| is even. Let
U =UpNrind(H) and U’ = UyNrind(H'"). Because |core(Hy)| is odd, |U|+ |U’|
is also odd. Without loss of generality assume that |H| is even and |H'| is
odd. Because H is a correct Si gadget, the subgraph of core(H) U U contains
a perfect matching. Now it remains to find the matching for core(H') U U'.
We first obtain a matching for core(H') UU' U {z'}. We then remove the edge
{z',y'}, because in H' node z' has degree 1, hence this edge must belong to
our matching. Note that 2’ was discarded during melding, and y' = y is already
matched, so we have matched all the nodes of Up. (]

The following theorem estimates the quality of our gadget reduction of the
T-join Problem to the Minimum Cost Perfect matching.

Theorem 3 Consider an instance of Minimum Cost T -join problem with n
nodes, m edges and ng nodes of T that have degree 3. In linear time we can
generate a strongly equivalent instance of the Minimum Cost Perfect matching
that has at most 2m nodes and at most 6m — 5n + 0.5n¢ edges.

10

g 2

T4 = meld(S3,3)
% = meld(S3,Q) 6 = meld(S3,T3,3,3)
T5 = meld(S3,73,S3) T6 = meld(S3,Q,3)

Fig. 3. Replacing a vertex v with G,. Empty circles indicate the nodes of G, solid
circles indicate nodes that are connected to G, via replacement edges. A large solid
circle indicates an edge that fans out toward v.

Proof. First, we reduce the problem to the case of a biconnected graph, thus
eliminating the nodes of degree 0 and 1. Second, we decide for each edge the
direction in which it can be fanned out. In the third stage, we replace each node
v with its respective gadget H,. Fourth, and finally, we connect the gadgets,
making sure that if H, assumes that the edge {u,v} fans out toward u, we
allowed for that in the second stage. Fig. 2 illustrates the last three stages of
this process.

It is easy to see that a node of degree d is replaced with a gadget with d or
d — 1 nodes, thus the total number of nodes in the new graph is bounded by the
sum of node degrees in the original graph, i.e., 2m. The estimate of the resulting
number of edges is less straightforward. We consider two classes of nodes:
“original”, and “extras” — extra replacements and connections. Obviously, we
have exactly m original edges. For the extras, one can check that for a node v
of degree d < 5, H, contains at most 2.5d — 5 extra edges, with the exception
of T-nodes of degree 3, that have 3 = 2.5 x 3 — 5 + 0.5 extra edges. Moreover,
melding with @) increases d by 2, and the number of extra edges by 5. By adding
these expressions for all nodes we obtain the claimed inequality. O

Obviously, the smaller the graph that is produced by our transformation, the
less time we will need to run an algorithm for Minimum Cost Perfect matching.
Can one show a set of provably minimal gadgets? We can answer this question
partially, i.e., the number of nodes cannot be decreased in any of our gadgets.
We also conjecture that our gadgets use the minimum number of extra edges as
well. For degrees smaller than 6 we have verified this conjecture by an exhaustive
case analysis.

11

Finally we can apply the best known so far algorithm by Gabow and Tarjan
[6] to solve the perfect matching problem.

Theorem 4 There exists an algorithm that solves the Minimum Perturbation
Problem in time O((nlogn)?/?)a(n), where a is the inverse of Ackerman func-
tion.

4 Computational Experience

For the VLSI mask layout application, we have implemented several approaches,
including the reduction to perfect matching using the gadgets we have described,
in C++ on a Unix platform. For solving the Perfect Matching problem, we have
used the most recent and fastest implementation, due to Cook and Rohe [5]. Ta-
ble 1 summarizes our computational experience with three layouts of different
sizes and densities. All layouts were derived from industry standard-cell layouts.
All runtimes are CPU seconds on a 300 MHz Sun Ultra-10 workstation with
128MB RAM. We see that our code can handle very large flat designs in rea-
sonable time, and is a promising basis for phase assignment in alternating PSM
design, as well as other sparse instances of the T-join problem. Table 1 also
confirms that our new exact method significantly improves over the previous
methods of [15] [10]: it reduces by 40% the number of unresolved phase con-
flicts, which correspondingly reduces the amount of layout modification needed
in compaction. Finally, we also implemented the approximation algorithm for
the T-join problem from [7]. Our results show that the average deviation from
the optimum for the Goemans-Williamson algorithm is around 10%, which is
significantly larger than the 2% for Euclidean matchings reported in [18].

References

1. A. V. Aho, J. E. Hopcroft and J. D. Ulman, The Design and Analysis of Computer
Algorithms, Addison Wesley, Reading, MA, 1974.

2. F. Barahona, “Planar multicommodity flows, max cut and the Chinese postman
problem 7, In W. Cook and P. D. Seymour, eds., Polyhedral Combinatorics, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, 1 (1990),
pp. 189-202.

3. P. Berman, A. B. Kahng, D. Vidhani, H. Wang and A. Zelikovsky, “Optimal Phase
Conflict Removal for Layout of Dark Field Alternating Phase Shifting Masks”,
Proc. ACM/IEEE Intl. Symp. on Physical Design, 1999, to appear.

4. W.J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Shrijver, Combinatorial
Optimization, Willey Inter-Science, New York, 1998.

5. W. Cook and A. Rohe, “Computing Minimum-Weight Perfect Matchings”,
http://www.or.uni-bonn.de/home/rohe/matching.html, manuscript, August, 1998.

6. H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms for general graph match-
ing problems”, Journal of the ACM 38 (1991) 815-853.

7. M. X. Goemans and D. P. Williamson, “A general approximation technique for
constrained forest problems”, STAM Journal on Computing 24 (1995) 296-317.

12

Testcases Layoutl Layout2 Layout3
#polygons/#edges|| 3769 | 12442|] 9775 | 26520]| 18249 | 51402
| Algorithms [[#conflicts|runtime[|#conflicts[runtime[|#conflicts|runtime]

Greedy[15] 2650 56| 2722 3.66|| 6168 5.38

Voronoi[10] 2340 2.20|| 2064 4.69(| 5050 11.07
Iterated Voronoi[3] 1828 2.35|| 1552 5.46|| 3494 13.51
GWIT7] 1612 3.33|| 1488 5.77|| 3280 14.47
Exact (this paper) 1468 19.88|| 1346 16.67|| 2958 74.33

Table 1. Computational results for phase assignment of layouts with various sizes.
The top row gives the number of polygons and the number of conflict edges for each
testcase. The bottom five rows contain the numbers of unresolved conflict edges (i.e.,
the numbers of pairs of polygons within distance B with the same phase, which must be
resolved by perturbing the layout with a compactor) and runtimes for phase alignment
algorithms suggested in [15], [10], [3], a method based on approximation algorithm by
Goemans-Williamson[7] and the present paper. All runtimes are in seconds for a 300
MHz Sun Ultra-10 workstation with 128MB RAM.

8. F. O. Hadlock, “Finding a Maximum Cut of a Planar Graph in Polynomial Time”,

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

SIAM J. Computing 4(3) (1975), pp. 221-225.

A. B. Kahng and H. Wang, “Toward Lithography-Aware Layout: Preliminary Litho
Notes”, manuscript, July 1997.

A. B. Kahng, H. Wang and A. Zelikovsky, “Automated Layout and Phase Assign-
ment Techniques for Dark Field Alternating PSM”, SPIE 11th Annual BACUS
Symposium on Photomask Technology, SPIE 1604 (1998), pp. 222-231.

M. D. Levenson, N. S. Viswanathan and R. A. Simpson, “Improving Resolution in
Photolithography with a Phase-Shifting Mask”, IEEE Trans. on Electron Devices
ED-29(11) (1982), pp. 1828-1836.

R.J. Lipton and R.E. Tarjan, “A separator theorem for planar graphs”, SIAM J.
Appl. Math., 36 (1979), pp. 177-189.

A. Moniwa, T. Terasawa, K. Nakajo, J. Sakemi and S. Okazaki, “Heuristic Method
for Phase-Conflict Minimization in Automatic Phase-Shift Mask Design”, Jpn. J.
Appl. Phys. 34 (1995), pp. 6584-6589.

M. Miiller-Hannemann and K. Weihe, “Improved Approximations for Minimum
Cardinality Quadrangulations of Finite Element Meshes”, Proc. ESA’97, Graz,
Austria, pp. 364-377.

K. Ooi, K. Koyama and M. Kiryu, “Method of Designing Phase-Shifting Masks
Utilizing a Compactor”, Jpn. J. Appl. Phys. 33 (1994), pp. 6774-6778.

G. L. Orlova and Y. G. Dorfman, “Finding the Maximum Cut in a Graph”, Engr.
Cybernetics 10 (1972), pp. 502-506.

SIA, The National Technology Roadmap for Semiconductors, Semiconductor In-
dustry Association, December 1997.

D. P. Williamson and M. X. Goemans, “Computational experience with an ap-
proximation algorithm on large-scale Euclidean matching instances”, INFORMS
Journal of Computing, 8 (1996) 29-40.

