
LSMC Meets GPU Acceleration: Scalable and High-Quality
Multi-Row Detailed Placement

†‡Andrew B. Kahng, ‡Jason Liang, ‡Zhiang Wang
†CSE and ‡ECE Departments, UC San Diego, La Jolla, CA, USA.

{abk, jsliang, zhw033}@ucsd.edu

Abstract—Detailed placement is a crucial stage in VLSI physical
design, optimizing wirelength, timing, routability and power under
complex constraints such as edge spacing, site alignment and fence
regions. With the aggressive increase of design utilization and adoption
of multi-row height cells in advanced technology nodes, existing detailed
placers struggle with efficiency and quality, often becoming trapped
in local minima. In this work, we develop GPU-DPO, a fast and
high-quality GPU-accelerated detailed placement framework built on
top of the OpenROAD infrastructure, which leverages Large-Step
Markov Chain techniques to escape local optima and improve placement
quality. GPU-DPO is the first GPU-accelerated detailed placer with
the capability of fully supporting movable and reorderable multi-row
height cells. Experimental results on testcases with varying utilization
demonstrate that, in comparison with DPO [42] (the default detailed
placer in OpenROAD) and ABCDPlace [27] (the state-of-the-art GPU-
accelerated detailed placer), our approach achieves an average reduction
of post-detailed placement half-perimeter wirelength (HPWL) by 1.71%
and 3.5% respectively, while consuming similar runtime as ABCDPlace.

I. INTRODUCTION

Detailed placement is a critical optimization phase in VLSI, refin-
ing cell positions to minimize objectives like wirelength and timing
while adhering to strict legality rules [19], [28], [40]. It is frequently
reinvoked during backend closure to recover placement quality after
incremental changes, making both efficiency and solution quality
essential.

Classical detailed placers optimize small cell subsets via tech-
niques such as independent set matching [3], global swap [32], local
reordering [32], and row-based refinement [16]. However, sub-10nm
scaling, reduced track counts [5], and growing use of multi-row
height cells [12], [26], [35] have substantially increased placement
complexity, with existing multi-row placers [9], [13], [29], [37],
[39] facing scalability and runtime challenges. The GPU-accelerated
ABCDPlace [27] achieves speedup but treats multi-row cells as
fixed, potentially degrading placement quality. In addition, at high
utilization [28], relocating or reordering multi-row cells becomes
difficult, causing classical detailed placers to frequently get trapped
in local minima that leave room for improvement.

In this work, we propose a novel and efficient open-source GPU-
accelerated detailed placement framework that leverages Large-Step
Markov Chain (LSMC) [1] to escape local optima, enabling high-
quality optimization even in congested, high-utilization designs. Our
main contributions are as follows.
• We propose GPU-DPO, a fast, high-quality detailed placer that

leverages the LSMC approach to improve solution quality in
high-utilization designs. It is the first GPU-accelerated placer to
fully support movable and reorderable multi-row height cells,
including intra-row reordering, while handling constraints such
as edge spacing, site alignment, and fence regions [40].

• GPU-DPO is built on top of the OpenROAD [43] infrastructure
with a permissive open-source license, enabling other researchers
to readily adapt it for other enhancements.1

• Experiments show that across varying utilizations, GPU-DPO re-
duces post-detailed placement half-perimeter wirelength (HPWL)

1To support the research community’s efforts, we accompany our paper
with all runscripts as well as permissively open-sourced code in the GitHub
repository [45].

by 1.71% and 3.5% compared to DPO [42] (the default detailed
placer in OpenROAD) and ABCDPlace [27] (the state-of-the-
art GPU-accelerated detailed placer), respectively, with runtime
comparable to ABCDPlace in most cases.

• For extremely high utilization (≥ 80%), GPU-DPO achieves
significantly better post-detailed placement HPWL compared to
DPO and ABCDPlace, demonstrating the effectiveness of the
LSMC-based framework in escaping local minima.
The remaining sections are organized as follows. Section II

presents our approach. Section III shows experimental results, and
Section IV concludes the paper.

II. OUR APPROACH

The architecture of our proposed GPU-DPO framework is illus-
trated in Figure 1. The input is a legal placement solution (.def file)
that contains placed cells (with macros fixed, if any) and fixed IO
pins. The output is an enhanced legal placement solution (.def file).2

GPU-DPO consists of two major steps:
• GPU-Accelerated Detailed Placement (Descent) (Section II-A):

We redesign widely-adopted greedy detailed placement tech-
niques (maximum independent set matching, global swap and
local reordering) to handle multi-row height cells, and pro-
pose parallel versions for multi-threaded CPUs and GPUs. The
proposed GPU-accelerated detailed placement techniques enable
multiple refinement passes within a runtime similar to that of
sequential detailed placers.

• Large-Step Markov Chain (LSMC) Booster (Section II-B): We
incorporate the GPU-accelerated detailed placement techniques
as part of complex neighborhood move operators within the
LSMC framework, enabling GPU-DPO to escape local minima
and achieve improved placement quality.

We now explain these steps in detail; source code is in [45].

Fig. 1: Overview of the proposed LSMC-based GPU-DPO flow.

2Our detailed placement framework does not modify the netlist.

A. GPU-Accelerated Detailed Placement Kernels

OpenROAD’s detailed placement engine implements independent
set matching, global swap, local reorder, and flipping. Our detailed
placement flow mirrors this sequence of operators but parallelizes
the first three, which dominates runtime.

Maximum Independent Set Matching. Independent set match-
ing groups same-height cells that do not share nets, forming move
sets that are independent with respect to the HPWL objective.
Because no nets are shared, all cell locations in a set can be
simultaneously reassigned by solving a small linear assignment
problem. Multiple independent sets are processed concurrently, and
within each set, the cost of assigning cells to legal sites is evaluated
in parallel before computing an optimal one-to-one matching. Multi-
row height cells are naturally supported as long as all cells in the
set share the same height.

Global Swap. Global swap improves wirelength by exchang-
ing pairs of movable cells. For each cell, we define an optimal
destination region using the median bounding box of its incident
nets [32]. Specifically, for a cell c, we exclude c from each incident
net and compute the bounding box of the remaining pins. The
left, right, bottom, and top edges of these boxes across all nets
induce a multiset of coordinates. The optimal region for c is then
defined by the median x-coordinates and median y- coordinates of
the bounding box edges. Swap candidates within this region are
evaluated, and the lowest-cost legal swap that reduces HPWL is
applied.

Similar to ABCDPlace, we adopt a batch-based concurrent global
swap strategy to achieve more scalability. We group a batch of B
cells and launch GPU threads to concurrently compute candidate
regions, evaluate swap costs, and select optimal swaps. Algorithm 1
gives details, denoting the parallel and sequential steps.

Algorithm 1 Concurrent Global Swap

Input: Initial placement (x,y), netlist G = (V,N), batch size B
Output: Updated placement (x∗,y∗)
1: for all cells c ∈ V do ▷ Parallel
2: R(c)← ComputeOptimalRegion(c)
3: end for
4: for each batch Bv ⊆ V of size B do
5: C ← CollectSwapCandidates(Bv ,R) ▷ Parallel
6: S ← EvaluateSwapCosts(C) ▷ Parallel
7: B ← SelectBestSwaps(S) ▷ Parallel reduction
8: for each swap s ∈ B do ▷ Sequential conflict resolution
9: if s is legal (spacing, alignment, height fits) then

10: ApplySwap(s)
11: end if
12: end for
13: end for

When evaluating multi-row height cells, we require only that
the destination span has sufficient rows, is unoccupied, and meets
spacing and alignment constraints; no strict size matching between
swap pairs is enforced.

Local Reordering. Local reordering finds the optimal permuta-
tion of a sequence of consecutive cells within a defined window.
Unlike ABCDPlace, which restricts reordering to single-row, fixed-
size windows, our formulation supports multi-row movement and
full reordering of both single- and multi-row height cells. To avoid
factorial complexity from full permutation enumeration, we adopt
a dynamic programming (DP) formulation inspired by the key
idea in [9], which reformulates multi-row cell refinement as a
one-dimensional ordering problem and solves it using a dynamic
programming (DP) recurrence to explore only legality-preserving
placement states. We extend this concept to a GPU-friendly for-
mulation with full support for multi-row height cells and cross-row
reordering.

Before delving into details of our DP approach, we introduce
several key notations, as follows.
• Cell ordering [9]: Given an m-row (window) initial placement,

cells in the window are ordered from left to right based on
their rightmost boundary, forming a one-dimensional sequence
c1, c2, . . . , ck. If two cells share the same rightmost x-coordinate,
ties are broken using the y-coordinate of their lower boundary.

• Site definition: Let S denote the set of available sites within the
window. Site j is denoted as sj , indexed from the lower-left
boundary to the upper-right boundary.

• Cell-to-site assignment: A cell ci is said to be placed at site sj if
and only if the bottom-left corner of ci aligns with the bottom-left
corner of sj .
In the DP procedure, cells are placed sequentially according to the

established order. The DP table entry dp[i][j] denotes the minimum
cost solution where the ith cell is assigned to legal site sj , with
i indicating that i cells have been placed. When considering the
assignment of cell ci to site sj , the algorithm (i) ensures that the site
can accommodate the full height of the cell, (ii) verifies vertical site
alignment and power/ground rail compatibility, and (iii) confirms
that sites in all rows spanned by the cell are unoccupied. We
furthermore enforce additional displacement and inter-row spacing
constraints. These checks are embedded within the state expansion
logic, allowing early pruning of infeasible transitions and preventing
the propagation of invalid assignments.

The DP recursion is formulated as follows: for each cell i and
each legal site j, the optimal prior placement i of cell i − 1 is
identified, and the DP table is updated by

dp[i][j] = min
l

(dp[i− 1][l] + ∆HPWLi,j) (1)

where ∆HPWLi,j captures the impact of a cell’s placement on
bounding box sizes of incident nets. ∆HPWLi,j is calculated as
summing up the ∆HPWL contribution of all nets incident to ci,
as described in [18].

The detailed algorithm is presented in Algorithm 2. The layout
is partitioned into multiple windows, each consisting of m (m = 3
by default) rows, and processed in parallel. Relevant net and site
information is cached in shared memory, and DP state transitions
are cooperatively computed by multiple threads. Bounding boxes
are incrementally updated to evaluate HPWL deltas, and the optimal
legal assignment is recovered via backtracking. If the resulting per-
mutation yields a reduction in total wirelength, the new placement
is committed.3

Algorithm 2 Multi-Row Local Reordering

Input: Initial placement (x,y), rows R, sites S, window size m
Output: Updated placement (x∗,y∗)
1: Partition R into windows {w}
2: for all windows {w} do
3: Extract cells {c1, c2, . . . , ci, . . . , ck} in window w
4: Extract sites {s1, s2, . . . , sj , . . . , sl} in window w
5: Initialize dp[0][j]← 0, dp[i][j]←∞ for i > 0 ▷ Parallel
6: Sort {c1, c2, . . . , ck} by x-coordinate
7: for i = 1 to k do
8: for each site sj do
9: if placing ci at sj is legal then

10: Continue
11: end if

/*** Parallel reduction for calculating the minimum cost ***/
12: dp[i][j] = minl (dp[i− 1][l] + ∆HPWLi,j)
13: end for
14: end for
15: (x∗,y∗)← argminj dp[k][j] ▷ Parallel reduction
16: end for
17: return (x∗,y∗)

3We refer the reader to [45] for the detailed implementation.

B. Large-Step Markov Chain Booster
Classical detailed placement techniques (see Section II-A) often

struggle in high-density regions due to limited legal space, with little
improvement even after many additional iterations. To overcome
this, we incorporate the Large-Step Markov Chain (LSMC) heuristic
[1], [7], [31] for escaping local minima into our detailed placement
framework. LSMC initially finds a local optimum solution according
to some greedy “descent” search (in our case, sequentially apply-
ing maximum independent set matching, global swap and local
reordering). Its core idea is to perturb the current local optimum
via a “kick move” into the starting solution of the next greedy
descent. As shown in Figure 1, each LSMC iteration begins in
some local optimum solution state, then applies the “kick move”
and the descent search to reach a new local optimum. If the new
local optimum is better than the previous one, it is adopted as the
starting solution for the next iteration. Otherwise, the previous local
optimum is retained.4

Kick moves are implemented as some number of legal random
swaps of cells. The effectiveness of LSMC depends heavily on
the size of kick moves [7]. Large kick moves offer more oppor-
tunities for escaping poor local minima, but can severely disrupt
nearly optimal placements, making recovery during descent search
difficult and adversely affecting both runtime and solution quality.
Conversely, small kick moves may fail to escape the current “basin
of attraction”. Our experimental results demonstrate that, with
appropriately chosen kick moves and an efficient descent search
strategy, LSMC is effective in escaping the poor local minima that
are frequently encountered by traditional detailed placers.

Although the LSMC procedure is inherently sequential, the kick
moves are computationally lightweight and well suited for CPU
execution, while the computationally intensive descent search is
parallelized on the GPU. This heterogeneous approach achieves
superior placement quality within a runtime similar to that of
sequential detailed placers. The detailed workflow is described in
Algorithm 3. An early exit mechanism [Lines 17–19] is imple-
mented to terminate the LSMC procedure earlier if no improvement
is observed after a predefined number of consecutive iterations F
(F = 5 by default).

III. EXPERIMENTAL RESULTS

GPU-DPO is implemented with C++ and CUDA with a Tcl
command line interface on top of the OpenROAD infrastructure. We
run all experiments on a Linux server with an AMD Epyc 7742 64-
core CPU (128 threads) with 503 GB RAM and an NVIDIA A100-
SXM4-80GB GPU. To show the effectiveness of our detailed placer,
the following three detailed placers are evaluated and compared:
• DPO: Detailed placement is done by DPO [42], which is the

default detailed placer in the OpenROAD project.
• ABCDPlace: Detailed placement is performed by the latest

version of ABCDPlace [46], which is the state-of-the-art GPU-
accelerated detailed placer. In our experiments, we use the
default setting in [46].

• GPU-DPO: Results are obtained using our detailed placer.
Our experimental flow proceeds as follows. For each testcase, we
perform synthesis with Cadence Genus 21.1 and global placement
with Cadence Innovus 21.1, producing mixed-height placements
subsequently legalized by OpenROAD. We then perform detailed
placement using each of the three placers. Post-detailed placement
HPWL is reported via OpenROAD, and post-route metrics are ob-
tained from Innovus following post-route optimization 5. “DP Time”

4Thus, the “large step” in LSMC consists of (kick move + descent).
Our version of LSMC may be viewed as zero-temperature annealing in the
neighborhood structure induced by this “large step” operator.

5Note that we do not benchmark the commercial EDA tool, and no
benchmarking should be inferred from our results.

Algorithm 3 LSMC Booster

Input: Initial cell placement (x0,y0), kick ratio k ∈ (0, 1], max iterations
T , max failure tolerance F , cost function C

Output: Optimized placement (x∗,y∗)
1: x← x0, y← y0
2: (x,y)← DESCENT(x, y) ▷ Executed on GPU
3: x∗ ← x, y∗ ← y ▷ Initial best solution found
4: C∗ ← C(x∗,y∗) ▷ Initial best cost
5: N ← number of movable cells
6: f ← 0 ▷ Keep track of LSMC failures
7: nk ← ⌊k ·N⌋ ▷ Total kick moves (random cell swaps)
8: for t = 1 to T do
9: (xk,yk)← KICKMOVE(x∗,y∗)

using nk random legal cell swaps ▷ Executed on CPU
10: (xd,yd)← DESCENT(xk,yk) ▷ Executed on GPU
11: if C(xd,yd) < C∗ then ▷ New best local min found
12: x∗ ← xd,y

∗ ← yd
13: C∗ ← C(x∗,y∗)
14: f ← 0 ▷ Reset LSMC failures
15: else
16: f ← f + 1 ▷ Keep track of LSMC failures
17: if f = F then
18: return (x∗,y∗)
19: end if
20: end if
21: end for
22: return (x∗,y∗)

measures kernel runtime, whereas “TAT” represents total runtime,
including I/O and GPU overhead in the cases of ABCDPlace and
GPU-DPO.

All experiments use the ASAP7 7nm FinFET PDK [41], support-
ing multi-row height cells, and three public testcases: AES, JPEG,
and Mempool-Group (MP-Group) [43], [44]. Table I summarizes
their characteristics. Sections III-A and III-B respectively present
post-detailed placement and post-route optimization results, and
evaluate QoR across varying utilization. In all experiments, GPU-
DPO is run with default reorder window size = 3, MIS problem
size = 64, and LSMC kick move ratio = 0.10. These were chosen
experimentally for an effective balance between HPWL reduction
and runtime. In the repository [45], each experiment reported below
is mapped to the corresponding runscript(s) used to produce results.

TABLE I: Testcase Specifications

Testcase #Cells #Nets #Multi-row
height cells

AES 15347 15975 120
JPEG 61133 63389 1287

MP-Group 2548437 2650624 113

A. Main Results
We first present our main experimental results. Table II com-

pares metrics after detailed placement. Rows represent testcases
(utilization) and detailed placement flows, and columns give HPWL
(in µm), runtime for detailed placement kernels (DP time, in
seconds (s)) and turnaround time for detailed placement (TAT,
in s). We observe that GPU-DPO consistently outperforms both
DPO and ABCDPlace across all three testcases in terms of post-
detailed placement HPWL. On average, GPU-DPO achieves 1.71%
and 3.5% lower post-detailed placement HPWL compared to DPO
and ABCDPlace, respectively. Notably, for the largest MP-Group
testcase (2.5M cells), GPU-DPO achieves superior HPWL in just
12% of the runtime required by DPO. Although GPU-DPO re-
quires more runtime than ABCDPlace, an “iso-runtime” comparison
demonstrates that allocating additional time to ABCDPlace (i.e.,
running it for five iterations, see Section III-B), does not yield
results comparable to those of GPU-DPO. This supports our claim
in Section II-B that classical detailed placers without the LSMC
booster gain negligible improvement even with additional iterations.

We further examine the post-route wirelength (in µm) and the
runtime for detailed router (DR Time, in s). The post-route results
are shown in Table III, where NR denotes cases where the tool failed
to return a legal placement successfully. On average, GPU-DPO
achieves 3.1% and 8.5% reduction in routed wirelength compared
to DPO and ABCDPlace, respectively. These results indicate that
the detailed placement solutions produced by GPU-DPO lead to
improved routability and routed wirelength.

TABLE II: QoR Metrics Post-Detailed Placement

Testcase Detailed HPWL DP Time TAT
(Util.) Placer (µm) (s) (s)

AES
(0.91)

DPO 44823 5 10
ABCDPlace 45412 1 4
GPU-DPO 44226 2 4

JPEG
(0.72)

DPO 96861 34 42
ABCDPlace 101537 3 10
GPU-DPO 93665 5 13

MP-Group
(0.41)

DPO 25089409 1138 1375
ABCDPlace NR NR NR
GPU-DPO 24963574 35 164

TABLE III: QoR Metrics After Post-Route Optimization

Testcase Detailed rWL
(µm)

DR Time
(s)(Util.) Placer

AES
(0.91)

DPO 54434 123
ABCDPlace 59727 125
GPU-DPO 52925 129

JPEG
(0.72)

DPO 112501 314
ABCDPlace 116820 330
GPU-DPO 109013 313

MP-Group
(0.41)

DPO 27556757 482462
ABCDPlace NR NR
GPU-DPO 26854328 486089

B. “Solve the Harder Problem”: Higher-Utilization Studies
Next, we systematically evaluate performance of the three de-

tailed placers under conditions of higher placement utilization. We
use the AES and JPEG testcases and report both the runtime of
the detailed placement kernels (DP Time) and the post-detailed
placement HPWL. We sweep utilization across 0.60, 0.70, 0.80,
0.85 and 0.90 for each testcase. Each detailed placer is allowed to
perform five iterations of detailed placement operators to generate
the final solution. Specifically, this involves five consecutive passes
of independent set matching, global swap and local reordering. For
GPU-DPO, one initial descent pass is followed by four iterations
of kick move and descent operations, as described in Algorithm 3.
The experimental results are presented in Figure 2 and Figure 3.
We observe that our GPU-DPO consistently dominates DPO and
ABCDPlace across all utilizations. In the extremely high-utilization
case (0.90), GPU-DPO achieves approximately 4% lower post-
detailed placement HPWL compared to ABCDPlace.

We further evaluate the post-route wirelength and the runtime of
the detailed router. Experimental results are presented in Tables IV
and V: Table IV reports the HPWL after global placement and
legalization, and Table V presents the post-detailed placement and
post-route metrics. Across all utilizations for both testcases, GPU-
DPO consistently outperforms both DPO and ABCDPlace in terms
of post-detailed placement HPWL as well as routed wirelength.

TABLE IV: Initial HPWL for Utilization Experiments

Testcase Util. Original HPWL (µm)

AES
0.6 50817
0.8 48685
0.9 47718

JPEG
0.6 109866
0.8 108743
0.9 107384

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Utilization

1.00

1.02

1.04

1.06

1.08

1.10

1.12

H
PW

L
(N

or
m

al
iz

ed
)

DPO (AES)
ABCDPlace (AES)
GPU-DPO (AES)
DPO (JPEG)
ABCDPlace (JPEG)
GPU-DPO (JPEG)

Fig. 2: Post-detailed placement HPWL versus utilization. All values are
normalized to the HPWL of GPU-DPO for the AES (solid) or JPEG
(dashed) testcases at 0.90 utilization.

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Utilization

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

D
P

Ti
m

e
(N

or
m

al
iz

ed
)

DPO (AES)
ABCDPlace (AES)
GPU-DPO (AES)
DPO (JPEG)
ABCDPlace (JPEG)
GPU-DPO (JPEG)

Fig. 3: Runtime for detailed placement kernels (DP Time) versus
utilization. All values are normalized to the HPWL of GPU-DPO for
the AES (solid) or JPEG (dashed) testcases at 0.60 utilization.

TABLE V: Comparisons Across Different Utilizations

Testcase Detailed
Placer Util. HPWL

(µm)
rWL
(µm)

DP Time
(s)

DR Time
(s)

AES

DPO
0.6 49305 58205 17 194
0.8 47177 56078 30 218
0.9 46570 55511 25 157

ABCDPlace
0.6 50514 59194 16 180
0.8 48400 57217 21 177
0.9 47418 56180 19 153

GPU-DPO
0.6 48258 56706 17 135
0.8 46161 54544 26 184
0.9 45434 53982 26 167

JPEG

DPO
0.6 97235 113009 98 304
0.8 96530 111843 135 322
0.9 95034 111282 157 337

ABCDPlace
0.6 105707 121805 55 291
0.8 99830 114853 58 305
0.9 96738 111933 60 326

GPU-DPO
0.6 93981 109977 89 298
0.8 93483 109647 127 320
0.9 93394 109383 149 334

IV. CONCLUSION

We present GPU-DPO, a GPU-accelerated detailed placer in-
tegrated into OpenROAD that applies Large-Step Markov Chain
techniques. Experiments show that it achieves lower post-placement
HPWL than DPO and ABCDPlace. Ongoing work adds congestion-
and pin-aware costs, incremental timing-driven optimization, and
advanced constraints such as drain-to-drain separation, minimum
implant area, and jog length. OpenROAD integration and open-
sourcing position GPU-DPO as a foundation for future research
on modern, high-quality detailed placers for advanced nodes.

V. ACKNOWLEDGMENTS

This work is partially supported by the Samsung AI Center.

REFERENCES

[1] E. B. Baum, “Iterated Descent: A Better Algorithm for Local Search
in Combinatorial Optimization Problems”, Unpublished Manuscript,
1986.

[2] S. Cauley, V. Balakrishnan, Y. C. Hu and C.-K. Koh, “A Parallel
Branch-and-cut Approach for Detailed Placement”, ACM Trans. on
DAES 16(2) (2011), pp. 18:1-18:19.

[3] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen and Y.-W. Chang,
“NTUplace3: An Analytical Placer for Large-Scale Mixed-Size De-
signs With Preplaced Blocks and Density Constraints”, IEEE Trans.
on CAD 27(7) (2008), pp. 1228-1240.

[4] W.-K. Chow, J. Kuang, X. He, W. Cai and E. F. Y. Young, “Cell
Density-driven Detailed Placement with Displacement Constraint”,
Proc. ISPD, 2014, pp. 3-10.

[5] P. Debacker, K. Han, A. B. Kahng, H. Lee, P. Raghavan and L. Wang,
“Vertical M1 Routing-Aware Detailed Placement for Congestion and
Wirelength Reduction in Sub-10nm Nodes”, Proc. DAC, 2017, pp. 1-6.

[6] S. Dhar and D. Pan, “GDP: GPU Accelerated Detailed Placement”,
Proc. HPEC, 2018, pp. 1-7.

[7] A. S. Fukunaga, J. H. Huang and A. B. Kahng, “Large-Step Markov
Chain Variants for VLSI Netlist Partitioning”, Proc. ISCAS, 1996, pp.
496-499.

[8] K. Han, A. B. Kahng and H. Lee, “Scalable Detailed Placement
Legalization for Complex Sub-14nm Constraints”, Proc. ICCAD, 2015,
pp. 867-873.

[9] C. Han, A. B. Kahng, L. Wang and B. Xu, “Enhanced Optimal Multi-
row Detailed Placement for Neighbor Diffusion Effect Mitigation in
Sub-10nm VLSI”, IEEE Trans. on CAD 38(9) (2019), pp. 1703-1716.

[10] S. Heo, A. B. Kahng, M. Kim, L. Wang and C. Yang, “Detailed
Placement for IR Drop Mitigation by Power Staple Insertion in Sub-
10nm VLSI”, Proc. DATE, 2019, pp. 830-835.

[11] I. Hong, A. B. Kahng and B. R. Moon, “Improved Large-Step Markov
Chain Variants for the Symmetric TSP”, J. Heuristics 3(1) (1997), pp.
63-81.

[12] C.-C. Hsu, Y.-C. Chen and M. P.-H. Lin, “In-placement Clock-tree
Aware Multi-bit Flip-flop Generation for Power Optimization”, Proc.
ICCAD, 2013, pp. 592-598.

[13] D.-W. Huang, Y.-J. Jiang and S.-Y. Fang, “Spacing Cost-aware Op-
timal and Efficient Mixed-Cell-Height Detailed Placement for DFM
Considerations”, Proc. ICCAD, 2023, pp. 1-8.

[14] S. W. Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard
Cell Placement”, Proc. ICCAD, 2000, pp. 165–170.

[15] Z.-W. Jiang, H.-C. Chen, T.-C. Chen and Y.-W. Chang, “Challenges
and Solutions in Modern VLSI Placement”, Proc. VLSI-DAT, 2007,
pp. 1–5.

[16] A. B. Kahng, I. L. Markov and S. Reda, “On Legalization of Row-
based Placements”, Proc. GLSVLSI, 2004, pp. 214–219.

[17] A. Kahng, B. Pramanik and M. Woo, “A Hybrid ECO Detailed
Placement Flow for Improved Reduction of Dynamic IR Drop”, Proc.
GLSVLSI, 2024, pp. 390-396.

[18] A. B. Kahng, P. Tucker and A. Zelikovsky, “Optimization of Linear
Placements for Wirelength Minimization with Free Sites”, Proc. ASP-
DAC, 1999, pp. 241–244.

[19] A. Kennings, N. K. Darav and L. Behjat, “Detailed Placement Ac-
counting for Technology Constraints”, Proc. VLSI-SoC, 2014, pp. 1-6.

[20] M.-C. Kim, J. Hu, D.-J. Lee and I. L. Markov, “A SimPLR Method
for Routability-driven Placement”, Proc. ICCAD, 2011, pp. 67-73.

[21] S. Li and C. Koh, “Mixed Integer Programming Models for Detailed
Placement”, Proc. ISPD, 2012, pp. 87-94.

[22] S. Li and C. Koh, “MIP-based Detailed Placer for Mixed-size Circuits”,
Proc. ISPD, 2014, pp. 11-18.

[23] D. Lim and H. Park, “Timing-Driven Detailed Placement with Unsu-
pervised Graph Learning”, Proc. DATE, 2025, pp. 1-7.

[24] Y. Lin, “GPU Acceleration in VLSI Back-end Design: Overview and
Case Studies”, Proc. ICCAD, 2020, pp. 1-4.

[25] T. Lin and C. Chu, “TPL-aware Displacement-driven Detailed Place-
ment Refinement with Coloring Constraints”, Proc. ISPD, 2015, pp.
75–80.

[26] M. P.-H. Lin, C.-C. Hsu and Y.-T. Chang, “Recent Research in Clock
Power Saving with Multi-bit Flip-flops”, Proc. MWSCAS, 2011, pp.
1-4.

[27] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany and D. Pan, “ABCDPlace:
Accelerated Batch-based Concurrent Detailed Placement on Multi-
threaded CPUs and GPUs”, IEEE Trans. on CAD 39(12) (2020), pp.
5083-5096.

[28] Y. Lin, B. Yu and D. Z. Pan, “Detailed Placement in Advanced
Technology Nodes: A Survey”, Proc. ICSICT, 2016, pp. 836-839.

[29] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan et al., “MrDP:
Multiple-row Detailed Placement of Heterogeneous-sized Cells for
Advanced Nodes”, Proc. ICCAD, 2016, pp. 1-8.

[30] Y. Lin, B. Yu, B. Xu and D. Z. Pan, “Triple Patterning Aware Detailed
Placement Toward Zero Cross-row Middle-of-line Conflict”, IEEE
Trans. on CAD 36(7) (2017), pp. 1140–1152.

[31] O. Martin, S. Otto and E. W. Felten, “Large-step Markov Chains for
the TSP Incorporating Local Search Heuristics”, Operation Research
Letters 11(4) (1992), pp. 219-224.

[32] M. Pan, N. Viswanathan and C. Chu, “An Efficient and Effective
Detailed Placement Algorithm”, Proc. ICCAD, 2005, pp. 48-55.

[33] S. Popovych, H.-H. Lai, C.-M. Wang, Y.-L. Li, W.-H. Liu and T.-C.
Wang, “Density-aware Detailed Placement with Instant Legalization”,
Proc. DAC, 2014, pp. 1-6.

[34] H. Ren, D. Z. Pan, C. J. Alpert, G.-J. Nam and P. Villarrubia,
“Hippocrates: First-Do-No-Harm Detailed Placement”, Proc. ASP-
DAC, 2007, pp. 141-146.

[35] D. D. Sherlekar, “Cell Architecture for Increasing Transistor Size”,
U.S. Patent 8631374, Jan. 2014.

[36] J. Vygen, “Algorithms for Detailed Placement of Standard Cells”, Proc.
DATE, 1998, pp. 321–324.

[37] L.-C. Wang and S.-Y. Fang, “Mitigating Layout Dependent Effect-
induced Timing Risk in Multi-Row-Height Detailed Placement”, Proc.
DATE, 2023, pp. 1-2.

[38] C.-K. Wang, C.-C. Huang, S. S.-Y. Liu, C.-Y. Chin, S.-T. Hu, W.-C.
Wu and H.-M. Chen, “Closing the Gap between Global and Detailed
Placement: Techniques for Improving Routability”, Proc. ISPD, 2015,
pp. 149–156.

[39] G. Wu and C. Chu, “Detailed Placement Algorithm for VLSI Design
With Double-Row Height Standard Cells”, IEEE Trans. on CAD 35(9)
(2016), pp. 1569-1573.

[40] V. Yutsis, I. S. Bustany, D. Chinnery, J. R. Shinnerl and W.-H.
Liu, “ISPD 2014 Benchmarks with Sub-45nm Technology Rules for
Detailed-routing Driven Placement”, Proc. ISPD, 2014, pp. 161–168.

[41] ASAP7 PDK and Cell Libraries. https://github.com/
The-OpenROAD-Project/asap7

[42] DPO. https://github.com/The-OpenROAD-Project/OpenROAD/
tree/c422dda56f18f479fd707c2362c4d677d76cf043/src/dpl/src/
optimization

[43] OpenROAD. https://github.com/The-OpenROAD-Project/OpenROAD
[44] TILOS Macro Placement Benchmarks. https://github.com/

TILOS-AI-Institute/MacroPlacement/tree/sept 2025 update
[45] GPU-DPO. https://github.com/ABKGroup/GPU-DPO/tree/main/src/

dpl
[46] ABCDPlace implementation. https://github.com/limbo018/

DREAMPlace/tree/master/dreamplace/ops

