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Abstract

There has been increased research interest in systems composed of mul-
tiple autonomous mobile robots exhibiting collective behavior. Groups of
mobile robots are constructed, with an aim to studying such issues as group
architecture, resource conflict, origin of cooperation, learning, and geomet-
ric problems. As yet, few applications of collective robotics have been
reported, and supporting theory is still in its formative stages. In this paper,
we give a critical survey of existing works and discuss open problemsin
this field, emphasizing the various theoretical issuesthat arise in the study
of cooperative robotics. We describe the intellectual heritages that have
guided early research, as well as possible additions to the set of existing
motivations.

1 Prdiminaries

There has been much recent activity toward achieving sys-
tems of multiple mobile robots engaged in collective behav-
ior. Such systems are of interest for severd reasons. (1)
tasks may be inherently too complex for a single robot to
accomplish, or performance benefits can be gained from us-
ing multiple robots; (2) building and using severa simple
robots can be easier, cheaper, more flexible and more fault-
tolerant than having asingle powerful robot for each separate
task; and (3) insightinto socia sciences (organizationtheory,
economics), life sciences (theoretical biology, animal ethol-
ogy) and cognitive science (psychology, learning, artificia
intelligence) may be derived from multi-robot experimental
systems.

The study of multiple robots naturally extends research
on single-robot systems, but is also a discipline unto itself:
multiple-robot systems can accomplish tasks that no sin-
gle robot can accomplish, since ultimately a single robot,
no matter how capable, is spatially limited. Multiple-robot
systems are a so different from other distributed systems be-
cause of their implicit “rea-world” environment, which is
presumably more difficult to model and reason about than
traditional components of distributed system environments
(i.e., computers, databases, networks).

The term collective behavior generically denotes any be-
havior of agents in a system having more than one agent.
Cooperativebehavior, whichisthesubject of the present sur-
vey, isasubclass of collective behavior that is characterized
by cooperation. Webster’s dictionary [MW63] defines “ co-
operate’ as “to associate with another or others for mutual,
often economic, benefit”. Explicit definitionsof cooperation
in the robotics literature, while surprisingly sparse, include:
(a) “joint collaborative behavior that isdirected toward some
goa inwhich thereisacommon interest or reward” [BG91];
(b) “aform of interaction, usually based on communication”
[Mat94a]; and (c) “[joining] together for doing something
that creates a progressive result such as increasing perfor-
mance or saving time” [PY 90]

These definitions show the wide range of possible mo-
tivating perspectives. For example, definitions such as ()
typically lead to the study of task decomposition, task allo-
cation, and other distributed artificial intelligence (DAI) is-
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sues (e.g., learning, rationality). Definitions along the lines
of (b) reflect a concern with requirements for information or
other resources, and may be accompanied by studies of re-
lated issues such as correctness and fault-tolerance. Finally,
definition (c) reflects a concern with quantified measures of
cooperation, such as speedup in time to complete a task.
Thus, in these definitions we see three fundamental seeds:
the task, the mechanism of cooperation, and system perfor-
mance.

We define cooperative behavior as follows: Given some
task specified by a designer, a multiple-robot system displays
cooperétive behavior if, due to some underlying mechanism
(i.e., the“ mechanism of cooperation” ), there is an increase
in the total utility of the system. Intuitively, cooperative
behavior entails some type of performance gain over naive
collective behavior. The mechanism of cooperation may lie
in the imposition by the designer of a control or communi-
cation structure, in aspects of the task specification, in the
interaction dynamics of agent behaviors, etc.?

In thispaper, we survey theintellectua heritage and major
research directions of the field of cooperative robotics. For
this survey of cooperative robotics to remain tractable, we
restrict our discussion to works involving mobile robots or
simulations of mobile robots, where a mobile robot is taken
to be an autonomous, physically independent, mobile robot.
Thus, we do not discuss coordination of multiple manipula-
tors, articulated arms, multi-finger hands, etc.

Toward a Picture of Cooperative Robotics

In the mid-1940’'s Grey Walter, dong with Wiener and
Shannon, studied turtle-like robots equipped with light and
touch sensors; these simplerobotsexhibited “ complex socia
behavior” in responding to each other’smovements [Dor90].
Coordination and interactions of multiple intelligent agents
have been actively studied in thefield of distributed artificial
intelligence (DAI) since the early 1970's [BG88], but the
DA field concerned itself mainly with problems involving
software agents. In the late 1980's, the robotics research
community became very active in cooperative robotics, be-
ginning with projects such as ACTRESS [AMI89], CE-
BOT [FN87], GOFER [CCL*90], SWARM [Ben88] and
the work a Brussels [Ste90]. This early research was done
primarily in simulation;* thus, several more recent works (cf.
[KZ92, Mat92, Par92]) are significant for their emphasis on
the actual physical implementation of cooperative robotic
systems.

Thisisacharacterizationof thedefinitionitself; theleadingmotivationin [Mat94&
was actually the social nature of intelligence and its manifestation in group behaviors.

2In this work, we do not discuss the competitive subclass of collective behavior,
which includes pursuit-evasion [Rey94, MC94] and one-on-one competitive games
[AUN+ 94]. Note that a cooperative team strategy for, e.g., the robot soccer league
recently proposed by [Kit94] would lie within our present scope.

3Even with this restriction, we find that in 7 years ( 1987 - 1994 ) well over 200
papershavebeen publishedin thisfield of cooperative(mobile) robotics, encompassing
theoriesfromsuch diversedisciplinesasartificial intelligence, gametheory/economics,
theoretical biology, distributed computing/control, animal ethology and artificial life.

4While CEBOT, ACTRESS and GOFER have all had physical implementations
(with < 3 robots), in some sense these implementations were presented by way of
provingthe simulation results.



The rapid progress of cooperative robotics since the late
1980's has been an interplay of systems, theories and prob-
lems: to solve agiven problem, systems are envisioned, sim-
ulated and built; theories of cooperation are brought from
other fields; and new problemsare identified (prompting fur-
ther systems and theories). Since so much of this progress
isrecent, it is not easy to discern deep intellectua heritages
fromwithinthefield. More apparent are theintellectua her-
itagesfrom other fields, aswel| asthe canonical task domains
which have driven research. Three examples of thelatter are:

e Traffic Control. When multiple agents move within a
common environment, they typically attempt to avoid col-
lisions. Fundamentaly, this may be viewed as a problem
of resource conflict, which may be resolved by introducing,
e.g., traffic rules, priorities, or communication architectures.
From another perspective, path planning must be performed
taking into consideration other robots and the global envi-
ronment; this multiple-robot path planningisan intrinsically
geometric problem in configuration space-time. Note that
prioritization and communication protocols— as well as the
internal modeling of other robots — al reflect possible vari-
ants of the group architecture of the robots.

e Box-Pushing. Many works have addressed the box-
pushing (or couch-pushing) problem, for widely vary-
ing reasons. The focus in [Par94] is on task aloca
tion, fault-tolerance and (reinforcement) learning. By con-
trast, [DJRY4] studies two box-pushing protocols in terms
of their intrinsic communication and hardware require-
ments, via the concept of information invariants. Other
works in the box-pushing/object genre manipul ation include
[WNM94, MHB94, SB93, JB94].

e Foraging. In foraging, a group of robots must pick up
objects scattered in the environment; this is evocative of
toxic waste cleanup, harvesting, search and rescue, etc. The
foraging task isone of the canonicd testbedsfor cooperative
robotics[Ste90, Ark92, GD92, LB92, DF93, AH93, Mat94a,
BHD94].5 A widevariety of techniqueshave been proposed,
ranging from simple stigmergy ® [BHD94] to more complex
algorithmsin which robots form chains a ong which objects
are passed to the goal [DF93]. Again, group architecture
and learning are mgjor research themes in addressing this
problem.

Organization of Paper

With respect to our above definition of cooperative be-
havior, we find that the great majority of the cooperative
roboticsliterature centers on the mechanism of cooperation.
(I.e, few works study a task without also claiming some
novel approach to achieving cooperation.) Thus, our study
has led to the synthesis of five “Research Axes’ which we
believe comprise the mgjor themes of investigation to date
into the underlying mechanism of cooperation.”

5Thetask is interesting because it can be performed by each robot independently
(i.e., theissue iswhether multiple robotsachieve aperformancegain). Thereare some
conceptual overlaps with the related task of materials handling in a manufacturing
workcell [DA93].

5[BHD94] definesstigmergy as “the productionof acertain behaviourin agentsasa
consequence of the effects producedin thelocal environment by previousbehaviour”.
Thisisactually aform of “cooperation without communication”, which has been the
stated object of several foraging solutionssincethe corresponding formulationsbecome
nearly trivial if communication is used. However, note also that stigmergy may not
satisfy our abovedefinition of cooperation, sincethereis no performanceimprovement
over the “naive algorithm” (in this particular case, the proposed stigmergic algorithm
isthe naive algorithm).

"Note that our survey concentrateson fundamental theoretical issues that impinge
on cooperativerobotics. Thus, we do not discuss several important practical concerns,
such as the user interface issues that arise with multiple-robot systems [YSA"' 94,
AA94, NR91]. In addition, emerging technologies such as nanotechnology [Dre92]

Section 2 of this paper describes these axes, which are;
2.1 Group Architecture, 2.2 Resource Conflict, 2.3 Origin
of Cooperation, 2.4 Learning, and 2.5 Geometric Problems.
In Section 3, we present more synthetic reviews of coopera-
tive robotics: Section 3.1 discusses constraints arising from
technological limitations; and Section 3.2 discusses possi-
blelacunae in existing work (e.g., formalismsfor measuring
performance of a cooperative robot system), then reviews
three fields which we believe must strongly influence future
work. We conclude in Section 4 with a list of key research
challenges facing thefield.

2 Research Axes

Seeking a mechanism of cooperation may be rephrased as
the* cooperativebehavior design problem”: Givenagroup of
robots, an environment, and a task, how should cooperative
behavior arise?® In some sense, every work in cooperative
robotics has addressed facets of this problem, and the ma-
jor research axes of the field follow from elements of this
problem.

First, the redlization of cooperative behavior must rely on
some infrastructure, the group architecture. This encom-
passes such concepts as robot heterogeneity/homogeneity,
the ability of a given robot to recognize and model other
robots, and communication structure. Second, for multiple
robotsto inhabit ashared environment, manipul ate objectsin
the environment, and possibly communi cate with each other,
a mechanism is needed to resolve resource conflicts. The
third research axis, origins of cooperation, refers to how
cooperative behavior is actually achieved.® Because adapt-
ability and flexibility are essentia traits in a task-solving
group of robots, we view learning as afourth key to achiev-
ing cooperative behavior.’® Whereas the first four axes are
related to the generation of cooperative behavior, our fifth
and final axis — geometric problems — covers research is-
suesthat are tied to the embedding of robot tasksin atwo- or
three-dimensional world. These issues include multi-agent
path planning, moving to formation, and pattern generation.

2.1 Group Architecture

The architecture of a computing system has been defined
as “the part of the system that remains unchanged unless
an external agent changes it” [Van91]. The group architec-
ture of a cooperative robotic system provides the infrastruc-
ture upon which collective behaviors are implemented and
determines the capabilities and limitations of the system.
We now briefly discuss some of the key architectural fea
tures of a group architecture for mobile robots. centraiza
tion/decentralization, differentiation, communications, and

and Micro Electro-Mechanical Systems[MGT88] that are likely to be very important
to cooperativerobotics are beyond the scope of this paper.

8Note that certain basic robot interactions are not task-performing interactions per
se, but arerather basic primitivesupon which task-performinginteractionscan be built
(e.g., following ([Con87, DJR94] and many others) or flocking [Rey87, Mat944d]). It
might be argued that these interactions entail “control and coordination” tasks rather
than “cooperation” tasks, but our treatment does not make such a distinction.

SWe do not discuss instances where cooperation has been “explicitly engineered”
into the robots behavior since this is the default approach. Instead, we are more
interested in biological parallels (e.g., to social insect behavior), game-theoreticjusti-
fications for cooperation, and concepts of emergence.

1°One important mechanismin generating cooperation, namely, task decomposition
and allocation, isnot considered aresearch axissince (i) very few worksin cooperative
roboticshave centered on task decomposition and all ocation (with the notableexception
of [Par94]), (ii) cooperative robot tasks (foraging, box-pushing) in the literature are
simple enough that decomposition and allocation are not requiredin the solution, and
(iii) the use of decomposition and allocation depends almost entirely on the group
architectures (e.g. whether it is centralized or decentralized).



the ability to model other agents. We then describe several
systems that have addressed these specific problems.

2.1.1 Centralization/Decentralization

The most fundamental decision that is made when defining
a group architecture is whether the system is centralized or
decentralized, and if it is decentralized, whether the sys-
tem is hierarchical or distributed. Centralized architectures
are characterized by a single control agent. Decentralized
architectures lack such an agent. There are two types of de-
centralized architectures: distributed architectures in which
all agents are equal with respect to control, and hierarchical
architectureswhich are locally centralized.

Currently, the dominant paradigm is the decentralized
approach.'* The behavior of decentralized systems is of-
ten described using such terms as “emergence’ and “self-
organization.”*? Itiswidely claimed that decentralized archi-
tectures (e.g., [BHD94, Ark92, Ste94, Mat94a)) have several
inherent advantages over centralized architectures, including
fault tolerance, natural exploitationof paralelism, reliability,
and scaability.

2.1.2 Differentiation

Wedefineagroup of robotsto be homogeneousif thecapabil -
itiesof theindividual robotsareidentical, and heterogeneous
otherwise. In genera, heterogeneity introduces complex-
ity since task allocation becomes more difficult, and agents
have a greater need to model other individuasin the group.
The literature is currently dominated by works that assume
homogeneous groups of robots. However, some notable ar-
chitectures can handle heterogeneity, e.g.,, ACTRESS and
ALLIANCE (see Section 2.1.5 below). In heterogeneous
groups, task allocation may be determined by individua ca-
pabilities, but in homogeneous systems, agents may need to
differentiateinto distinct roles that may be known at design-
time, or rise dynamically at run-time,

2.1.3 Communication Structures

The communi cation structure of a group determinesthe pos-
sible modes of interagent interaction. We characterize three
types of interactionsthat can be supported.

Interaction via environment

Thesimplest, most limited typeof interaction occurswhen
the environment itself is the communication medium (in ef-
fect, a shared memory), and there is no explicit communi-
cation or interaction between agents. Systems that depend
on this form of interaction include [GD92, BHD94, Ark92,
Ste90, TK93, Tun94, SSH94].

I nteraction via sensing

Corresponding to arms-length relationships in organiza
tion theory [Hew93], thisrefers to local interactionsthat oc-
cur between agents as aresult of agents sensing one another,
but without explicit communication. Collective behaviors
that can use thiskind of interaction include flocking and pat-
tern formation (keepinginformationwith nearest neighbors).
This type of interaction requires that agents can distinguish
between other agents in the group and other objects in the
environment.

Interaction via communications

M\We have not found any instances of systemsthat are centralized.
The definitionsof these notionshave been the subject of muchintellectual debate.
We do not define them here, and appeal to their intuitive definition.

The third form of interaction involves explicit communi-
cation with other agents, by either directed or broadcast in-
tentional messages.'® Because architectures that enable this
form of communication are similar to networks, many stan-
dardissuesfrom thefield of networksarise, including the de-
sign of network topol ogiesand communi cations protocol s. 2

2.1.4 Modding of Other Agents

Modeling the intentions, beliefs, actions, capabilities, and
states of other agents can lead to more effective cooperation
between robots. Communications requirements can aso be
lowered if each agent hasthecapability to model other agents.
Note that the modeling of other agents entails more than
implicit communication via the environment or perception:
modeling requires that the modeler has some representation
of another agent, and that this representation can be used to
make inferences about the actions of the other agent.

In cooperative robotics, agent modeling has been explored
most extensively inthecontext of manipulating alargeobject.
Many solutions have exploited the fact that the object can
serve as a common medium by which the agents can model
each other.’®

2.15 Representative Architectures

All systemsimplement some group architecture. Wenow de-
scribe several particularly well-defined representative archi-
tectures, a ong with works done within each of their frame-
works. It isinteresting to note that these architectures en-
compass the entire spectrum from traditional Al to highly
decentralized approaches.
SWARM

A SWARM is a distributed system with a large number
of autonomous robots [JLB94]. SWARM intelligenceis “a
property of systems of non-intelligent robots exhibiting col-
lectively intelligent behavior” [HB91]. ¢ Sdf-organization
inaSWARM istheability todistributeitself “optimally” for a
giventask, e.g., viageometric pattern formation or structural
organization. SWARM exhibits a distributed architecture,
usualy with no differentiation among members.!” Interac-
tion takes place by each cell reacting to the state of its near-
est neighbors.'® Examples for possible applicationsinclude
large-scale displays and distributed sensing [HW88]. Some-

3| other words, the recipient(s) of the message may be either known or unknown.

4For example, [Wan94] proposesinter-robot communication using a media access
protocol (similar to Ethernet). In [IHH93], robotswith limited communicationrange
communicateto each other using the “hello-call” protocol, by which robotswith lim-
ited communicationrangesestablish “chains’ in order to extend their effective ranges.
[Gag93] describes methodsfor communicatingto many (“zillions”) robots. [AY 093]
proposes a communication protocol modeled after chemical diffusion. Similar com-
municationsmechanismsare studied in [LB92, GD92, DF93].

5The second of two box-pushing protocolsin [DJR94] can achieve “cooperation
without communication” since the object being manipulated also functionsas a“com-
munication channel” that is shared by the robot agents; other works capitalize on the
same concept to derive distributed control laws which rely only on local measures of
force, torque, orientation, or distance, i.e., no explicit communicationis necessary (cf.
[SB93] [HO93]). In atwo-robot bar carrying task, Fukuda and Sekiyama's agents
[FS94] each uses a probabilistic model of the other agent. When a risk threshold
is exceeded, the agent communicates with its partner to maintain coordination. In
[Don93a, Don93b], the theory of information invariants is used to show that extra
hardware capabilities can be added in order to infer the actions of the other agent,
thus reducing communication requirements. Thisisin contrast to [SSH94], where the
robots achieve box pushing but are not aware of each other at all.

6Thework on SWARM systemsbegan aswork on Cellular Robotic Systems(CRS),
where many simple agents occupied one -or two- dimensional environmentsand were
able to perform tasks such as pattern generation and self-organization.

Y An exception is [HB92], where two different types of robots were used.

8Mechanismsfor self-organizationin SWARM arestudiedin[HB92, BW91, BH92,
HB91, JLB9Y4].



times, broadcast communicationisperformed asin [WB8§],
which uses a signboard mechanism.

CEBOT

CEBOT (CEllular RoBQTics System) is a decentralized,
hierarchical architecture inspired by the cellular organiza-
tion of biological entities [FN87, FK93, UF93]. The sys
tem is dynamically reconfigurable in that basic autonomous
“cells’ (robots), which can be physicaly coupled to other
cells, dynamicaly reconfigure their structure to an “opti-
mal” configuration in response to changing environments.
In the CEBQOT hierarchy there are “master cells’ that coor-
dinate subtasks and communicate with other master cells.*®
Communi cationsrequirements have been studied extensively
withrespect tothe CEBOT architecture, and variousmethods
have been proposed that seek to reduce communication re-
quirements by making individual cellsmoreintelligent (e.g.,
enabling them to model the behavior of other cells).?°
ALLIANCE/L-ALLIANCE

The ALLIANCE architecture was developed by Parker
[Par94] in order to study cooperation in a heterogeneous,
small-to-medium-sized team of largely independent, loosely
coupled robots. Robotsare assumed abl e to, with some prob-
ability, sensetheeffectsof their own actionsand theactionsof
other agents through perception and explicit broadcast com-
munications. Individual robotsarebased on abehavior-based
controller with an extension for activating “behavior sets’
that accomplish certaintasks. Thesesetsare activated by mo-
tivational behaviorswhose activationsarein turn determined
by therobots awareness of their teammates. L-ALLIANCE
[Par94] isan extensionto the architecturethat usesreinforce-
ment learning to adjust the parameters controlling behavior
set activation. The ALLIANCE/L-ALLIANCE architecture
has been implemented both on rea robotsand in simulation,
and has been successfully demonstrated for tasks including
box-pushing, puck-gathering, marching in formation, and
simulations of hazardous waste cleanup and janitoria ser-
vice.

Behavior-Based Cooper ative Behavior

Mataric [Mat94d] proposes a behavior-based architecture
for the synthesis of collective behaviors such as flocking,
foraging, and docking based on the direct and temporal com-
position of primitive basic behaviors (safe-wandering, fol-
lowing, aggregation, dispersion, homing). A method for
automatically constructing composite behaviorsbased onre-
inforcement learning is also proposed. The architecture has
been implemented both on groups of up to 20 rea robots
(the largest group reported in the works we surveyed), and
in simulation.

GOFER

The GOFER architecture [CCL*90, LeP90] was used to
study distributed problem solving by multiple mobile robots
in an indoor environment using traditional Al techniques.
In GOFER, a central task planning and scheduling system
(CTPS) communicates with all robots and has aglobal view
of both thetasksto be performed and theavail ability of robots
to perform the tasks. The CTPS generates a plan structure
(template for an instance of aplan) and informsall available

A solution to the problem of electing these master cells was discussed in
[UFA™ 93b]. Formation of structured cellular modulesfrom a population of initially
separated cells was studied in [UF93].

2[Fs94] studiesthe problemof modelingthe behavior of other cells, while[KIF93a,
KI1F93b] present acontrol methodthat cal culatesthegoal of acell based onitsprevious
goa and on its master's goal. [FKA9Q] gives a means of estimating the amount of
information exchanged between cells, and [UFA™ 934] gives a heuristic for finding
master cellsfor a binary communicationtree.

robots of the pending goals and plan structures. Robots use
atask alocation agorithm like the Contract Net Protocol
[Smi80] to determine their roles. Given the goals assigned
during the task allocation process, they attempt to achieve
their goalsusingfairly standard Al planning techniques. The
GOFER architecture was successfully used with three physi-
cal robotsfor tasks such as following, box-pushing, and wall
tracking in a corridor.

2.2 Resource Conflict

When a single indivisible resource is requested by mul-
tiple robots, resource conflict arises. This issue has been
studied in many guises, notably the mutua exclusion prob-
lem in distributed algorithms and the multiaccess problem
in computer networks. With multiple robots, resource con-
flict occurs when there isaneed to share space, manipulable
objects or communication media Few works have deslt
specifically with object sharing or sharing of communication
media. We therefore center on the space sharing problem,
which has been studied primarily via multiple-robot path
planning (the “traffic control” formulation from above) and
the collision and deadlock avoidance problems.

In a multi-robot system, each robot can conceivably plan
a path that accounts for other robots and the global environ-
ment via configuration space-time, explicit models of other
agents, or other techniques (cf. [FS94, Rud94]; also see
Section 2.5). However, researchers considering real-world
multi-robot systems typically conclude that planning paths
in advance is impossible. Thus, robots are often restricted
to prescribed paths or roads, with rules (much like traffic
lawsin the human world) and communications used to avoid
collision and deadlock [CCL+90, AHE*91].

Grossman [Gro88] classifies instances of the traffic con-
trol problemintothreetypes: (i) restricted roads, (ii) multiple
possible roads with robots sel ecting autonomously between
them, and (iii) multiplepossibleroads with centralized traffic
control. When individual robots possess unique roads from
one point to another, no conflict is possible; when there is
global knowledge and centralized control, it is easy to pre-
vent conflict. Thus, theinteresting caseis (ii), where robots
are allowed to autonomously select roads?* (cf. “modest co-
operation” [PY 90], where robots are assumed to be benevo-
lent for the common good of the system). Solutions to the
traffic control problem range from rule-based solutions to

approaches with antecedents in distributed processing.??

2.3 TheOrigin of Cooperation

In amost al of the work in collective robotics so far,
it has been assumed that cooperation is explicitly designed
into the system. An interesting research problem isto study
how cooperation can arise without explicit human motivation
among possibly selfish agents.

McFarland [McF94] distinguishes between two signifi-
cantly different types of group behaviors that are found in

2 Analysisin [Gro88] showsthat restricted roadsare highly suboptimal, and that the
autonomousroad choice coupled with a greedy policy for escaping blocked situations
is far more effective.

21n[KNT92], robotsfollow preplanned pathsand use rulesfor collision avoidance.
Example rules include “keep-right”, “stop at intersection”, “keep sufficient space to
therobot in front of you”, etc. [AOI + 91] solvescollision avoidance using two simple
rules and a communication protocol that resolves conflict by transmitting individual
priorities based on the task requirement, the environment, and robot performance. In
[YP92], the robots stop at an intersection and indicate both the number of robots at
the intersection and the directionsin which they are traveling. If deadlock is possible,
each robot performs*shunting” (trying to obtain high priority) and proceedsaccording
to the agreed-uponpriorities. [Wan91, WB90] adapt solutions (mutual exclusion and
deadlock detection) from distributed processing to solvethe traffic control problem.



nature: eusocial behavior and cooperative behavior. Euso-
cia behavior isfound in many insect species (e.g., colonies
of antsor bees), andistheresult of genetically determinedin-
dividua behavior. Ineusocia societies, individual agentsare
not very capable, but seemingly intelligent behavior arises
out of their interactions. This"“cooperative” behavior is nec-
essary for the survival of the individualsin the colonies.?®

On the other hand, [McF94] defines cooperative behav-
ior as the socid behavior observed in higher animals (ver-
tebrates); cooperation is the result of interactions between
selfish agents. Unlike eusocia behavior, cooperative behav-
ior isnot motivated by innate behavior, but by an intentional
desire to cooperate in order to maximize individua utility.

Inspired by economics and game-theoretic approaches,
[GGR86, RG85, BG88, RZ94] and others have studied the
emergence of cooperation in selfish rationa agents in the
field of distributed artificial intelligence (DAI).

24 Learning

Finding the correct values for control parameters that lead
to a desired cooperative behavior can be a difficult, time-
consuming task for ahuman designer. Therefore, itishighly
desirable for multiple-robot systemsto be ableto learn con-
trol parameter values in order to optimize their task perfor-
mance, and to adapt to changes in the environment. Re-
inforcement learning [BSW83, Kae93] has often been used
in cooperative robotics.?* In addition, techniques inspired
by biological evolution have aso been used in cooperative

robotics.2®

25 Geometric Problems

Because mobile robots can move about in the physical
world and must interact with each other physicaly, geo-
metric problems are inherent to multiple-robot systems.?®
Geometric problems that have been studied in the coopera-
tive robotics literature include multiple-robot path planning,
moving to (and maintaining) formation, and pattern genera-
tion.

(Multiple-Robot) Path Planning

Recall that multiple-robot path planning requires agentsto
plan routes that do not intersect. Thisis a case of resource
conflict, since the agents and their goas are embedded in
a finite amount of space. However, we note path planning
separately because of itsintrinsic geometric flavor aswell as
its historical importance in the literature.

ZIWD92] studies the evolution of herding behavior in “prey” agentsin asimulated
ecology, where there is no a priori drive for cooperation. Recently, [McF94, Ste94]
have laid the initial groundwork to address the problem of emergent cooperation in
an ecological system inhabited by actual mobile robots. In this ecosystem, individual
robots are selfish, utility-driven agents that must cooperate in order to survive (i.e.,
maintain some minimal energy level).

24[Mat94a, M at94h)] proposeareformul ationof thereinforcementlearning paradigm
using higher levels of abstraction (conditions, behaviors, and heterogeneous reward
functionsand progress estimators instead of states, actions, and reinforcement) to en-
ablerobotsto learn acomposite foraging behavior. [Par94] uses standard reinforcement
algorithms to improve the performance of cooperating agents in the L-ALLIANCE
architecture by having the agents learn how to better estimate the performance of
other agents. [SSH94] uses reinforcement learning in a two-robot box-pushing sys-
tem, and [YS92] applies reinforcement learning to learn a simple, artificial robot
language. Other relevant worksin multiagent reinforcementlearning (donein simula-
tion, as opposed to the worksabovewhich were implemented on actual robots) include
[Whi91, Tan93, Lit94].

B[WD92] uses a genetic algorithm [Gol89] to evolve neural network controllers
for simulated “prey” creatures that learn a herding behavior to help avoid predators.
[Rey92] uses genetic programming [Koz90] to evolve flocking behavior in simulated
“boids”

%This distinguishes robotsfrom traditional distributed computer systemsin which
individual nodes are stationary.

Detailed reviews of path planning are found in [Fuj91,
Lat91, AO92]. Fujimura [Fuj91] views path planning as
either centralized (with a universal path-planner making de-
cisions) or distributed (with individual agents planning and
adjusting their paths). Arai and Ota[AO92] make a similar
distinctionin the nature of the planner, and also alow hybrid
systemsthat can be combinationsof on-line, off-line, central-
ized, or decentralized. Latombe [Lat91] gives a somewhat
different taxonomy: his “centralized planning” is planning
that takes into account all robots, while “decoupled” plan-
ning entails planning the path of each robot independently.
For centralized planning, several methods used for single-
robot systems can be applied. For decoupled planning, two
approaches are given: (i) prioritized planning considers one
robot at a time according to a global priority, while (ii) the
path coordination method essentially plans paths by schedul -
ing the configuration space-time resource.?’

The Formation and Marching Problems

The Formation and Marching problems respectively re-
quire multiple robots to form up and move in a specified
pattern. Solving these problemsis quite interesting in terms
of distributed algorithms [SS90], balancing between global
and local knowledge [Par94],? and intrinsicinformation re-
quirements for a given task. Solutions to Formation and
Marching are also useful primitives for larger tasks, eg.,
moving a large object by a group of robots [SB93]%° or dis-
tributed sensing [WB8S].

The Formation problem seems very difficult, e.g., no pub-
lished work has yet given a distributed “circle-forming” a-
gorithm that guarantees the robots will actually end up in
a circdle® We observe that the circle-forming problem,
while quite simple, reveals severa pitfals in formulating
distributed geometric tasks. For example, the ability of an
individua agent to sense attributes of the formation must be
carefully considered: too much information makesthe prob-
lemtrivia, buttoolittleinformation (e.g., returnsfromlocal -
ized sensors) may prevent a solution (e.g., robots may never
find each other). Information lower bounds (e.g., for robots
to be able to redlize that they have achieved the prescribed
formation) are also largely unexplored in the literature.

Related to the Formation problem isthe pattern generation
problem in Cellular Robotic Systems. A Cellular Robotic
System (CRS) is a multiple-robot system which can “en-
code information as patterns of its own structura units’
[Ben88]. Typicaly, one- or two-dimensional grids consti-
tute the workspace, and sensing of neighboring cdllsis the
only input. Within these constraints, a set of rulesis devised
and appliedto all agents; astandard result isto show insimu-
lation that convergence to some spatial patternis guaranteed.
The meaningful aspect of thiswork liesin providingasystem
with the capability of spatial self-organization: without in-

2"The work of [ELP86] isa typical decoupled approach where every robot is prior-
itized and robots plan global paths with respect to only higher-priority robots. On the
other hand, [ Y B87] presentsa distributed approach.

B[Par93] studies the problem of keeping four marching robots in a side-by-side
formation; thisincreasesin difficulty whentheleader hasto performobstacleavoidance
or other maneuvers. Parker also defines the concepts of global goals and global/local
knowledge. To study the effects of different distributions of global goals and global
knowledge, four strategies are compared both in simulation and on mobile robots.

2[CL944] usespositional constraint conditionsin agroup of robotsthat makesturns
while maintaining an array pattern. In [CL94b] aleader-follower approach is used to
solveasimilar task.

DFor thecircle-forming problem, thebest known sol utionisthedistributed algorithm
of [SS90], which guarantees only that the robots will end up in a shape of constant
diameter (e.g., a Reuleaux triangle can be the result). [CL94a, CL94b] extend the
method of [SS90] to incorporate collision avoidance when the robots are moving.
[YA94] approachesthe shape-generationproblem using systems of linear equations.



tervention, a CRS will reconfigure itself in certain situations
or under certain conditions.3!

3 Pergpectives

As an integrative engineering discipline, robotics has d-
ways had to confront technological constraintsthat limit the
domains that can be studied. Cooperative robotics has been
subject to these same constraints, but the constraintstend to
be more severe because of the need to cope with multiple
robots. At the same time, cooperative roboticsis a highly
interdisciplinary field that offers the opportunity to draw in-
fluences from many other domains. We first outline some
of the technologica constraints that face the field. We then
mention somedirectionsinwhich cooperativeroboticsmight
progress, and describe related fields that have provided and
will continueto provide influences.

3.1 Technological Constraints

It is clear that technological constraints have limited the
scope of implementations and task domains attempted in
multiple-robot research systems.

One obvious problem that arises is the general problem
of researchers having to solve variousinstances of thevision
problem before being abl e to make progressin “ higher-level”
problems. Often, difficulties arising from having to solve
difficult perceptua problems can limit the range of tasks
that can be implemented on a multiple-robot platform.®? In
addition, robot hardware is also notoriously unreliable; as a
result, it is extremely difficult to maintain a fleet of robots
in working condition. Again, collective robotics must desl
with all of the hardware problems of single-agent robotics
systems, exacerbated by the multiplicity of agents.

Dueto thedifficultiesencountered when working withreal
robots (such as those outlined above), much of collective
robotics has been studied exclusively in smulation. Some
researchers have argued (cf. [Bro91]) that by ignoring most
of the difficulties associated with perception and actuation,
simulations ignore the most difficult problems of robotics.
By making overly simplistic assumptions, it is possible to
generate “successful” systems in simulation that would be
infeasiblein therea world.3® Nevertheless, simulation must
inevitably play arole in multi-agent robotics at some level.
Although it is currently possible for researchers to study
groups of 10-20 robots, it is unlikely that truly large-scale
collective behavior involving hundreds or thousands of real
robotswill be feasible at any timein the near future.

An approach taken by some researchers is to use sm-
ulations as prototypes for larger-scale studies, and small
numbers of real robots as a proof-of-concept demonstration
[Mat94a, Par94]. On the other hand, some researchers, cit-
ing the necessity of working in the real world domain, have
chosen to eschew simulationsatogether and implement their
theoriesdirectly on actual robots|[BHD94, McF94, Ste94] .34

31in [WB88], a CRS is characterized as an arbitrary number of robotsin a one- or
two-dimensiona grid. Therobotsare ableto sense neighboringcells and communicate
with other robots via a signboard mechanism. Protocols are presented for creating
different patterns (see also [EZ88]). An analogous cellular approach is adopted in
[GDMO92].

32For example, in cooperativeroboticssystemswhere modeling of other agents (see
2.1.4) is used, the lack of an effective sensor array can render the system unimple-
mentablein practice.

3B Conversely, mobile research robots can also come to “look like the simulator”,
i.e., circular footprint, sonar ring, synchro-driveis acommon configuration.

3 An alternate approach adopted in [HB94], a study of locomotionin large herds of
(upto 100) one-leggedrobots, isto designavery physically realistic simulation. While
thisapproachbringsrealism to actuation, theissue of perceptionisstill simulated away;

3.2 Towardsa Science of Cooperative Robotics

Thefield of cooperative maobile robotics offers an incred-
ibly rich application domain, integrating a huge number of
distinct fields from the social sciences, life sciences, and en-
gineering. That so many theories have been brought to bear
on“cooperativerobotics’ clearly showstheenergy andtheal -
lureof thefield. Yet, cooperativeroboticsisstill an emerging
field, and many open directions remain. In this section, we
point out some promising directionsthat have yet to be fully
explored by the research community. By way of a preface,
we also point out three “cultural” changes which may come
as the field matures: (1) Because of the youth of the field,
cooperative robotics research has been necessarily rather in-
formal and “concept” oriented. However, the devel opment
of rigorousformalismsisdesirableto clarify variousassump-
tionsabout the systems being discussed, and to obtainamore
precise language for discussion of eusive concepts such as
cooperation.® (2) Forma metrics for cooperation, system
performance, aswell as grades of cooperation are noticeably
missing from the literature. While the notion of cooperation
is difficult to formalize, such metrics will be very useful in
characterizing various systems, and would improve our un-
derstanding of the nature of agent interactions.®¢ (3) Exper-
imental studies might become more rigorous and thorough,
e.g., viastandard benchmark problems and a gorithms. This
is chalenging in mobile robotics, given the noisy, system-
specific nature of the field. Nevertheless, it is necessary for
claimsabout “robustness’ and “ near-optimality” to be appro-
priately quantified, and for dependencies on various control
parameters to be better understood.®”

Finally, several basic analogies remain incomplete, and
must be revisited and resynthesized as the field matures.
For instance, many multi-robot problemsare“canonica” for
distributed computation and are interesting primarily when

viewed in thislight.3 More generally, it islikely that more
structural and |ess superficial anal ogieswith other disciplines
will be needed in order to obtain “principled” theories of co-
operation among (mobile) robots; integration of formalisms
and methodologies developed in these more mature disci-
plinesislikely to be an important step in the devel opment of
cooperative robotics. Disciplinesmost critical to the growth
of cooperativeroboticsare: distributed artificial intelligence,
biology, and distributed systems.

Distributed Artificial Intelligence

The field of distributed artificial intelligence (DAI) con-
cernsitself withthestudy of distributed systems of intelligent
agents. As such, this field is highly relevant to coopera
tive robotics. Bond and Gasser [BG88] define DAI as “the
subfield of artificia intelligence (Al) concerned with con-
currency in Al computations, a many levels” Grounded

itis gtill unclear whether it will be feasible to realistically model sophisticated agents
in more complex environments, or whether the effort will outweigh the benefits.

5[Par94], which presents a formalization of motivational behavior in the AL-
LIANCE architecture, is a notable exception.

B[ Mat944] has suggested parameterssuch as agent density for estimating interfer-
encein amulti-robot system. However, much morework in this areais necessary.

3"For example, we note that despite a number of claims that various decentralized
approaches are superior to centralized approaches, we have not seen any thorough,
published experimental comparisons between the major competing paradigms on a
particular task.

3B A typical example is moving to formation, which has been solved optimally in
the computational geometry literature (it is the “ geometric matching under isometry”
problem [PH92]), but which is difficult in the distributed context due to issues like
synchronization, fault-tolerance, leader election, etc. However, the distributed context
can be selectively ignored, e.g., [SS90] use “human intervention” to perform what is
essentially leader election (breaking symmetry in acircle of robotsto choose vertices
of thedesired polygonal formation). The introduction of such devices runs counter to
theimplicit assumption that it is the distributed problem that holds research interest.




in traditional symbolic Al and the socia sciences, DAI is
composed of two magjor areas of study: Distributed Problem
Solving (DPS) and Multiagent Systems (MAYS).

Research in DPS is concerned with the problem of solv-
ing a single problem using many agents. Agents can coop-
erate by independently solving subproblems (task-sharing),
and by periodically communicating partia solutionsto each
other (result-sharing). DPS involves three possibly overlap-
ping phases: (i) problem decomposition (task allocation),
(ii) subproblem solution, and (iii) solution synthesis.3® The
ACTOR formaism [Hew77] is a significant computational
model, developed in DAI, which maps naturally to parallel
computation.*° One important assumption in DPS is that
the agents are predisposed to cooperate. Research in DPS
is thus concerned with devel oping frameworks for coopera-
tive behavior between willing agents, rather than devel oping
frameworks to enforce cooperation between potentialy in-
compatible agents, as is the case with multiagent systems
and distributed processing.

Multiagent Systems (MAS) research is the study of the
collective behavior of a group of possibly heterogeneous
agents with potentialy conflicting goals. In other words,
researchers in MAS discard the “benevolent agent” assump-
tion of DPS [GGR86]. Genesereth et al. [GGR86] state
the centra problem of MAS research as follows: “in a
world in which we get to design only our own inteli-
gent agent, how should it interact with other intelligent
agents?’ Therefore, areas of interest in MAS research
include game-theoretic analysis of multi-agent interactions
(cf. [GGR86, RG85, RZ94]), reasoning about other agents
goals, beliefs, and actions (cf. [Geo83, Geo84, Ros82]), and
analysis of the complexity of socia interactions[ST92].

The influence of DAI on cooperative robotics has been
limited. This is in part because researchers in DAI have
mostly concentrated on domains where uncertainty isnot as
much of an issue as it is in the physical world. Work in
MAS has tended to be theoretical and in very abstract do-
mainswhere perfect sensing isusually assumed; typical DPS
domainsarein disembodied, knowledge-based systems. An-
other isthat athough agents may be selfish, they arerationa
and highly deliberative. However, achieving strict criteria of
rationality and deliberativeness can often be prohibitively ex-
pensive in current robotic systems. Thus, it has been argued
that DAI, while suited for unsituated, knowledge-based sys-
tems, will not succeed in the domain of cooperative robotics
[Par94, Mat94a] .4
Biology

Biological analogies and influences abound in the field
of cooperative robotics. The magjority of existing work in
the field has cited biological systems as inspiration or jus-
tification. Well-known collective behaviors of ants, bees,
and other eusocial insects [Wil71] providestriking existence
proofs that systems composed of simple agents can accom-
plish sophisticated tasks in the real world. It iswidely held
that the cognitive capabilities of these insects are very lim-
ited, and that complex behaviors emerge out of interactions

%perhaps the best known scheme for task allocation problem is the Contract Net
Protocol [Smi8d], which hasbeen usedinthe ACTRESS[IAT T 94, AOI T 94, 0AI T 93]
and GOFER [CCLT 90] projects.

“Thiswork was the basis for the ACTRESS system [AMI189].

“L1t must be noted that direct comparisons of DAl and alternative paradigms are
notably missing from the literature; such comparisons are needed to evaluate the true
utility of DAI techniquesin cooperativerobotics. Also, aslower-level processes (per-
ception and actuation) are better understood and implemented, and as computational
power increases, the high-level results of DAI research may become increasingly ap-
plicableto collective mobilerobotics.

between the agents, which are individually obeying sim-
ple rules. Thus, rather than following the Al tradition of
modeling robots as rational, deliberative agents, some re-
searchers in cooperative roboti cs have chosen to take amore
“bottom-up” approach in which individua agents are more
like ants — they follow simple rules, and are highly reac-
tive.ootnoteThis is the approach taken in the field of Artifi-
cia Life. Worksbased on thisinsect-colony analogy include
[Mat94a, BHD94, SB93, DA93, JB94]. The pattern gen-
eration of CRS's can aso be considered as bottom-up (see
Section 2.5), since each robot is designed as a very smple
agent which follows a set of prespecified rules.

A moregeneral, biological*? metaphor that isoften used in
cooperétive roboticsis the concept of a self-organizing sys-
tem [NP77, Yat87].*® Representative work that is based on
this concept includes [WB88, Ste90, HB91, HB92, BH92].
Self-organization in multi-cellular biologica systems has
been an inspiration for [Ben88, EZ88, HW88, GDMQ92].
Hierarchical organization of biologica multi-cellular organ-
isms (i.e., from cellular to tissue to organism level) has been
used as a guiding metaphor for cellular robotics in the CE-
BOT project [FN87]. Biologica anaogies have aso in-
fluenced the choice of task domains studied in cooperative
robotics (note the large body of work on foraging and flock-
ing/herding tasks). Finally, as we noted in Section 2.4, there
have been some biologica influences on the learning and
optimization algorithms used to tune control parameters in
multiple-robot systems.

Distributed Systems

A multiple-robot system isin fact a specia case of adis
tributed computing system. Thus, the field of distributed
systems is a natural source of ideas and solutions. [Ben88]
describes cellular roboticsas belongingto the general field of
distributed computing. It is noted, however, that distributed
computing can only contribute general theoretical founda
tions and that further progress needs to be made concern-
ing the application of such methods to collective robotics.
[WBOQ] states, “a distributed computing system contains a
collection of computing devices which may reside in graph-
ically separated locations called sites” By noting the sim-
ilarities with distributed computing, theories pertaining to
deadlock [WB88, WB90], message passing [WB90] and re-
source allocation [Wan91] have been applied to collective
roboticsin a number of works* See also the discussion in
Section 2.1.1 and Section 2.5.

Broadcast communication, which is widely assumed in
cooperétive robotics, exhibits poor scaling properties. As
robots become more numerous and widely distributed, tech-
niques and issues from the field of networking become rel-
evant. A rich body of research on agorithms, protocols,
performance modeling and analysis in computer networks
can be applied to cooperative robotics.*®

Finally, distributed control is a promising framework for
the coordination of multiplerobots. Dueto difficulty of sens-

“?Researchers from many fields have studied self-organization; it is by no means
an exclusively biological concept. However, in cooperative robotics references to
self-organization have often been madein abiological context.

“Note that the behavior of insect colonies described above can be characterized
moregeneraly as that of self-organizing systems.

“Inwork doneon multipleAGV systems, deadl ock detection and resourceallocation
methods are applied to allow many robotsto share the limited resource of path space
[Wan91]. Pattern generation in a CRS may also rely on distributed computing to
resolve conflicts[Wan91, WB90]. Finally, [Wan93, Wan94] describe atask allocation
agorithmwherethe robotsvie for the right to participatein a task.

“There is currently a great amount of effort being put into studying networking
issues related to mobile/nomadi c/ubiquitous computing (cf.[AP91, BAI94, Wei93]).



ing and communication, a parsimonious formulation which
can coordinate robotshaving minimal sensing and communi-
cation capabilitiesisdesirable. Inanidea scenario, maximal
fault tolerance is possible, modeling of other agents is un-
necessary, and each agent is controlled by a very simple
mechanism.*6

4 Conclusions

Inthispaper we synthesized aview of thetheoretical bases
for research in cooperative mobile robotics. Key research
axes in the field were identified, particularly with respect to
achieving a“mechanism of cooperation”, and existing works
were surveyed in thisframework. We then discussed techno-
logical constraints and interdisciplinary influences that have
shaped thefield, and offered some general preceptsfor future
growth of thefield. Finally, weidentified distributedartificial
intelligence, biology, and distributed systems as disciplines
that are most relevant to cooperative robotics, and which
are most likely to continue to provide valuable influences.
Based on our synthesis, a number of open research areas
become apparent. We believe that the following are among
the mgjor, yet tractable, challenges for the near future: (1)
robust definitions and metrics for various forms of cooper-
ation, (2) achieving a more complete theory of information
requirementsfor task-solvingin spatial domains, perhaps for
the canonical tasks of pattern formation or distributed sens-
ing (e.g., measures of pattern complexity, information lower
boundsfor pattern recognition and maintenance, abstraction
of sensor models from the solution approach), (3) principled
transfer of the concepts of fault-toleranceand reliability from
the field of distributed and fault-tolerant computing, (4) in-
corporation of recent ideas in distributed control to achieve
oblivious cooperation or cooperation without communica
tion (e.g., when robots have minimal sensing and communi-
cation capabilities), (5) achieving cooperation within com-
petitive situations (e.g., for robot soccer, or pursuit-evasion
with multiplepursuers and evaders), and (6) deepening etho-
logical analogies, e.g., integrating known data regarding in-
formation structures (cognitive maps) of animals that to-
gether solve various cooperative tasks.
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