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Abstract

The presence offixed terminalsin hypergraph partitioning in-
stances arising in top-down standard-cell placement makes such in-
stances qualitatively different from thefree hypergraphsthat have
driven the past two decades of VLSI CAD partitioning research.
In this paper we empirically show that with fixed terminals in the
instance, less effort is needed to stably reach a given solution qual-
ity. We then develop new benchmark formats that flexibly capture
the presence of terminals and any geometric embedding informa-
tion associated with the partitioning instance. Our new formats
not only allow modeling of top-down placement, but also enable
study of placement-specific partitioning objectives, e.g., based on
net bounding boxes and Steiner tree estimators. Finally, we de-
velop a new suite of partitioning benchmarks with fixed terminals,
based on the actual placement data from the IBM-internal circuits
released in the ISPD-98 Benchmark Suite [1, 2]. A set of parti-
tioning results is presented with runtime regimes appropriate to the
placement use model, as a baseline for future efforts in the research
community.

1 Introduction

Themin-cut hypergraph partitioning problemseeks an assignment
of the vertices of a vertex- and hyperedge-weighted hypergraph to
a prescribed number ofpartitions, such that the number of hyper-
edges with vertices in more than one partition is minimized. Hy-
pergraph partitioning heuristics for VLSI CAD have for nearly two
decades constituted an extremely active and fast-moving field of
research. For example, less than 18 months ago, the state of the
art was defined byMLC [3] andhMetis1:0 [13]. Today, the leading
partitioner,hMetis1:5:3 [13], obtains over 10% cutsize reduction
and is approximately 25% faster when compared tohMetis1:0 on
the ISPD-98 benchmark suite [2].

Published hypergraph partitioning heuristics have always been
evaluated according to their performance onfree hypergraphs, i.e.,

�Research at UCLA was supported by a grant from Cadence Design Systems, Inc.

instances where all vertices are free to move into any partition
[4, 2]. In the VLSI CAD literature, every partitioning benchmark,
and every benchmark result, is for the free-hypergraph context. Al-
though I/O pads may be specified in original benchmark data with
their locations, partitioning benchmark formats.net/.netDand.are
[1] are not able to express any mapping between pads and fixed
vertices in partitions.

Our work addresses a critical disconnect between (i) the bench-
marks used in VLSI CAD hypergraph partitioning research and
(ii) the actual instances found in the application domain for par-
titioning heuristics. Without question, the key driver for research
in large-scalehypergraph partitioning has been top-down standard-
cell placement. However, in the top-down placement domain, the
input to the partitioner is never a free hypergraph: rather, the in-
put always containsfixed terminalsthat arise from the chip I/Os or
from the propagated terminals [7, 16] of other sub-problems in the
partitioning hierarchy.

Formally, afixed terminalis a vertex whose partition assign-
ment is prescribed as part of the input specification. (Other vertices
in the input aremovable.) The number of fixed terminals in in-
stances arising from top-down placement is quite large. This can
be seen from Rent’s rule [15, 6], which states that in a layout with
Rent parameterp, on average a block ofC cells will haveT = k�Cp

propagated or external terminals, wherek is a constant equal to the
average number of pins per cell. Such a block will induce a parti-
tioning instance withC+T vertices, of whichT are fixed.1 To our
knowledge, neither the effect of fixed terminals on the difficulty
of partitioning instances, nor the appropriate choice of heuristics
in the presence of fixed terminals, has yet been addressed in the
partitioning literature.

In this paper, we make the following contributions.

� In Section 2, we empirically show that with more fixed ter-
minals, less effort is needed to stably reach best-seen solution
qualities.

� In Section 3 and the Appendix, we develop new benchmark
formats that flexibly capture the presence of terminals and ge-
ometric embedding information associated with the partition-
ing instance. Our new formats extend the established.netD
and .are formats and allow a variety of new uses, such as
partitioning with wirelength estimators based on net bound-
ing boxes or Steiner trees.

� In Section 4, we develop a new suite of partitioning bench-
marks with fixed terminals, based on the actual placements of
the IBM-internal circuits released in the ISPD-98 Benchmark
Suite [2, 1]. We additionally present partitioning results with

1Modern designs have estimated Rent parameter values of around 0.68 [6, 17].
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runtime regimes appropriate to the placement use model, as a
baseline for future efforts in the research community.

2 Effect of Fixed Terminals on Instance Difficulty

In this section, we study the effect of fixed terminals on the perfor-
mance of modern partitioning heuristics. We find that partitioning
instances with fixed terminals require less effort to “solve well”
than similar-complexity instances without fixed terminals.

Partitioning Testbed

Our experiments use an internally developed partitioner that imple-
ments themultilevel FMapproach described in [3] and [13]. Imple-
mentation details generally follow [3] (use of CLIP [8], heavy-edge
matching, clustering ratio, etc.), except that (i) the partitioner does
not perform V-cycling as in [13], since V-cycling was determined
to be a net loss in terms of overall cost-runtime profile, and (ii) the
clustering (heavy-edge matching) implementation can freely mix
fixed vertices (“terminals”) and movable vertices as long as all fixed
vertices in a cluster have compatible partition assignments except
that terminals can not be clustered together. As can be seen in Fig-
ures 1 and 3 below, the partitioner achieves solution quality and
runtimes on a per-start basis that are somewhat better than those re-
ported forMLC [3] andhMetis1:0 [13] in the 1998 paper of Alpert
[2] and on Alpert’s web page [1].

Test Data and Experimental Protocol

To reflect the top-down placement context, our experiments use the
test circuits from ISPD-98 Benchmark Suite [1, 2] with actual areas
of cells and a 2% balance constraint.

� Randomly chosen vertices are fixed according to either of two
regimes: (i) independently in random partitions (“rand” ), or
(ii) according to where they are assigned in the best min-cut
solution we could find for the instance when no vertices were
fixed (“good” ). 2

� For each of the two regimes, we fix a number of vertices equal
to 0%, 0.1%, 0.5%, 1.0%, 2.0%, 5%, 10%, 15%, 20%, 30%,
40% and 50% of the total number of vertices in the instance.
The vertices are fixed incrementally, e.g., all vertices fixed at
1.0% are also fixed at 2.0%.

� A single trial applies the partitioner to the given partitioning
instance for 1, 2, 4 or 8 independent starts, and returns the
best cutsize obtained as well as the number of CPU seconds
(140MHz Sun Ultra-1). All data represents averages of 50
trials.

Experimental Results

Figures 1-3 give detailed results for the IBM01 test case. Results
for other ISPD-98 circuits were qualitatively identical.

Figure 1 shows theraw solution costs(best cutsize obtained
with the given number of starts, averaged over 50 trials) plotted

2We have also performed identical experiments where the fixed vertices are cho-
sen randomly from the set of identified I/Os (pads) in the netlist. In such a context,
the proportion of fixed vertices is bounded by the total number of pads — typically
less than one percent of the netlist. For those percentages of fixed vertices that could
be chosen from I/Os, we could find no difference in any experiment between fixing
identified I/Os and fixing random vertices. Thus, as far as we can tell, fixing random
vertices does not lead to “unrealistic” instances or wrong conclusions: indeed, for the
vast majority of hierarchical block partitioning instances in top-down placement, the
fixed terminals do not correspond to chip I/Os.

against the percentage of fixed vertices. On the left (“good”) side
are data for the regime where all fixed vertices are consistent with
the best solution that we know for the unconstrained (no fixed ver-
tices) instance. On the right (“rand”) side are data for the regime
where the fixed vertices are randomly chosen and randomly as-
signed to partitions. The four traces in each plot correspond to 1, 2,
4 and 8 starts of the multilevel partitioner. We see from these raw
solution costs that our partitioner is on par with those of [3] [13].
As more vertices are (randomly) selected and fixed in partitions,
achievable solution cost increases rapidly, as would be expected
since the partitioning is more constrained.

Figure 2 plots thenormalized solution costsversus the percent-
age of fixed vertices. In the “good” regime, the normalization is
to a single constant value (since all instances have fixed vertices
consistent with the same good solution), so the shape of the traces
is similar to the plot of raw solution costs. However, in the “rand”
regime, the raw solution costs increase drastically with the percent-
age of randomly chosen/fixed vertices, and each percentage of fixed
vertices corresponds to a distinct partitioning instance. Thus, for
each instance in the “rand” regime, we normalize solution costs to
the best solution cost seen over all(1+2+4+8)�50= 750 starts
of the multilevel partitioner for that instance.

The normalized solution costs indicate that if the netlist has
many terminals fixed in partitions – as in real-life instances gen-
erated during top-down placement – the partitioning problem be-
comes “easy”. For example, when 0% of the vertices are fixed in
partitions, more starts (e.g., 4 or 8) are required for the average best
cutsize to approach the value that the multilevel partitioner is capa-
ble of achieving for the given instance. On the other hand, when
larger percentages of the vertices are fixed in partitions, fewer starts
(e.g., 1 or 2) are required for the average best cutsize to approach
the “good solution cost”. The normalized traces also “flatten” (and
there is less difference between the 1-start and 8-start traces) as the
percentage of fixed vertices increases. We observe that the bene-
fit from additional starts decreases more noticeably in the “rand”
regime than in the “good” regime. Since propagated terminals are
not likely assigned to their ideal locations, the benefit from addi-
tional starts in the top-down placement context is likely somewhere
between the “rand” and “good” portraits.

Finally, Figure 3 plots theper-start CPU time(140MHz Sun
Ultra-1 seconds) versus the percentage of fixed vertices. Runtimes
decrease substantially when the percentage of fixed vertices in-
creases; this is expected since the partitioner has less freedom and a
smaller number of movable vertices. Thus, fixed vertices make the
problem “easy” not only in the sense of number of starts required
for stably good solution quality, but also in the sense of the CPU
time per start.

Overall, our experiments indicate that, on average, only two
starts of a multilevel FM partitioner achieve very high quality solu-
tions of partitioning instances with 20% or more of fixed vertices.
Further starts are not as productive and often unnecessary. In light
of the parameters of new benchmark instances and the baseline par-
titioning results given below, this suggests that most hierarchical
block partitioning instances in placement are easy. Hence, we be-
lieve that a key direction for future algorithm research will focus
on better runtime-quality tradeoffs in the regime of very small run-
times.

3 New Partitioning Benchmark Formats

This section describes new benchmark formats that are presented
in detail in the Appendix. In addition to fixed terminals, they cap-
ture the geometric embedding information that reflects intermedi-
ate states in top-down placement. Each benchmark is comprised of
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Results for IBM01 test case, actual cell areas, 2% balance tolerance. The four traces correspond to 1,
2, 4 and 8 starts of the multilevel partitioner. The x-axis represents the percentage of fixed vertices in
the instance.
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Figure 1: Raw best solution costs for both the “good” (left) and “rand” (right) regimes.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 5 10 15 20 25 30 35 40 45 50

IBM01 / good / norm costs

1
2
4
8

1

1.1

1.2

1.3

1.4

1.5

1.6

0 5 10 15 20 25 30 35 40 45 50

IBM01 / rand / norm costs

1
2
4
8

Figure 2: Normalized best solution costs for both the “good” (left) and “rand” (right) regimes.
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Figure 3: Per-start CPU times for both the “good” (left) and “rand” (right) regimes.
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four files: a.netD file, a .are file, a UCLA .fix file, and a
UCLA .blk file.

The.netD format was proposed at ISPD-98 [2] as an improve-
ment to the.net format. The.net format and.are formats are
“folklore” (dating from research by Wei and Cheng at UCSD circa
1990) and are retrospectively formalized, along with the.netD
format, in [1]. Terminals are described in.netD format as “pads”.

The new UCLA .fix format specifies fixed assignments of
vertices to partitions, which can also describe terminal propaga-
tion. A .fix file can be used without an accompanying.blk file
if the partitioning objective does not account for the geometry of
partitions.3

The new UCLA.blk format specifies geometric attributes and
capacities of multiple partitions, i.e., rectangularblocks. A .blk
file does not depend on a.fix file: in combination with a.netD
file, it is sufficient to specify an instance as long as no terminals are
fixed.

The new formats feature:

� Multiple partition geometries and capacities, fixed modules
and terminal propagation, in virtually any combination. Suf-
ficiently intelligent parsers will not require redundant infor-
mation.

� Flexible balance constraints represented using either absolute
or relative (percentage) semantics.

� Straightforward facilities to represent “multi-balanced” parti-
tioning problems where each module supplies the same num-
ber (k > 1) of resource types.4 A corresponding set ofk ca-
pacities and tolerances must be specified for each partition. In
a new “multi-area”.areM file type, each “area” corresponds
to a given resource type; this is a straightforward extension of
the .are file format with multiple module “areas” repeated
on the same line.

� Flexible assignment of fixed terminals to partitions, which
enables study of placement-specific partitioning objectives.5

Terminals can be assigned to regions or to exact locations (via
degenerate regions). Terminals can also be fixed in more than
one partition while still retaining their “atomic” nature, i.e.,
the multiple assignment is interpreted as an “or”. For exam-
ple, a propagated terminal can be fixed in the two left-side
quadrants of a quadrisection instance, so that the partitioner
is free to assign it to either left-side quadrant.

4 New Benchmarks and Results for Calibration

To develop a new benchmark suite for partitioning with fixed ter-
minals, the IBM Corporation has supplied(x;y) location data for
each cell and pad, corresponding to the actual placements of cir-
cuits in the ISPD-98 Benchmark Suite. From these placements, we
develop a partitioning instance with fixed terminals as follows.6

A block is defined by a rectangular axis-parallel bounding box.
An axis-parallelcutlinebisects a given block. Each cell contained
in the block induces amovable vertexof the hypergraph. Each pad
adjacent to some cell in the block induces a zero-areaterminalver-
tex of the hypergraph, fixed in the closest partition; adjacent cells

3Partition capacities will need to be set by the user.
4A hypothetical example withk= 3 might include cell area, cell pin count, and cell

power dissipation resource types — all of which must be evenly distributed between
the partitions.

5E.g., based on net bounding boxes and Steiner tree estimators etc.
6Because the circuits from the original ISPD-98 Benchmark Suite have been placed

by different flows throughout IBM, the intermediate states of the placement process are
not available as sources from which partitioning benchmarks with fixed terminals may
be derived.

not in the block similarly induce terminal vertices. From the place-
ment of each IBMxx benchmark circuit, we extract four benchmark
netlists IBMxxA - IBMxxD, each with two sets of terminal assign-
ments (corresponding to vertical and horizontal cutlines) for par-
titioning with terminals. Each partitioning instance is named with
the level at which it occurs (L0,L1,etc.) and the partitioning choices
at higher levels which define it.7

� In IBMxxA L0, the bounding box contains the entire core
region, including the entire netlist with all cells and I/O pads.
There are few fixed terminals, and they tend to be uniformly
distributed.

� In IBMxxB L1 V0 (IBMxxC L1 V1), the bounding box con-
tains the left (right) half of the core region. Fixed terminals
in these benchmarks are unevenly distributed because part of
the block bounding box is on the core boundary, and part is
internal to the core.

� In IBMxxD C11-33, the bounding box contains the “middle
quarter” of the entire core region.8

Circuit Cells Pads ExtNets Nets Pins Max%

IBM01A L0 12506 246 246 14111 50566 6.37
IBM01B L1 V0 6388 1392 761 7384 27236 9.34
IBM01C L1 V1 6121 1377 763 7370 26951 10.03

IBM01D L3 C11-33 6739 2155 1227 7330 28661 9.54
IBM06A L0 32332 166 166 34826 128182 13.56

IBM06B L1 V0 13245 4360 1867 14786 58809 17.28
IBM06C L1 V1 19094 4086 1851 21824 81997 16.11

IBM06D L3 C11-33 10314 7553 3482 12438 55640 18.88
IBM09A L0 53110 285 285 60902 222088 5.42

IBM09B L1 V0 23461 28764 40003 47740 192358 5.49
IBM09C L1 V1 29649 23211 40038 53040 204928 5.45

IBM09D L3 C11-33 25099 27303 40137 49200 195924 5.50
IBM10A L0 68685 744 744 75196 297567 4.80

IBM10B L1 V0 25467 4971 3459 30072 115065 6.91
IBM10C L1 V1 43231 5260 3506 48246 197408 5.78

IBM10D L3 C11-33 26954 9376 6556 31529 129409 6.09
IBM11A L0 70152 406 406 81454 280786 4.48

IBM11B L1 V0 33506 4970 3323 40623 142760 6.40
IBM11C L1 V1 36646 5036 3291 43935 152703 6.29

IBM11D L3 C11-33 30971 9968 6068 36273 129724 6.92
IBM12A L0 70439 637 637 77240 317760 6.43

IBM12B L1 V0 38904 5233 3669 43660 179596 9.17
IBM12C L1 V1 31544 5218 3610 36907 152863 9.90

IBM12D L3 C11-33 27490 12411 8101 33215 142965 8.59
IBM13A L0 83709 490 490 99666 357075 4.23

IBM13B L1 V0 40582 6589 3578 49757 179870 6.09
IBM13C L1 V1 43127 5895 3586 53246 196549 6.41

IBM13D L3 C11-33 37193 12745 7754 45756 171864 6.42
IBM16A L0 182980 504 504 190048 778823 1.89

IBM16B L1 V0 99102 9083 5200 103816 432680 2.88
IBM16C L1 V1 83884 10491 5211 91190 375500 2.81

IBM16D L3 C11-33 65041 18326 8581 70899 300966 2.82
IBM17A L0 184752 743 743 189581 860036 0.94

IBM17B L1 V0 100763 10834 6684 106877 485785 1.58
IBM17C L1 V1 84015 12290 6716 89052 409926 1.19

IBM17D L3 C11-33 51714 23033 11444 58988 263516 2.10

Table 1: Parameters of new benchmarks with fixed terminals.

Parameters of the resulting instances are summarized in Table
1. Complete .netD, .are, .fix, and .blk files for these test cases are

7For instance, L1V0 is the left block of a top-level vertical bisection.
8E.g., if the core region is defined by(xmin;xmax;ymin;ymax) then we choose

the bounding box defined by( 3�xmin+xmax
4 ;

xmin+3�xmax
4 ;

3�ymin+ymax
4 ;

ymin+3�ymax
4 ). Fixed

terminals in these benchmarks are dense but uniformly distributed. The use of the
“middle quarter” is consistent with “cycling and overlapping” [11] and routing hotspot
removal techniques that are part of standard partitioning-based placement approaches.
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available at http://vlsicad.cs.ucla.edu/benchmarks/ispd99/ . Note
that Table 1 shows the size of the largest cell in the instance as a
percentage (Max%) of the total cell area. Also, both (i) the num-
ber of “pads”, and (ii) the number of external nets (nets that are
incident to at least one “pad”) are given. Our construction creates
more “pad” vertices in the hypergraph than there are external nets
(the latter correspond to propagated terminals in the sense of [7]
or Rent’s rule analysis). However, since “pads” according to ei-
ther definition would be introduced with zero area, the partitioning
problem is not affected. To verify that the numbers of external nets
in our benchmarks are reasonable, Table 2 shows the maximum
block sizes below which we expect all blocks (in a design with
Rent parameterp) to have a given percentage of their vertices fixed.
This calculation is based on the equationT = k �Cp (which applies
to blocks that are in “Region I” of the Rent parameter fit [15]), with
k = 3:5 (average pins per cell) andp= 0:55;0:60;0:65;0:70. We
see that the numbers of external nets in our benchmarks are con-
sistent with Rent parameter values for industrial circuits (between
p= 0:55 andp= 0:75) that have been reported in the literature.

% Terminals p= 0:55 p= 0:60 p= 0:65 p= 0:70

5% 12595 40996 186942 1413600
10% 2699 7247 25800 140246
15% 1096 2629 8100 36301
20% 578 1281 3560 13914
25% 352 733 1882 6613
30% 234 464 1117 3601
35% 166 316 719 2154

Table 2: Block sizes (# of cells) below which the expected number
of fixed vertices due to propagated terminals will exceed a specified
percentage (5%, 10%, 15%, ..., 30%) of the total number of vertices
in a partitioning instance arising in top-down placement when the
design has given Rent parameterp. We assume the average number
of pins per cell isk= 3:5, and that the block is in Region I of the
Rent’s rule fit.

Finally, we have run what we believe to be the current lead-
ing hypergraph partitioning tool, hMetis-1.5.3 (publicly released
November 1998 [13]), on our new benchmarks to establish a base-
line for future research. Table 3 shows the minimum and average
cutsize results obtained over 50 independent runs of hMetis-1.5.3,
using 1, 2 or 4 starts per run. We see that the benefit of additional
starts decreases as the proportion of fixed terminals increases, con-
firming the studies of Section 2 above. The Tables also report CPU
times measured in seconds on a 140 MHz Sun Ultra-1.

5 Conclusions

The VLSI CAD partitioning literature has never evaluated its
heuristics on instances with fixed terminals, even though the driv-
ing application (top-down standard-cell placement) always induces
instances with fixed terminals. In particular, no standard bench-
mark format today captures the presence of fixed terminals.

We have experimentally shown that, on average, only two starts
of a multilevel FM partitioner achieve very high quality solutions of
partitioning instances with sufficiently many fixed vertices, while
further starts are often unnecessary. A detailed explanation of this
phenomenon and the design of algorithms to exploit it are open
research questions. To facilitate such research, we propose new
benchmark formats and instances that capture geometric embed-
ding information associated with the partitioning instance, e.g. ter-
minal locations in top-down placement. The new suite of parti-
tioning benchmarks with fixed terminals is derived from the actual

placements of the IBM circuits known to the partitioning commu-
nity as the ISPD-98 Benchmark Suite [2, 1]. We present baseline
partitioning results for runtime regimes appropriate to the place-
ment use model.

Goals of our ongoing research include (i) more formal analyses
of the effect of fixed terminals on (move-based) partitioning heuris-
tics and reachability within the solution space, (ii) new heuristics
aimed at the regime of very short runtimes and a relatively large
proportion of fixed terminals, and (iii) clustering heuristics (e.g.,
for multilevel FM variants) appropriate to the fixed-terminals con-
text.

Appendix: New Benchmark File Formats

UCLA .blk File Format

Empty lines and lines starting with pound sign ’#’ are ignored by
the parser.9. The first non-ignored line is reserved for format ver-
sion to be checked by the parser (currentlyUCLA blk 1.0 ) fol-
lowed by the name of the benchmark’s author or creating software,
along with the date, in free format, e.g.,

UCLA blk 1.0 Igor Markov <imarkov@cs.ucla.edu> 02/22/1999

The format version is followed by a four-lineheader

Regular partitions : <positive integer>
Pad partitions : <positive integer>
Relative capacities : <yes/no> [<yes/no>...]
Capacity tolerances : <float><switch> [<float><switch>...]

Colons are separated from words and numbers by spaces, and
the options are interpreted as follows:

Relative capacities : will partition capacities for all partitions be
given in percent ?

yes e.g., “90” later in the file would mean 90% of total module
area specified in the.are file10

no means that partition capacities are interpreted in absolute units,
e.g., area; “90” may then be interpreted as “90 area units”.

Capacity tolerances : must be specified for all partitions

switch can be empty, “% ” or “ b”; “ % ” and “b” cannot be sep-
arated from the preceding floating point number by spaces

% means that tolerance is interpreted in percent of total mod-
ule area specified in the.are file or by default unit
areas

b gives tolerance in multiples of the biggest module area

Both capacities and tolerances can be repeated on the same line
to achieve “multi-capacities”. The number of “multi-capacities” in
a given file (multiplicity) is determined by the number ofRelative
capacities : specifications. The number ofCapacity Tolerances :
specifications must match, as must the number of capacities of each
non-pad partition (see below). Note that this requires “multi-area”
files “.areM ” with matching multiplicity.

The header is followed by an indicated number of regular par-
tition and pad partition specifications; both types of partitions are
numbered starting with zero.11

9Can be used for a brief description of the benchmark, its origin and peculiar fea-
tures

10If no .are file is given, all areas are assumed 1.0
11This is in slight disagreement with the existing.netD/.arefile formats, where pads

are numbered starting with 1 and other modules from 0. Therefore, pad 1 will often be
located in pad partition 0.
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Identifiers of regular partitions consist of a “b” (“ p” is taken by
.netD files, so we think of partitions as “blocks” with “bounding
boxes”) and their ordinal numbers. Similarly, identifiers of pad
partitions are prefaced with “pb” (“pad blocks”).

It is recommended that partitions be listed in ascending order
of their numbers with pad partitions first.

Each “partition line” has the following structure (below “999”
stands for positive integer)

<Partition Id> <Geom Type> <Geom Desc> : [<Capacities>]

Partition Id can be of the formb999or pb999

Geom Type can be “rect” (for rectangle) with additional types
possible12

Geom Desc must beXmin Ymin Xmax Ymax for rectangles.
A point is specified byXmin = Xmax, Ymin = Ymax .

Capacities for pad partitions will be ignored by the parser.
Regular partitions must have exactly as many [multi]-
capacities as specified in the file header (seeRelative capaci-
ties : ) and will be interpreted as absolute numbers or relative
to the total module area. Relative specifications are given in
percent (50 for 50%) and must sum up to 100% or more.

UCLA .fix File Format

Empty lines and lines starting with pound sign ’#’ are ignored by
the parser. The first non-ignored line is reserved for format version
to be read by the parser (currently fixed atUCLA fix 1.0 ) fol-
lowed by the name of the benchmark’s author or creating software,
along with the date, in free format, e.g.,

UCLA fix 1.0 Igor Markov <imarkov@cs.ucla.edu> 02/22/1999

The format version is followed by a four-lineheader

Regular Partitions : <positive integer>
Pad Partitions : <positive integer>
Fixed Pads : <positive integer>
Fixed NonPads : <positive integer>

Colons are separated from words and numbers with spaces.
Fixed pads and modules follow in indicated quantities, specified
one per line in the form

<Module/Pad Id> : <Partition Id> [<Partition Id>...]

Module/Pad Id can be of the forma999or p999(“999” means
“a positive integer”) and must refer to a module or pad (ter-
minal) declared in the.netD file

Partition Id can be of the formb999 or pb999 and, if the
geometry of partitions is important, will refer to a partition
declared in a .blk file. If no .blk file is given, the parser can use
the biggest partition id as a guess for the number of partitions
of each type, OR can be given these data by the user.

There are no restrictions on fixing modules and pads in parti-
tions (e.g., one can fix a module in a pad partition or vice versa, a
pad can be fixed in several regular partitions as a result of termi-
nal propagation, etc.), and fixing a module/pad in several partitions
should be interpreted with an “OR” (i.e., the module can go to any
of the indicated partitions). In particular, fixing a module/pad in
all regular partitions results in afreemodule/pad and must have the
same effect as not mentioning the pad/module in the.fix file at all.

12We have considered introducing typepoint, for example, but currently find it more
convenient to represent points with rectangles.
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Circuit 2% Tolerance 10% Tolerance
1 Start 2 Starts 4 Starts 1 Start 2 Starts 4 Starts

IBM01A L0H 351/391.7( 9.0) 348/389.0(11.8) 330/364.4(17.9) 318/360.6( 8.1) 334/362.3(11.9) 324/349.2(16.2)
IBM01A L0V 249/293.1( 8.6) 249/280.6(11.8) 249/277.2(18.0) 251/277.6( 8.8) 248/273.1(10.8) 249/269.8(17.6)

IBM01B L1 V0H 227/243.2( 2.7) 224/232.9( 4.1) 224/228.9( 6.7) 227/232.6( 2.5) 215/225.0( 4.1) 215/223.3( 5.8)
IBM01B L1 V0V 286/290.9( 2.6) 255/290.7( 3.7) 247/283.6( 6.3) 245/270.0( 2.6) 235/264.8( 3.8) 230/255.3( 5.7)
IBM01C L1 V1H 289/339.3( 3.1) 285/333.9( 4.9) 289/325.0( 8.3) 276/307.7( 3.3) 274/314.4( 4.9) 276/295.7( 7.5)
IBM01C L1 V1V 360/367.3( 2.9) 328/355.4( 4.5) 317/344.3( 7.3) 338/361.6( 3.1) 250/275.2( 4.2) 250/259.5( 7.0)

IBM01D L3 C11-33H 356/414.4( 4.1) 392/413.3( 5.0) 369/406.2( 7.7) 304/327.4( 3.9) 304/324.4( 4.8) 307/316.6( 7.9)
IBM01D L3 C11-33V 393/402.7( 3.6) 394/407.2( 4.6) 394/405.4( 7.1) 384/399.6( 2.9) 382/396.5( 4.3) 382/390.8( 7.2)

IBM06A L0H 627/728.4(44.8) 607/723.6(51.4) 566/674.4(74.4) 433/459.7(38.1) 432/454.5(45.8) 434/443.6(61.9)
IBM06A L0V 611/763.8(41.9) 586/713.8(48.8) 572/638.3(66.8) 422/456.7(36.5) 423/440.3(43.0) 427/435.9(61.1)

IBM06B L1 V0H 571/575.8( 7.1) 571/571.5(10.6) 571/571.2(17.1) 571/576.4( 7.3) 571/571.9(10.2) 571/571.5(16.0)
IBM06B L1 V0V 363/366.4( 7.7) 360/365.4(10.1) 363/365.4(15.6) 311/329.6( 7.6) 311/326.6(10.9) 310/328.0(16.0)
IBM06C L1 V1H 744/780.6(20.8) 744/778.0(27.5) 740/768.8(37.8) 678/690.2(18.2) 677/683.8(19.3) 677/682.8(30.6)
IBM06C L1 V1V 1797/1797.0( 8.4) 1797/1797.0(12.4) 1797/1797.0(18.5) 1797/1797.0( 8.7) 1797/1797.0(12.5) 1797/1797.0(17.9)

IBM06D L3 C11-33H 743/748.9( 5.1) 740/744.2( 8.6) 740/743.2(13.9) 743/753.2( 5.1) 740/751.6( 8.3) 740/745.4(14.0)
IBM06D L3 C11-33V 1162/1212.3(12.2) 1125/1146.0(10.8) 1126/1150.6(17.1) 1137/1258.3(11.2) 1104/1157.7(12.3) 1106/1139.7(16.9)

IBM09A L0H 583/657.7(83.7) 586/610.9(97.8) 583/595.4(118.5) 481/652.0(74.5) 449/591.4(95.7) 462/555.6(111.9)
IBM09A L0V 586/695.1(77.1) 583/618.8(96.8) 588/599.7(112.8) 472/625.1(76.1) 476/607.0(105.7) 466/579.2(110.1)

IBM09B L1 V0H 20982/21032.5(47.5) 20981/21030.0(53.4) 20974/20998.7(62.3) 20977/20982.0(40.7) 20973/20980.8(50.9) 20972/20980.4(58.4)
IBM09B L1 V0V 26770/27036.4(49.5) 26559/26832.2(71.9) 26552/26780.4(92.8) 19451/19809.5(58.3) 19219/19561.9(81.2) 19077/19468.6(101.2)
IBM09C L1 V1H 19213/19235.6(64.3) 19213/19243.1(72.9) 19212/19232.0(94.6) 19203/19209.9(64.7) 19202/19217.9(66.5) 19202/19212.2(98.3)
IBM09C L1 V1V 40038/40038.0(16.5) 40038/40038.0(23.2) 40038/40038.0(32.2) 33444/33610.0(65.5) 33096/33307.7(84.8) 33110/33244.4(108.2)

IBM09D L3 C11-33H 19387/19393.3(35.8) 19387/19393.3(43.2) 19387/19391.8(60.6) 19385/19390.9(27.6) 19387/19390.7(35.6) 19387/19390.0(50.8)
IBM09D L3 C11-33V 20258/20273.5(46.9) 20262/20276.5(56.8) 20264/20272.8(82.7) 20258/20260.1(25.4) 20258/20260.4(36.8) 20257/20260.3(56.0)

IBM10A L0H 1304/1548.2(122.8) 1344/1468.9(139.6) 1368/1453.5(205.7) 1079/1177.8(106.7) 1058/1119.3(134.5) 1064/1085.1(161.1)
IBM10A L0V 1294/1557.0(117.7) 1373/1524.6(160.4) 1292/1465.8(210.4) 1004/1163.5(81.0) 1001/1140.8(114.6) 1001/1113.7(177.3)

IBM10B L1 V0H 1041/1109.2(23.2) 1004/1092.2(27.2) 980/1057.4(44.0) 903/959.7(17.6) 902/948.3(26.7) 878/931.0(35.6)
IBM10B L1 V0V 935/1012.2(16.0) 935/1011.2(23.7) 935/995.8(36.5) 694/733.8(17.7) 694/719.0(27.9) 694/702.5(37.5)
IBM10C L1 V1H 1274/1604.2(60.8) 1272/1400.8(76.8) 1273/1313.6(94.4) 1418/1551.6(62.7) 1255/1449.2(86.8) 1255/1430.5(110.3)
IBM10C L1 V1V 2583/2605.2(69.0) 2486/2597.8(81.3) 2580/2597.1(113.1) 1418/1551.6(62.7) 1852/2580.8(80.0) 2140/2587.6(110.8)

IBM10D L3 C11-33H 1913/1974.9(27.4) 1898/1966.4(38.6) 1907/1964.8(52.2) 1785/1796.7(31.1) 1786/1792.5(38.1) 1786/1791.0(55.3)
IBM10D L3 C11-33V 1966/1975.4(40.3) 1966/1975.2(40.6) 1967/1974.3(53.3) 1966/1975.1(38.4) 1966/1975.5(38.5) 1966/1971.4(58.3)

IBM11A L0H 916/1074.1(93.0) 899/1005.7(129.6) 827/938.6(158.1) 795/922.7(91.6) 797/860.7(111.3) 795/851.0(160.2)
IBM11A L0V 973/1096.0(97.1) 953/1066.0(115.8) 916/1062.6(143.6) 878/1012.6(92.0) 849/977.4(115.0) 846/929.0(165.0)

IBM11B L1 V0H 659/677.6(20.1) 659/670.2(30.2) 657/663.9(42.3) 635/662.7(19.9) 636/662.1(29.5) 636/650.0(49.4)
IBM11B L1 V0V 1325/1403.0(38.7) 1292/1357.7(47.1) 1282/1352.6(62.1) 1211/1272.2(33.0) 1196/1246.7(39.5) 1135/1225.1(54.2)
IBM11C L1 V1H 790/793.5(26.2) 781/789.6(32.8) 781/786.8(58.6) 789/792.4(24.8) 1196/1246.7(39.5) 781/789.2(53.8)
IBM11C L1 V1V 2206/2398.6(41.4) 2234/2260.8(45.8) 2213/2247.4(69.1) 1824/2185.0(40.3) 1805/2060.9(54.8) 1764/2000.2(71.9)

IBM11D L3 C11-33H 1528/1611.4(26.6) 1526/1570.6(37.3) 1524/1561.1(53.7) 1418/1456.3(23.8) 1419/1456.9(26.2) 1418/1440.8(45.6)
IBM11D L3 C11-33V 1842/1934.3(34.7) 1805/1858.8(39.0) 1807/1842.0(54.2) 1801/1854.7(24.5) 1795/1828.7(36.4) 1797/1822.5(53.8)

IBM12A L0H 2279/2634.7(184.6) 2246/2429.3(219.3) 2295/2410.8(291.4) 2385/2578.9(186.0) 2337/2524.6(176.7) 2280/2455.6(266.1)
IBM12A L0V 2298/2652.4(189.1) 2321/2441.8(227.0) 2318/2441.5(274.1) 2169/2561.6(163.2) 2240/2524.2(187.6) 2238/2470.4(271.9)

IBM12B L1 V0H 1681/1740.6(71.4) 1692/1756.0(81.7) 1693/1730.5(99.4) 1510/1518.5(57.2) 1510/1519.0(64.4) 1459/1514.8(87.7)
IBM12B L1 V0V 2063/2424.8(76.7) 2049/2458.3(85.8) 2079/2304.8(131.5) 1904/2264.7(73.3) 1957/2157.8(90.8) 1954/2093.3(112.5)
IBM12C L1 V1H 1581/1633.2(36.2) 1570/1602.1(46.2) 1569/1578.4(72.3) 1444/1472.3(36.4) 1439/1470.9(41.3) 1403/1468.6(63.6)
IBM12C L1 V1V 2194/2357.2(64.2) 2179/2317.2(79.0) 2178/2312.4(95.9) 2029/2203.2(67.2) 2019/2172.0(71.7) 1994/2075.6(102.2)

IBM12D L3 C11-33H 2477/2791.1(37.5) 2478/2753.0(49.0) 2474/2755.0(65.2) 2635/2767.4(30.3) 2635/2717.2(39.3) 2640/2721.5(55.1)
IBM12D L3 C11-33V 2018/2179.2(37.5) 2017/2092.5(45.3) 2014/2085.1(64.1) 2013/2145.8(30.6) 2013/2145.2(41.7) 2015/2064.2(57.3)

IBM13A L0H 1119/1271.0(178.3) 1090/1215.2(195.0) 1106/1172.2(244.8) 1100/1205.7(188.1) 1070/1168.4(186.6) 1080/1139.2(244.1)
IBM13A L0V 1025/1168.8(163.4) 1002/1143.6(184.7) 996/1085.0(254.5) 977/1132.4(161.3) 982/1108.8(194.0) 977/1074.0(234.4)

IBM13B L1 V0H 860/966.7(48.9) 860/917.4(54.2) 860/883.4(71.7) 880/953.9(43.2) 860/910.0(51.4) 860/888.6(70.2)
IBM13B L1 V0V 1292/1445.4(63.0) 1254/1363.4(68.5) 1271/1318.3(96.0) 1098/1215.8(58.9) 1121/1179.0(73.8) 1129/1170.7(95.0)
IBM13C L1 V1H 1106/1139.2(52.4) 1098/1126.2(63.3) 1090/1112.9(91.6) 996/1034.6(72.1) 995/1022.4(84.5) 998/1014.6(109.8)
IBM13C L1 V1V 1249/1317.9(68.2) 1262/1319.7(77.9) 1240/1297.6(109.9) 1176/1217.7(63.2) 1173/1209.8(73.8) 1166/1199.2(109.7)

IBM13D L3 C11-33H 1602/1649.2(58.6) 1572/1623.6(72.7) 1576/1610.5(85.5) 1286/1340.2(53.8) 1284/1309.1(61.8) 1284/1303.8(77.6)
IBM13D L3 C11-33V 1776/1834.0(44.4) 1771/1812.4(56.6) 1754/1786.4(78.4) 1696/1739.3(37.2) 1698/1718.6(49.4) 1698/1712.4(72.0)

IBM16A L0H 1797/2388.8(565.4) 1767/1973.0(584.8) 1766/1874.0(761.6) 1780/2044.8(387.6) 1765/1890.2(527.6) 1766/1816.2(667.3)
IBM16A L0V 1882/2465.7(532.0) 1879/1959.0(581.1) 1875/1911.0(772.1) 1889/2184.5(375.5) 1847/1944.9(507.6) 1859/1908.8(748.2)

IBM16B L1 V0H 1234/1328.5(169.2) 1222/1280.8(211.1) 1195/1248.0(308.1) 1116/1202.3(132.2) 1124/1172.2(191.0) 1124/1143.2(261.9)
IBM16B L1 V0V 2615/2692.9(190.7) 2609/2633.3(261.0) 2609/2623.8(314.5) 2484/2577.7(176.4) 2473/2535.6(245.5) 2456/2504.6(310.0)
IBM16C L1 V1H 1832/1996.2(133.3) 1828/1998.6(168.4) 1823/1949.3(261.4) 1837/1897.7(143.6) 1848/1896.0(170.5) 1842/1868.4(245.7)
IBM16C L1 V1V 2987/3098.5(187.2) 2783/3041.6(253.4) 2848/3027.5(320.7) 2598/2808.2(191.0) 2560/2746.0(203.4) 2562/2649.5(291.6)

IBM16D L3 C11-33H 2516/2732.1(126.0) 2514/2629.9(162.8) 2529/2575.5(213.6) 2317/2413.9(96.0) 2315/2370.6(141.1) 2301/2359.0(190.7)
IBM16D L3 C11-33V 2207/2466.4(99.3) 2210/2244.6(148.1) 2214/2243.8(211.8) 2220/2472.1(114.4) 2220/2319.7(161.4) 2212/2267.0(199.2)

IBM17A L0H 2688/2795.2(570.7) 2650/2698.3(625.3) 2531/2646.8(925.7) 2328/2608.0(515.9) 2285/2568.2(715.5) 2281/2454.0(818.6)
IBM17A L0V 2682/2815.8(544.0) 2638/2712.9(704.0) 2632/2733.2(825.9) 2429/2695.2(636.1) 2303/2604.9(799.6) 2390/2538.6(1027.7)

IBM17B L1 V0H 1888/1902.4(306.1) 1893/1903.9(315.1) 1893/1901.7(398.2) 1891/1909.4(279.6) 1889/1907.6(333.5) 1892/1904.3(399.2)
IBM17B L1 V0V 2799/3021.5(286.1) 2732/2939.2(344.1) 2634/2836.8(444.5) 2122/2421.7(277.6) 1864/2136.0(313.0) 1902/1972.6(439.3)
IBM17C L1 V1H 1713/1738.4(150.1) 1707/1729.1(183.0) 1713/1716.3(265.3) 1559/1626.7(151.1) 1561/1623.3(200.5) 1561/1600.4(264.5)
IBM17C L1 V1V 4000/4120.7(244.8) 3464/3902.1(246.3) 3457/3663.3(363.1) 3147/3486.0(210.4) 3166/3261.2(250.1) 3050/3208.6(305.7)

IBM17D L3 C11-33H 3009/3100.5(97.9) 2911/3039.5(104.1) 2922/2987.5(160.1) 2919/3037.3(88.1) 2918/2992.4(101.8) 2913/2953.5(142.5)
IBM17D L3 C11-33V 3210/3443.6(114.9) 3287/3337.4(129.2) 3179/3283.1(175.9) 3176/3313.0(92.7) 3173/3292.4(119.1) 3177/3256.2(149.3)

Table 3: Results of the hMetis-1.5.3 program on our new benchmarks, with 2% and 10% balance tolerance. Each entry
reports min cut / ave cut (CPU sec).

7


