
Toward More Powerful Recombinations �

Andrew B. Kahng and Byung Ro Moon
UCLA Computer Science Department

Los Angeles, CA 90095-1596
abk@cs.ucla.edu, moon@nexus2.cs.ucla.edu

Abstract

This paper suggests a exible framework for
n-dimensional crossover, consisting of cut-
ting, classi�cation, and copying of genes. We
prove that under this framework, any cutting
strategy generates two equivalence classes of
genes, making the framework appropriate as
a crossover scheme. Three notable features
of this framework are: (i) it enables more
e�ective use of genes' geographical linkage,
(ii) it enables more diverse ways of cut-
ting than traditional multi-point crossover
on linear strings or existing 2-dimensional
crossover schemes, and (iii) it can be read-
ily used within most existing genetic al-
gorithm implementations, i.e., the underly-
ing problem need not be inherently multi-
dimensional. We provide guidelines for de-
signing a crossover strategy under this frame-
work, along with two example crossovers.
Experimental results show that one can de-
sign new crossovers under this framework
which outperform traditional crossover on
linear strings, uniform crossover, and exist-
ing two-dimensional crossovers.

1 INTRODUCTION

The linear string is a symbolic feature of the genetic
algorithm (GA) approach, and most GA implemen-
tations have been based on linear encodings [13]. At
the same time, linear encodings have also been viewed
as limiting GA performance [9, 2, 19]. For exam-
ple, with graph problems it is inevitable that con-
siderable adjacency is lost when mapping a graph
(e.g., a multi-dimensional mesh) onto a linear string
[7]. Cohoon and Paris [9] proposed a two-dimensional

�This work was supported by NSF YI award MIP-
9257982 and grant MIP-9223740. The authors are with the
UCLA VLSI CAD Laboratory and the UCLA Commotion
Laboratory (NSF CDA-9303148).

rectangle-style crossover for VLSI circuit placement;
this scheme chooses a small rectangle and copies the
genes in the rectangle from one parent into the o�-
spring; the remaining genes are copied from the other
parent. Anderson-Jones-Ryan [2] suggested block-
uniform crossover on two-dimensional grid-type chro-
mosomes; this approach tesselates the chromosome
into i� j blocks; for each block genes in the block are
copied as a group from a uniformly-selected parent.
Bui and Moon [19, 7] suggested Z3, an n-dimensional
generalization of traditional crossover which chooses
k crossover points on the n-dimensional chromosome.
Intuitively, the key merit of two- or higher-dimensional
encodings is that they contain more geographical link-
ages of genes than the traditional linear encoding [7].

In the following discussion, we assume an l-ary n-cube
structured chromosome. This structure is analogous
to, e.g., the node structure of interconnection networks
studied in [10, 1]. We use locus-based encodings with
this chromosome structure. For example, linear locus-
based encodings for graph problems mostly map each
vertex to a �xed corresponding position (locus) on the
linear string [11, 20, 18, 16, 21, 19].

The term \geographical linkage" is somewhat vague;
here we describe the term as it is used below. If two
genes are more likely to move together in a crossover
(from a parent to the o�spring) than are a random pair
of genes, then we say that the two genes have stronger-
than-average geographical linkage. The strength of ge-
ographical linkage between two genes can di�er accord-
ing to the encoding. Certainly, the dimension of the
encoding is an important factor, as is the locus assign-
ment of genes. Moreover, even given a �xed encoding,
the geographical linkages of genes will vary depend-
ing on the crossover scheme. A given combination of
encoding and crossover corresponds to a spectrum of
geographical linkages over all pairs of genes.

Although multi-dimensional encodings can preserve
more geographical linkages of genes, multi-dimensional
crossovers to date have a potential weakness,
namely, crossover diversity and its associated schema-

=+

(a)

=+

(b)

Figure 1: Two examples of 2-dimensional schema gen-
eration

generation power. Consider single-point crossover on
a linear string of size N , where N = l2 without loss
of generality: there are l2 � 1 crossover operators.
On the other hand, if the chromosome is encoded on
a two-dimensional l � l grid and cutting is done by
a horizontal or vertical straight line, then there are
2(l� 1) crossover operators. The diversity of the two-
dimensional crossover is not comparable to that of tra-
ditional linear crossover. When only axis-parallel hy-
perplanes are used for cutting, there are fewer and
fewer crossover operators as the encoding dimension
increases. This phenomenon still holds as the number
of crossover points is increased, and so one might ex-
pect that the two-dimensional crossover is inferior to
the linear crossover in performance. However, evidence
has been reported that such straight-line-based two-
dimensional crossovers outperform the linear crossover
[2, 7]. A key reason for this seems to be that the ad-
vantage of preserving more geographical linkage in the
encoding compensates for any potential disadvantage
in weaker crossover diversity.

Figure 1 shows two examples of schema generation by
2-dimensional crossovers. The shaded areas in each
chromosome represent speci�c-symbol positions within
schemata. A notable common feature of all preced-
ing 2-dimensional crossovers [9, 8, 2, 7] is that they
use only horizontal and vertical straight lines to cut
the chromosomes. Using such \slicing" mechanisms,
it is possible to generate new schemata as in (a), but
not as in (b) since the two schemata shown overlap
both horizontally and vertically. With this in mind,
the central contribution of this paper is a new frame-
work for multi-dimensional crossovers which (i) uses
multi-dimensional encodings to better exploit useful
geographical linkages, and (ii) provides more powerful
cuttings to improve diversity in schema generation. In
the framework, a crossover is performed by k cutting
(hyper)surfaces each dividing all loci into two disjoint
subsets in a relatively unrestricted manner.

The remainder of this paper is organized as follows.

In Section 2, we suggest a formal framework for multi-
dimensional crossovers. We show that all loci are clas-
si�ed into exactly two equivalence classes under the
new framework, regardless of the chromosomal dimen-
sion or the number of cuts. No particular cutting strat-
egy is �xed, but we do suggest guidelines for determin-
ing a useful cutting strategy. We also provide guide-
lines for modifying existing GA implementations to in-
corporate the new crossover framework with minimal
change to existing code. Section 3 provides two exem-
plary cutting strategies for two- and three-dimensional
encodings. Section 4 provides various experimental re-
sults on the graph bisection problem, and we conclude
in Section 5 with ongoing and future research direc-
tions.

2 THE NEW FRAMEWORK

2.1 PRELIMINARIES

Consider the closed and continuous region Un � <n

with U = [0; l� 1].

De�nition 1 A cutting surface is a hypersurface that
divides Un into exactly two connected subregions.

Assume that we have k cutting surfaces, and let C be
the intersection of Un with the union of the cutting
surfaces. The space Un � C is divided into a num-
ber of subregions by the k cutting surfaces, such that
any continuous path from a point in one subregion to
a point in another subregion must cross at least one
cutting surface. De�ne a relation Re as follows:

De�nition 2 For two points x; y 2 Un � C, xRey if
and only if there exists a continuous path in Un from
x to y which makes an even number of intersections,
or crosses, with cutting surfaces.

It is obvious that Re is reexive (xRex), commutative
(xRey i� yRex), and transitive (if xRey and yRez,
then xRez). Thus, we have

Fact 1 Re is an equivalence relation.

To establish a role for cutting surfaces within the GA
approach, we show that there are only two equivalence
classes of points in Un�C induced by the equivalence
relation Re. The following fact says that if there exists
a path in Un from x to y with an even number of
crosses, then any other path in Un from x to y also
has an even number of crosses.

Fact 2 If xRey, any path in Un from x to y has an
even number of crosses.

Proof: By the de�nition of Re, there exists a path
from x to y with an even number of crosses. Let its
multiset of crossed cutting surfaces in the path be A =

fA1; A2; : : : ; A2ig for some i; note that any cutting sur-
face is listed once for each time it is crossed. Assume
toward a contradiction that there exists a path from x
to y with an odd number of crosses, and let the multi-
set of crossed surfaces be B = fB1; B2; : : : ; B2j+1g for
some j.

Observe that if a given cutting surface P appears an
even number of times in A (or B), then x and y must
be in the same halfspace with respect to P . If P ap-
pears an odd number of times, x and y must be on the
opposite sides of P .

Now consider the multisets A and B. If any cutting
surface P is listed twice in A (or B), delete both in-
stances of P from A (or B); repeat this process until
no cutting surface is listed more than once in either A
or B. This yields the reduced sets A0 and B0. Since
A0 has an even number of elements and B0 has an odd
number of elements, there exists some cutting surface
Q such that Q 2 A0�B0 or Q 2 B0�A0. IfQ 2 A0�B0,
then membership in A0 says that x and y are on oppo-
site sides of Q, but membership in B0 says that x and
y are on the same side, a contradiction. An analogous
contradiction occurs when Q 2 B0 � A0.

As an immediate corollary, we have

Fact 3 For any number k of cutting surfaces, the
equivalence relation Re induces exactly two equivalence
classes of points in Un � C.

2.2 THE FRAMEWORK

Assume without loss of generality that the number of
genes N is ln. De�ne the chromosome domain space
to be Dn where D = f0; 1; : : : ; l� 1g. That is, assume
an l-ary n-cube chromosomal structure. Each locus is
represented by an n-vector (a1; a2; : : :an), with ai 2 D
for i = 1; 2; : : :; n. The space Dn is a discrete analog
of the region Un de�ned in Section 2.1. Among all
possible cutting surfaces, consider only the in Un�Dn.
That is, a cutting surface never touches the elements in
Dn. It is clear that a cutting surface in Un�Dn divides
the domain space Dn into two disjoint subspaces. We
will use this type of cutting surface as the counterpart
of a crossover point in traditional GAs.

We choose k such cutting surfaces. It is obvious that
the three results of Section 2.1 still hold on points (loci)
in Dn since Dn � Un � C. Thus, based on Fact 3 we
can classify all loci in Dn into two equivalence classes
(say class 0 and class 1) associated with those cutting
surfaces. Now we generate an o�spring as follows. If
a locus belongs to the class 0, copy the corresponding
gene from the parent 0. If the locus belongs to the
class 1, copy from the parent 1.

Note that the framework does not specify any cutting
strategy, nor any chromosomal dimension. Details of

TR BLTL

LRBR TB

Figure 2: Six basic types of cutting patterns

the cutting strategies will typically be �xed by users
based on attributes of the underlying application, as
well as implementation constraints (e.g., the complex-
ity of the new crossover algorithm depends mostly on
that of its cutting strategy). In Section 3, we provide
examples of cutting strategies.

2.3 REPLACING EXISTING
CROSSOVERS

Our framework can be easily used with most existing
GA implementations. One does not have to change
the encoding scheme (which typically requires changes
to data structures and consequently a wide range of
modi�cations); rather, only the crossover part can be
modi�ed, leaving other code intact. Observe that a
linear string is essentially a linear array. One must �rst
generate a mapping from the linear array to the multi-
dimensional encoding. The �rst stage of crossover then
generates a masking array (ln for an n-dimensional
encoding) which speci�es each gene's class assignment
(0 or 1). This n-dimensional masking array is inverse-
mapped to the linear array for the purpose of copying
genes from parents to o�spring. Thus, n-dimensional
encoding is \imaginary": it exists temporarily just for
crossover.

3 SAMPLE CUTTING

STRATEGIES

In this section, we provide sample cutting strategies
in two and three dimensions. Notice from Section 2.1
that De�nition 1 is the only restriction on the cutting
strategy, i.e., any cutting strategy satisfying De�ni-
tion 1 will yield a well-de�ned crossover. However,
since a complicated cutting strategy may make imple-
mentation more di�cult than necessary, we initially
seek relatively simple crossover schemes which may yet
provide reasonably diverse crossover operators.

s

t

choosing two points monotonic moves connecting the resultant cut

Figure 3: An example of TR-type cutting

3.1 A TWO-DIMENSIONAL EXAMPLE

With a chromosome size of N = l2, a two-dimensional
chromosome can be viewed as an l � l grid or ma-
trix. Let us represent a locus on the chromosome by
(a1; a2) 2 D �D as in Section 2.2. After making the
cuts as described below, we classify the loci into two
equivalence classes by producing an l� l binary mask-
ing array, denoted class. The copying phase is then
straightforward: for each locus (i; j) of the o�spring,
copy the gene (i; j) from parent 0 if class[i; j] is 0, and
from parent 1 otherwise. Note that classi�cation and
copying are common to any crossover under this frame-
work, independent of the cutting strategy (assuming
that a consistent data structure is used to represent
the cut).

To make a cut, we choose two points at random any-
where on the four edges of the chromosome, but do
not allow both points to be on the same edge. Let
the four edges be T (Top), R (Right), B (Bottom),
and L (Left). There are six types of cuts related to
the two points: TR, TL, BR, BL, TB, and LR (Fig-
ure 2). We describe the cutting strategy for the TR
type; other types are symmetric or similar. Two num-
bers s and t are selected from the set f0; 1; : : :; l� 2g.
This means that the cut starts between the loci (0; s)
and (0; s + 1) on the T side, and between the loci
(t; l � 1) and (t + 1; l � 1) on the R side (we assume
that the \origin" is at the top-left as is standard for
matrix representations). The cutting corresponds to
making random monotonic paths at the same speed
from both points until the paths can be connected by
a horizontal or vertical segment.1 Figure 3 shows an
example of TR-type cutting.

We randomly choose k such cuttings and call the re-
sulting crossover a k-cut crossover or k-cut geographic
crossover. Observe that the one-dimensional case re-
duces to the traditional k-point crossover on linear
strings. Figure 4 shows various examples of k-cut ge-
ographic crossover operators in two dimensions. From
Fact 3, we know that these cuts partition all loci into
two equivalence classes; these are shown as shaded and
unshaded regions. Figure 5 shows the two-dimensional
classi�cation algorithm. In the algorithm, cuts [i; j,
HOR] (cuts [i; j, VER]) contains the number of cutting

1This is done by coin tosses. In TR-type cuttings, the
cutting from the T side moves down or right according to
the coin tosses; that from the R side moves up or left.

k = 2 k = 2k = 2

k = 3 k = 5k = 4

Figure 4: Examples of crossover operators with various
values of k

Algorithm Classify
Input: (l � 1)� (l � 1)� 2 array cuts

Output: l� l array class
Constants: HOR = 0, VER = 1

class [0, 0] = 0;
for j = 1 to l � 1 f

if (cuts [0; j � 1, VER] % 2 = 0)
then class [0; j] = class [0; j � 1];
else class [0; j] = : class [0; j � 1];

g

for i = 1 to l � 1 f
for j = 0 to l� 1 f

if (cuts [i� 1; j, HOR] % 2 = 0)
then class [i; j] = class [i� 1; j];
else class [i; j] = : class [i� 1; j];

g
g

Figure 5: Classi�cation algorithm

lines passing between the loci (i; j) and (i+ 1; j) (loci
(i; j) and (i; j + 1)).

We believe that this crossover generates more diverse
schemata than previous crossovers that are based on
axis-parallel cuts; for example, note that the schema
shown in Figure 1(b) can be generated. The lemma
below indicates the number of possible cuttings achiev-
able by this strategy.

Lemma 1 On an l � l chromosome, the total num-
ber of possible cuttings by the above cutting strategy is
f(l) = 4

�2l�1
l�1

�� 2(l + 1).

Proof: Omitted.

There are N �1 possible cuts of a linear encoding, and
hence the number of k-point crossover operators on a
linear encoding is

�
N�1
k

�
. The number of k-cut ge-

ographic crossover operators (in the two-dimensional

case) is
�
f(l)
k

� � d where d is the number of duplica-

Figure 6: A cutting example in three dimensions, i.e.,
in a 5-ary 3-cube chromosome

tions (i.e., when the same classi�cation is possible via
di�erent combinations of cuttings). We believe that�
f(l)
k

� � d is considerably larger than
�
N�1
k

�
for any

�xed k, as the function f(l) is exponential in l and
consequently exponential in N . However, counting the
number of duplications is di�cult and we do not yet
have an analysis.

3.2 A THREE-DIMENSIONAL EXAMPLE

With a chromosome size of N = l3, a three-
dimensional chromosome can be viewed as an l� l� l
grid or matrix, and an analogous three-dimensional
cutting strategy can be devised. Here a cut corre-
sponds to a surface instead of a line. For practical
reasons, our implementation restricts a cutting sur-
face to be parallel to one of the three coordinate axes
(thus, there are three symmetric types of cutting sur-
faces, each parallel to some coordinate axis).

Let the three dimensions be X, Y , and Z. A cutting
surface parallel to, e.g., Z, will cut all XY planes of
the three-dimensional chromosome (there are l such
planes) in the same way. That is, the cutting strat-
egy used for two-dimensional chromosomes is simply
replicated l times to yield a three-dimensional cutting.
There are a total of 3 � 6 = 18 cutting patterns for
this three-dimensional crossover. Figure 6 shows an
example of a cutting surface on a three-dimensional
chromosome. The dimension of a cutting surface will
increase with the encoding dimension, and similar con-
structions based on lower-dimensional cuts can be eas-
ily implemented.

For classi�cation, the array cuts now has four dimen-
sions: three to represent the loci, and one for the three
boundaries of each locus. For space reasons, we omit
a formal template of the cutting algorithm. Initializa-
tion of data structures requires �(N) time, and the ac-

tual cutting takes �(kN
1

2) time and �(kN
2

3) time for
the two-dimensional and three-dimensional schemes,
respectively.

4 EXPERIMENTAL RESULTS

We have tested the utility of geographic crossovers
versus other crossovers on low-dimensional chromoso-
mal representations using the graph bisection problem.
Given a graph G = (V;E) where V is the set of vertices
and E is the set of edges, a bisection ofG is a partition-
ing of the vertex set V into two disjoint subsets with
the di�erence between cardinalities of the two subsets
at most 1. The cut size of a bisection is the number of
edges whose endpoints are in di�erent subsets in the
bisection. The graph bisection problem seeks a bisec-
tion with minimum cut size and is well-known to be
NP-hard [12].

We tested our GA implementations on �ve types
of benchmark graphs: random graphs, random ge-
ometric graphs, random regular graphs with known
small bisection widths, caterpillar graphs, and grid
graphs. These have been extensively studied in the
discrete algorithms and optimization literatures, e.g.,
[14, 15, 6, 19].2 All implementations in this paper
used steady-state GAs with �ve cuts for crossover un-
less otherwise noted; we use the code of [6] except for
the crossover part.3 The GAs stop when 80% of the
population is occupied by solutions of the same qual-
ity. All results are averages (bisection cut sizes) over
50 runs on each graph.

4.1 PURE GEOGRAPHIC CROSSOVERS

In this subsection, we compare the 2-dimensional and
3-dimensional k-cut geographic crossovers described
in Sections 3.1 and 3.2 with the traditional k-point

2Briey, a random graph is a graph in which an edge is
randomly and independently placed between every two ver-
tices with probability p. Gn:d represents a random graph
on n vertices where the probability p is chosen so that the
expected vertex degree p(n � 1) is equal to d. A random
geometric graph is a graph whose vertices are uniformly
random in the unit square, with an edge between two ver-
tices if their Euclidean distance is � t. Un:d represents a
random geometric graph on n vertices with expected ver-
tex degree equal to d. The caterpillar graph is a graph
with sequentially connected articulation points each hav-
ing the same number of legs. cat.n represents a caterpillar
graph of n vertices. A regular graph is a random graph in
which each vertex has the same degree d (we use d = 3
in all our test cases), and whose optimal cut size b is both
signi�cantly smaller than for similar-sized random graphs
and also known with high probability (such constructions
were �rst proposed by Bui et al. [3]). bregn:b represents a
regular graph of n vertices for which the optimal bisection
cut size is b with probability 1 � o(1). gridn:b represents
a two-dimensional grid graph on n vertices whose optimal
cut size is known to be b.

3Note that [6] studied hybrid-type GAs, but that we
remove the local optimization part to isolate the e�ect of
crossovers. Thus the quality of results for all GA variations
here is actually worse than those reported in [6] for hybrid-
type GAs.

: 2-dim geographic crossover

: 3-dim geographic crossover

: traditional linear crossover

80

100

120

140

160

180

200

220

Bisection cut sizes (%)

60

40

Running time (%)

G500.2.5 U500.05 cat.352 breg500.0 grid100.10
G1000.20 U1000.40 cat.5114 breg5000.16 grid5000.100

Graphs

Figure 7: Comparison of crossovers on di�erent dimen-
sions

crossover. Figure 7 shows the relative results (aver-
age bisection cut sizes) of GAs using two-dimensional
and three-dimensional geographic crossover to the GA
using traditional linear crossover (with k = 5). The
bisection cut sizes are normalized to those obtained
with traditional k-point crossover. The data clearly
show that the two-dimensional geographic crossover
generally outperforms the traditional linear one, and
that the three-dimensional geographic crossover out-
performs the two-dimensional one. It is notable that
the two-dimensional geographic crossover showed sig-
ni�cantly worse results for some graphs; we do not
have a reasonable explanation for this. Runtimes
remained essentially constant over all dimensions of
models. We believe that the main reason for this im-
provement lies in the power of the new crossover op-
erators to exploit geographical linkages of genes and
create new schemata.

4.2 COMPARISON WITH
2-DIMENSIONAL CROSSOVERS

In this subsection, we compare the performance
of 3-dimensional geographic crossover with exist-
ing 2-dimensional crossovers, namely, rectangle-style
crossover [9], block-uniform crossover [2], and Z3
[19, 7]. For the graph bisection problem, the crossover
of [9] yielded much worse results than the other
crossovers and thus we do not include the results.
Figure 8 shows the relative performances of Z3,
block-uniform crossover, and 3-dimensional geographic
crossover versus traditional linear crossover. Over-
all, three-dimensional geographic crossover performed
best.

4.3 HEURISTIC EMBEDDING

For the preceding comparisons, we embedded (en-
coded) the genes onto multi-dimensional chromosomes
in a naive way: row-major order. Bui and Moon
showed that the embedding can signi�cantly a�ect GA

G500.2.5 U500.05

Graphs

U1000.40 grid5000.100
grid100.10breg500.0

breg5000.16
cat.352

cat.5114G1000.20

 60

 70

 80

 90

100

110

: traditional linear crossover

: 2-dim Z3

: block-uniform crossover

: 3-dim geographic crossover

Bisection cut sizes (%) Running time (%)

Figure 8: Performances of Z3, block-uniform crossover,
and 3-dimensional geographic crossover relative to tra-
ditional linear crossover

performance when a linear encoding is used [4, 5].
We believe that this phenomenon will persist with
high-dimensional encodings. Recently, Linial-London-
Rabinovich [17] proved that we need a fairly high-
dimensional encoding to embed a graph with low dis-
tortion. Since a too high-dimensional encoding is
hard to implement, a practical alternative is to em-
bed the graph into a low-dimensional mesh, say of
dimension two or three, and minimize the distortion
in this dimension. Our �rst method sought to em-
bed the vertices of input graphs onto the l � l grid
so as to minimize the sum of the embedded lengths
of edges. If the two endpoints of an edge are lo-
cated on the loci (x1; y1) and (x2; y2) in an embed-
ding, the edge length is given by the Euclidean dis-

tance
q
(x1 � x2)

2
+ (y1 � y2)

2
. We developed a fast

�(N
p
N) heuristic for this problem. Pro�ling using

the tool gprof on the input G500.2.5 shows that the
embedding occupies 12.0% of the total running time.
This objective seemed a reasonable candidate for min-
imizing the distortion caused by embedding, and re-
sulted in improvements as expected.

We also tried another very simple embedding. From
a given linear ordering of vertices, �rst reorder them
according to a depth �rst search (DFS) starting at
a random vertex. Then, from this ordering embed
the vertices into a 2- or 3-dimensional mesh (the en-
coding scheme) by row-major order. This embed-
ding obviously takes only linear time; it occupies just
0.1% of the total running time for the graph G500.2.5.
Figure 9 shows the performance improvement from
the pure 2-dimensional geographic crossover when Eu-
clidean embedding or DFS-row-major embedding is
applied. The DFS-row-major embedding clearly dom-
inates the Euclidean embedding, which is strikingly

100

120

Bisection cut sizes (%)

: 2-dim geographic crossover

: 2-dim geographic crossover after Euclidean reembedding

: 2-dim geographic crossover after DFS-row-major reembedding

80

60

40

20

 0

Running time (%)

G500.2.5 U500.05 cat.352 breg500.0 grid100.10
grid5000.100breg5000.16cat.5114U1000.40G1000.20

Graphs

Figure 9: The e�ect of heuristic 2-dimensional embed-
dings

opposite to what we expected. We strongly suspect
that the DFS-row-major embedding is still not the best
embedding possible, mainly because of its naive row-
major embedding phase.

4.4 COMPARISON WITH UNIFORM
CROSSOVER

Uniform crossover is noted for being independent of
the loci of genes, i.e., it is independent of the genes' or-
der in the encoding. Theoretically, uniform crossover
can preserve any schema and can also generate any
schema possible from the two parents. We also imple-
mented and tested uniform crossover and found that it
performed slightly better on the average than the pure
3-dimensional geographic crossover. However, when
reembedding is applied, further improvement is pos-
sible for 3-dimensional geographic crossover which is
not possible for uniform crossover.

Recall that the results of Sections 4.1 and 4.2 used
given orderings of vertices in the input graphs. Sec-
tion 4.3 showed that geographic crossovers can bene-
�t from simple reembeddings. Uniform crossover, of
course, does not bene�t from reembedding or reorder-
ing genes because of its independence of the gene lo-
cations. Figure 10 shows the performances of pure 3-
dimensional geographic crossover and DFS-row-major
embedded 3-dimensional geographic crossover, relative
to uniform crossover. The 3-dimensional geographic
crossover with reembedding performed noticeably bet-
ter than either the pure three-dimensional geographic
crossover or uniform crossover.

5 DISCUSSION AND FUTURE

WORK

In this paper, we have proposed a exible framework
for multi-dimensional crossovers and provided some
example crossovers under the framework. Experiments

60

80

100

120

40

Bisection cut sizes (%)

20

 0
breg500.0

breg5000.16
grid100.10

grid5000.100cat.5114
cat.352

U1000.40

U500.05
G1000.20

Graphs

: uniform crossover

: 3-dim geographic crossover

: 3-dim geographic crossover w/ DFS-row-major reembedding

Running time (%)

G500.2.5

Figure 10: Performances relative to uniform crossover

on a wide range of graph bisection instances generally
showed visible improvement over traditional k-point
crossover on linear strings, previous 2-dimensional
crossovers, and uniform crossover. We observed that
performance improves as the dimension of crossover
increases (up to three dimensions).

We believe that the suggested framework is applicable
to most GAs that use traditional linear encodings and
crossovers. Given a genetic algorithm encoded on a
linear string, one may simply relocate the genes onto
a two- or higher-dimensional encoding and apply the
proposed crossover. As noted in Section 2.3, the multi-
dimensional encoding does not have to be \real". In
our implementation, we use exactly the same code as
for a GA with the traditional linear scheme, except
for the crossover routine (i.e., the multi-dimensional
encodings are \imaginary"). For crossover, we need
only provide mapping information between loci on the
linear encoding and loci on the multi-dimensional en-
coding; the copying is done on the linear string. This
helps simplify the algorithm as there is no need for spe-
cial data structures for graphs with a high-dimensional
indexing scheme. We believe that this replacement of
the crossover scheme can improve the performance of
traditional GAs in many cases; we thus hope to see
more experimental results on various problem classes
in the future.

Although we noted that geographic crossovers can cre-
ate diverse schemata, we do not want to be able to
create all schemata possible from the two parents (If
we did, we would de�nitely choose uniform crossover).
The experimental results of Section 4.4 hint that navi-
gating a promising region of the solution space is more
important than obtaining theoretical diversity (power)
in the search operator. Our current work seeks to more
precisely determine the mechanisms by which the geo-
graphic crossover operators, in conjunction with multi-
dimensional chromosome structure, improve GA per-
formance. Among the research questions we hope to
resolve are the following.

� As mentioned in the introduction, an encod-
ing/crossover pair makes a spectrum of geograph-
ical linkages. A formal analysis as to what types
of geographical-linkage spectrum are desirable for
high-performance GAs remains an open direction
for research.

� It is open as to which chromosomal dimension
performs best. Although higher-dimensional en-
codings (whether real or imaginary) can preserve
more geographical gene linkages, we suspect that
too high a dimension would not perform desir-
ably. We are studying the question of which di-
mension of encoding is best for a given instance.
It is likely that the optimal dimension is somehow
dependent on the chromosome size and the input
graph topology; interactions with the exibility
of crossover are yet unknown. The interaction of
these considerations with the number of cuts used
in the crossover is also an open issue.

� In relocating genes onto a multi-dimensional chro-
mosome, the simplest way is via a sequential as-
signment such as row-major order. Section 4
showed that performance improves when a DFS-
row-major reembedding is used for two- and
three-dimensional encodings. We suspect that
this phenomenon will be consistent for higher-
dimensional cases, and hope to perform more de-
tailed investigations in the future. Although DFS
reordering proved to be helpful for both linear
encodings [19] and multi-dimensional encodings,
we do not believe DFS-row-major reembedding is
a good approach for the multi-dimensional cases
since the row-major embedding is so simplistic.
We are considering alternative 2-dimensional and
3-dimensional reembeddings which will hopefully
provide further improvement.

� Finally, the l-ary n-cube chromosomal structure
may be further generalized to an n-cuboid struc-
ture in which each dimension can have di�erent
length. This generalization will be helpful in more
closely capturing the structure of practical prob-
lem instances.

References

[1] A. Agarwal. Limits on interconnection network per-
formance. IEEE Trans. on Parallel and Distributed
Systems, 2(4):398{412, 1991.

[2] C. A. Anderson, K. F. Jones, and J. Ryan. A two-
dimensional genetic algorithm for the ising problem.
Complex Systems, 5:327{333, 1991.

[3] T. N. Bui, S. Chaudhuri, F. T. Leighton, and
M. Sipser. Graph bisection algorithms with good aver-
age case behavior. Combinatorica, 7(2):171{191, 1987.

[4] T. N. Bui and B. R. Moon. Hyperplane synthesis for
genetic algorithms. In Fifth International Conference
on Genetic Algorithms, pages 102{109, July 1993.

[5] T. N. Bui and B. R. Moon. Analyzing hyperplane syn-
thesis in genetic algorithms using clustered schemata.
In International Conference on Evolutionary Compu-
tation, Oct. 1994. Lecture Notes in Computer Science,
866:108-118, Springer-Verlag.

[6] T. N. Bui and B. R. Moon. Graph partitioning and
genetic algorithms. 1994. Submitted to IEEE Trans.

on Computers (in revision).

[7] T. N. Bui and B. R. Moon. On multi-dimensional
encoding/crossover, 1995. To appear in Sixth Inter-

national Conference on genetic Algorithms.

[8] P. Chan, P. Mazumder, and K. Shahookar. Macro-
cell and module placement by genetic adaptive search
with bitmap-represented chromosome. Integration,
12(1):49{77, 1991.

[9] J. P. Cohoon and W. Paris. Genetic placement. In
IEEE International Conference on Computer-Aided

Design, pages 422{425, 1986.

[10] W. Dally. Performance analysis of k-ary n-cube in-
terconnection networks. IEEE Trans. on Computers,
39(6):775{785, 1990.

[11] K. DeJong and W. Spears. Using genetic algorithms
to solve NP-complete problems. In Third Interna-

tional Conference on Genetic Algorithms, pages 124{
132, 1989.

[12] M. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-

Completeness. Freeman, San Francisco, 1979.

[13] J. Holland. Adaptation in Natural and Arti�cial Sys-
tems, 2nd ed. MIT Press, 1992.

[14] D. S. Johnson, C. Aragon, L. McGeoch, and
C. Schevon. Optimization by simulated annealing: An
experimental evaluation, part 1, graph partitioning.
Operations Research, pages 865{892, 1989.

[15] C. Jones. Vertex and Edge Partitions of Graphs. PhD
thesis, Penn. State Univ., University Park, PA, 1992.

[16] D. Levine. A genetic algorithm for the set partition-
ing problem. In Fifth International Conference on Ge-

netic Algorithms, pages 481{487, July 1993.

[17] N. Linial, E. London, and Y. Rabinovich. The geome-
try of graphs and some of its algorithmic applications.
In Foundations of Computer Science, pages 577{591,
1994.

[18] N. Mansour and G. Fox. A hybrid genetic algorithm
for task allocation in multicomputers. In Fourth In-
ternational Conference on Genetic Algorithms, pages
466{473, July 1991.

[19] B. R. Moon. Hybrid Genetic Algorithms with Hyper-

plane Synthesis: A Theoretical and Empirical Study.
PhD thesis, Pennsylvania State University, University
Park, PA, 1994.

[20] A. Murthy and G. Parthasarathy. Clique �nding{ a
genetic approach. In IEEE Conference on Evolution-

ary Computation, pages 18{21, June 1994.

[21] C. Palmer and A. Kershenbaum. Representing trees
in genetic algorithms. In IEEE Conference on Evolu-

tionary Computation, pages 379{384, June 1994.

