
On the Bounded-Skew Clock and Steiner Routing Problems�

Dennis J.-H. Huang, Andrew B. Kahng and Chung-Wen Albert Tsao

UCLA Computer Science Dept., Los Angeles, CA 90024-1596 USA

Abstract

We study the minimum-cost bounded-skewrouting tree (BST) prob-
lem under the linear delay model. This problem captures several
engineering tradeoffs in the design of routing topologies with con-
trolled skew. We propose three tradeoff heuristics. (1) For a fixed
topology Extended-DME (Ex-DME) extends the DME algorithm
for exact zero-skew trees via the concept of a merging region. (2)
For arbitrary topology and arbitrary embedding, Extended Greedy-
DME (ExG-DME) very closely matches the best known heuristics
for the zero-skew case,and for the infinite-skew case (i.e., the Steiner
minimal tree problem). (3) For arbitrary topology and single-layer
(planar) embedding, the Extended Planar-DME (ExP-DME) algo-
rithm exactly matches the best known heuristic for zero-skew planar
routing, and closely approaches the best known performance for the
infinite-skew case. Our work provides unifications of the clock rout-
ing and Steiner tree heuristic literatures and gives smooth cost-skew
tradeoff that enable good engineering solutions.

1 Introduction

Control of signal delay skew has become a dominant objective in
clock distribution routing of large global nets. Other objectives
also require attention, minimizing wire area or ensuring planar-
embeddability (i.e., routability on a single layer). In this paper, we
present the first unified approach to minimum-cost, skew-bounded,
and planar/non-planar routing tree construction. Addressing these
co-existing objectives is both motivated and enabled by several
recent works.

Pillage and coauthors [17, 18, 16], Edahiro [8], and Zhu and
Dai [21, 20] use wiresizing to optimize source-sink signal delays in
clock distribution; [17] also performs buffer optimization to mini-
mize power dissipation. The works of Zhu and Dai [21, 20] and
Pullela et al. [18] propose construction of initial non-zero skew
clock routing solutions which can be sized to achieve a prescribed
skew bound. Our study addresses the underlying bounded-skew
routing construction. As in [21, 20] we solve the bounded-skew
problem under the linear delay model; our methods can also extend
to Elmore or other delay approximations. We also note that exact
zero skew is never an actual design requirement [13], so engineering
tradeoffs also motivate a bounded-skew,rather than exact zero-skew,
formulation. We now define the bounded-skew routing tree (BST)
problem under the linear delay model.

�Partial support for this work was providedby NSF MIP-9257982and MIP-922370.

The Bounded-Skew Routing Tree (BST) Problem: Given a set
S = fs1; s2; : : : ; sng � <2 of clock sink locations, a clock source
location s0, a skew boundB, and a connection topologyG (a rooted
binary tree with n leaves corresponding to the sinks in S), we seek
a treeT (S) which embedsG in the Manhattan plane, and for which
the maximum difference between any two source-sink pathlengths
is � B.

We also consider the BST variant where no topology G has been
prescribed. This is useful in achieving a planar routing, or in fully
exploiting the available skew boundB. For this variant, in either the
non-planar or the planar case, we typically assume that the source
location s0 is also unspecified.

2 A Review of Three DME Variants

The Deferred-Merge Embedding (DME) algorithm, proposed inde-
pendently in [5, 3, 1], achieves exact zero skew given any delay
model for which sink delays are monotone in the length of each
edge of the clock tree (e.g., linear delay and Elmore delay). For
linear delay, DME is optimal: it returns a tree with minimum cost
and minimum source-sink pathlength for any input sink set S and
topology G.

We now review DME and its Greedy-DME and Planar-DME
variants, following [1, 14]. We identify each node v of the rooted
topology G with the edge ev to its parent. Once a node v of the
topology has been embedded in the Manhattan plane, we often
identify v with its location in the plane, denoted l(v). The cost of a
routing tree T is defined as cost(T ) =

P
v2T

jevj, i.e., the sum of
edgelengths in T . We use d(s; t) to denote the Manhattan distance
between points s and t; the distance between two pointsets P and
Q is d(P;Q) = minfd(p; q)jp 2 P; q 2 Qg.

The DME Algorithm

Given a set of sinks S and a topology G, DME embeds internal
nodes of G via: (i) a bottom-up phase that constructs a tree of
merging segments which represent loci of possible placements of
internal nodes in a zero-skew tree (ZST) T ; and (ii) a top-down
embedding phase that determines exact locations for the internal
nodes in T .

In the bottom-up phase, each node v 2 G is associated with a
merging segment, denotedms(v), which represents a set of possible
placements of v in a minimum-cost ZST. The segment ms(v) will
always be a Manhattan arc, i.e., a segment with possibly zero length
that has slope +1 or�1. Let a and b be the children of node v, and
let TSa and TSb denote the subtrees of merging segments rooted at
a and b. The construction of ms(v) depends on ms(a) and ms(b),
hence the bottom-up processing order. We seek placements of v
which allow TSa and TSb to be merged with minimum added wire
jeaj+ jebj while preserving zero skew. Given the tree of merging
segments, the top-down phase embeds each internal node v of G
as follows: (i) if v is the root node, then DME selects any point in
ms(v) to be l(v); or (ii) if v is an internal node other than the root,
DME chooses l(v) to be any point on ms(v) that is at distance jevj
or less from the embedding l(p) of v’s parent.



The Greedy-DME Algorithm
Note that DME requires an input topology. Several works [1, 3,
6] have thus studied topology constructions that lead to low-cost
routing solutions when DME is applied; the most successful is
the “Greedy-DME” method of Edahiro [6], which determines the
topology of the merging tree in a greedy bottom-up fashion. Let
K denote a set of merging segments which initially consists of all
the sink locations, i.e., K = fms(si)g. Greedy-DME iteratively
finds the pair of nearest neighbors in K , i.e., ms(u) and ms(v)
such that d(ms(u);ms(v)) is minimum. A new parent merging
segment ms(v) is computed for node v from a zero-skew merge
of ms(u) and ms(v); K is updated by adding ms(v) and deleting
both ms(u) and ms(v). After n � 1 operations, K consists of the
merging segment for the root of the topology.

In [7], O(n logn) time complexity was achieved by finding sev-
eral nearest-neighborpairs at once, i.e., the algorithm first constructs
a “nearest-neighbor graph” which maintains the nearest neighbor of
each merging segment in K . Via zero-skew merges, jKj=k nearest-
neighbor pairs are taken from the graph in non-decreasing order of
distance, where k is a constant typically between 2 and 4. The so-
lution is improved by a post-processing local search that adjusts the
resulting topology (cf. “CL + I6” in [7]). Greedy-DME achieves
20% reduction in wiring cost compared with the methods of [3].

The Planar-DME Algorithm
Finally, the Planar-DME algorithm of Kahng and Tsao [14] de-
termines node embeddings and connection topology by top-down
partitioning of the routing area and the sink set. Given S0 � S
and a convex polygon PS0 containing S0 , Planar-DME recursively
divides PS0 into two smaller convex polygons, such that routing
inside one convex polygon cannot interfere with routing inside the
other convex polygon or on the boundary between the polygons.
Noninterfering wiring implies a planar solution.

3 First Tradeoff: Fixed-Topology Case

To address the BST problem for the case of a fixed tree topology, we
propose the Extended-DME (Ex-DME) approach,which extends the
DME algorithm by incorporating the concept of a merging region.

3.1 Definition of the Merging Region
We will use the following terminology. A rectilinear line segment is
a horizontal or vertical line segment. An octilinear polygon is a con-
vex polygon formed by Manhattan arcs or rectilinear line segments.
Such a polygon, along with its interior, defines an octilinear region.
The joining region of two disjoint octilinear regions P and Q is
the set of points JR(P;Q) = fpjd(p;P ) + d(p;Q) = d(P;Q)g.
The joining segments of P and Q, denoted JS(P ) and JS(Q),
are the closest portions (to each other) of P and Q, i.e., JS(P ) =
P
T
JR(P;Q) and JS(Q) = Q

T
JR(P;Q). If P and Q over-

lap, then we define JR(P;Q) = JS(P ) = JS(Q) = l, where l
is any longest rectilinear line segment in the intersection of P and
Q. Note that JS(P ) and JS(Q) will be either (i) a pair of parallel
Manhattan arcs, or (ii) a pair of parallel rectilinear line segments
(see Figure 1).1

We use tmax(p) and tmin(p) to denote the maximum and mini-
mum pathlength delay (or max-delay and min-delay for short) from
point p, taken over all leaves in the subtree rooted at p. The skew of
point p, denoted skew(p), is defined to be tmax(p) � tmin(p). If
all points of a pointset P have identical max-delay and min-delay,

1JS(P ) and JS(Q) cannot be a pair of a Manhattan arc and a rectilinear line
segment unless both JS(P ) and JS(Q) are single points.

we similarly use the terms tmax(P ), tmin(P ) and skew(P ). If
B is the specified skew bound, then p is a feasible merging point
if skew(p) � B. The feasible merging section of a pointset P ,
denoted FMS(P ), is the set of feasible merging points in P . The
minimum skew section of P , denotedMSS(P ), is the set of points
in P with minimum skew.

A rectilinear line segment l is well-behaved if (i) tmax(p) and
tmin(p) are both piecewise linear (with slope +1 or�1) functions
of the position of p on l, and (ii) tmax(p) (tmin(p)) is a concave
(convex) function with at most one turning point, i.e., the value of
tmax(p) (tmin(p)) is minimum (maximum) at the turning point,
and increases (decreases) toward both endpoints of l. A Manhattan
arc l is well-behaved if all its points have the same max-delay and
min-delay. A line segment l is well-behaved if it is a well-behaved
rectilinear line segment or a well-behaved Manhattan arc. Finally,
an octilinear region is well-behaved if its boundary segments are
well-behaved. Given a well-behaved octilinear region P , we can
compute the max-delay and min-delay of any interior point from
the max-delay and min-delay values of P ’s vertices.

From the above, skew(p) over a well-behaved rectilinear line
segment l will be a piecewise linear concave function with up to
three linear regions, depending on the locations of the max-delay
and min-delay turning points. Thus, FMS(l) and MSS(l) are
each single intervals of l and can each be computed in O(1) time.

For convenience, in the following we denote JR(mr(a);mr(b))
as JR(v) and letLa = JS(mr(a)) andLb = JS(mr(b)) for each
node v 2 G with children a and b.

Given a connection topologyG, the merging regionof each node
v 2 G, denoted mr(v), is defined recursively as follows:

1. Suppose v is a sink si. Then mr(v) = fsig.

2. Suppose v is an internal node with children a and b. Then
if FMS(JR(v)) 6= ;, mr(v) = FMS(JR(v)); otherwise,
mr(v) =MSS(JR(v)).

Similarly, the max-delay and min-delay of a point p in mr(v)
are defined recursively as follows:

1. Suppose v is a sink si. Then tmax(v) = tmin(v) = 0.

2. Suppose v is an internal node with children a and b. Then

(a) tmax(p) = maxk=a;bftmax(pk) + d(p; pk)g, and
tmin(p) = mink=a;bftmin(pk) + d(p; pk)g, where
pk is the point in mr(k) which is closest to p.

(b) In the case whereFMS(JR(v)) = ;, skew(mr(v)) >
B. To meet the skew bound constraint with least in-
crease � = skew(mr(v)) � B in merging cost, we
set edge lengths as follows. If skew(MSS(La)) �
skew(MSS(Lb)), then jeaj = 0 and
jebj = d(mr(a);mr(b)) + �. Otherwise, jebj = 0 and
jeaj = d(mr(a);mr(b)) + �. Then the delays for any
point p 2 mr(v) are computed as
tmax(p) = maxk=a;bftmax(pk) + jekjg and
tmin(p) = mink=a;bftmin(pk) + jekjg, where
pk is as defined in 2(a).

In case 2(b), we say that edge ea (eb) requires detouring wiring
if jeaj > d(mr(a);mr(b)) (jebj > d(mr(a);mr(b))). Notice that
if FMS(JR(v)) 6= ;, then mr(v) is the set of feasible merging
points with minimum merging cost. Otherwise, mr(v) may not
have this property since some points outsidemr(v)may have lower
merging cost than points in JR(v).



3.2 Construction of the Merging Region
Given the merging regions mr(a) and mr(b) of v’s children, the
following rules are used to construct the new merging regionmr(v)
in constant time. We assume that both mr(a) and mr(b) are well-
behaved octilinear regions.

M1 Compute JR(v) and then compute FMS(l) for each rectilin-
ear boundary segment l of JR(v).

M2 IfLa andLb are parallel rectilinear line segments, then compute
FMS(l) for all rectilinear line segments l = p1p2 such that
p1 2 La, p2 2 Lb, and either p1 or p2 is a skew turning point
(see Figure 1b).

M3 Let F be the set of feasible merging sections computed by
M1 and M2. If F 6= ;, then construct mr(v) equal to
the smallest octilinear region containing F . If F = ;,
then if skew(MSS(La)) � skew(MSS(Lb)), mr(v) =
MSS(La); otherwise, mr(v) =MSS(Lb).

(a)  

mr(a)

mr(b)

(15,9)-(25,9)La

(b)

(16,10)-(24,10)

(16,6)-(24,6)

(16,6)-(24,16)

(16,10)-(24,10)

La
M

M’

Lb

JR(v) JR(v)

(18,8)-(22,8)Lb

Figure 1: Construction of merging region mr(v), shown as shaded
regions, given the merging regions for v’s children a and b. The joining
region JR(v) is shown as the gridded area. The joining segments La
and Lb, shown as thick dotted lines, are parallel Manhattan arcs in (a)
and parallel vertical line segments in (b). The hollow points in (b) are the
skew turning points of La and Lb. The first and second coordinate pair
associated with points on La and Lb represent (max-delay, min-delay)
before and after merging, respectively. In (b), JR(v) is divided by
mr(v) into two strictly monotone regionsM and M 0. Arrows indicate
the direction of increasing skew in the strictly monotone regions.

The Ex-DME algorithm is outlined in Figure 2. Besides the
merging region construction rules, there are two main differences
between Ex-DME and DME. (1) When merging cost for the sub-
trees rooted at nodes a and b is greater than the lower bound
d(mr(a);mr(b)) (i.e., detour wiring is needed), then the edge
lengths jeaj and jebj will be determined in the bottom-up phase
of Ex-DME. Otherwise, the edge lengths will be determined in
the top-down phase. (2) Each node v is embedded at the loca-
tion in mr(v) that is closest to the location of its parent p, even if
jevj > d(mr(v); l(p)).

Let v 2 G have children a and b with merging regions mr(a)
and mr(b) which are both well-behaved octilinear regions. We
show the following properties of JR(v) in [12].

Lemma 1: Any rectilinear line segment l 2 JR(v) is well-
behaved.

Lemma 2: Suppose La and Lb are parallel vertical line seg-
ments, and lh is a horizontal line segment in JR(v). Denote
skew const(lh) as the portion of lh with constant skew. Then
skew const(lh) � FMS(lh) � FMS(JR(v)).

Procedure Build Tree of Merging Regions (G,S,B)
Input: Topology G, set of sink locations S, and skew boundB
Output: Tree of merging regionsTR

for each node v in G (bottom-up order)
if v is a sink node
mr(v) fl(v)g

else
Let a and b be the children of v
Let La = JS(mr(a)) and Lb = JS(mr(b))
Calculate mr(v) by construction rules M1-M3
if FMS(JR(v)) = ; /* detour wiring needed */

if skew(MSS(La)) � skew(MSS(Lb))
jeaj  0
jebj  d(mr(a);mr(b)) + skew(MSS(La))�B

else
jebj  0
jeaj  d(mr(a);mr(b)) + skew(MSS(Lb))�B

else
/* jeaj and jebj determined in top-down phase */

(a) Bottom-up phase: Construction of tree of merging regionsTR.

Procedure Find Exact Placements(TR)
Input: Tree of merging regionsTR
Output: BST T (S)with skew� B; jev j, 8v 2 G

for each internal node v in G (top-down order)
if v is the root

Choose any l(v) 2 mr(v)
else

Let p be the parent node of v
if jevj not determined yet
jevj  d(mr(v); l(p))

Choose any l(v) 2 mr(v) closest to l(p)

(b) Top-down phase: Construction of the BST by embedding internal
nodes of G within merging regions of TR.

Figure 2: The Ex-DME Algorithm.

By Lemma 1, it is easy to show that any merging region will be a
well-behaved octilinear region if La and Lb are parallel Manhattan
arcs as shown in Figure 1a. Thus, we consider the case when
La and Lb are parallel rectilinear line segments. As shown in
Figure 1b, where mr(v) = FMS(JR(v)) 6= ; and the region
JR(v) � mr(v) consists of simple polygonal regions, which we
call strictly monotone regions. From Lemma 2, we can infer that
within each strictly monotone region, the skew and max-delay values
increase monotonically from mr(v) toward joining segment,La or
Lb, while the min-delay value decreases monotonically in the same
direction.

Let l and l0 be two boundary segments of a strictly monotone
region M with l being on mr(v) and l0 on La or Lb, such that
the maximum and minimum y-coordinates of l and l0 are the same.
From skew(l) = B and the properties of M , we have that l is
a vertical line segment if skew(l0) is a constant; otherwise, l is a
Manhattan arc with slope �1 depending on the direction in which
the skew increases along l0. Therefore, mr(v) is an octilinear
region. Note that the vertices of mr(v) either lie on the rectilinear
boundary segments of JR(v) or opposite the skew turning points
of La and Lb. Thus, mr(v) can be constructed by rules M1-M3.
By the property of strictly monotone regions and Lemma 1, the
boundary segments of mr(v) are well-behaved.

Finally, if FMS(JR(v)) = ;, then mr(v) = MSS(JR(v))
is a well-behaved line segment. The construction rules compute
feasible merging sections (and minimum skew sections) for at most
8 (2) well-behaved line segments. Hence,mr(v) can be computed
in constant time. Therefore, we have



Theorem 1: Each merging region mr(v) for a node v 2 G is a
well-behaved octilinear region, and can be computed by construc-
tion rules M1-M3 in constant time.

It is obvious that given sink set S, connection topology G and
skew bound B = 0, if FMS(JR(v)) 6= ; for all internal nodes
v 2 G, Ex-DME is identical to DME and is hence optimal for
any prescribed topology. (Experimentally, FMS(JR(v)) 6= ; for
most nodes v 2 G as long as G is a “good” topology, e.g., the one
generated by ExG-DME described below.)

Note that Ex-DME places only two conditions on the placement
of a node v 2 G: (i) l(v) 2 mr(v), and (ii) d(l(p); l(v)) =
d(l(p);mr(v)), where node p is the parent of node v. Also we
know that when B = 1, all merging regions become rectangles.
By induction on the maximum depth of any node that violates either
of these conditions, we can show that any Steiner tree T which
violates the Ex-DME conditions when B =1 can be transformed
into another tree T 0 such that T 0 satisfies the Ex-DME conditions
and has cost(T 0) � cost(T ). Thus, we have:

Theorem 2: When B = 1, for any sink set S and topology
G, Ex-DME returns a Steiner tree over S with minimum cost for
topology G.

However, Ex-DME is not necessarily optimal for any intermedi-
ate value of B. A four-sink counterexample is given in [12].

4 Second Tradeoff: Unrestricted Case

We now consider the variant where the topology is not fixed and
the embedding is unrestricted. Our Extended Greedy-DME (ExG-
DME) algorithm matches the best known heuristic for the zero-skew
limiting case, and very closely matches the performance of the
best known heuristic [2] for the infinite-skew case (i.e., the Steiner
minimal tree problem). Basically, ExG-DME is an extension of
Greedy-DME [6, 7] that exploits flexibility stemming from allowed
skew during the topology construction.

Recall that in DME, two merging subtrees are always merged at
their roots so as to maintain zero skew. However, the shortest con-
nection between two trees may not be between their roots. Indeed,
subtrees may be merged at non-root nodes as long as the resulting
skew is � B. This flexibility allows reduced merging cost and is
the key merit of the ExG-DME approach.

Consider the example in Figure 3a, where the eight sinks are
equally spaced on a horizontal line. When B is near zero, the
minimum tree cost can be obtained by merging subtrees T1 and T2

at their roots as shown in the top example. However, this topology
is bad when B is large, even if the costs of the two subtrees are
minimum. When the skew bound is large, ideally one should adjust
the subtree topology so that the roots of subtrees become closer
while the subtree costs remain the same or increase slightly. This
is shown in the bottom example. More specifically, our method
adjusts the tree topology by changing the position of the root as
illustrated in Figure 3b. The root can be repositioned as the parent
of nodes u and v, where u and v are the endpoints of any edge in
the current tree. When we shift the root of the tree in this way, only
a few tree edges will be removed or added so that the basic structure
of the subtrees remains the same. In practice, the costs of the two
subtrees will have little increase when the topologies are changed
this way.

The ExG-DME algorithm follows the Greedy-DME structure,
as shown in Figure 4. One key difference between ExG-DME and
Greedy-DME is in the construction of the nearest-neighbor graph
H . In Greedy-DME, each edge euv of H represents a possible
merging pair of subtrees, Tu and Tv , rooted at u and v. The weight

of edge euv , denoted w(euv), represents the merging cost of Tu
and Tv , which can be computed in constant time given merging
segments ms(u) and ms(v). In ExG-DME, each edge euv of H
represents a possible way of merging two subtrees Tu (containing
u) and Tv (containing v), where u and v are not necessarily the
roots of their trees. Therefore, jHj is equal to the number of nodes
in the existing subtrees, which is between the number of sinks n
and 2n. Although w(euv) still represents the merging cost of Tu
and Tv , the computation becomes somewhat more complicated. If
Tu and Tv are the same tree, then w(euv) =1 (same trees cannot
be merged). Otherwise, we first construct the new subtrees T 0

u

and T 0

v with repositioned roots on edges eu and ev, then merge T 0

u

and T 0
v into a new tree T . Then w(euv) = cost(T )� cost(Tu)�

cost(Tv). By maintaining two more variablesmr0(w) and cost(w)
for each node w 2 H we can still compute w(euv) in constant
time.2 Therefore, straightforward computation of all edge weights
takes O(n2) time. The nearest-neighbor graph will be constructed
and used to merge the remaining subtrees O(logn) times, if the
parameter k is a constant [7]. Thus, the time complexity of ExG-
DME is O(n2 logn). By using the bucket decomposition method
of [9], the nearest-neighbor graph can be constructed in linear time,
so that the total time complexity becomesO(n logn).

When the skew bound B is small, significant detour wiring
will be required to maintain near-zero skew whenever we merge
two subtrees at positions in their lower levels. Thus, in practice
we need only consider tree edges in the upper levels (near the
original roots) as possible locations for the repositioned roots. In our
implementation, which edges are considered depends heuristically
on the skew bound B. When B = 0, ExG-DME only merges two
subtrees at their roots, and has the same linear time complexity as
Greedy-DME.

(a)

5 6 7 81 2 3 4

r
T1 T2

rT’1 T’2

r

1 2

3

4
u

v

1 2

3

4
r’

u

v

(b)

Figure 3: (a) An example showing that given skew bound B � 0,
changing the subtree topology before merging will reduce the merging
cost. (b) Repositioning the root in changing the topology.

5 Third Tradeoff: Planar Routing

Our final heuristic addresses the BST variant where the topology
can be arbitrary, but the output tree must be routable on a single
layer. Our Extended Planar-DME (ExP-DME) algorithm is iden-
tical to the Planar-DME algorithm in the limit of B = 0, and is

2Note that euv is an edge of nearest-neighbor graph H , while eu , ev
are edges of topology G. The definitions of mr0(v) and cost(v) for node
v 2 H are as follows. Let Tv be the merging tree containing node v, and let
T 0
v be the resulting adjusted tree after the root of Tv is relocated to edge ev .

Then mr0(v) = the root of T 0
v and cost0(v) = cost(T 0

v). Thus, for any
edge euv , we can compute w(euv) = d(mr0(u);mr0(v)) + cost(u) +
cost(v)� cost(Tu)� cost(Tv) in constant time.

After Tu and Tv are merged into a new tree T , we have to updatemr0(w)
and cost(w) for each node w 2 T . By a DFS traversal of the tree, all
values mr0(w) and cost(w) can be computed in (jT j) time; the resulting
time complexity is dominated by the construction of H .



Algorithm ExG-DME(S, B)
Input: Set of sinks S; skew boundB; parameter k
Output: BST T(S) with skew� B
n jSj /* starting with n subtrees */
for all sinks v 2 S
cost(v) 0
mr0(v) mr(v) fl(v)g

while (n > 1)
Construct nearest-neighbor graph H in O(n2) time
A sorted edges of H in non-decreasing order of

edge weight in O(n lg n) time
for i = 1 to minfmaxf1; n=kg; n � 1g do

Take edge euv with smallest weight from A
Delete all edges incident to u or v
Let Tu (Tv) be the subtree containing node u (v)
if u (v) is not the root of Tu (Tv)

Reposition the root of Tu (Tv) at eu (ev)
Adjust tree topology accordingly

T  merge Tu and Tv in O(jT j) time
Updatemr0(w), cost(w) 8w 2 T in O(jT j) time
n n� 1 /* one less subtree */

T(S) Find Exact Placements(T )

Figure 4: The ExG-DME Algorithm.

identical to the standard SMT heuristic of edge-overlapping from
a minimum spanning tree in the limit B = 1. This is the least
imaginative of our three methods: we simply use Planar-DME to
recursively partition the sink set until each sink cluster has radius
less than B, then construct a planar radius-bounded tree over each
cluster. A similar approach is used by Zhu and Dai [21], but we
expect substantial cost savings (e.g., using Planar-DME instead of
the method in [19] represents over 20% cost reduction).

To achieve the planar radius-bounded tree construction over the
sinks in any given cluster, we modify the KRY method of Khuller et
al. [15], so that it does not cross the clock tree edge that leads into the
given sink cluster.3 The spanning tree output by KRY may be con-
verted to a Steiner tree by overlapping the embeddings of tree edges
within the union of their bounding boxes. This preserves the span-
ning tree radius within the eventual Steiner tree output. Our greedy
edge-overlapping method considers each pair of adjacent edges in
the tree, and calculates the cost reduction achievable by optimally
overlapping these two edges (i.e., inducing a Steiner point). The
candidate Steiner point (i.e., the overlapping of two edges) which
yields maximum cost savings is iteratively added until no further
cost reduction is possible.4

The final step in ExP-DME removes edge crossings, which fur-
ther reduces the tree cost and still preserves the spanning tree radius
(see Figure 5). Assume edgesv1v2 andu1u2 intersect at pointw and
that v2(u2) is the parent of v1(u1). Assume further, without loss of
generality, that the pathlength from the lowest common ancestor of
v1 and u1 to v1 is shorter than that to u1. Replacing v1v2 and u1u2

by v1w,wv2 and u1w removes the edge crossing without increasing
the tree radius. Furthermore, the tree cost is reduced by jwu2j. The
number of operations is bounded by the number of edge crossings.

When B = 0, the time complexity of ExP-DME is O(n logn)
since ExP-DME is identical to Planar-DME. When the skew bound
increases, the running time of ExP-DME becomes dominated by

3KRY is a best possible “shallow-light” construction, where “shallow-light” indi-
cates a construction that returns a spanning tree within constant factors of optimal in
terms of both tree radius (shallowness) and tree cost (lightness).

4Ho et al. [11] provided an optimal edge-overlapping construction, but it cannot
always be applied to the KRY spanning trees because high-degree nodes may occur.
The output of our edge-overlapping heuristic is nearly identical to that of the optimal
edge-overlapping algorithm of Ho et al. (called S-RST in [11]), with about 0:2%
average cost difference.

KRY and edge-overlapping heuristics. Finally, in [12] we show that

Theorem 3: The routing tree T (S) constructed by ExP-DME is
planar and satisfies the skew bound B.

root

v1 u1

v2
u

2
w

v1 u1

v2
u2

Figure 5: Removal of crossing edges.

6 Experimental Results

All of our algorithms are implemented in C on a Sun SPARC-10
workstation. We tested our methods on the seven benchmark ex-
amples prim1-prim2 and r1-r5. Table 1 shows the total wirelengths
of BSTs constructed by ExG-DME/ExP-DME for different values
of the skew bound. In the last row of the table gives the results
obtained by the Steiner heuristic in [2], which has O(n logn) time
complexity and is competitive with Iterated 1-Steiner [13]. The data
for ExG-DME are the best results obtained using k = 2 to 5.

When B = 0, ExG-DME and ExP-DME are equivalent to the
best known non-planar and planar ZST algorithms [7, 14] in the
literature. (Our numbers are slightly different from those reported in
[7], since that paper uses the Elmore delay model.) When B =1,
the Steiner trees constructed by ExG-DME average only 0.21%
higher cost than [2]; on the other hand, ExP-DME is essentially
similar to the “MST + edge overlapping” heuristic [11] for the
Steiner minimal tree problem.

When 0 < B < 1, both ExG-DME and ExP-DME obtain
smooth skew-cost tradeoffs. The effectiveness of these methods is
due to their novel topology generation strategies, which allow very
natural transitions from zero-skew tree to Steiner minimal tree.

Experimentally, for any skew bound ExG-DME takes less than
120 minutes and ExP-DME takes less than 43 minutes to solve all
benchmarks on a Sparc-10 workstation. Figure 6 shows the routing
solutions constructed by ExG-DME and ExP-DME for the prim1
benchmark with skew bound equal to 100�m.

(a) cost=109.6, non-planar (b) cost=111.2, planar

Figure 6: Routing solutions by (a) ExG-DME and (b) ExP-DME for
benchmark prim1 when the skew boundB = 100�m. In (b) the radius-
bounded KRY trees are shown by dotted lines; the tree edges output by
Planar-DME are shown by think solid lines.



Skew Total wirelengths of ExG-DME/ExP-DME
Bound prim1 prim2 r1 r2 r3 r4 r5

0 130.8/134.6 311.3/347.7 1,323.9/1,511.8 2,581.1/3,284.3 3,316.1/3,943.9 6,690.0/7,810.6 9,871.5/11,491.1
.1 126.1/134.6 302.7/347.7 1,288.2/1,511.8 2,500.2/3,284.3 3,314.3/3,943.9 6,682.4/7,810.6 9,845.8/11,490.9
.2 123.6/133.3 293.2/338.8 1,295.9/1,511.7 2,551.7/3,283.9 3,307.0/3,943.6 6,608.1/7,809.9 9,815.5/11,488.7
.5 116.7/119.0 277.3/313.6 1,282.6/1,511.0 2,510.8/3,281.0 3,283.8/3,940.0 6,523.9/7,800.5 9,693.7/11,468.6
1 109.6/111.2 255.0/283.3 1,265.9/1,505.7 2,466.5/3,267.7 3,211.3/3,917.5 6,391.0/7,744.2 9,550.3/11,370.4
2 96.9/104.5 232.1/255.7 1,237.7/1,484.2 2,423.3/3,221.1 3,177.4/3,830.3 6,239.5/7,527.3 9,201.6/11,009.6
5 88.5/94.8 201.1/229.1 1,176.0/1,360.7 2,314.8/3,007.7 2,959.5/3,510.6 5,858.5/6,841.6 8,613.6/10,066.9

10 81.6/91.9 184.9/208.1 1,093.5/1,226.0 2,164.4/2,663.7 2,70.0/3,200.6 5,407.2/6,316.2 7,964.9/9,354.9
20 78.8/85.5 176.5/191.4 1,014.9/1,124.0 1,962.1/2,395.5 2,473.6/2,977.0 4,842.6/5,995.6 7,245.5/8,760.1
50 78.8/82.2 171.2/182.0 875.3/1,044.1 1,780.1/2,179.6 2,233.4/2,786.3 4,399.5/5,635.1 6,538.4/8,430.6
100 78.8/82.2 171.2/178.2 829.3/888.6 1,643.8/1,876.2 2,042.6/2,655.7 4,195.4/5,380.7 6,146.1/8,085.9
200 78.8/82.2 171.2/175.0 772.3/820.2 1,512.1/1,591.4 1,945.5/2,062.1 3,985.7/4,549.1 5,982.0/6,615.8
500 78.8/82.2 171.2/174.2 772.3/780.4 1,500.0/1,537.1 1,906.7/1,948.4 3,793.3/4,004.9 5,595.4/5,849.8
1000 78.8/82.2 171.2/174.2 772.3/780.4 1,500.0/1,529.4 1,906.7/1,936.7 3,792.2/3,864.4 5,586.5/5,701.9
2000 78.8/82.2 171.2/174.2 772.3/780.4 1,500.0/1,529.4 1,906.7/1,932.7 3,792.2/3,849.8 5,584.3/5,676.6
1 78.8/82.2 171.2/174.2 772.3/780.4 1,500.0/1,529.4 1,906.7/1,932.7 3,792.2/3,849.8 5,584.3/5,676.6
1([2]) 78.8 170.8 769.3 1,498.8 1,902.6 3,781.4 5,571.1

Table 1: Total wirelengths obtained by ExG-DME and ExP-DME for different skew bounds. The unit is 100�m. When B = 1, the results are
competitive with those obtained by [2], shown in the last row.

7 Conclusions

We have addressed the bounded skew routing tree (BST) problem,
which has applications in the engineering design of clock distribu-
tion and global routing topologies.5 We believe that the tradeoffs
we provide are effective, in that the limiting behaviors are essen-
tially those of the best known methods. Extensions of our methods
to other monotone delay models such as Elmore delay are straight-
forward, given appropriate modification of the rules for building
merging regions (e.g., under Elmore delay the boundary of merging
regions may consist of rectilinear and parabolic segments.). Note
that the underlying DME, Greedy-DME and Planar-DME methods
have all been applied under Elmore delay in previous works.

Our experimental results indicate that the Ex-DME tradeoff can
be non-monotone, especially as B is increased slightly from zero
(i.e., when we make the transition from DME to Ex-DME). We
leave open the questions of improving the approach, and finding
optimal BST solutions for a fixed topology and any skew bound.
Similarly, a drawback of ExP-DME is that when B is smaller than
the minimum distance between any two sinks, then ExP-DME is
identical to Planar-DME. A better approach using the concept of
planar merging regions is under investigation.

REFERENCES
[1] K. D. Boese and A. B. Kahng, “Zero-Skew Clock Routing Trees With

Minimum Wirelength,” Proc. IEEE Intl. Conf. on ASIC, 1992, pp. 1.1.1
- 1.1.5.

[2] M. Borah and R. M. Owens and M. J. Irwin, “An Edge-Based Heuristic
for Rectilinear Steiner Trees”, IEEE Trans. on CAD 13(12), Dec. 1994,
pp. 1563-1568.

[3] T.-H. Chao, Y.-C. Hsu and J.-M. Ho, “Zero Skew Clock Net Routing,”
in Proc. ACM/IEEE Design Automation Conf., 1992, pp. 518-523.

[4] J. Cong and C-K Koh, “Minimum-Cost Bounded-Skew Clock Rout-
ing”, to appear in Proc. Int’l Symposium on Circuits and Systems, May
1995.

[5] M. Edahiro, “Minimum Skew and Minimum Path Length Routing in
VLSI Layout Design”, NEC Research and Development 32(4),October
1991, pp. 569-575.

[6] M. Edahiro, “Minimum Path-Length Equi-Distant Routing”, Proc.
IEEE Asia-Pacific Conf. on Circuits and Systems, December 1992, pp.
41-46.

5Note: Recently an independent study of the same problem has been given in [4]

[7] M. Edahiro, “Clustering-Based Optimization Algorithm in Zero-Skew
Routings”, Proc. ACM/IEEE Design Automation Conf., June 1993, pp.
612-616.

[8] M. Edahiro, “Delay Minimization for Zero-Skew Routing”,Proc. IEEE
Intl. Conf. on Computer-Aided Design, 1993, pp. 563-566.

[9] M. Edahiro, “An Efficient Zero-Skew Routing Algorithm”, Proc.
ACM/IEEE Design Automation Conf., 1994, pp. 375-380.

[10] E. G. Friedman, “Clock Distribution Design in VLSI Circuits - An
Overview”, Proc. IEEE Intl. Symp. on Circuits and Systems, 1993, pp.
1475-1478.

[11] J.-M. Ho, G. Vijayan and C. K. Wong", “New Algorithms for the
Rectilinear Steiner Tree Problem”, IEEE Trans. on CAD, vol. 9, no. 2,
1990, pp. 185-193.

[12] D. J. H. Huang, A. B. Kahng and C.-W. A. Tsao, “On the Bounded-
Skew Clock and Steiner Routing Problems”, UCLA CS Dept. technical
report TR-940026x, 1994.

[13] A. B. Kahng and G. Robins, On Optimal Interconnections for VLSI,
Kluwer Academic Publishers, 1994.

[14] A. B. Kahng and C.-W. A. Tsao. “Planar-DME: Improved Planar
Zero-Skew Clock Routing With Minimum Pathlength Delay,” Proc.
ACM/IEEE European Design Automation Conf., September 1994.

[15] S. Khuller, B. Raghavachari, and N. Young, “Balancing Minimum
Spanning and Shortest Path Trees”, Proc. ACM/SIAM Symp. Discrete
Algorithms, 1993, pp. 243-250

[16] N. Menezes, S. Pullela and L. T. Pillage, “Skew Reduction in Clock
Trees Using Wire Width Optimization”, Proc. IEEE Custom Integrated
Circuits Conf., 1993.

[17] S. Pullela, N. Menezes, J. Omar and L. T. Pillage, “Skew and Delay
Optimization for Reliable Buffered Clock Trees”, Proc. IEEE Intl.
Conf. on Computer-Aided Design, 1993, pp. 556-562.

[18] S. Pullela, N. Menezes and L. T. Pillage, “Reliable Non-Zero Skew
Clock Tree Using Wire Width Optimization”, Proc. ACM/IEEE Design
Automation Conf., 1993, pp. 165-170.

[19] Q. Zhu and W. W.-M. Dai, “Perfect-Balance Planar Clock Routing
With Minimal Path-Length”, Proc. IEEE Intl. Conf. on Computer-
Aided Design, Nov. 1992, pp. 473-476.

[20] Q. Zhu and W.M. Dai, “Delay Bounded Minimum Steiner Tree Algo-
rithms for Performance-Driven Routing”, UCSC-CRL-93-46, Oct. 10,
1993

[21] Q. Zhu and W.M. Dai, manuscript, 1994.


