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Abstract

We describe a “topology advisor” for routing of critical (multi-
source) buses in building-block design. The tool accepts
as input a block layout, a two-layer routing cost structure
superposed over the block layout, terminal locations for a
multi-source bus, and source-sink delay upper bound (linear
or Elmore delay) constraints for all terminal pairs. The b
best routing solutions (b a user parameter) that satisfy all
constraints are returned. Efficient implementations of ex-
haustive search are used to guarantee optimal results when
practical, and otherwise yield fast, high-quality results (if
the problem is large or if the constraints are loose). Practi-
cal features include: (i) modeling of per-region and per-layer
routing costs, (ii) routing to terminals located inside blocks,
(ili) optional splitting of k-pin bus routes when the optimal
routing passes through narrow channels, and (iv) heuristic
speedups based on clustering and sampling.

1 Introduction

In today’s deep-submicron technologies, global interconnect
planning pervades the design process. A typical RTL-down
chip implementation methodology will create a hierarchi-
cal physical floorplan and perform mixed hard-soft block
placement that is heavily driven by budgeting (timing, area,
power) and estimation. Implicit in chip planning is the route
planning of all global nets (control and data flow, clock, and
power/ground), subject to performance constraints and po-
tentially large variations in local routing resources.

The route planning essentially determines all relevant
interconnect characteristics needed to make correct design
planning choices. The chip planner will use route plan-
ning results to (i) modify the chip floorplan (floorplan com-
paction, and pin assignment derived from the top-level route
planning); (ii) determine new synthesis constraints (budgets
for intra-block delay, block input/output boundary condi-
tions); (iil) modify the netlist itself (driver sizing, repeater
insertion, buffer clustering); (iv) determine placement di-
rectives for block layout (over-block routes will locally af-
fect utilization factors within blocks); and (v) determine
performance-driven routing directives for block layout (wire
tapering, spacing, shielding, etc.). Route planning thus en-
tails modeling of hierarchical and area pins, understanding
of power-area-delay tradeoffs in both devices and intercon-
nects, and the ability to perform and verify “intelligent” bus
routing, timing- and signal integrity-driven routing, repeater
insertion, tapering, shielding, interleaving, etc.
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Our work centers on the timing- and resource-constrained
(multi-source) bus routing aspect of full-chip route plan-
ning. We believe that this problem will become increasingly
important in top-down reuse-centric ASIC methodologies.
Previous literature on the multi-source delay-constrained
routing problem is limited. Performance-driven multi-source
routing is NP-complete [6] even without obstacles. Linear
programming has been used to construct lower and upper
bounded delay routing trees with a single source, under the
linear delay model [12]; this work requires an input topol-
ogy. For multi-source routing, [5] heuristically generates
minimum-cost minimum-diameter Steiner arborescences; [4]
wiresizes such routing trees via decomposition into source
and loading subtrees. None of these algorithms for multiple-
source net routing accept path delay bounds as constraints.
In the presence of obstacles, Ganley and Cohoon [7] per-
form minimum-wirelength routing using exhaustive search
for small nets and a k-Steinerization heuristic for large nets.

2 A Bus Routing Advisor

Our new “topology advisor” for intelligent bus routing can
provide routing solutions for multi-source buses that are
used to time-share scarce global interconnect resources. The
tool is also aware of channel width requirements for wide
buses. Input consists of a rectangular block layout (non-
rectilinear blocks can be modeled as unions of rectangu-
lar blocks), a two-layer (per-region, per-layer) routing cost
structure superposed over the block layout, terminal loca-
tions that can be within blocks, and source-sink delay (El-
more or wirelength) upper bounds between terminal pairs.
The returned output consists of the best b routing solutions
that satisfy delay constraints and are subgraphs of the escape
graph [7]. Here, bis a user parameter and “best” is also user-
defined (typically, we seek either the minimum weighted-cost
tree satisfying delay bounds, or the tree that has maximum
delay slack (defined as the smallest difference between de-
lay upper bound and actual path delay, over all source-sink
paths). The fundamental approach is exhaustive search,
with various implementation details that help reduce run-
times. Practical extensions include optional splitting of -
bit wide bus routes when the optimal routing passes through
narrow channels, and heuristic speedups based on cluster-
ing and Steiner point sampling. Our runtimes are on the
order of a few CPU seconds on a Sun Ultra-1 (140MHz) for
a 6-terminal net in a 20-block layout, assuming that the con-
straints are difficult (but possible) to satisfy. An overview
of the approach is given in Figure 1. The remainder of this
section discusses several key implementation details.

Topology Generation

To find an exact solution, we test all possible trees. To
do this, we first must list all topologies. In a full Steiner
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Figure 1: Overview of Procedure

topology, each Steiner point is adjacent to exactly three other
nodes. There are n — 2 Steiner points in a full topology over
n terminals. By an early result of Gilbert and Pollak [8]
stating that every topology has an underlying full topology,
we need test only full topologies.

Given the full Steiner topologies over n terminals, the full
topologies over n + 1 terminals are obtained by adding the
new Steiner point into every possible edge. There are 2n —3
edges for a full Steiner topology over n terminals, so there
are 2n—3 ways to add the new Steiner point. The recurrence
is therefore f(n+1) = f(n)*(2n—3), e.g., f(4) =3, f(5) =
15, f(6) = 105, where f(n) is the number of full topologies
for an n-terminal tree. We perform actual generation of full
Steiner topologies according to this recurrence.

Escape Graph Generation and Costing

For a given block layout with obstacles, we use line-sweep
to generate an escape graph as in Cohoon and Richards [3].
The escape graph is quite similar to the standard notion of
a channel intersection graph; we assume that routing must
be performed within resources (e.g., channels) correspond-
ing to edges in this graph. Note also that our tool allows
terminals inside of obstacles, e.g., for route planning in pre-
synthesis floorplanning. Escape graph generation has com-
plexity O(maz(n, mlogm)) where n is the number of in-
tersections of segments in the escape graph, and m is the
number of obstacle boundary segments. In the worst case,
n is O(m?).

We accommodate varying per-layer (h- and v-layer), per-
region routing costs. These costs, along with the region
structure, are specified via an auxiliary input file. Since we
restrict the solution to be a subgraph of the escape graph,
without loss of optimality we can simply “overlay” the rout-
ing cost structure onto the escape graph edges.? For exam-
ple, to determine the routing cost of a given vertical edge,
we determine the regions it crosses and sum the costs of
the segment’s intersections with all regions, i.e., its verti-
cal length in each region multiplied by the per-unit vertical
routing cost of for that region. Routing costs for horizontal

2A simple extension of Hanan’s 1968 result for rectilinear Steiner
minimal trees is that the minimum-cost tree is a subgraph of a “Hanan
grid” induced by terminal locations, block and routing region bound-
aries, as well as boundaries between different-cost regions. See, e.g.,
[10] for a review.

edges are similarly computed.

All Pairs Min-Jog Shortest Paths

For each topology, our approach tests all assignments of can-
didate Steiner point locations to Steiner points of the topol-
ogy. Thus, we must store all shortest paths between pairs
of terminals and candidate Steiner point locations in the
escape graph.® If via costs are not modeled, the program
will unrealistically consider all monotone staircase paths to
be equally good. To generate all pairs shortest paths with
minimal jogging, we assign jogs a small cost; path recon-
struction is enabled by assigning horizontal segments 1 + ¢
times their original cost, and vertical segments 1 — € times
their original cost, where € is a small positive constant.

We use each point (including both Steiner points and
terminals) as a source s and perform breadth-first search
(BFS). For each point p, we use p.le ft[s] (p.right[s], p.top[s],
p.bottom[s]) to store the minimum cost of any path from s
to p that arrives at p from the left (right, top, bottom).
The BFS starts with the source s in test_list. After a point
has been visited, we update the values of its children, and
put the new point and any updated points with new val-
ues into the queue. When the queue is empty, for each
point p the shortest path cost apsp[s][p] from the source s is
the minimum value among p.le ft[s], p.right[s], p.top[s] and
p.bottom[s].

If we know that points s and p are connected by a path of
length apsp[s][p], we reconstruct this path as follows. The
values of p.left[s], p.right[s], p.top[s] and p.bottom[s] are
checked. If p.lefi[s] is equal to apsp[s][p], p’s left neighbor
pl is added into the path, and pl is checked against the
value v = apsp[s][p] — d[p][pl]. For pl.top and pl.bottom
the jog cost is considered, i.e., we check whether p.le fi[s] or
p.right[s] is equal to v, and whether pl.top or pl.bottom is
equal to v — jog_cost. The path reconstruction ends when s
is reached.

Steiner Candidate Reduction and Constraint
Checking

A typical escape graph for 20 blocks will have well over 100
candidate Steiner points. For a six-terminal net, there are
105 full Steiner topologies, with four Steiner points in each
topology. If we test all possibilities, there are 100* possi-
bilities for each topology, implying about 105 % 10® ~ 10'°
possible trees. Clearly, we must to reduce the number of
candidate Steiner points.

For each pair of terminals, we generate a list of possible
Steiner points between them. Under the linear delay model,
if the shortest distance between terminal ¢ and Steiner can-
didate s, plus the shortest distance between terminal b and
s, is greater than the pathlength upper bound for a and b,
then s cannot be a Steiner point on the ¢-b path in the tree.*

To improve the program speed, we precompute and store
lists of all possible Steiner points between each terminal and
all other terminals. We also precompute lists of all possi-
ble Steiner points between each terminal and all except one
other terminals. The latter are generated by intersecting

3 This implies that our approach is correct only for monotone delay
models, where increasing (decreasing) any given segment length will
increase (decrease) signal delay.

4Under the Elmore model, delay between a and b (between b and
@) using s as the only Steiner point between them must be less than
the a-b (b-a) delay upper bound. If not, again s cannot be a Steiner
point on the a-b path in the tree.



the lists of possible Steiner points between each pair of ter-
minals.

When we generate a full topology, we record all Steiner
points on the path between each pair of terminals, i.e., for
each Steiner point s, we save a list of pairs of terminals
whose path between them can contain s. We save this list
in three parts, called full one_less and pairs. If every path
from terminal a to another terminal can contain s, then a
is saved into the fulllist of s. If every path from terminal
@ to another terminal — except for the path to terminal b
— can contain s, then (a,b) is saved into the one_less list
of s. All other pairs of terminals for which the connecting
path can contain s, but which are not yet included in the
full or one_less lists, are saved into the pairs list of s. This
preprocessing is done as the topologies are generated.

Finally, when we read in a topology, a list of candidate
Steiner locations (points) for each Steiner node is generated
from the above information.”

For any topology, if the candidate list of one of its Steiner
points becomes empty, the topology can be removed from
consideration. For each remaining topology, we have a list
of candidate points for every Steiner point. We test all com-
binations of candidates for every Steiner point, calculating
delays between each pair of terminals, and checking whether
the input delay constraints are violated.® The b best valid
trees are saved, and can be returned to the user in order of
user parameter b, e.g., decreasing slack or increasing cost.

3 Experimental Results

The bus routing advisor has been implemented in C++ in
the Sun UNIX environment; it compiles and runs under So-
laris 2.5.1 and the Sun CC4.2 compiler, as well as the g++
2.7.2 compiler. All runtimes that we report are for a Sun
Ultra-1 (140 MHz).

Our main experiments address the scaling of runtimes
with instance complexity as measured by number of blocks,
number of terminals, and tightness of delay constraints. We
do not report experiments involving per-region and per-layer
routing costs, since these have little effect on runtime scal-
ing. We also report experimental results only for linear de-
lay constraints, although our program handles Elmore delay
constraints as well. The random block layouts are generated
by shrinking a random non-slicing floorplan. Terminals are
placed randomly in blocks, at most one terminal per block.
The tightness value (T') of constraints is varied as follows.
We randomly choose a given number of pin pairs (if pair a-b
is picked, b-a must be picked), and set the pathlength delay

5There is a small difference for the case of the Elmore delay model,
since off-path subtree capacitance is a major contributor to path de-
lay. For each Steiner point, the full and one_less lists are still used.
However, we also generate a two_less list, which contains (a, (b, ¢))
when the Steiner point s can be on paths between terminal a and all
other points except terminals b and ¢. Suppose a is in the full list,
and we want to test if s can be this Steiner point. A lower bound on
the Steiner tree cost over s and all terminals but « is generated using
all-pairs shortest paths distances (metric closure of the escape graph
distances). By the 1981 result of Kou, Markowsky and Berman [11],
the length of the Steiner minimal tree is at least 1/(2+(1—1/L)) (L is
the number of terminals of the tree) times the length of the minimum
spanning tree (MST) in the metric closure of the escape graph. We
use 1/(2 (1 —1/L)) times the length of the MST as a lower bound
on the length of the subtree rooted at point s.

SWe work only with the metric closure of pathlength upper
bounds. In other words, we require that for any three points a, b and
¢, constraint[a][c] is less than or equal to the sum of constraint[a][b]
and constraint[b][c]; this is because we can always reach ¢ from a,
via b. Taking the metric closure reduces large constraints and helps
the Steiner candidate reduction.

upper bound for that pair as T' times the estimated pin-to-
pin delay for that pair. Under the linear delay model, the
estimated delay for pair a-b is the cost of the shortest path
between them. Under the Elmore delay model, we place a
Steiner point at the midpoint of the a-b path; in estimat-
ing the a-b delay, we then consider the subtree capacitance
effect from a lower bound on the Steiner tree cost over all
terminals except ¢ and the midpoint. Every other path-
length upper bound constraint is set according to a default
tightness equal to 3.0 times the cost of the the shortest path
between the given terminal pair.

Figure 2 shows how the optimal multi-source routing so-
lution changes as different path constraints are made tight.
Table 1 reports average runtimes (RT) required to find the
best 100 routing trees for random instances with prescribed
numbers of blocks and terminals, and prescribed tightness
of constraints. The table also reports treelength (TL) of
the best solution normalized to the corresponding treelength
for the same instance with “loosest” constraints. We report
multiple-sourcenets having 5 and 6 pins, in 12- and 25- block
layouts. More detailed results, including those for single-
source nets are in [9]. Different numbers of tight pairs (/1,
/2, ...) and tightness values (T'= 1.1, T = 1.2, T = 1.3)
and tightness values are tested.

Specific numbers shown in each table are the average
(minimum, maximum) values taken over ten test cases. Run-
time [RT] is in seconds, and treelength [TL] is normalized
to the corresponding treelength for the loosest constraints
(one tight pair with tightness 1.3 for 5-pin nets, and two
tight pairs with tightness 1.3 for 6-pin nets).

Runtimes decrease rapidly as more terminal pairs have
tight constraints, since more Steiner candidates are elimi-
nated. Also, average treelength increases as the constraints
become tighter. For 6-pin multi-source netsin 25-block lay-
outs with tight constraints our method can find an optimal
tree in a couple of seconds. But when the constraints are
very loose, the same size problem can require up to 1500
seconds.

Block,Pin/ T=11 T=12 T=13

Z£tight pairs RT TL RT TL RT TL
125/1 4.13 | 1.03 5.19 1.00 5.85 1.00
12.5/2 1.37 | 1.05 1.79 1.02 2.22 1.01
125/3 1.07 | 1.06 1.27 1.02 1.55 1.01
125/4 097 [ 1.11 1.06 1.05 1.32 1.03
25,5/1 15.14 | 1.03 17.78 1.00 20.25 1.00
255/2 5.96 | 1.03 8.35 1.01 10.36 1.00
255/3 551 | 1.03 6.59 1.01 777 1.00
25,5/4 5.49 | 1.03 6.12 1.01 6.96 1.00
12,6/1 49.70 | 1.02 | 130.91 | 1.00 267.48 1.00
12,6/2 24.21 | 1.02 48.72 1.01 90.16 1.00
12,6/3 2.72 | 1.05 10.74 1.01 41.68 1.00
12,6/4 1.86 | 1.07 6.50 1.02 24.83 1.01
25,6/1 125.74 | 1.02 | 900.08 | 1.00 | 1530.40 | 1.00
25,6/2 2041 | 1.03 | 135.93 | 1.02 312.42 1.01
25,6/3 8.46 | 1.04 50.64 1.03 130.50 1.02
25,6/4 7.07 | 1.07 12.35 1.04 30.61 1.02

Table 1: Runtime [RT] and treelength [TL] normalized to
corresponding treelength for 1/2 tight pair (for 5- / 6-pin
nets) with tightness 1.3.

Steiner Point Sampling by K-Center Parti-
tioning

Particularly under the Elmore delay model, large nets with
loose constraints cause long runtimes, since very few topolo-
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Figure 2: Different routing trees are found when different
pin pairs have tight constraints.
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gies or Steiner candidates can be eliminated. In such cases,
we use Steiner point sampling to speed up the search. The
K-center partitioning heuristic of Gonzalez [1] is used to
form a geometric clustering of all candidate Steiner points.
This heuristic randomly picks a “center”, then iteratively
picks as its next center the point with maximum distance to
the nearest of all previously picked centers. When K centers
have been chosen, each point p is clustered with the closest
of the K centers. (The idea is that the K-center heuristic
yields clusters that have reasonably small diameter.) The
clustering is performed before topology checking.

During topology checking, if a Steiner point has a very
large candidate list, the candidate points are clustered ac-
cording to the pre-computed K-center clustering, i.e., into
at most K groups. For each group, the point closest to the
cluster center is chosen as the representative point. We then
test only the representative points.
tree is found, we test all combinations of points in the groups
corresponding to the representative points used in this fea-
sible tree. If there are too many combinations, we use local
search as follows. Replace a given representative point in
the tree, by each of the points in its respective group, and
save the point yielding the best results as the new represen-
tative point of the group. Repeat this step for the other
representative points, and their groups, cycling until no fur-
ther routing cost reduction is possible.
cost/runtime tradeoffl obtained using different values of K.

(L). We report multi-source nets having 5 and 6 pins, in 12-
and 25- block layouts. More detailed results including single-
source nets are in [9]. Different numbers of tight pairs and
tightness values are tested. The numbers we show in the ta-
ble are average (minimum, maximum) values over ten test
cases. Runtime divided by optimal runtime [RT] and tree-
length divided by optimal treelength [TL] are also shown in
the tables.

From the results, we see that when the constraints are
loose, K'-center Steiner sampling yields much shorter run-
times; using local search combined with K'-center Steiner
sampling yields further reductions. Both speedups work
better for 6-pin nets than 5-pin nets; in the loosest case
for 6-pin nets in 25-block layouts, both speedups together
can yield up to 90% runtime improvement on average. Av-
erage treelength is 1-3% higher than optimal treelength for
K-center Steiner sampling with testing of all combinations
of candidate Steiner points; the average treelength is 3-6%
higher than optimal treelength for K'-center Steiner sam-
pling with local search; and for one case we observed 39%
greater than optimal treelength. When we have more tight
pairs, neither speedup can reduce runtime significantly, and
worst case treelength can be 15% greater than optimal tree-
length. However, runtimes without the speedups are quite

fast.
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Figure 3: Using different numbers of clusters for Steiner
sampling, versus no Steiner sampling. The x-axis gives
the number of clusters, and the y-axis gives the relative
cost ratio of using Steiner sampling versus no Steiner sam-
pling. We tested ten randomly generated examples. The
y-values on the curves are the average value, and the error
bars represent the minimum and maximum values. (a)
Comparison of runtimes. (b) Comparison of minimum
treelength found.

In Tables 2 and Table 3, we compare K-center Steiner
sampling with testing of all combinations of candidate Steiner
points (A), versus K -center Steiner sampling with local search

Tight | 12-block Tayouts |
Then, when a feasible pairs__| I=1.1 | 1=1.2 | 1=1.3 |
T,A | RT | 0.66 (0.29,0.97) | 0.63 (0.25,0.99) | 0.59 (0.20,0.94)
TL | 1.00 (1.00,1.01) | 1.02 (1.00,1.10) | 1.03 (1.00,1.13)
T.L | RT | 0.56 (0.19,1.01) | 0.49 (0.17, 1.01) | 0.44 (0.12, 0.93)
TL | 1.03 (1.00, 1.11) | 1.06 (1.00,1.12) | 1.06 (1.00,1.13)
2,A | RT | 0.86 (0.71,1.02) | 0.74 {0.49,0.95) | 0.67 (0.40,0.86)
TL | 1.01 (1.00,1.05) | 1.03 (1.00,1.10) | 1.01 (1.00,1.06)
2L | RT | 0.86 (0.64,1.06) | 0.71 (0.47,0.93) | 0.62 (0.40,0.93)
TL | 1.01 (1.00,1.05) | 1.04 (1.00,1.11) | 1.02 (1.00,1.06)
3,A [ RT | 0.93 (0.81,1.02) | 0.87 (0.74,0.95) | 0.81 (0.63,0.94)
‘ TL | 1.01 (1.00,1.04) | 1.02 (1.00,1.10) | 1.02 (1.00,1.10)
Figure 3 shows the 3L | RT | 0.91 (0.76,1.00) | 0.88 (0.75,1.13) | 0.77 (0.63,0.97)
TL | 1.01 (1.00,1.04) | 1.03 (1.00,1.11) | 1.02 (1.00,1.10)
4,A [ RT | 0.91 (0.74,0.97) | 0.90 (0.80,0.97) | 0.83 (0.61,1.05)
TL | 1.00 (1.00,1.03) | 1.03 (1.00,1.14) | 1.02 (1.00,1.06)
4, | RT | 0.91 (0.71,0.97) | 0.91 (0.82,1.01) | 0.83 (0.63,1.01)
TL | 1.00 (1.00,1.03) | 1.03 (1.00,1.14) | 1.02 (1.00,1.06)
Tight | 25-block Tayouts |
pairs [ T=1.1 T=1.2 [ T=1.3 |
T,A | RT | 0.80 (0.18,1.11) | 0.79 {0.26,0.95) | 0.74 (0.26,0.93)
TL | 1.02 (1.00,1.07) | 1.02 (1.00,1.06) | 1.04 (1.00,1.13)
T,L | RT | 0.70 (0.06,0.97) | 0.66 (0.06,0.94) | 0.61 (0.06,0.92)
TL | 1.04 (1.00,1.12) | 1.05 (1.00,1.16) | 1.05 (1.00,1.13)
2,A | RT | 0.96 (0.85,1.17) | 0.87 {0.74,0.98) | 0.81 (0.52,0.94)
TL | 1.01 (1.00,1.07) | 1.03 (1.00,1.14) | 1.05 (1.00,1.14)
2.L | RT | 0.90 (0.67,1.01) | 0.79 (0.24,1.01) | 0.70 (0.18,0.94)
TL | 1.02 (1.00,1.07) | 1.04 (1.00,1.14) | 1.07 (1.00,1.14)
Number of Clusters 3,A | RT | 0.94 (0.91,0.96) | 0.91 (0.78,0.97) | 0.91 (0.61,0.99)
(o) Miimal total reeength of singe tee TL | 1.01 (1.00,1.06) | 1.04 (1.00,1.14) | 1.05 (1.00,1.14)
3, | RT | 0.93 (0.87,0.97) | 0.88 (0.42,1.10) | 0.81 (0.29,0.97)
TL | 1.01 (1.00,1.06) | 1.04 (1.00,1.14) | 1.06 (1.00,1.14)
4,A [ RT | 1.02 (0.77,1.30) | 0.94 (0.90,1.00) | 0.94 (0.75,1.23)
TL | 1.02 (1.00,1.10) | 1.02 (1.00,1.08) | 1.04 (1.00,1.14)
4, | RT | 0.93 (0.78,0.99) | 0.88 (0.48,0.99) | 0.87 (0.33,1.22)
TL | 1.02 (1.00,1.10) | 1.02 (1.00, 1.08) | 1.05 (1.00,1.14)

Table 2: Runtime and treelength comparison for 5-pin
multi-source netsin 12- and 25-block layouts with Steiner

sampling.



Tight |

12-block Tayouts

pairs | T=T1 I T=1.2 I T=13 |
2,A [ RT | 0.36 {0.18,0.69) | 0.29 (0.07,0.61) | 0.24 (0.09,0.40)
TL | 1.02 (1.00,1.07) | 1.03 (1.00,1.19) | 1.03 (1.00,1.09)
2,1 | RT | 0.27 (0.02,0.70) | 0.19 (0.01,0.52) | 0.09 (0.00, 0.27)
TL [ 1.03 (1.00,1.12) | 1.05 (1.00,1.19) | 1.06 (1.00,1.14)
3,A | ’RT | 0.69 (0.20,1.28) | 0.47 {0.17,0.90) [ 0.35 (0.18,0.59)
TL | 1.01 (1.00,1.03) | 1.03 (1.00,1.06) | 1.03 (1.00,1.09)
3, | RT | 0.66 (0.02,1.28) | 0.39 (0.02,0.90) | 0.24 (0.01,0.54)
TL | 1.01 (1.00,1.03) | 1.04 (1.00,1.11) | 1.06 (1.00,1.13)
T,A | ’T | 0.87 (0.52,1.04) | 0.68 {0.39,0.97) | 0.51 (0.16,0.66)
TL [ 1.03 (1.00,1.15) | 1.04 (1.00,1.19) | 1.03 (1.00,1.09)
1, | R’T | 0.87 (0.55,1.04) | 0.69 (0.39,0.99) | 0.43 (0.03,0.66)
TL | 1.03 (1.00,1.15) | 1.04 (1.00,1.19) | 1.03 (1.00,1.09)
5,A [ RT | 0.94 (0.74,1.17) | 0.76 (0.43,0.98) | 0.61 (0.18,0.92)
TL [ 1.03 (1.00,1.13) | 1.02 (1.00,1.05) | 1.03 (1.00,1.09)
5L | RT | 0.94 (0.73,1.21) | 0.76 (0.43,0.98) | 0.53 (0.04,0.90)
TL [ 1.03 (1.00,1.13) | 1.02 (1.00,1.05) | 1.03 (1.00,1.09)
Tight | 25-block Tayouts |
pairs | T=T1 I T=1.2 I T=13 |
2,A [ RT | 0.47 {0.10,0.89) | 0.34 (0.09,0.68) | 0.26 (0.05,0.56)
TL | 1.01 (1.00,1.04) | 1.02 (1.00,1.06) | 1.02 (1.00,1.06)
2,1 | RT | 0.30 (0.02,0.93) | 0.15 (0.00,0.58) | 0.09 (0.00,0.50)
TL | 1.03 (1.00,1.06) | 1.07 (1.00,1.21) | 1.10 (1.00,1.21)
3,A | ’RT | 0.69 (0.18,0.99) | 0.54 {0.11,0.92) | 0.34 (0.05,0.82)
TL [ 1.03 (1.00,1.15) | 1.02 (1.00,1.09) | 1.02 (1.00,1.05)
3L | RT | 0.62 (0.07,0.91) | 0.43 (0.01,0.90) | 0.23 (0.00,0.78)
TL [ 1.03 (1.00,1.15) | 1.05 (1.00,1.13) | 1.09 (1.01,1.20)
T,A | ’RT | 0.88 (0.54,1.01) | 0.74 {0.34,0.98) | 0.42 (0.22,0.77)
TL | 1.03 (1.00,1.16) | 1.02 (1.00,1.09) | 1.02 (1.00,1.05)
1, | ’T | 0.88 (0.53,1.00) | 0.68 (0.02,1.00) | 0.34 (0.01,0.77)
TL [ 1.03 (1.00,1.16) | 1.03 (1.00,1.10) | 1.06 (1.00,1.15)
5,A [ T | 0.96 {0.85,1.19) | 0.75 (0.31,1.01) | 0.60 (0.21,1.01)
TL | 1.03 (1.00,1.16) | 1.03 (1.00,1.09) | 1.04 (1.00,1.14)
5L | RT | 0.94 (0.86,1.01) | 0.74 (0.18,1.03) | 0.55 (0.13,0.99)
TL | 1.03 (1.00,1.16) | 1.04 (1.00,1.11) | 1.05 (1.00,1.14)

Table 3: Runtime and treelength comparison for 6-pin
multi-source netsin 12- and 25-block layouts with Steiner
sampling.

4 Extensions and Conclusions

We have developed efficient implementations of exhaustive
search and heuristic constructions for timing critical bus
routing. An exhaustive search algorithm is designed for tim-
ing critical multi-source small nets (5- or 6- pin), which is a
typical size in practice. For loosely constrained small nets,
we give some speedup methods.

Ongoing work seeks a number of other improvements.
For example, the next version of our advisor will handle
delay lower bounds and give more detailed geometric em-
bedding advice to the actual bus router (e.g., layer assign-
ment, and choice of via stagger pattern when the bus routing
makes a bend). Other capabilities have already been imple-
mented, notably the automatic splitting of wide buses to
improve performance: when some channels are too narrow
for a w-bit bus, we automatically split it into two w/2-bit
buses and attempt to route them separately while observing
delay constraints (Figure 4).”

"Details are as follows. In escape generation, we delete all seg-
ments with width less than w/2 tracks; then all trees are guaranteed
to handle w/2 or more bits. All feasible trees are saved in a list sorted
by cost, and the best tree is combined with itself, then with the the
next-best tree, etc. For two w/2-bit trees to be compatible in routing
a w-bit bus, each common channel must have width > w tracks. We
maintain a channel-usage list for each tree and check the intersection
of these lists against a list of channels that have width > w tracks.

Figure 4: Routing of a wide bus when bus splitting is not
allowed (left) and when it is allowed (right).

B 5-pin 6-pin

S RT TL S RT TL
12 070 063 | T.09 ] 0.50 | 0.08 | 1.21
151060 | 078 | 11910331041 | 1.15
20 [ 050 045 [ 1147033 ] 018 [ 1.11
25 0331054 | TIT ] 0.I4 ] 0.03 ] 1.19

Table 4: Success rate (S), runtime (RT) and minimum
treelength (TL) ratios (without WBS, divided by with
WBS). B is the number of blocks in the layout examples.
S gives the number of instances for which routing without
WBS returned a feasible tree, divided by the number of
instances for which routing with WBS returned a feasible
tree. RT is the average of the analogous runtime ratios,
TL is the average of the analogous minimum treelength
ratios.
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