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Abstract
There has been increased research interest in systems composed of mul-

tiple autonomous mobile robots exhibiting collective behavior. Groups of
mobile robots are constructed, with an aim to studying such issues as group
architecture, resource conflict, origin of cooperation, learning, and geomet-
ric problems. As yet, few applications of collective robotics have been
reported, and supporting theory is still in its formative stages. In this paper,
we give a critical survey of existing works and discuss open problems in
this field, emphasizing the various theoretical issues that arise in the study
of cooperative robotics. We describe the intellectual heritages that have
guided early research, as well as possible additions to the set of existing
motivations.

1 Preliminaries
There has been much recent activity toward achieving sys-

tems of multiple mobile robots engaged in collective behav-
ior. Such systems are of interest for several reasons: (1)
tasks may be inherently too complex for a single robot to
accomplish, or performance benefits can be gained from us-
ing multiple robots; (2) building and using several simple
robots can be easier, cheaper, more flexible and more fault-
tolerant than having a single powerful robot for each separate
task; and (3) insight into social sciences (organization theory,
economics), life sciences (theoretical biology, animal ethol-
ogy) and cognitive science (psychology, learning, artificial
intelligence) may be derived from multi-robot experimental
systems.

The study of multiple robots naturally extends research
on single-robot systems, but is also a discipline unto itself:
multiple-robot systems can accomplish tasks that no sin-
gle robot can accomplish, since ultimately a single robot,
no matter how capable, is spatially limited. Multiple-robot
systems are also different from other distributed systems be-
cause of their implicit “real-world” environment, which is
presumably more difficult to model and reason about than
traditional components of distributed system environments
(i.e., computers, databases, networks).

The term collective behavior generically denotes any be-
havior of agents in a system having more than one agent.
Cooperative behavior, which is the subject of the present sur-
vey, is a subclass of collective behavior that is characterized
by cooperation. Webster’s dictionary [MW63] defines “co-
operate” as “to associate with another or others for mutual,
often economic, benefit”. Explicit definitions of cooperation
in the robotics literature, while surprisingly sparse, include:
(a) “joint collaborative behavior that is directed toward some
goal in which there is a common interest or reward” [BG91];
(b) “a form of interaction, usually based on communication”
[Mat94a]; and (c) “[joining] together for doing something
that creates a progressive result such as increasing perfor-
mance or saving time” [PY90]

These definitions show the wide range of possible mo-
tivating perspectives. For example, definitions such as (a)
typically lead to the study of task decomposition, task allo-
cation, and other distributed artificial intelligence (DAI) is-
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sues (e.g., learning, rationality). Definitions along the lines
of (b) reflect a concern with requirements for information or
other resources, and may be accompanied by studies of re-
lated issues such as correctness and fault-tolerance.1 Finally,
definition (c) reflects a concern with quantified measures of
cooperation, such as speedup in time to complete a task.
Thus, in these definitions we see three fundamental seeds:
the task, the mechanism of cooperation, and system perfor-
mance.

We define cooperative behavior as follows: Given some
task specified by a designer, a multiple-robot system displays
cooperative behavior if, due to some underlying mechanism
(i.e., the “mechanism of cooperation”), there is an increase
in the total utility of the system. Intuitively, cooperative
behavior entails some type of performance gain over naive
collective behavior. The mechanism of cooperation may lie
in the imposition by the designer of a control or communi-
cation structure, in aspects of the task specification, in the
interaction dynamics of agent behaviors, etc.2

In this paper, we survey the intellectual heritage and major
research directions of the field of cooperative robotics. For
this survey of cooperative robotics to remain tractable, we
restrict our discussion to works involving mobile robots or
simulations of mobile robots, where a mobile robot is taken
to be an autonomous, physically independent, mobile robot.
Thus, we do not discuss coordination of multiple manipula-
tors, articulated arms, multi-finger hands, etc.3

Toward a Picture of Cooperative Robotics
In the mid-1940’s Grey Walter, along with Wiener and

Shannon, studied turtle-like robots equipped with light and
touch sensors; these simple robots exhibited “complex social
behavior” in responding to each other’s movements [Dor90].
Coordination and interactions of multiple intelligent agents
have been actively studied in the field of distributed artificial
intelligence (DAI) since the early 1970’s [BG88], but the
DAI field concerned itself mainly with problems involving
software agents. In the late 1980’s, the robotics research
community became very active in cooperative robotics, be-
ginning with projects such as ACTRESS [AMI89], CE-
BOT [FN87], GOFER [CCL+90], SWARM [Ben88] and
the work at Brussels [Ste90]. This early research was done
primarily in simulation;4 thus, several more recent works (cf.
[KZ92, Mat92, Par92]) are significant for their emphasis on
the actual physical implementation of cooperative robotic
systems.

1This is a characterizationof the definition itself; the leadingmotivation in [Mat94a]
was actually the social nature of intelligence and its manifestation in group behaviors.

2In this work, we do not discuss the competitive subclass of collective behavior,
which includes pursuit-evasion [Rey94, MC94] and one-on-one competitive games
[AUN+94]. Note that a cooperative team strategy for, e.g., the robot soccer league
recently proposed by [Kit94] would lie within our present scope.

3Even with this restriction, we find that in 7 years ( 1987 - 1994 ) well over 200
papers have been published in this field of cooperative(mobile) robotics, encompassing
theories fromsuch diverse disciplines as artificial intelligence, game theory/economics,
theoretical biology, distributed computing/control, animal ethology and artificial life.

4While CEBOT, ACTRESS and GOFER have all had physical implementations
(with � 3 robots), in some sense these implementations were presented by way of
proving the simulation results.



The rapid progress of cooperative robotics since the late
1980’s has been an interplay of systems, theories and prob-
lems: to solve a given problem, systems are envisioned, sim-
ulated and built; theories of cooperation are brought from
other fields; and new problems are identified (prompting fur-
ther systems and theories). Since so much of this progress
is recent, it is not easy to discern deep intellectual heritages
from within the field. More apparent are the intellectual her-
itages from other fields, as well as the canonical task domains
which have driven research. Three examples of the latter are:
� Traffic Control. When multiple agents move within a
common environment, they typically attempt to avoid col-
lisions. Fundamentally, this may be viewed as a problem
of resource conflict, which may be resolved by introducing,
e.g., traffic rules, priorities, or communication architectures.
From another perspective, path planning must be performed
taking into consideration other robots and the global envi-
ronment; this multiple-robot path planning is an intrinsically
geometric problem in configuration space-time. Note that
prioritization and communication protocols – as well as the
internal modeling of other robots – all reflect possible vari-
ants of the group architecture of the robots.
� Box-Pushing. Many works have addressed the box-
pushing (or couch-pushing) problem, for widely vary-
ing reasons. The focus in [Par94] is on task alloca-
tion, fault-tolerance and (reinforcement) learning. By con-
trast, [DJR94] studies two box-pushing protocols in terms
of their intrinsic communication and hardware require-
ments, via the concept of information invariants. Other
works in the box-pushing/object genre manipulation include
[WNM94, MHB94, SB93, JB94].
� Foraging. In foraging, a group of robots must pick up
objects scattered in the environment; this is evocative of
toxic waste cleanup, harvesting, search and rescue, etc. The
foraging task is one of the canonical testbeds for cooperative
robotics [Ste90, Ark92, GD92, LB92, DF93, AH93, Mat94a,
BHD94].5 A wide variety of techniques have been proposed,
ranging from simple stigmergy 6 [BHD94] to more complex
algorithms in which robots form chains along which objects
are passed to the goal [DF93]. Again, group architecture
and learning are major research themes in addressing this
problem.

Organization of Paper
With respect to our above definition of cooperative be-

havior, we find that the great majority of the cooperative
robotics literature centers on the mechanism of cooperation.
(I.e., few works study a task without also claiming some
novel approach to achieving cooperation.) Thus, our study
has led to the synthesis of five “Research Axes” which we
believe comprise the major themes of investigation to date
into the underlying mechanism of cooperation.7

5The task is interesting because it can be performed by each robot independently
(i.e., the issue is whether multiple robots achieve a performance gain). There are some
conceptual overlaps with the related task of materials handling in a manufacturing
workcell [DA93].

6[BHD94] defines stigmergy as “the productionof a certain behaviour in agents as a
consequence of the effects produced in the local environment by previous behaviour”.
This is actually a form of “cooperation without communication”, which has been the
stated object of several foraging solutions since the corresponding formulations become
nearly trivial if communication is used. However, note also that stigmergy may not
satisfy our above definition of cooperation, since there is no performanceimprovement
over the “naive algorithm” (in this particular case, the proposed stigmergic algorithm
is the naive algorithm).

7Note that our survey concentrates on fundamental theoretical issues that impinge
on cooperative robotics. Thus, we do not discuss several important practical concerns,
such as the user interface issues that arise with multiple-robot systems [YSA+94,
AA94, NR91]. In addition, emerging technologies such as nanotechnology [Dre92]

Section 2 of this paper describes these axes, which are:
2.1 Group Architecture, 2.2 Resource Conflict, 2.3 Origin
of Cooperation, 2.4 Learning, and 2.5 Geometric Problems.
In Section 3, we present more synthetic reviews of coopera-
tive robotics: Section 3.1 discusses constraints arising from
technological limitations; and Section 3.2 discusses possi-
ble lacunae in existing work (e.g., formalisms for measuring
performance of a cooperative robot system), then reviews
three fields which we believe must strongly influence future
work. We conclude in Section 4 with a list of key research
challenges facing the field.

2 Research Axes
Seeking a mechanism of cooperation may be rephrased as

the “cooperative behavior design problem”: Given a group of
robots, an environment, and a task, how should cooperative
behavior arise?8 In some sense, every work in cooperative
robotics has addressed facets of this problem, and the ma-
jor research axes of the field follow from elements of this
problem.

First, the realization of cooperative behavior must rely on
some infrastructure, the group architecture. This encom-
passes such concepts as robot heterogeneity/homogeneity,
the ability of a given robot to recognize and model other
robots, and communication structure. Second, for multiple
robots to inhabit a shared environment, manipulate objects in
the environment, and possibly communicate with each other,
a mechanism is needed to resolve resource conflicts. The
third research axis, origins of cooperation, refers to how
cooperative behavior is actually achieved.9 Because adapt-
ability and flexibility are essential traits in a task-solving
group of robots, we view learning as a fourth key to achiev-
ing cooperative behavior.10 Whereas the first four axes are
related to the generation of cooperative behavior, our fifth
and final axis – geometric problems – covers research is-
sues that are tied to the embedding of robot tasks in a two- or
three-dimensional world. These issues include multi-agent
path planning, moving to formation, and pattern generation.

2.1 Group Architecture
The architecture of a computing system has been defined

as “the part of the system that remains unchanged unless
an external agent changes it” [Van91]. The group architec-
ture of a cooperative robotic system provides the infrastruc-
ture upon which collective behaviors are implemented and
determines the capabilities and limitations of the system.
We now briefly discuss some of the key architectural fea-
tures of a group architecture for mobile robots: centraliza-
tion/decentralization, differentiation, communications, and

and Micro Electro-Mechanical Systems [MGT88] that are likely to be very important
to cooperative robotics are beyond the scope of this paper.

8Note that certain basic robot interactions are not task-performing interactions per
se, but are rather basic primitives upon which task-performing interactions can be built
(e.g., following ([Con87, DJR94] and many others) or flocking [Rey87, Mat94a]). It
might be argued that these interactions entail “control and coordination” tasks rather
than “cooperation” tasks, but our treatment does not make such a distinction.

9We do not discuss instances where cooperation has been “explicitly engineered”
into the robots’ behavior since this is the default approach. Instead, we are more
interested in biological parallels (e.g., to social insect behavior), game-theoretic justi-
fications for cooperation, and concepts of emergence.

10One important mechanism in generating cooperation,namely, task decomposition
and allocation, is not considered a research axis since (i) very few works in cooperative
robotics have centered on task decomposition and allocation (with the notable exception
of [Par94]), (ii) cooperative robot tasks (foraging, box-pushing) in the literature are
simple enough that decomposition and allocation are not required in the solution, and
(iii) the use of decomposition and allocation depends almost entirely on the group
architectures (e.g. whether it is centralized or decentralized).



the ability to model other agents. We then describe several
systems that have addressed these specific problems.

2.1.1 Centralization/Decentralization

The most fundamental decision that is made when defining
a group architecture is whether the system is centralized or
decentralized, and if it is decentralized, whether the sys-
tem is hierarchical or distributed. Centralized architectures
are characterized by a single control agent. Decentralized
architectures lack such an agent. There are two types of de-
centralized architectures: distributed architectures in which
all agents are equal with respect to control, and hierarchical
architectures which are locally centralized.

Currently, the dominant paradigm is the decentralized
approach.11 The behavior of decentralized systems is of-
ten described using such terms as “emergence” and “self-
organization.”12 It is widely claimed that decentralized archi-
tectures (e.g., [BHD94, Ark92, Ste94, Mat94a]) have several
inherent advantages over centralized architectures, including
fault tolerance, natural exploitationof parallelism, reliability,
and scalability.

2.1.2 Differentiation

We define a group of robots to be homogeneous if the capabil-
ities of the individual robots are identical, and heterogeneous
otherwise. In general, heterogeneity introduces complex-
ity since task allocation becomes more difficult, and agents
have a greater need to model other individuals in the group.
The literature is currently dominated by works that assume
homogeneous groups of robots. However, some notable ar-
chitectures can handle heterogeneity, e.g., ACTRESS and
ALLIANCE (see Section 2.1.5 below). In heterogeneous
groups, task allocation may be determined by individual ca-
pabilities, but in homogeneous systems, agents may need to
differentiate into distinct roles that may be known at design-
time, or rise dynamically at run-time.

2.1.3 Communication Structures

The communication structure of a group determines the pos-
sible modes of interagent interaction. We characterize three
types of interactions that can be supported.
Interaction via environment

The simplest, most limited type of interaction occurs when
the environment itself is the communication medium (in ef-
fect, a shared memory), and there is no explicit communi-
cation or interaction between agents. Systems that depend
on this form of interaction include [GD92, BHD94, Ark92,
Ste90, TK93, Tun94, SSH94].
Interaction via sensing

Corresponding to arms-length relationships in organiza-
tion theory [Hew93], this refers to local interactions that oc-
cur between agents as a result of agents sensing one another,
but without explicit communication. Collective behaviors
that can use this kind of interaction include flocking and pat-
tern formation (keeping in formation with nearest neighbors).
This type of interaction requires that agents can distinguish
between other agents in the group and other objects in the
environment.
Interaction via communications

11We have not found any instances of systems that are centralized.
12The definitions of these notions have been the subject of much intellectual debate.

We do not define them here, and appeal to their intuitive definition.

The third form of interaction involves explicit communi-
cation with other agents, by either directed or broadcast in-
tentional messages.13 Because architectures that enable this
form of communication are similar to networks, many stan-
dard issues from the field of networks arise, including the de-
sign of network topologies and communications protocols.14

2.1.4 Modeling of Other Agents
Modeling the intentions, beliefs, actions, capabilities, and
states of other agents can lead to more effective cooperation
between robots. Communications requirements can also be
lowered if each agent has the capability to model other agents.
Note that the modeling of other agents entails more than
implicit communication via the environment or perception:
modeling requires that the modeler has some representation
of another agent, and that this representation can be used to
make inferences about the actions of the other agent.

In cooperative robotics, agent modeling has been explored
most extensively in the context of manipulating a large object.
Many solutions have exploited the fact that the object can
serve as a common medium by which the agents can model
each other.15

2.1.5 Representative Architectures
All systems implement some group architecture. We now de-
scribe several particularly well-defined representative archi-
tectures, along with works done within each of their frame-
works. It is interesting to note that these architectures en-
compass the entire spectrum from traditional AI to highly
decentralized approaches.
SWARM

A SWARM is a distributed system with a large number
of autonomous robots [JLB94]. SWARM intelligence is “a
property of systems of non-intelligent robots exhibiting col-
lectively intelligent behavior” [HB91]. 16 Self-organization
in a SWARM is the ability to distribute itself “optimally” for a
given task, e.g., via geometric pattern formation or structural
organization. SWARM exhibits a distributed architecture,
usually with no differentiation among members.17 Interac-
tion takes place by each cell reacting to the state of its near-
est neighbors.18 Examples for possible applications include
large-scale displays and distributed sensing [HW88]. Some-

13In other words, the recipient(s) of the message may be either known or unknown.
14For example, [Wan94] proposes inter-robot communication using a media access

protocol (similar to Ethernet). In [IHH93], robots with limited communication range
communicate to each other using the “hello-call” protocol, by which robots with lim-
ited communication ranges establish “chains” in order to extend their effective ranges.
[Gag93] describes methods for communicating to many (“zillions”) robots. [AYO93]
proposes a communication protocol modeled after chemical diffusion. Similar com-
munications mechanisms are studied in [LB92, GD92, DF93].

15The second of two box-pushing protocols in [DJR94] can achieve “cooperation
without communication” since the object being manipulated also functions as a “com-
munication channel” that is shared by the robot agents; other works capitalize on the
same concept to derive distributed control laws which rely only on local measures of
force, torque, orientation, or distance, i.e., no explicit communication is necessary (cf.
[SB93] [HO93]). In a two-robot bar carrying task, Fukuda and Sekiyama’s agents
[FS94] each uses a probabilistic model of the other agent. When a risk threshold
is exceeded, the agent communicates with its partner to maintain coordination. In
[Don93a, Don93b], the theory of information invariants is used to show that extra
hardware capabilities can be added in order to infer the actions of the other agent,
thus reducing communication requirements. This is in contrast to [SSH94], where the
robots achieve box pushing but are not aware of each other at all.

16The work on SWARM systems began as work on Cellular Robotic Systems (CRS),
where many simple agents occupied one -or two- dimensional environments and were
able to perform tasks such as pattern generation and self-organization.

17An exception is [HB92], where two different types of robots were used.
18Mechanisms for self-organizationin SWARM are studied in [HB92, BW91, BH92,

HB91, JLB94].



times, broadcast communication is performed as in [WB88],
which uses a signboard mechanism.
CEBOT

CEBOT (CEllular RoBOTics System) is a decentralized,
hierarchical architecture inspired by the cellular organiza-
tion of biological entities [FN87, FK93, UF93]. The sys-
tem is dynamically reconfigurable in that basic autonomous
“cells” (robots), which can be physically coupled to other
cells, dynamically reconfigure their structure to an “opti-
mal” configuration in response to changing environments.
In the CEBOT hierarchy there are “master cells” that coor-
dinate subtasks and communicate with other master cells.19

Communications requirements have been studied extensively
with respect to the CEBOT architecture, and various methods
have been proposed that seek to reduce communication re-
quirements by making individual cells more intelligent (e.g.,
enabling them to model the behavior of other cells).20

ALLIANCE/L-ALLIANCE
The ALLIANCE architecture was developed by Parker

[Par94] in order to study cooperation in a heterogeneous,
small-to-medium-sized team of largely independent, loosely
coupled robots. Robots are assumed able to, with some prob-
ability, sense the effects of their own actions and the actions of
other agents through perception and explicit broadcast com-
munications. Individual robots are based on a behavior-based
controller with an extension for activating “behavior sets”
that accomplish certain tasks. These sets are activated by mo-
tivational behaviors whose activations are in turn determined
by the robots’ awareness of their teammates. L-ALLIANCE
[Par94] is an extension to the architecture that uses reinforce-
ment learning to adjust the parameters controlling behavior
set activation. The ALLIANCE/L-ALLIANCE architecture
has been implemented both on real robots and in simulation,
and has been successfully demonstrated for tasks including
box-pushing, puck-gathering, marching in formation, and
simulations of hazardous waste cleanup and janitorial ser-
vice.
Behavior-Based Cooperative Behavior

Mataric [Mat94a] proposes a behavior-based architecture
for the synthesis of collective behaviors such as flocking,
foraging, and docking based on the direct and temporal com-
position of primitive basic behaviors (safe-wandering, fol-
lowing, aggregation, dispersion, homing). A method for
automatically constructing composite behaviors based on re-
inforcement learning is also proposed. The architecture has
been implemented both on groups of up to 20 real robots
(the largest group reported in the works we surveyed), and
in simulation.
GOFER

The GOFER architecture [CCL+90, LeP90] was used to
study distributed problem solving by multiple mobile robots
in an indoor environment using traditional AI techniques.
In GOFER, a central task planning and scheduling system
(CTPS) communicates with all robots and has a global view
of both the tasks to be performed and the availability of robots
to perform the tasks. The CTPS generates a plan structure
(template for an instance of a plan) and informs all available

19A solution to the problem of electing these master cells was discussed in
[UFA+93b]. Formation of structured cellular modules from a population of initially
separated cells was studied in [UF93].

20[FS94] studies the problemof modeling the behaviorof other cells, while [KIF93a,
KIF93b] present a control method that calculates the goal of a cell based on its previous
goal and on its master’s goal. [FKA90] gives a means of estimating the amount of
information exchanged between cells, and [UFA+93a] gives a heuristic for finding
master cells for a binary communication tree.

robots of the pending goals and plan structures. Robots use
a task allocation algorithm like the Contract Net Protocol
[Smi80] to determine their roles. Given the goals assigned
during the task allocation process, they attempt to achieve
their goals using fairly standard AI planning techniques. The
GOFER architecture was successfully used with three physi-
cal robots for tasks such as following, box-pushing, and wall
tracking in a corridor.

2.2 Resource Conflict
When a single indivisible resource is requested by mul-

tiple robots, resource conflict arises. This issue has been
studied in many guises, notably the mutual exclusion prob-
lem in distributed algorithms and the multiaccess problem
in computer networks. With multiple robots, resource con-
flict occurs when there is a need to share space, manipulable
objects or communication media. Few works have dealt
specifically with object sharing or sharing of communication
media. We therefore center on the space sharing problem,
which has been studied primarily via multiple-robot path
planning (the “traffic control” formulation from above) and
the collision and deadlock avoidance problems.

In a multi-robot system, each robot can conceivably plan
a path that accounts for other robots and the global environ-
ment via configuration space-time, explicit models of other
agents, or other techniques (cf. [FS94, Rud94]; also see
Section 2.5). However, researchers considering real-world
multi-robot systems typically conclude that planning paths
in advance is impossible. Thus, robots are often restricted
to prescribed paths or roads, with rules (much like traffic
laws in the human world) and communications used to avoid
collision and deadlock [CCL+90, AHE+91].

Grossman [Gro88] classifies instances of the traffic con-
trol problem into three types: (i) restricted roads, (ii) multiple
possible roads with robots selecting autonomously between
them, and (iii) multiple possible roads with centralized traffic
control. When individual robots possess unique roads from
one point to another, no conflict is possible; when there is
global knowledge and centralized control, it is easy to pre-
vent conflict. Thus, the interesting case is (ii), where robots
are allowed to autonomously select roads21 (cf. “modest co-
operation” [PY90], where robots are assumed to be benevo-
lent for the common good of the system). Solutions to the
traffic control problem range from rule-based solutions to
approaches with antecedents in distributed processing.22

2.3 The Origin of Cooperation
In almost all of the work in collective robotics so far,

it has been assumed that cooperation is explicitly designed
into the system. An interesting research problem is to study
how cooperation can arise without explicit human motivation
among possibly selfish agents.

McFarland [McF94] distinguishes between two signifi-
cantly different types of group behaviors that are found in

21Analysis in [Gro88] shows that restricted roads are highly suboptimal, and that the
autonomous road choice coupled with a greedy policy for escaping blocked situations
is far more effective.

22In [KNT92], robots follow preplanned paths and use rules for collision avoidance.
Example rules include “keep-right”, “stop at intersection”, “keep sufficient space to
the robot in front of you”, etc. [AOI+91] solves collision avoidance using two simple
rules and a communication protocol that resolves conflict by transmitting individual
priorities based on the task requirement, the environment, and robot performance. In
[YP92], the robots stop at an intersection and indicate both the number of robots at
the intersection and the directions in which they are traveling. If deadlock is possible,
each robot performs “shunting” (trying to obtain high priority) and proceeds according
to the agreed-upon priorities. [Wan91, WB90] adapt solutions (mutual exclusion and
deadlock detection) from distributed processing to solve the traffic control problem.



nature: eusocial behavior and cooperative behavior. Euso-
cial behavior is found in many insect species (e.g., colonies
of ants or bees), and is the result of genetically determined in-
dividual behavior. In eusocial societies, individual agents are
not very capable, but seemingly intelligent behavior arises
out of their interactions. This “cooperative” behavior is nec-
essary for the survival of the individuals in the colonies.23

On the other hand, [McF94] defines cooperative behav-
ior as the social behavior observed in higher animals (ver-
tebrates); cooperation is the result of interactions between
selfish agents. Unlike eusocial behavior, cooperative behav-
ior is not motivated by innate behavior, but by an intentional
desire to cooperate in order to maximize individual utility.

Inspired by economics and game-theoretic approaches,
[GGR86, RG85, BG88, RZ94] and others have studied the
emergence of cooperation in selfish rational agents in the
field of distributed artificial intelligence (DAI).

2.4 Learning
Finding the correct values for control parameters that lead

to a desired cooperative behavior can be a difficult, time-
consuming task for a human designer. Therefore, it is highly
desirable for multiple-robot systems to be able to learn con-
trol parameter values in order to optimize their task perfor-
mance, and to adapt to changes in the environment. Re-
inforcement learning [BSW83, Kae93] has often been used
in cooperative robotics.24 In addition, techniques inspired
by biological evolution have also been used in cooperative
robotics.25

2.5 Geometric Problems
Because mobile robots can move about in the physical

world and must interact with each other physically, geo-
metric problems are inherent to multiple-robot systems.26

Geometric problems that have been studied in the coopera-
tive robotics literature include multiple-robot path planning,
moving to (and maintaining) formation, and pattern genera-
tion.
(Multiple-Robot) Path Planning

Recall that multiple-robot path planning requires agents to
plan routes that do not intersect. This is a case of resource
conflict, since the agents and their goals are embedded in
a finite amount of space. However, we note path planning
separately because of its intrinsic geometric flavor as well as
its historical importance in the literature.

23[WD92] studies the evolution of herding behavior in “prey” agents in a simulated
ecology, where there is no a priori drive for cooperation. Recently, [McF94, Ste94]
have laid the initial groundwork to address the problem of emergent cooperation in
an ecological system inhabited by actual mobile robots. In this ecosystem, individual
robots are selfish, utility-driven agents that must cooperate in order to survive (i.e.,
maintain some minimal energy level).

24[Mat94a, Mat94b] proposea reformulationof the reinforcementlearningparadigm
using higher levels of abstraction (conditions, behaviors, and heterogeneous reward
functions and progress estimators instead of states, actions, and reinforcement) to en-
able robots to learn a composite foraging behavior. [Par94] uses standard reinforcement
algorithms to improve the performance of cooperating agents in the L-ALLIANCE
architecture by having the agents learn how to better estimate the performance of
other agents. [SSH94] uses reinforcement learning in a two-robot box-pushing sys-
tem, and [YS92] applies reinforcement learning to learn a simple, artificial robot
language. Other relevant works in multiagent reinforcement learning (done in simula-
tion, as opposed to the works abovewhich were implemented on actual robots) include
[Whi91, Tan93, Lit94].

25[WD92] uses a genetic algorithm [Gol89] to evolve neural network controllers
for simulated “prey” creatures that learn a herding behavior to help avoid predators.
[Rey92] uses genetic programming [Koz90] to evolve flocking behavior in simulated
“boids.”

26This distinguishes robots from traditional distributed computer systems in which
individual nodes are stationary.

Detailed reviews of path planning are found in [Fuj91,
Lat91, AO92]. Fujimura [Fuj91] views path planning as
either centralized (with a universal path-planner making de-
cisions) or distributed (with individual agents planning and
adjusting their paths). Arai and Ota [AO92] make a similar
distinction in the nature of the planner, and also allow hybrid
systems that can be combinationsof on-line, off-line, central-
ized, or decentralized. Latombe [Lat91] gives a somewhat
different taxonomy: his “centralized planning” is planning
that takes into account all robots, while “decoupled” plan-
ning entails planning the path of each robot independently.
For centralized planning, several methods used for single-
robot systems can be applied. For decoupled planning, two
approaches are given: (i) prioritized planning considers one
robot at a time according to a global priority, while (ii) the
path coordination method essentially plans paths by schedul-
ing the configuration space-time resource.27

The Formation and Marching Problems
The Formation and Marching problems respectively re-

quire multiple robots to form up and move in a specified
pattern. Solving these problems is quite interesting in terms
of distributed algorithms [SS90], balancing between global
and local knowledge [Par94],28 and intrinsic information re-
quirements for a given task. Solutions to Formation and
Marching are also useful primitives for larger tasks, e.g.,
moving a large object by a group of robots [SB93]29 or dis-
tributed sensing [WB88].

The Formation problem seems very difficult, e.g., no pub-
lished work has yet given a distributed “circle-forming” al-
gorithm that guarantees the robots will actually end up in
a circle.30 We observe that the circle-forming problem,
while quite simple, reveals several pitfalls in formulating
distributed geometric tasks. For example, the ability of an
individual agent to sense attributes of the formation must be
carefully considered: too much information makes the prob-
lem trivial, but too little information (e.g., returns from local-
ized sensors) may prevent a solution (e.g., robots may never
find each other). Information lower bounds (e.g., for robots
to be able to realize that they have achieved the prescribed
formation) are also largely unexplored in the literature.

Related to the Formation problem is the pattern generation
problem in Cellular Robotic Systems. A Cellular Robotic
System (CRS) is a multiple-robot system which can “en-
code information as patterns of its own structural units”
[Ben88]. Typically, one- or two-dimensional grids consti-
tute the workspace, and sensing of neighboring cells is the
only input. Within these constraints, a set of rules is devised
and applied to all agents; a standard result is to show in simu-
lation that convergence to some spatial pattern is guaranteed.
The meaningful aspect of this work lies in providinga system
with the capability of spatial self-organization: without in-

27The work of [ELP86] is a typical decoupled approach where every robot is prior-
itized and robots plan global paths with respect to only higher-priority robots. On the
other hand, [YB87] presents a distributed approach.

28[Par93] studies the problem of keeping four marching robots in a side-by-side
formation; this increases in difficulty when the leader has to performobstacle avoidance
or other maneuvers. Parker also defines the concepts of global goals and global/local
knowledge. To study the effects of different distributions of global goals and global
knowledge, four strategies are compared both in simulation and on mobile robots.

29[CL94a] uses positional constraint conditionsin a group of robots that makes turns
while maintaining an array pattern. In [CL94b] a leader-follower approach is used to
solve a similar task.

30For the circle-formingproblem,the best known solution is the distributed algorithm
of [SS90], which guarantees only that the robots will end up in a shape of constant
diameter (e.g., a Reuleaux triangle can be the result). [CL94a, CL94b] extend the
method of [SS90] to incorporate collision avoidance when the robots are moving.
[YA94] approaches the shape-generationproblem using systems of linear equations .



tervention, a CRS will reconfigure itself in certain situations
or under certain conditions.31

3 Perspectives
As an integrative engineering discipline, robotics has al-

ways had to confront technological constraints that limit the
domains that can be studied. Cooperative robotics has been
subject to these same constraints, but the constraints tend to
be more severe because of the need to cope with multiple
robots. At the same time, cooperative robotics is a highly
interdisciplinary field that offers the opportunity to draw in-
fluences from many other domains. We first outline some
of the technological constraints that face the field. We then
mention some directions in which cooperative robotics might
progress, and describe related fields that have provided and
will continue to provide influences.

3.1 Technological Constraints
It is clear that technological constraints have limited the

scope of implementations and task domains attempted in
multiple-robot research systems.

One obvious problem that arises is the general problem
of researchers having to solve various instances of the vision
problem before being able to make progress in “higher-level”
problems. Often, difficulties arising from having to solve
difficult perceptual problems can limit the range of tasks
that can be implemented on a multiple-robot platform.32 In
addition, robot hardware is also notoriously unreliable; as a
result, it is extremely difficult to maintain a fleet of robots
in working condition. Again, collective robotics must deal
with all of the hardware problems of single-agent robotics
systems, exacerbated by the multiplicity of agents.

Due to the difficulties encountered when working with real
robots (such as those outlined above), much of collective
robotics has been studied exclusively in simulation. Some
researchers have argued (cf. [Bro91]) that by ignoring most
of the difficulties associated with perception and actuation,
simulations ignore the most difficult problems of robotics.
By making overly simplistic assumptions, it is possible to
generate “successful” systems in simulation that would be
infeasible in the real world.33 Nevertheless, simulation must
inevitably play a role in multi-agent robotics at some level.
Although it is currently possible for researchers to study
groups of 10-20 robots, it is unlikely that truly large-scale
collective behavior involving hundreds or thousands of real
robots will be feasible at any time in the near future.

An approach taken by some researchers is to use sim-
ulations as prototypes for larger-scale studies, and small
numbers of real robots as a proof-of-concept demonstration
[Mat94a, Par94]. On the other hand, some researchers, cit-
ing the necessity of working in the real world domain, have
chosen to eschew simulations altogether and implement their
theories directly on actual robots [BHD94, McF94, Ste94].34

31In [WB88], a CRS is characterized as an arbitrary number of robots in a one- or
two-dimensionalgrid. The robots are able to sense neighboringcells and communicate
with other robots via a signboard mechanism. Protocols are presented for creating
different patterns (see also [EZ88]). An analogous cellular approach is adopted in
[GDMO92].

32For example, in cooperative robotics systems where modeling of other agents (see
2.1.4) is used, the lack of an effective sensor array can render the system unimple-
mentable in practice.

33Conversely, mobile research robots can also come to “look like the simulator”,
i.e., circular footprint, sonar ring, synchro-drive is a common configuration.

34An alternate approach adopted in [HB94], a study of locomotion in large herds of
(up to 100)one-leggedrobots, is to design a very physically realistic simulation. While
this approachbringsrealism to actuation, the issue of perception is still simulated away;

3.2 Towards a Science of Cooperative Robotics
The field of cooperative mobile robotics offers an incred-

ibly rich application domain, integrating a huge number of
distinct fields from the social sciences, life sciences, and en-
gineering. That so many theories have been brought to bear
on “cooperative robotics” clearly shows the energy and the al-
lure of the field. Yet, cooperative robotics is still an emerging
field, and many open directions remain. In this section, we
point out some promising directions that have yet to be fully
explored by the research community. By way of a preface,
we also point out three “cultural” changes which may come
as the field matures: (1) Because of the youth of the field,
cooperative robotics research has been necessarily rather in-
formal and “concept” oriented. However, the development
of rigorous formalisms is desirable to clarify various assump-
tions about the systems being discussed, and to obtain a more
precise language for discussion of elusive concepts such as
cooperation.35 (2) Formal metrics for cooperation, system
performance, as well as grades of cooperation are noticeably
missing from the literature. While the notion of cooperation
is difficult to formalize, such metrics will be very useful in
characterizing various systems, and would improve our un-
derstanding of the nature of agent interactions.36 (3) Exper-
imental studies might become more rigorous and thorough,
e.g., via standard benchmark problems and algorithms. This
is challenging in mobile robotics, given the noisy, system-
specific nature of the field. Nevertheless, it is necessary for
claims about “robustness” and “near-optimality” to be appro-
priately quantified, and for dependencies on various control
parameters to be better understood.37

Finally, several basic analogies remain incomplete, and
must be revisited and resynthesized as the field matures.
For instance, many multi-robot problems are “canonical” for
distributed computation and are interesting primarily when
viewed in this light.38 More generally, it is likely that more
structural and less superficial analogies with other disciplines
will be needed in order to obtain “principled” theories of co-
operation among (mobile) robots; integration of formalisms
and methodologies developed in these more mature disci-
plines is likely to be an important step in the development of
cooperative robotics. Disciplines most critical to the growth
of cooperative robotics are: distributed artificial intelligence,
biology, and distributed systems.
Distributed Artificial Intelligence

The field of distributed artificial intelligence (DAI) con-
cerns itself with the study of distributedsystems of intelligent
agents. As such, this field is highly relevant to coopera-
tive robotics. Bond and Gasser [BG88] define DAI as “the
subfield of artificial intelligence (AI) concerned with con-
currency in AI computations, at many levels.” Grounded

it is still unclear whether it will be feasible to realistically model sophisticated agents
in more complex environments, or whether the effort will outweigh the benefits.

35[Par94], which presents a formalization of motivational behavior in the AL-
LIANCE architecture, is a notable exception.

36[Mat94a] has suggested parameters such as agent density for estimating interfer-
ence in a multi-robot system. However, much more work in this area is necessary.

37For example, we note that despite a number of claims that various decentralized
approaches are superior to centralized approaches, we have not seen any thorough,
published experimental comparisons between the major competing paradigms on a
particular task.

38A typical example is moving to formation, which has been solved optimally in
the computational geometry literature (it is the “geometric matching under isometry”
problem [PH92]), but which is difficult in the distributed context due to issues like
synchronization, fault-tolerance, leader election, etc. However, the distributed context
can be selectively ignored, e.g., [SS90] use “human intervention” to perform what is
essentially leader election (breaking symmetry in a circle of robots to choose vertices
of the desired polygonal formation). The introduction of such devices runs counter to
the implicit assumption that it is the distributed problem that holds research interest.



in traditional symbolic AI and the social sciences, DAI is
composed of two major areas of study: Distributed Problem
Solving (DPS) and Multiagent Systems (MAS).

Research in DPS is concerned with the problem of solv-
ing a single problem using many agents. Agents can coop-
erate by independently solving subproblems (task-sharing),
and by periodically communicating partial solutions to each
other (result-sharing). DPS involves three possibly overlap-
ping phases: (i) problem decomposition (task allocation),
(ii) subproblem solution, and (iii) solution synthesis.39 The
ACTOR formalism [Hew77] is a significant computational
model, developed in DAI, which maps naturally to parallel
computation.40 One important assumption in DPS is that
the agents are predisposed to cooperate. Research in DPS
is thus concerned with developing frameworks for coopera-
tive behavior between willing agents, rather than developing
frameworks to enforce cooperation between potentially in-
compatible agents, as is the case with multiagent systems
and distributed processing.

Multiagent Systems (MAS) research is the study of the
collective behavior of a group of possibly heterogeneous
agents with potentially conflicting goals. In other words,
researchers in MAS discard the “benevolent agent” assump-
tion of DPS [GGR86]. Genesereth et al. [GGR86] state
the central problem of MAS research as follows: “in a
world in which we get to design only our own intelli-
gent agent, how should it interact with other intelligent
agents?” Therefore, areas of interest in MAS research
include game-theoretic analysis of multi-agent interactions
(cf. [GGR86, RG85, RZ94]), reasoning about other agents’
goals, beliefs, and actions (cf. [Geo83, Geo84, Ros82]), and
analysis of the complexity of social interactions [ST92].

The influence of DAI on cooperative robotics has been
limited. This is in part because researchers in DAI have
mostly concentrated on domains where uncertainty is not as
much of an issue as it is in the physical world. Work in
MAS has tended to be theoretical and in very abstract do-
mains where perfect sensing is usually assumed; typical DPS
domains are in disembodied, knowledge-based systems. An-
other is that although agents may be selfish, they are rational
and highly deliberative. However, achieving strict criteria of
rationalityand deliberativeness can often be prohibitivelyex-
pensive in current robotic systems. Thus, it has been argued
that DAI, while suited for unsituated, knowledge-based sys-
tems, will not succeed in the domain of cooperative robotics
[Par94, Mat94a].41

Biology
Biological analogies and influences abound in the field

of cooperative robotics. The majority of existing work in
the field has cited biological systems as inspiration or jus-
tification. Well-known collective behaviors of ants, bees,
and other eusocial insects [Wil71] provide striking existence
proofs that systems composed of simple agents can accom-
plish sophisticated tasks in the real world. It is widely held
that the cognitive capabilities of these insects are very lim-
ited, and that complex behaviors emerge out of interactions

39Perhaps the best known scheme for task allocation problem is the Contract Net
Protocol [Smi80], which has been used in the ACTRESS [IAT+94, AOI+94, OAI+93]
and GOFER [CCL+90] projects.

40This work was the basis for the ACTRESS system [AMI89].
41It must be noted that direct comparisons of DAI and alternative paradigms are

notably missing from the literature; such comparisons are needed to evaluate the true
utility of DAI techniques in cooperative robotics. Also, as lower-level processes (per-
ception and actuation) are better understood and implemented, and as computational
power increases, the high-level results of DAI research may become increasingly ap-
plicable to collective mobile robotics.

between the agents, which are individually obeying sim-
ple rules. Thus, rather than following the AI tradition of
modeling robots as rational, deliberative agents, some re-
searchers in cooperative robotics have chosen to take a more
“bottom-up” approach in which individual agents are more
like ants – they follow simple rules, and are highly reac-
tive.ootnoteThis is the approach taken in the field of Artifi-
cial Life. Works based on this insect-colony analogy include
[Mat94a, BHD94, SB93, DA93, JB94]. The pattern gen-
eration of CRS’s can also be considered as bottom-up (see
Section 2.5), since each robot is designed as a very simple
agent which follows a set of prespecified rules.

A more general, biological42 metaphor that is often used in
cooperative robotics is the concept of a self-organizing sys-
tem [NP77, Yat87].43 Representative work that is based on
this concept includes [WB88, Ste90, HB91, HB92, BH92].
Self-organization in multi-cellular biological systems has
been an inspiration for [Ben88, EZ88, HW88, GDMO92].
Hierarchical organization of biological multi-cellular organ-
isms (i.e., from cellular to tissue to organism level) has been
used as a guiding metaphor for cellular robotics in the CE-
BOT project [FN87]. Biological analogies have also in-
fluenced the choice of task domains studied in cooperative
robotics (note the large body of work on foraging and flock-
ing/herding tasks). Finally, as we noted in Section 2.4, there
have been some biological influences on the learning and
optimization algorithms used to tune control parameters in
multiple-robot systems.
Distributed Systems

A multiple-robot system is in fact a special case of a dis-
tributed computing system. Thus, the field of distributed
systems is a natural source of ideas and solutions. [Ben88]
describes cellular robotics as belonging to the general field of
distributed computing. It is noted, however, that distributed
computing can only contribute general theoretical founda-
tions and that further progress needs to be made concern-
ing the application of such methods to collective robotics.
[WB90] states, “a distributed computing system contains a
collection of computing devices which may reside in graph-
ically separated locations called sites.” By noting the sim-
ilarities with distributed computing, theories pertaining to
deadlock [WB88, WB90], message passing [WB90] and re-
source allocation [Wan91] have been applied to collective
robotics in a number of works.44 See also the discussion in
Section 2.1.1 and Section 2.5.

Broadcast communication, which is widely assumed in
cooperative robotics, exhibits poor scaling properties. As
robots become more numerous and widely distributed, tech-
niques and issues from the field of networking become rel-
evant. A rich body of research on algorithms, protocols,
performance modeling and analysis in computer networks
can be applied to cooperative robotics.45

Finally, distributed control is a promising framework for
the coordination of multiple robots. Due to difficulty of sens-

42Researchers from many fields have studied self-organization; it is by no means
an exclusively biological concept. However, in cooperative robotics references to
self-organization have often been made in a biological context.

43Note that the behavior of insect colonies described above can be characterized
more generally as that of self-organizing systems.

44In work done on multiple AGV systems,deadlock detection andresource allocation
methods are applied to allow many robots to share the limited resource of path space
[Wan91]. Pattern generation in a CRS may also rely on distributed computing to
resolve conflicts [Wan91, WB90]. Finally, [Wan93, Wan94] describe a task allocation
algorithm where the robots vie for the right to participate in a task.

45There is currently a great amount of effort being put into studying networking
issues related to mobile/nomadic/ubiquitous computing (cf.[AP91, BAI94, Wei93]).



ing and communication, a parsimonious formulation which
can coordinate robots having minimal sensing and communi-
cation capabilities is desirable. In an ideal scenario, maximal
fault tolerance is possible, modeling of other agents is un-
necessary, and each agent is controlled by a very simple
mechanism.46

4 Conclusions
In this paper we synthesized a view of the theoretical bases

for research in cooperative mobile robotics. Key research
axes in the field were identified, particularly with respect to
achieving a “mechanism of cooperation”, and existing works
were surveyed in this framework. We then discussed techno-
logical constraints and interdisciplinary influences that have
shaped the field, and offered some general precepts for future
growth of the field. Finally, we identified distributedartificial
intelligence, biology, and distributed systems as disciplines
that are most relevant to cooperative robotics, and which
are most likely to continue to provide valuable influences.
Based on our synthesis, a number of open research areas
become apparent. We believe that the following are among
the major, yet tractable, challenges for the near future: (1)
robust definitions and metrics for various forms of cooper-
ation, (2) achieving a more complete theory of information
requirements for task-solving in spatial domains, perhaps for
the canonical tasks of pattern formation or distributed sens-
ing (e.g., measures of pattern complexity, information lower
bounds for pattern recognition and maintenance, abstraction
of sensor models from the solution approach), (3) principled
transfer of the concepts of fault-tolerance and reliabilityfrom
the field of distributed and fault-tolerant computing, (4) in-
corporation of recent ideas in distributed control to achieve
oblivious cooperation or cooperation without communica-
tion (e.g., when robots have minimal sensing and communi-
cation capabilities), (5) achieving cooperation within com-
petitive situations (e.g., for robot soccer, or pursuit-evasion
with multiple pursuers and evaders), and (6) deepening etho-
logical analogies, e.g., integrating known data regarding in-
formation structures (cognitive maps) of animals that to-
gether solve various cooperative tasks.
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