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ABSTRACT

Clustering has proven e�ective in improving the quality

of VLSI netlist partitioning and placement algorithms. A

wide variety of clustering schemes have been proposed, in-

cluding random walks [13], iterative matching [7], and fairly

complicated spectral techniques [1] [8]. Like [1] and [8], we

use eigenvectors to compute a clustering, but do so in the

simplest, most obvious manner. Our algorithm �rst com-

putes a d-digit code for each module vi according to the

signs of the ith entries in a set of d eigenvectors. Then,

modules with the same code are assigned to the same clus-

ter. Despite its simplicity, this new clustering algorithm is

strongly motivated by theoretical results for both spectral

bipartitioning [6] and multi-dimensional vector partitioning

[4]. The algorithm also has linear time complexity (not in-

cluding the eigenvector computation) and is at least as e�ec-

tive as previous clustering algorithms in terms of two-phase

Fiduccia-Mattheyses bipartitioning.

1. INTRODUCTION

Clustering of netlist hypergraphs can e�ectively reduce the

complexity of VLSI CAD problem instances, particularly

for system partitioning and layout. For netlist bipartition-

ing, the two-phase Fiduccia-Mattheyses (FM) methodology

[7] [10] has led to several leading results in recent years. In

this approach, the netlist is �rst decomposed into disjoint

clusters, i.e., subsets of modules, which induce a contracted

netlist.

Formally, let H(V; E) be a netlist hypergraph over the n

modules V = fv1; v2; : : : ; vng; each net e 2 E is a subset

of two or more modules. A clustering of H is a set of clus-

ters fC1; C2; : : : ; Ckg such that each vi 2 V is contained

in a unique cluster Ch; 1 � h � k. The contracted netlist

H 0(V 0; E0) has vertex set V 0 = fC1; C2; : : : ; Ckg. The set of

nets E0 potentially has one net e0 2 E0 for each e 2 E: we

assign Ch 2 e0 if and only if there exists some vi 2 V such

that vi 2 e\Ch, but if je
0j < 2, we do not actually add e0 to

E0. The �rst phase of two-phase FM applies the FM algo-

rithm to H 0; this yields a bipartitioning of V 0 into subsets

P 0
1 and P 0

2. A bipartitioning fP1; P2g of V is then derived

by assigning vi to Pj if vi 2 Ch and Ch 2 Pj. The sec-

ond phase applies FM to the original netlist H(V;E) with

fP1; P2g as the initial solution.

Two-phase FM improves the number of nets cut versus

standard FM for virtually any clustering algorithm. Two-

phase FM also requires shorter runtimes than standard FM

since the �rst phase has small instance size, and since a good

initial starting solution causes the second phase of FM to

converge much faster than with a random initial solution.

Similar \two-phase" strategies can also be applied to cell

placement, e.g., Sun and Sechen [19] use a two-level hier-

archical clustering strategy (actually a \three-phase" ap-

proach) within the simulated-annealing based Timberwolf

placement package. Applying clustering to FM is not inher-

ently limited to two phases { Hauck and Borriello [15] have

experimented with a multilevel technique which continues

to run clustering phases as long as user-speci�ed cluster

size constraints are satis�ed. Since clustering serves to re-

duce instance complexity, it has nearly universal application

in VLSI CAD areas ranging from timing-driven layout to

high-level synthesis.

The clustering literature contains many strategies with

varying complexities (see [3] for a survey). Simple ap-

proaches include iterative matching [7] and agglomerative

connectivity-based merging [15]. These algorithms merge

connected modules together in a greedy, bottom-up fash-

ion. More complicated approaches are based on random

walks [13], clique compression [9], graph traversals [2], sim-

ulated annealing [19], k� l connectivity [11], and top-down

ratio cut [21]. Finally, two spectral approaches [1] [8] each

form a d-dimensional geometric embedding of modules, us-

ing the coordinates de�ned by (entries of) the �rst d eigen-

vectors. The embedding forms a d-dimensional representa-

tion of the original netlist in which each module maps to a

point in d-space. As discussed in Section 3, the embedding

possesses many properties which make it a well-suited geo-

metric representation of the netlist. Given this embedding,

Alpert and Kahng [1] perform bottom-up clustering based

on a min-diameter criterion, while Chan et al. [8] construct

a d-way clustering by �rst selecting a set of d orthogonal

\prototype" vectors and then clustering each module to its

closest \prototype" according to a directional cosine metric.

Our new approach also uses the standard spectral embed-



ding, but in the simplest possible manner: if two modules

are in the same orthant of the embedding, they are assigned

to the same cluster. In contrast to complicated geometric

clustering techniques, our algorithm is completely obvious

and, in addition, has strong theoretical motivation. We

show that this algorithm is a natural extension of spec-

tral bipartitioning [6] and also follows the recent result

of [4] which establishes the equivalence of min-cut graph

partitioning and an eigenvector-based vector partitioning

formulation. We have tested the quality of these cluster-

ings via two-phase FM; our experiments show that simple

eigenvector-based clustering produces bipartitionings with

cuts that are at least as good as previous methods [1] [2]

[19]. Thus, eigenvector-based clustering can be both simple

and e�ective.

2. THE ALGORITHM

For spectral methods to be applied, an n � n adjacency

matrix A = (aij) must �rst be derived from H, where aij
gives the weight of the connections between modules vi and

vj. We choose to construct A using the clique net model

which adds weight f(jej) to aij if vi and vj are both in net

e, where f is a function of the size of e. We adopt the

weight function f(jej) = 6
jej(jej+1) since it is the appropriate

weighting scheme for linear placement[20].1 Let D = (dij)

be a diagonal matrix with dii =
Pn

j=1 aij . The n�n Lapla-

cian matrix of A is given by Q = D �A. The eigenvectors

~�1; ~�2; : : : ; ~�n of Q form an orthonormal basis in n-space

and have corresponding eigenvalues �1 � �2 : : : � �n. The

ith entry of ~�j is given by2 �ij.

Our algorithm works as follows. First, the d eigenvectors

~�1; ~�2; : : : ; ~�d are computed, where d is a user-de�ned pa-

rameter. Next, the d-digit binary code code[i] is computed

for each vi 2 V , where bit j of code[i] is one if �ij � 0

and zero otherwise. Finally, modules with the same binary

code are assigned to the same cluster, i.e., each cluster corre-

sponds to one of the 2d orthants of the d-dimensional eigen-

vector embedding. The complete algorithm is described in

Figure 1. The time complexity of steps 3 and 4 is only

O(nd), so the eigenvector computation (which has expected

complexity O(n1:4) for sparse graphs if we use the Lanczos

iteration) dominates the time complexity.3

1Note that any eigenvector is a one-dimensional (i.e., linear)
placement of the modules. Empirically, we observe a strong cor-
relation between the cutsize of the graph given by A and number
of nets cut by H.

2Using the eigenvectors of Q, rather than of A, o�ers several
advantages [16]. For example, the number of eigenvalues of Q
equal to zero is also the number of connected components of H.
In addition, the sum of the entries of each eigenvector with a
non-zero eigenvalue equals zero, which guarantees that the cen-
ter of mass of the geometric embedding lies at the origin. The
theoretical equivalence (or unequivalence) of Q and A has not
yet been established.

3Our experiments show that computing eigenvectors with
LASO code [18] is relatively e�cient. For example, Sparc-1000
(single processor) runtimes were respectively 133 seconds and

Clustering Algorithm

1. Compute an adjacency matrix A from H(V;E), e.g.,
via a clique net model.

2. Compute the eigenvectors ~�1; ~�2; : : : ; ~�d from the
Laplacian Q of A.

3. For all vi 2 V , compute the d-digit code code[i] where
digit j is 1 if �ij � 0 and 0 if �ij < 0.

4. For all vi 2 V , assign vi to cluster Ccode[i]. Return the
set of non-empty clusters.

Figure 1. SIMPLE Eigenvector clustering algo-
rithm.

3. THEORETICAL MOTIVATION

Theoretical properties of eigenvectors and spectral parti-

tioning justify our simple eigenvector-based clustering strat-

egy.

3.1. Relation to Spectral Bipartitioning

A bipartitioning fP1; P2g can be represented as an n-

dimensional indicator vector ~x = (xi) with xi = 0 if vi 2 P1

and xi = 1 if vi 2 P2. The well-known spectral bipartition-

ing algorithm [6] computes the second eigenvector ~�2 of Q

and sets xi to 1 if �i2 � 0 and xi to 0 otherwise (assuming no

cluster size constraints). This choice of ~x maximizes ~x � ~�2,

i.e., ~x is the indicator vector that maximally projects onto

~�2. Hall [14] showed that the optimal solution according to

the objective

f(~x) =

nX

i=1

nX

j=1

aij(xi � xj)
2
; (1)

such that jj~xjj2 = 1 and
Pn

i=1 xi = 0, is given by ~x = ~�2.

(The trivial solution ~x = ~�1 = [1; 1; : : : ; 1] cannot be scaled

to satisfy both constraints.) If ~x is the indicator vector

for the partitioning fP1; P2g of the graph represented by

A, then f(~x) is exactly the total weight of edges cut by

the partitioning solution. Thus, ~�2 can be viewed as the

optimal, although illegal, partitioning solution; the spectral

bipartitioning algorithm �nds the legal indicator vector ~x

closest to ~�2.

Chan et al. [8] have shown that the d best non-discrete

solutions to Equation (1) are given by ~�1; ~�2; : : : ; ~�d under

the constraint that all solutions are mutually orthogonal.

Spectral bipartitioning can be run on these eigenvectors to

generate d distinct indicator vectors, and since the entries

in these indicator vectors form the binary code in our al-

gorithm, our method can be viewed as assigning modules

42 minutes to compute 10 eigenvectors for the primary2 and
avq.large circuits. In addition, much research is currently de-
voted to speeding up spectral computations via parallel and mul-
tilevel methods. For example, Barnard and Simon [5] use a mul-
tilevel contractionmethod to approximate the second eigenvector
for a �nite element graph with 262,620 nodes and 764,268 edges
(in 152 seconds); the subsequent partitioning of this eigenvector
led to a lower cut than pure spectral bisection.



to the same cluster if they are in the same spectral biparti-

tioning solutions from ~�1; ~�2; : : : ; ~�d. Let ~x
h = (xhi ) be the

indicator vector for cluster Ch returned by our algorithm

(entry i is 1 if vi 2 Ch and 0 otherwise). Then the projec-

tion of ~xh onto eigenvector ~�j (i.e., ~xh � ~�j), 1 � j � d, is

either the sum of all nonpositive or all nonnegative terms.

In other words, all projection components xhi ��ij, 1 � i � n,

have the same sign. Thus, the sum total of projection mag-

nitudes for the k indicator vectors onto the �rst d eigen-

vectors is given by
Pk

h=1

Pd

j=1 j~x
h � ~�jj and is maximum.

Thus, our clustering is optimal with respect to projection

magnitudes, and is a natural extension of spectral biparti-

tioning in that this clustering is as \close" as possible to

the �rst d eigenvectors.

3.2. Relation to Vector Partitioning

Recently, Alpert and Yao [4] showed that min-cut k-way

graph partitioning exactly reduces to the following vec-

tor partitioning problem: given a set of vectors Y =

f~y1; ~y2; : : : ; ~yng in d-dimensional space, partition the vec-

tors into subsets fS1; S2; : : : ; Skg such that

jj
X

~yi2S1

~yijj
2 + jj

X

~yi2S2

~yijj
2 + : : :+ jj

X

~yi2Sk

~yijj
2

is maximized. In other words, the vectors in each subset

Sh are summed to form a subset vector ~Yh =
P

~yi2Sh
~yi,

and the objective is to maximize the sum of the squared

magnitudes of the subset vectors.

If ~yi is given by the n-vector [(H � �1)�i1; (H �

�2)�i2; : : : ; (H � �n)�in] (where H is some constant larger

than �n), then the optimal solution to this vector partition-

ing problem exactly corresponds to the optimal solution to

the associated graph partitioning problem. The graph par-

titioning solution fC1; C2; : : : ; Ckg is constructed by assign-

ing vi to Ch if and only if ~yi 2 Sh. Furthermore, the number

of nets cut by a given cluster Ch is directly expressible in

terms of the subset vectors ~Yh, namely, the cut of cluster

Ch is exactly given by HjChj � jj~Yhjj
2. Thus, maximizing

the magnitude of ~Yh serves to minimize the cut of cluster

Ch.

Observe that each ~yi vector belongs to one of the 2
n or-

thants of n-space. If all the vectors in one orthant are added

together, it is likely that they sum to a vector of large mag-

nitude since they point roughly in the same direction. In

fact, no two vectors in the same orthant can be more than

90 degrees apart. It follows that assigning vectors in the

same orthant to the same subset Sh should result in a sub-

set vector ~Yh with large magnitude, and hence a cluster Ch

with small cut. Our clusterings are derived in exactly this

manner, except that we only use the �rst d � n eigenvec-

tors, resulting in 2d possible orthants. These eigenvectors

comprise the best d-dimensional approximation of the n-

dimensional vector partitioning instance.

4. EXPERIMENTAL RESULTS

We tested our clustering algorithm, which we call SIM-

PLE, on 14 circuit test cases that are commonly cited in

the partitioning literature. These benchmarks are avail-

able from the site http://ballade.cs.ucla.edu/~cheese. Our

clusterings were constructed using d = 11 (i.e., 10 non-

trivial eigenvectors)4 , and we compare to the clustering

algorithms WINDOW [2], ANNEAL [19], and AGG [1].

WINDOW �rst traverses the graph to induce a linear order-

ing of the modules, then splits the ordering into a clustering

via dynamic programming. ANNEAL is the simulated an-

nealing based algorithm used by Timberwolf to perform a

\three-phase" cell placement. Finally, AGG also uses a d-

dimensional spectral embedding, but clusters according to

the Euclidean distance metric.

For each benchmark and each clustering, we ran two-

phase FM 100 times with unit areas and exact bisection

size constraints on the partitions. Our FM code was ob-

tained from the authors of [12] and uses a last-in-�rst-

out (LIFO) tie-breaking scheme in the gain buckets. This

scheme has recently been shown to signi�cantly outperform

traditional random or last-in-�rst-out (FIFO) tie-breaking

schemes [12], and consequently the two-phase FM results

reported for WINDOW, ANNEAL, and AGG are superior

to those reported in [2]. The lowest number of cut nets

observed is reported in Table 1, with the average cut sizes

given in parentheses. We also ran FM without clustering,

and these results are given in the third column of the Table.

Note that clusterings for AGG were only available for the

�rst 9 benchmarks, and that since AGG constructs a clus-

tering for each of the �rst 10 spectral embeddings, we ran

two-phase FM 10 times on each clustering and combined

the results.

The cuts given by SIMPLE are certainly competitive with

the outputs of the other algorithms. SIMPLE yields small-

est cut overall for seven of the benchmarks, and the best

average cut for �ve of them. Surprisingly, the improvement

of two-phase FM results over at FM is not that impressive,

especially for the three largest benchmarks. One possible

explanation is that LIFO tie-breaking signi�cantly improves

\standard" FM, leaving less room for improvement by clus-

tering; this observation was con�rmed in [12].

Although SIMPLE two-phase results are not de�nitively

superior, we �nd the simplicity (even naivet�e) of the clus-

tering algorithm to be its most attractive quality. The al-

gorithm performs spectral clustering in the most obvious

manner (e.g., as opposed to AGG), yet its clusterings are

just as e�ective as the best previous methods. In addition,

the algorithm is strongly motivated by theoretical results

for spectral partitioning and vector partitioning. Our future

4For avq.small and avq.large, the clique net model con-
structs too many edges to make eigenvector computations fea-
sible. Hence, we sparsi�ed the matrix A by constructing two
random tours over each net with six or more pins, and assigned
each weight 1=6 to each edge.



Benchmark #Mods #Nets #Pins FM WINDOW AGG ANNEAL SIMPLE
primary1 833 902 2908 59(83) 54(73) 56(75) 54(76) 55(80)
primary2 3014 3029 11219 238(296) 183(263) 184(253) 156(242) 147(231)
test02 1663 1720 6134 122(177) 94(113) 97(140) 105(145) 99(124)
test03 1607 1618 5807 76(126) 63(91) 74(105) 70(108) 61(99)
test04 1514 1658 5975 86(140) 56(86) 64(99) 82(111) 53(84)
test05 2595 2750 10076 112(194) 75(117) 99(141) 107(150) 90(129)
test06 1752 1541 6638 69(96) 66(83) 65(78) 73(89) 69(88)
bm1 882 903 2910 58(83) 58(71) 54(70) 58(77) 52(71)
19ks 2844 3282 10547 137(184) 124(153) 115(177) 132(194) 123(169)

biomed 6514 5742 21040 92(176) 143(201) 104(205) 86(130)
industry2 12637 13419 48404 674(1151) 264(503) 466(695) 255(389)
industry3 15393 21919 65818 318(711) 298(793) 357(813) 329(620)
avqsmall 21918 22124 76231 343(650) 239(498) 368(724) 385(662)
avqlarge 25178 25384 82751 324(796) 415(645) 450(835) 320(657)
WINS 0(0) 4.5(7) 2(2) 0.5(0) 7(5)

Table 1. Results for 100 two-phase FM cuts for exact bisection with unit areas. The smallest
cut and average cut (in parentheses) are reported for each algorithm. The lowest cuts for each
benchmark are in boldface, and the last row gives the number of \wins" for each algorithm,
i.e., the number of times the algorithm yielded the lowest cut.

work seeks to combine eigenvector clustering and iterative

bipartitioning into a multilevel clustering framework.
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