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Abstract

With fast switching speeds and large interconnect trees (MCMs), the
resistance and inductance of interconnect has a dominant impact on
logic gate delay. In this paper, we propose a new Π model for dis-
tributed RC and RLC interconnects to estimate the driving point admit-
tance at the output of a CMOS gate. Using this model we are able to
compute the gate delay efficiently, within 25% of SPICE-computed de-
lays. Our parameters depend only on total interconnect tree resistance
and capacitance at the output of the gate. Previous “effective load ca-
pacitance” methods [7, 9], applicable only for distributed RC intercon-
nects, are based on Π model parameters obtained via a recursive admit-
tance moment computation. Our model should be useful for iterative
optimization of performance-driven routing or for estimation of gate
delay and rise times in high-level synthesis.

Keywords: gate delay, reduced-ordermodels, driving point admittance,
effective capacitance, interconnect modeling

1 Introduction

As the feature size of integrated circuits decreases,gate delays decrease
and interconnect delays increase. The overall logic-stage delay con-
sists of a gate delay component plus an interconnect delay component.
Previously, the gate delay component could be estimated by modeling
the entire interconnect tree at the gate output as a simple lumped ca-
pacitance. Now, with increased interconnect resistance and larger in-
terconnect trees, the lumped capacitance approximation results in pes-
simistic delay and rise time calculations. Accurate estimation of gate
delay and rise time closely depends on the model for the driving point
admittance of a load interconnect tree at the output of a gate.

Furthermore, with interconnect delays dominating overall path de-
lays for current integrated circuits, algorithms for synthesis and lay-
out optimization must consider interconnect effects. It has been ob-
served that existing accurate delay estimates are not efficient enough
to be used in iterative gate and interconnect sizing during the typical
synthesis/layout/in-place optimization loop. Incremental delay analy-
sis is also needed during performance-driven routing.

We propose a simple, efficient model for driving point admittance
which can be used in an iterative regime to accurately predict gate de-
lays. The simplest approximation of the driving point admittance of the
load interconnect tree is the total capacitanceof the tree (Ctot ), which is
a (pessimistic) first-order approximation [7, 8].1 For submicron tech-
nologies and MCM interconnects, the total interconnect resistance is
large and comparable to the driver output resistance; it cannot be ne-
glected in the gate delay calculations. The actual delay is much smaller
than that derived from the lumped capacitance model, because the in-
terconnect resistance acts as a shield to reduce the load capacitance
seen by the gate driver. Another simple method – which approximates
the load tree using a simple lumped RC segment model with resistance
and capacitance equal to the total interconnect resistance (Rtot ) and to-
tal interconnect capacitance(Ctot ) – yields an optimistic delay estimate
because the total interconnect resistance is lumped together and shields
the total capacitance. The lumped capacitanceand the lumped RC mod-
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1Ctot includes the load capacitance at the leaves. Coupling effects may be taken into

consideration by including their effect in the total capacitance.

els are among standard options in presentday synthesisand layout tools,
e.g., [11].

O’Brien and Savarino [4] have proposed a one-segment Π model
(see Figure 1) to approximate the load interconnect at the gate, match-
ing the first three moments of the driving point admittance of the gate.
The moments of the driving point admittance are computed recursively
[4, 5]. The response waveform obtained using the Π model is reason-
ably close to the actual response for most examples. Recently, [7, 9]
have argued that empirical (“k-factor”) formulas for delay and output
rise time of gates should depend only on the input slew rate and load
capacitance. To make the Π model compatible with k-factor delay for-
mulas, they compute an “effective load capacitance” iteratively using
the Π model parameters derived from the recursive admittance moment
computation. The authors of [7, 9] further extend the effective capac-
itance computation to accurately predict the response waveform tail,
via a two-piece gate output waveform approximation. The methodol-
ogy is quite accurate, but requires significant computation time even
when only the first three moments are calculated for each gate load.
I.e., although the moment computation is linear, calculating the mo-
ments for each gate load can be expensive for large designs. Thus, we
now propose a new Π model for estimating the driving point admit-
tance at the output of a CMOS gate. Whereas previous methods [7, 9]
are for distributed RC interconnects, we propose gate load models for
both RC and RLC interconnects. Our Π model parameters depend only
on the total (lumped) interconnect tree parameters at the output of the
gate, and match the first three moments of the driving point admittance
of the load interconnect tree. For various interconnect topologies the
gate delay and the rise time are within 25% of SPICE-computed de-
lays, whereas lumped capacitance based delay estimates are off by as
much as 150%.
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Figure 1: One-segment Π model for matching the first three moments of the
driving point admittance of a load interconnect tree.

2 Computation of Driving Point Admittance

There have beenmany studies [2, 3, 6] of the moments and coefficients2

of the transfer function. As noted above, O’Brien and Savarino [4] give
a set of rules for recursively computing the first three moments of the
driving point admittance for discrete elements and for distributed RC
interconnects. Sriram and Kang [10] compute the admittance at the
root of the tree by modeling each interconnect as multiple RC/RLC seg-
ments, then recursively compute the admittance using the expression
for a single RLY section. They first express the admittance at each node
as a rational function, and then convert to a polynomial series of re-
quired accuracy. In this section we briefly review the computation of

2The coefficients of the transfer function refer to terms in the inverse of the transfer
function polynomial.



admittance coefficients and also show an interesting relationship be-
tween the coefficients of the numerator and denominator polynomials
of the admittance expression.
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Figure 2: N-segment RLC circuit.

Consider a general circuit consisting of N RLC segments as shown
in Figure 2. Such a circuit can be used to model any distributed RLC
interconnect line. From KCL, the current at node N+1 can be written
using the recursive equation

IN+1(s) = sCNVN(s)+ IN (s) =
N

∑
j=1

sCjVj(s) (1)

Without loss of generality, we can express the current and node volt-
ages as a series in s, i.e.,

Ij(s)

V1(s)
= a j

0 +a j
1s+a j

2s2 +a j
3s3 + : : :

Vj(s)

V1(s)
= b0 +b j

1s+b j
2s2 +b j

3s3 + : : :

Replacing the node voltages and currents in Equation (1) and collecting
terms for coefficients of sk (k � 1), we get

aN+1
k = CNbN

k�1 +aN
k =

N

∑
j=1

Cjb
j
k�1 (2)

For RLC circuits and RLC interconnects, the coefficient a j
0 = 0. The

transfer function between the source node S and the node T can be ex-
pressed as

H(s) =
V1(s)

VN+1(s)

=
1

b0 +bN+1
1 s+bN+1

2 s2 +bN+1
3 s3+ : : :

The transfer function coefficients can also be obtained by expressing
the voltage at node N+1 recursively in terms of voltage at node N [1].
Therefore, the coefficient of sk in the transfer function polynomial is

bN+1
k = RN

N

∑
j=1

Cj �b j
k�1 +LN

N

∑
j=1

Cj �b j
k�2 +bN

k

=
N

∑
j=1

Cjb
j
k�1

N

∑
i= j

Ri+
N

∑
j=1

Cjb
j
k�2

N

∑
i= j

Li (3)

The numerator and denominator polynomials of the driving point ad-
mittance can be obtained by expressing the voltage VN+1(s) in terms
of the transfer function, i.e.,

Y(s) =
IN+1(s)
VN+1(s)

=
IN+1(s)
V1(s)

�H(s)

=
aN+1

1 s+aN+1
2 s2+aN+1

3 s3+ : : :

b0 +bN+1
1 s+bN+1

2 s2 +bN+1
3 s3+ : : :

We now express the driving point admittance as an infinite series

Y(s) =
∞

∑
i=1

Ais
i

where Ai represents the ith moment of the admittance function. The
driving point admittance moments can also be expressed in terms of
the coefficients ak and bk from Equations (2) and (3):

Ai =
�1
b0

i

∑
j=1

bN+1
j Ai� j +

aN+1
i
b0

(4)

3 An RC Model for the Driving Point Admittance
In this section, we develop a one-segment RC Π model, with prede-
termined parameter values that depend only on the total resistance and
total capacitance, to model the driving point admittance of a distributed
RC interconnect tree. Recall that previous methods compute Π model
parameters using the first three moments of the driving point admit-
tance of the load interconnect at the gate output. Our advantage over
previous methods lies in the trivial expense of finding the parameters
of our model. The driving point admittance of the Π equivalent circuit
in Figure 1 is

Yeq(s) = sC1 +
sC2

1+ sR1C2

= s(C1 +C2)� s2R1C2
2 + s3R2

1C3
2 + : : : (5)

Let the driving point admittance at the gate output be represented by

Y(s) =
∞

∑
i=1

Ais
i = sA1 + s2A2 + s3A3 + : : :

The parameters of the equivalent circuit can be obtained by compar-
ing the first three moments of the admittance with the corresponding
coefficients in Equation (5), i.e.,

R1 =
�A2

3

A3
2

C1 = A1�
A2

2
A3

C2 =
A2

2
A3

(6)
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Figure 3: An open-ended RC line to capture an RC interconnect tree, and the
RC Π model.

Our new model is an “open-endedRC Π model” derived as follows.
Rather than recursively compute the driving point admittance moments
at the gate, we approximate the entire interconnect tree by an equiva-
lent open-ended RC line whose resistance and capacitance are equal to
the total interconnect resistance and capacitance, as shown in Figure
3. By using an open-ended RC line to approximate the entire tree, the



distributed nature of the load interconnect is still considered in the cal-
culation of model parameters (i.e., the resistance of the open-endedline
shields part of the load capacitance from the gate driver), yet we gain
efficiency by easily deriving the moments of the resultant driving point
admittance.

The admittance of an open-ended RC line can be obtained from the
2-port parameters as [2]

Y(s) =
tanh(θ)

Z0

= sCtot � s2 RtotC2
tot

3
+ s3 2R2

totC
3
tot

15
+ : : : (7)

where the propagation constant θ =
p

RtotsCtot , and the characteristic

impedance Z0 =
q

Rtot
sCtot

. Therefore, the first three moments of the driv-

ing point admittance using the open-ended line approximation are

A1 =Ctot ; A2 =�RtotC2
tot

3
; A3 =

2R2
totC

3
tot

15

Substituting the abovedriving point admittance moments in Equation (6)
yields Π model circuit parameters3

R1 =
12Rtot

25
; C1 =

Ctot

6
; and C2 =

5Ctot

6

The new Π model has parameters that are functions of only total inter-
connect resistanceand capacitance,and yet it still closely approximates
the first three moments of the driving point admittance of the load.

4 An RLC Model for the Driving Point Admittance
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Figure 4: A RLC Π model for matching the first three moments of the driving
point admittance of an RLC interconnect tree.

In this section, we develop a one-segment RLC Π model (Figure 4)
to model the driving point admittance of a distributed RLC intercon-
nect tree. To our knowledge, no RLC interconnect load model has been
given previously. The driving point admittance of the RLC Π model in
Figure 4 is

Yeq(s) = sC1 +
sC2

1+ sC2(R1 + sL1)

= s(C1 +C2)� s2R1C2
2 + s3

�
R2

1C3
2 �L1C2

2

�
+ : : : (8)

Similar to the driving point admittance approximation for the RC inter-
connect tree, we approximate the entire RLC interconnect tree with an
equivalent open-ended RLC line whose resistance, inductance and ca-
pacitance are equal to the total interconnect resistance, inductance and
capacitance as shown in Figure 5. The admittance of an open-ended
RLC line can be obtained as

Y(s) =
tanh(θ)

Z0

3We also studied another approximate model with R1 = Rtot in the Π circuit [2], the
motivation being that the resistance of the equivalent circuit should be the same as the total
resistance of the load interconnect tree. However, delay estimates were always less accu-
rate than with the model we give here.

=
sCtot +

s2Rtot C2
tot

6 + s3(
R2

tot C
3
tot

120 +
Ltot C2

tot
6 )+ : : :

1+ sRtot Ctot
2 + s2(R2

tot C2
tot

24 + Ltot Ctot
2 )+ : : :

= sCtot � s2RtotC2
tot

3
+ s3(

2R2
totC

3
tot

15
� LtotC2

tot

3
)+ : : : (9)

where the propagation constant θ=
p
(Rtot + sLtot)sCtot , and the char-

acteristic impedance Z0 =
q

(Rtot+sLtot )
sCtot

.
As before, the open-ended RLC line model can be further approx-

imated to a reduced-order Π model without losing much accuracy in
the delay estimates. Matching the resistive terms of Equation (8) and
(9) alone will yield the same parameters as derived for the RC Π model.
The inductance parameter of the Π model can be obtained by matching
the inductive term in the third moment of the driving point admittance
and using the previously derived RC Π model resistance and capaci-
tance values. Therefore, the RLC Π model parameters for the driving
point admittance of an RLC interconnect tree are

R1 =
12Rtot

25
L1 =

12Ltot

25
C1 =

Ctot

6
C2 =

5Ctot

6

where Ltot is the total inductance of the interconnect tree.
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Figure 5: An open-ended RLC line to capture an RLC interconnect tree, and
the RLC Π model.
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Figure 6: An inverter (2-input NAND with identical inputs) driving an RC
interconnect tree with 10 interconnects and 5 loads. All the interconnects are
identical with parameters R= 0:25 Ω/µm, and C= 0:015 f F/µm, and all load
and discrete capacitors= 50 f F. The length and width of the transistors in the
driver are 1µm and 16µm.
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Figure 7: Response waveform at gate output with load interconnect tree
shown in Figure 3 for Example 1. The proposed open-ended RC line model
and the Π model very closely estimates the actual response (URC model) than
does the total capacitance model.

N- P- N- P-
channel channel channel channel

TOX 2.0E-08 2.0E-08 GAMMA 0.4481 0.4970
PHI 0.60 0.60 NSUB 1.8E+16 2.2E+16
XJ 0.15 0.15 NFS 2.4E+12 4.6E+12

TPG 1.0 1.0 VMAX 1.5E+05 1.8E+05
VTO 0.7333 -0.9679 ETA 1.5E-01 1.8E-01

DELTA 9.5E-01 4.3E-01 KAPPA 9.5E-02 3.2E+00
LD 1.0E-09 1.0E-09 CGDO 2.6E-12 2.6E-12
KP 1.3E-04 4.3E-05 CGSO 2.6E-12 2.6E-12
UO 762.1 254.0 CGBO 3.0E-10 3.5E-10

THETA 5.3E-02 1.7E-01 CJ 1.2E-04 5.3E-04
RSH 2.365 2.553 MJ 0.4398 0.5074

CJSW 4.7E-10 7.9E-11 MJSW 0.1240 0.0772
PB 0.80 0.85

Table 1: SPICE Level 3 model parameters. The channel length and width of the
devices for most examples are 1µm and 4µm.

5 Experimental Results

In this section we simulate various RC=RLC interconnect topologies to
show the accuracy of both the open-ended line model and the reduced-
order Π model. The SPICE model parameters for the gate driver, a 2-
input NAND gate with both input signals the same, are shown in Table
1. We varied length and width for the transistors, as well as rise time
for the input signal.

The authors of [7] noted that for small, balanced interconnect trees,
the total capacitance model yields fairly accurate gate delay estimates.
For trees with resistive and long nets (e.g., MCMs) the Π model of [7]
(applying the recursive admittance computation and then using the it-
erative effective capacitanceformula) yields estimates very close to the
actual delays. We now show that our “open-ended RC Π model” also
gives fairly accurate delay estimates, with the same time complexity as
for the traditional lumped capacitance model. We verify our models by
plotting the output response for the same interconnect trees studied in
[7], as well as for a topology having larger fanout.
Example 1: Consider the load interconnect topology shown in Figure
6. We assume the length of each interconnect to be 4mm, and all load
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Figure 8: Response waveform for Example 2, i.e., load interconnect tree of
Figure 3 with longer interconnect lengths. Both the open-ended line model
and the Π model more closely estimate the actual response than does the total
capacitance model.

and discrete capacitors are 50 fF. We used the 2-input NAND gate with
the identical inputs as the driver; the length and width of the transistors
in the driver are 1µm and 16µm. We obtained the exact response at
the gate output using SPICE3e and the URC (Uniform distributed RC)
model for each RC interconnect. We then obtained the response for the
total capacitance model, and for both the “open-ended” line model and
our Π model, using SPICE3e4; see Figure 7. In [7] the same intercon-
nect topology with smaller and less resistive nets was analyzed, and it
was observed that for such balanced interconnect trees the total capaci-
tance modelgives fairly accurate results. However,Figure 7 shows that
for large interconnect lines, the total capacitance model fails to follow
the SPICE response curve while the proposed Π model still estimates
the SPICE response accurately. Note that the response at the gate out-
put for the model in [4] is identical to the SPICE response. Thus, we do
not separately list the delay values or plot the response for the Π model
in [4].

Example 2: We consider the same load interconnect topology used in
Example 1, but the length of each interconnect is increased to 8mm and
all load and discrete capacitor values are decreased to 10 fF. We also
changed the length and width of the transistors in the driver to 1µm and
4µm to increase the driver resistance. The responseat the gate output in
Figure 7 shows that both the “open-ended”line model and our Π model
still closely approximate the SPICE URC response for long intercon-
nect lines. Notice that our Π model tracks the effect of interconnect
shielding. Figure 7 shows that the waveform tail of both the “open-
ended” line model and our Π model deviate from the actual response.
The error in our model (with respect to the URC model) stems from the
open-ended RC approximation, but we again note that this is a tradeoff
with complexity. A comparison of threshold delays between various
models is given in Table 2.

Example 3: A different load interconnect tree topology is shown in
Figure 9. The authors of [7] noted that for such long (chain-like) inter-
connect topologies, the lumped capacitance model could not yield ac-
curate gate delay estimates, while their effective capacitancemodel ob-
tains an accurate response. Indeed, the effective capacitance model of
[7] produces a response waveform that is closer to the actual response,
except at the tail end of the waveform. Our Π model also gives a fairly

4Even thoughwe have used SPICE for computingdelay estimates with our Π model, we
could also use, e.g., the Elmore delay model to compute the delay estimates during layout
optimization.
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Figure 9: An inverter driving a different load interconnect topology. All the
interconnectsare identical with parameters R= 0:25 Ω/µm,C= 0:015 f F/µm,
length = 8mm. All load and discrete capacitors are 10 f F. The length and
width of the transistors in the driver are 1µm and 4µm.
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Figure 10: The response waveform at the inverter output for the interconnect
tree in Figure 5, corresponding to for Example 3.

accurate waveform estimation, as shown in Figure 10, with much less
computation time.

Example 4: We now consider the same load interconnect topology
shown in Figure 9, where each line has inductance equal to L = 0:246
nH/µm and all other parameters are as before. The actual response at
the gate output is computed by using the SPICE LTRA (Lossy TRAns-
mission Line Model) for each interconnect in the tree. The responses
for the lumped capacitance model, open-ended RLC line model, and
RLC Π model are plotted in Figure 11. The figure shows that both the
“open-ended” line model and our Π model approximate the actual re-
sponse very closely, even for distributed RLC interconnects.

Interconnection Trees with Multi-Fanout at Gate Output

Thus far, we have considered only single-fanout interconnect trees.
When the interconnect topology has fanout greater than one at the gate
output, using total resistanceof the interconnect topology in the Π model
yields optimistic delay estimates. Since the actual interconnect resis-
tance acting as a shield is much less than the total interconnect resis-
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Figure 11: The response waveform for Example 4 at the inverter output of
the interconnect tree in Figure 9, considering also the inductance of the lines.
The inductance of each line is L= 0:246 nH/µm, with all other parameters as
before.
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Figure 12: An open-ended RC line to capture interconnect trees with multi-
fanout at the gate output, and the equiavlent RC Π model.

tance. To model multi-fanout interconnect trees (at the gate output)
we have considered two solutions. The first solution replaces the total
interconnect resistance in the open-ended RC/RLC line model with an
equivalent resistance of the total interconnect tree using series/parallel
resistance formulas. However, the capacitance is still equal to the total
sum of all interconnect capacitances and discrete capacitances. As the
computation complexity for calculating the equivalent tree resistance
could be quite high, we also found the following approximate method.
We replace each parallel path (or subtree) at the output with an open-
ended RC/RLC line, whose resistance (inductance) is equal to the to-
tal resistance (inductance) Rpath (Lpath) of that subtree. The resulting
parallel open-ended RC/RLC lines at the gate output can be further re-
duced to a single open-ended line with resistance equivalent to all par-
allel path resistances, i.e.,

Req = Rpath1jjRpath2jj : : :jjRpathn

The Π model parameters can again be derived using Req andCtot as the
resistance and capacitance of the open-ended line. As shown in Figure
12, only the resistance of the Π model changes, i.e., R1 =

12Req

25 .



50% Threshold delays (ns) 80% Threshold delays (ns)
SPICE Lumped Open-ended SPICE Lumped Open-ended
URC Cap. Line Π URC Cap. Line Π
model model model model model model model model

Ex1 0.20 0.81 0.21 0.27 0.39 1.20 0.33 0.38
Ex2 1.54 3.63 1.43 1.59 4.05 5.54 2.23 2.20
Ex3 1.47 3.63 1.43 1.59 2.95 5.54 2.23 2.20
Ex4� 1.18 3.64 0.98 1.48 1.80 5.54 1.09 1.94
Ex5 2.35 2.95 2.55 2.55 3.95 4.35 4.09 4.09

Table 2: A comparison of threshold delays for the five example load interconnect trees using SPICE3e URC (Uniform distributed RC) model, lumped
capacitance model, open-ended line model, and our new Π model. �In Example 4, the actual response is computed using SPICE LTRA model.
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Figure 13: An interconnection topology with fanout equal to three. All the
interconnects are identical with parameters R = 0:25 Ω/µm, and C = 0:015
f F/µm, and all load and discrete capacitors= 10 f F. The length of all inter-
connects is 8 mm.

Example 5: To illustrate the multi-fanout effect at the gate output, we
consider the interconnect tree topology shown in Figure 13. The length
and width of the transistors in the driver are 1µm and 4µm. The re-
sponse waveform for this example is shown in Figure 14; again, the
“open-ended RC Π model” yields a fairly accurate response.

All of the above examples show that the “open-endedRC Π model”
can capture delay with reasonableaccuracy. However, the overall wave
shape is not captured beyond the 80% threshold limit. The output fall
time can be estimated by interpolating the slope region between the
90% and the 50% or 80% threshold point. The “open-endedRC Π model”
can thus be used to estimate the gate delay and rise time, with estimates
clearly better than the lumped capacitance model. A comparison of
threshold delays between various models is given in Table 2. For the
example interconnect trees studied, the gate delays and the rise times
computed using our new model are within 25% of SPICE-computed
values. On the other hand, the simple lumped capacitance based delay
estimates are off by as much as 150%.

6 Conclusions

We have presented a new, efficient and accurate technique for model-
ing RC and RLC load interconnect trees at the output of a gate. Our Π
model parameters depend only on total interconnect tree resistance, in-
ductance and capacitance values. For the various interconnect topolo-
gies studied the gate delay and the rise time are within 25% of SPICE-
computed values. Our model can be used in place of the recursive Π
model used in the “effective load capacitance” formula [7] to reduce
the modeling time complexity. We are currently extending our open-
ended line model to separately consider the effects of interconnect ca-
pacitances and discrete/load capacitances.
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