
Invited: Agentic AI for Physical Design R&D: Status and Prospects
Amur Ghose

University of California, San Diego
Department of CSE
aghose@ucsd.edu

Andrew B. Kahng
University of California, San Diego

Departments of CSE and ECE
abk@ucsd.edu

Sayak Kundu
University of California, San Diego

Department of ECE
sakundu@ucsd.edu

Bodhisatta Pramanik
University of California, San Diego

Department of ECE
bopramanik@ucsd.edu

Abstract
Recent advances in large language models (LLMs) and tool-using
autonomous agents present new opportunities for accelerating re-
search and development in physical design. Unlike earlier uses
of machine learning that focused narrowly on prediction or op-
timization subroutines, agentic AI systems can comprehend user
specifications, modify code, run EDA tools, analyze results, perform
multi-step reasoning, and iteratively refine design heuristics. This
paper surveys the emerging landscape of agentic AI for physical de-
sign R&D, with emphasis on (i) tool-integrated agents for algorithm
evolution, debugging, and workflow automation, (ii) autonomous
exploration of heuristic spaces in placement, routing, and parti-
tioning, and (iii) interfaces between agents and traditional EDA
frameworks. We analyze recent experience with multi-agent work-
flows and benchmark evaluation, highlighting current capabilities,
limitations, and research frontiers. We conclude by articulating
the long-term prospects of agentic AI as a catalyst for accelerated
innovation in physical design, including autonomous algorithm
discovery, continuous tool improvement, and closed-loop learning
from large design corpora.

CCS Concepts
•Hardware→ Physical design (EDA); Software tools for EDA;
• Computing methodologies → Multi-agent systems; Intelli-
gent agents.

Keywords
VLSI physical design, agentic EDA, algorithm evolution, EDA tools

ACM Reference Format:
Amur Ghose, Andrew B. Kahng, Sayak Kundu, and Bodhisatta Pramanik.
2026. Invited: Agentic AI for Physical Design R&D: Status and Prospects. In
Proceedings of the 2026 International Symposium on Physical Design (ISPD
’26), March 15–18, 2026, Bonn, Germany. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3764386.3779612

1 Introduction
Integrated circuit (IC) designers face an ever-increasing challenge
to deliver consistent capable design automation tools. At its core,

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISPD ’26, Bonn, Germany
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2314-8/2026/03
https://doi.org/10.1145/3764386.3779612

IC design is a large-scale optimization problem in which multi-
ple competing objectives — timing, power, area, and routability —
must be simultaneously satisfied. This challenge is further com-
pounded by the growing need for node-specific design-technology
co-optimization (DTCO), which leads to both cost and risk increases.
Commercial EDA tools, while highly optimized and robust, have
to hedge their bets across a wide variety of possible tapeouts. At
advanced nodes below 7 nm, DTCO contributes more than 25% of
area improvement, with projections exceeding 50% at 3 nm and
beyond [47]. Consolidation and oligopoly stymies the necessary
innovation required to disrupt these challenges. Closed intellectual
property models limit the access to data, impede reproducibility,
and constrain the development of OSS benchmarks.

Large Language models (LLMs) and tool-integrated autonomous
agents present new opportunities for accelerating research and
development in physical design. Unlike earlier applications of ma-
chine learning in EDA — typically focused on isolated prediction
tasks or parameter tuning — agentic AI systems can now interpret
user specifications, modify source code, execute EDA tools, ana-
lyze outcomes, perform multi-step reasoning, and iteratively refine
design heuristics. This capability represents a qualitative shift from
ML as a supporting subroutine to ML as an active engineering
counterpart. We articulate a vision of agentic autonomous evolution
of EDA, in which AI agents function as R&D software engineers
for physical design tools. This agentic wave is likely to inundate
first the open-source EDA ecosystems, such as OpenROAD [84], as
opposed to siloed, proprietary, closed-loop incumbents. This paper
assesses the emerging landscape of agentic AI for physical design
R&D. We make the following contributions:
• We provide a perspective on the evolution of data-driven tech-
niques in EDA from task-specific machine learning models to
large language models and tool-integrated agentic systems. This
clarifies the limits of prior AI-for-EDA approaches and motivates
the transition to agentic AI for physical design R&D (Section 2).

• We introduce a taxonomy of agentic AI for physical design, dis-
tinguishing flow-level agents that optimize tool orchestration
and parameters from code-level agents that directly modify EDA
algorithms and implementation logic (Section 3).

• We present concrete case studies demonstrating agentic AI in
action, spanning flow tuning, detailed placement evolution, func-
tional simulation acceleration, and hypergraph partitioning, all
within the OpenROAD ecosystem (Section 4).

• We present a research vision for agentic physical design, identi-
fying challenges and paths forward in verification, safety, bench-
marking, and multi-objective optimization, and outlining the

https://doi.org/10.1145/3764386.3779612
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3764386.3779612


ISPD ’26, March 15–18, 2026, Bonn, Germany Amur Ghose, Andrew Kahng, Sayak Kundu, and Bodhisatta Pramanik

long-term opportunity for a modular, multi-agent OpenROAD
framework in which specialized agents collaboratively evolve
physical design tools and workflows (Section 5).
The remainder of this paper is organized as follows. Section 2

reviews background on ML in EDA, LLM-based agents, and prior
work in automated heuristic discovery. Section 3 defines agentic
AI for physical design and outlines core capabilities of flow-level
and code-level agents. Section 4 presents some case studies on
OpenROAD, Section 5 discusses our vision and near-term prospects,
and Section 6 concludes our paper.

2 Background and Related Trends
In recent years, artificial intelligence for chip design — often re-
ferred to as AI/ML for EDA or AI-assisted EDA [25, 50] — has
emerged as a promising paradigm due to its ability to leverage
knowledge from prior circuit design data. A growing number of
AI-driven techniques have also been adopted in commercial EDA
tools [10, 57]. These approaches typically train machine learning
models to provide early-stage predictions or optimizations, thereby
bypassing computationally expensive downstream design and simu-
lation steps. By learning from historical design solutions,MLmodels
can evaluate circuit quality at early design stages and guide subse-
quent optimization decisions. Most existing AI-for-EDA techniques
are deployed as specialized prediction or optimization modules
within fixed design flows [16]. They thus remain inherently narrow
in scope and incremental in accelerating design time, not revolu-
tionary.

Fig. 1: ML methodologies in EDA stages, adapted from [76].

Recent advances in large language models (LLMs) [1] introduce
a distinct capability. LLMs are trained to reason over heterogeneous
inputs — including source code, tool logs, configuration files, and
natural language specifications — and to interact with external tools
in a closed-loop manner [72]. This shift enables a new class of AI
systems that can directly augment, and then eventually comple-
ment, the EDA engineering workforce. Figure 1, adapted from [76]
captures typical ML methodologies per EDA stage.

2.1 Evolution of ML in EDA
Existing AI-for-EDA methods are largely tailored to specific tasks,
most commonly the early prediction of design quality metrics such
as timing [17, 68], area [18, 19, 55], power [78, 79], IR drop [15,
69], and routability [26, 70]. In addition to prediction, a range of
optimization-oriented tasks-including design flow tuning [32, 71],
design space exploration [4, 53], and direct PPA optimization [39,

40] — have also been explored using machine learning. Across
these applications, ML models are typically used to estimate circuit
quality metrics and provide feedback to downstream optimization
procedures, rather than to modify the underlying EDA algorithms
or tool flows themselves. This paradigm, in which ML serves as a
task-specific subroutine within a fixed design flow, is illustrated on
the left side of Figure 2. All of these classical supervised and rein-
forcement learning approaches typically require carefully curated
training data, hand-designed features, and problem formulations
that are tightly coupled to a specific design stage, technology node,
or design style. Today, changing any of these exposes weaknesses
in generalization; this motivates us to find more flexible and trans-
ferable learning paradigms. Existing approaches are also created
to work with largely static and closed EDA toolchains; this envi-
ronment may shift with the advent of new system integrations and
device/fabrication technologies, e.g., 3D heterogeneous integration,
integrated photonics, etc.

LLMs address these limitations by learning general-purpose rep-
resentations over code, text, and execution traces [1]. Rather than
learning a single predictive mapping, LLMs can interpret design
specifications, inspect and modify EDA source code, invoke tools,
and analyze results in a closed-loop fashion [54, 72]. As depicted on
the right side of Figure 2, this capability enables a transition from
learning within fixed design flows to learning about and across EDA
tools themselves, enabling agentic digital IC engineering.

Fig. 2: Evolution of ML in EDA.

2.2 LLMs and Agents
Large language models (LLMs) are foundation models with general-
purpose representations of language [1, 6]. LLMs develop the ability
to generate coherent, context-aware text and to perform a wide
range of tasks without explicit task-specific training [7]. Modern
LLMs comprise billions or trillions of parameters, with scale play-
ing a central role in determining model capability [30]. The key
architectural innovation enabling this progress is the Transformer
model [61]. Empirical studies have shown that language model
performance, measured by log-likelihood loss, follows consistent
power-law scaling behavior with respect to model size, training
data, and computational budget [30]. As models are scaled along
these dimensions, they exhibit emergent abilities — capabilities that
are not observed in smaller models but arise unexpectedly at larger
scales [63]. In Figure 4, this progression corresponds to the leftmost
block, where LLMs reason over text and code.
Agents. An agent refers to an LLM-based system that couples rea-
soning with action through interaction with external tools and
environments. Unlike a standalone language model that passively



Invited: Agentic AI for Physical Design R&D: Status and Prospects ISPD ’26, March 15–18, 2026, Bonn, Germany

Fig. 3: Timeline of representative LLM-based work for physical design, illustrating the evolution from natural-language-driven
flow automation, to open-source grounding via datasets and retrieval, and toward tool-integrated, multi-agent EDA ecosystems.

generates text, an agent maintains state, plans sequences of ac-
tions, invokes tools, observes outcomes, and adapts its behavior
in a closed-loop manner [54, 73]. Effective EDA problem solving
requires not only reasoning about design intent but also execut-
ing tools, modifying configurations or source code, and evaluating
downstream physical design metrics; fertile ground to critique pure
reason. This is illustrated in Figure 4.

Fig. 4: LLMs, agents and EDA.

Modern agentic infrastructure supports tight control loops, type
checking, tool calling [54] dynamic timeouts, and so forth, wrapped
around a single base LLM that may or may not be fine-tuned for
the purpose. Experiments with Kimi-class models demonstrate that
such fine-tuning helps greatly; however, most base LLMs are also
usable as core drivers for agentic systems. Prompt optimization,
chain of thought, etc. largely form the proto-layer of how the agent
pipelines, manages, and compacts context, but with much more
abstraction and optimization — e.g. frameworks like DSPy obviate
the need for much of hand-tuned prompting. When combined with
frontier LLMs from OpenAI [45] and Google [20], these architec-
tures enable tool-using agents that can read documentation, write
and execute code, interpret results, and iteratively refine solutions —
capabilities that align naturally with the workflows of EDA research
and development [42]. Within EDA, agentic guardrails generally
take the form of RTL-level checks [37, 58] atop domain-tuned mod-
els [35] or LLM-interfacing [58] alongside a “bonsai” ecosystem
of benchmarks [36, 41]. A clear-eyed view of the EDA ecosystem
would find it severely lacking in the adaptation required. Efforts
such as MCP4EDA [62] to port general context pipelining abstrac-
tions such as MCP [83] arguably face obsolescence from generic

LLM advances, and do not sufficiently emphasize the unique types
of data (VCD, HGR, etc.) that make EDA special. And, while coding
agents or other agents for generic data might use operations such
as “sed" to manipulate their environments, what such primitives
might look like for EDA and IC design environments is still unclear.

2.3 Automated Heuristic Discovery
The challenge of automated heuristic discovery predates the LLM
era by several decades. [51] formalized the task of mapping problem
instances to suitable algorithms based on instance features. Evolu-
tionary approaches such as genetic programming [23] and genetic
improvement [31] applied search directly to program representa-
tions, while automated algorithm configuration methods tuned
solver hyperparameters using techniques such as iterative racing
and Bayesian optimization [27, 38]. These classical approaches oper-
ate over restricted, human-defined search spaces and lack semantic
understanding of algorithmic intent or source code, and cannot
reason about or modify complex optimization software, particularly
in domains such as physical design where algorithms are tightly
coupled to large codebases and evolving objectives.

Recent work revisits automated heuristic discovery using large
language models. Surveys [34] identify LLM-based approaches that
operate directly at the code level, enabling semantic mutation, syn-
thesis, and fitness-guided refinement. Extensions to multi-objective
optimization [74] and applications to global placement [75] exist,
but are largely still human-engineered and unscalable.

2.4 Autonomous Code Evolution
Code itself can serve as an optimization substrate, enabling au-
tonomous improvement of existing algorithms. Early evidence of
this capability emerged from AlphaDev [43], which used reinforce-
ment learning to discover faster low-level sorting algorithms, yield-
ing improvements that had eluded manual optimization for decades.
FunSearch [52] further generalized this idea by combining LLM-
guided proposal generation with evolutionary search, leading to
the discovery of novel solutions to long-standing mathematical
problems such as the cap set problem. More general frameworks



ISPD ’26, March 15–18, 2026, Bonn, Germany Amur Ghose, Andrew Kahng, Sayak Kundu, and Bodhisatta Pramanik

have emerged that treat algorithm and heuristic design as an ex-
plicit search process. The Evolution of Heuristics (EoH) frame-
work [33] formulates heuristic discovery as population-based evolu-
tion, where LLMs propose mutations and crossovers over candidate
solutions guided by task-specific fitness signals. This approach has
achieved state-of-the-art performance across a range of classical
combinatorial optimization problems, including bin packing and
the traveling salesman problem. AlphaEvolve [44] extends this par-
adigm to scientific and algorithmic discovery. Open-source efforts
such as OpenEvolve [3] make these ideas accessible and extensi-
ble by combining quality-diversity evolution (MAP-Elites) with
ensembles of LLMs.

In the context of hardware design, the advent of thinking models
and autonomous code evolution is particularly significant because
most hardware design tasks implicitly solve a variety of optimiza-
tion problems that are too hard to solve directly. Today’s tools
and methodologies may still engrain formulations, heuristics and
“bags of tricks” whose antecedents are now lost or outdated. As
one example: Have the EDA field’s early (more formal) emphases
on near-planarity, 𝑘-coplanarity, 𝑘-tree topologies, etc. faded from
today’s hypergraph-level optimizations? Or, have advances in opti-
mization theory from the early 2000s onward — e.g., hashing and
RIP matrices — been slow to permeate the field when so much
energy goes toward advancing heuristic frameworks that were first
pioneered in the 1980s and 1990s?

3 Agentic AI for Physical Design R&D
This section formalizes the concept of agentic AI in the context of
physical design and delineates the capabilities required for such
systems to operate effectively in EDA research and development.
We first introduce a taxonomy of agentic systems, distinguishing
between flow-level and code-level agents, and then identify the
core capabilities that enable autonomous reasoning, execution, and
refinement. Finally, we outline a concrete workflow that illustrates
how agentic systems can be integrated into practical physical design
R&D, from code comprehension to verified tool improvements.
Taxonomies.We define an agentic AI system for physical design
as an autonomous software agent that can: (i) interpret natural-
language specifications of design objectives, (ii) invoke EDA tools
and analyze their outputs, (iii) modify tool configurations or source
code, and (iv) iteratively refine solutions based on measured QoR.
This definition distinguishes agentic systems from traditional au-
tomation scripts, which execute fixed procedures without adapta-
tion, as well as from ML-based prediction models, which provide
estimates without direct control over tools or algorithms. Within
this definition, we identify two levels of agentic capability (Figure 5)
that naturally arise in physical design R&D, reflecting the layered
structure of EDA tools themselves.

3.1 Flow-Level Agents
Flow script generation is a critical enabler of automation in phys-
ical design, as scripts determine how EDA tools are orchestrated
across synthesis, placement, routing, and verification stages. These
scripts encode procedural knowledge about tool invocation order,
parameter dependencies, and recovery from intermediate failures.
Traditionally, flow scripts are authored and maintained manually by
domain experts, requiring deep familiarity with both the toolchain

and the target design. As flows grow more complex and design-
specific, this manual process becomes increasingly brittle and time-
consuming. Flow-level agents operate at the level of tool invocation
and configuration. They treat EDA tools as black boxes and opti-
mize the sequence, scheduling, and parameterization of tool runs
by adjusting parameters such as target clock period, core utilization,
placement density, routing effort, etc. Recent advances in LLMs
enable designers to express high-level objectives and constraints
in natural language, allowing LLM-based systems to synthesize
executable scripts that orchestrate EDA tools accordingly [42].
ChatEDA. Early systems such as ChatEDA [64] demonstrate this
concept by treating flow automation as an agentic task: user require-
ments are decomposed into sub-tasks, translated into executable
scripts, and executed through EDA tool APIs. Gains come through
richer training corpora, instruction tuning, chain-of-thought prompt-
ing, and multi-agent collaboration.
ChipNeMo. Domain-adapted language models further improve
script generation by embedding tool-specific knowledge directly
into the model. ChipNeMo [35], for example, adapts LLMs to chip
design through continued pretraining and instruction alignment
on expert-authored scripts. By combining in-context learning with
retrieval of relevant templates and documentation, such systems
can generate more accurate and maintainable Tcl or Python scripts
for timing analysis and physical design tasks.
ORAssistant. Complementary efforts emphasize open-source ac-
cessibility and tool-centric reasoning. ORAssistant [29] focuses on
script generation and question answering for OpenROAD [84] by
coupling LLMs with retrieval over API definitions, code templates,
and documentation. Retrieval-augmented training and inference
reduce hallucination and improve reliability.
ORFS-Agent. ORFS-Agent [22] advances agentic automation be-
yond script generation by introducing an LLM-driven iterative
optimization agent for parameter tuning in the OpenROAD-flow-
script (ORFS) [85]. The agent explores parameter configurations
and improves over standard Bayesian optimization in resource effi-
ciency and design quality. ORFS-Agent relies on an LLM capable
of (i) reading and modifying files and logs, (ii) invoking external
tools via function calling (e.g., Python functions), and (iii) proposing
parameter values to optimize objectives under constraints.

Fig. 5: Flow-level and code-level agents orchestration.

3.2 Code-Level Agents
Code-level agents operate directly on the source code of EDA tools
and design artifacts, enabling autonomous modification of algo-
rithms, heuristics, and implementation logic — in sum, everything



Invited: Agentic AI for Physical Design R&D: Status and Prospects ISPD ’26, March 15–18, 2026, Bonn, Germany

present in the codebase. Naturally, this approach finds more pur-
chase in the field of OSS EDA than in black-box, siloed settings.
Intervening inside the toolchain. From a functional perspective,
code-level agents subsume a broad class of code generation and
transformation tasks that are central to modern EDA workflows.
These include HDL and HLS code generation [19, 48], flow and
verification script synthesis [24, 64, 65], testbench construction [5,
59, 60], and direct modification of EDA tool source code [75, 77].
Recent advances in large language models [11, 46, 81] demonstrate
that such agents can generate syntactically and semantically correct
code across multiple programming languages.
WhyPDenables algorithmic evolution. EDAprovides a uniquely
suitable environment for code-level agentic evolution. Core EDA
algorithms-placement cost functions, partitioning gain models, con-
gestion estimators, and timing-driven refinement — are heuristic by
nature, tightly coupled to tool architecture, and evaluated primarily
through empirical QoR (PPA, HPWL, TAT, etc.) metrics. This fits
with the autonomous code evolution paradigm introduced in Sec-
tion 2.4, where algorithmic logic is iteratively proposed, evaluated,
and refined empirically rather than via theory.

Within the above setting, code-level agents specialize general-
purpose algorithm evolution into domain-aware transformations.
Agents reason over existing implementations, developer intent,
and historical design tradeoffs to propose targeted modifications —
such as introducing new objective terms, restructuring control logic,
or adapting search strategies to emerging design regimes. These
changes operate directly on the semantics of the core algorithms
and can propose new algorithms altogether, totaling changes in
the order of thousands of lines of code. Guardrails are essential:
such agents must operate under stricter verification constraints,
including regression testing, invariant checking, and human-in-the-
loop review — all of which can be integrated within existing CI/CD
workflows with a little finesse.

4 Agentic OpenROAD: Case Studies
We present case studies demonstrating agentic AI for physical
design R&D, spanning flow-level tuning and code-level evolution
across multiple EDA tools. All experiments use OpenROAD [84]
[2], a permissively open-sourced RTL-to-GDS tool. Our goal is not
to present isolated “AI-for-EDA” demonstrations, but to establish
a single methodological claim: agentic AI can participate in the
physical-design R&D loop end-to-end, i.e., (i) identify bottlenecks,
(ii) propose interventions at the appropriate abstraction level (flow,
algorithm, or implementation), and (iii) validate improvements
through tool execution and measurable QoR/runtime outcomes.
Accordingly, we intentionally cover multiple layers of the stack:
flow configuration (high-dimensional tuning), algorithmic structure
(operator/heuristic design), and classical optimization components
(solver stability and solution quality). This breadth is essential for
generality: agentic methods are not limited to parameter tuning or
scripting, but can drive sustained tool evolution when anchored by
reproducible evaluation.

4.1 Flow-Level Agent: End-to-End RTL-to-GDS
Optimization

This case study demonstrates that agentic AI can replace ad hoc,
expert-driven flow tuning with a systematic, semantics-aware opti-
mization process that scales to the high-dimensional configuration

spaces of industrial RTL-to-GDS flows while remaining grounded in
physical design metrics. This subsection draws from [22] — ORFS-
agent is an LLM-based autotuner integrated with OpenROAD-flow-
scripts (ORFS) [85], the standard flow infrastructure for OpenROAD.
The agent optimizes design configurations through parallel trials
guided by metric-aware refinement, enabling continuous and data-
driven improvement of end-to-end physical design flows.

A key property of ORFS-agent is its model-agnostic design. The
agent can operate with any base LLM that supports tool use or
function-calling semantics, without reliance on fine-tuning. This
decouples algorithmic progress from a specific foundation model
and allows performance to naturally improve as stronger models
become available, without retraining or redesign [22]. As a result,
ORFS-agent represents a reusable optimization methodology rather
than a model-specific solution.
Agent design. RTL-to-GDS flows expose hundreds to thousands
of tunable parameters, creating a search space that is both high-
dimensional and highly structured. Traditional Bayesian optimiza-
tion (BO) methods struggle in this regime due to weak domain
priors, poor scalability, and limited ability to exploit semantic re-
lationships among parameters. ORFS-agent addresses these chal-
lenges through a semantics-aware search strategy that explicitly
reasons about the physical meaning and interactions of flow pa-
rameters. The agent operates through an iterative tool-using loop
with three core operations:
• INSPECT: Performs PCA to identify influential parameter load-
ings, detects outliers, summarizes correlations, and extracts health
indicators from logs (e.g., timeouts, DRC violations, CTS warn-
ings).

• MODEL: Fits lightweight surrogate models (linear, ridge, lasso,
isotonic regression, Gaussian processes) to rank candidate con-
figurations and bracket promising operating regimes.

• AGGLOMERATE: Generates a pool of feasible candidates, then
applies diversity-aware down-selection (DPP-like or 𝑘-medoids)
to select a batch of 25 configurations for parallel evaluation.

Table 1: ORFS-agent vs. OR-AutoTuner (normalized to OR-
AutoTuner with 4 params and 375 iterations; lower is better).

Setting Method Params Iters WL↓ ECP↓

4-param
OR-AutoTuner 4 375 1.00 1.00
ORFS-agent (w/ tools) 4 375 0.97 0.99
ORFS-agent (no tools) 4 375 1.03 0.99

High-dim OR-AutoTuner 12 1000 0.92 0.94
ORFS-agent 12 600 0.94 0.96

The agent supports single-objective optimization (e.g., mini-
mizing wirelength or effective clock period), multi-objective opti-
mization via weighted combinations of normalized metrics, and
natural-language constraints such as “Minimize ECP with area,
count, power, and PDP degradation ≤ 2%”. Experiments are con-
ducted using SKY130HD and ASAP7 enablements on the IBEX,
AES, and JPEG designs. The ORFS environment is containerized
with pinned commits to ensure reproducibility, and each iteration
evaluates 25 parallel trials (12 for JPEG due to longer runtime).
Outcomes and learnings. Compared to OR-AutoTuner [28], a
Bayesian optimization baseline, ORFS-agent requires approximately



ISPD ’26, March 15–18, 2026, Bonn, Germany Amur Ghose, Andrew Kahng, Sayak Kundu, and Bodhisatta Pramanik

40% fewer iterations to reach iso-QoR, or achieves approximately
13% improvement in wirelength or effective clock period for single-
objective optimization. With 12 tunable parameters and 600 it-
erations, ORFS-agent matches or exceeds OR-AutoTuner operat-
ing on only 4 parameters over 1000 iterations (Table 1). Beyond
raw performance, this study highlights three broader insights: (i)
semantics-aware reasoning is essential for efficient exploration in
high-dimensional PD flows, (ii) tight integration with tool logs
and health checks is critical for reliable agent behavior, and (iii)
model-agnostic agent designs future-proof optimization workflows
by allowing gains to track improvements in foundation models
rather than depend on retraining.

4.2 Code-Level Agent: Detailed Placement
Algorithm Evolution

OpenROAD’s detailed placement (DPL) engine applies a fixed, hand-
designed sequence of optimization operators, including maximum
independent set matching, global swap, vertical swap, reordering,
and zero-temperature simulated annealing. While effective, this
sequence reflects accumulated historical design choices rather than
systematic optimization. This case study investigates whether agen-
tic AI can participate directly in algorithmic design by discovering
improved operator schedules or entirely new placement heuristics
within a production-quality detailed placer.
Agent design. We treat two components of DPL as evolvable pro-
grams: (i) the sequence and parameterization of move operators,
and (ii) the internal reordering algorithm. An LLM-based coding
agent operates within an evolutionary loop, proposing mutations
and recombinations of existing operator sequences as well as novel
reordering strategies. Candidate implementations are instantiated
directly in the DPL C++ source code and evaluated through full
OpenROAD runs. Selection is driven by a task-specific fitness func-
tion that balances placement quality (HPWL) and runtime, ground-
ing evolution in measured physical design outcomes over proxies.

For sequence evolution, the agent explores alternative operator
orderings and repetitions, yielding a large combinatorial search
space that is difficult to navigate manually. For algorithm evolution,
the agent is permitted to synthesize new reordering logic while pre-
serving DPL’s external interfaces and correctness constraints. All
candidates are evaluated under identical flow conditions to ensure
fair comparison. Experiments are conducted on ASAP7 designs
(AES, JPEG, IBEX, AES (multi-height) and JPEG (multi-height)).

Table 2: Evolved detailed placement optimization results on
ASAP7 designs. HPWL in 𝜇m.

Design Default Move Seq. Evo Reordering Evo
HPWL Time (s) HPWL Time (s) HPWL Time (s)

AES 32412.8 4.3 31124.6 42.2 32235.5 4.0
JPEG 57018.2 12.5 55795.4 171.5 56831.8 10.4
IBEX 43229.3 4.3 42311.2 22.0 43209.6 3.6
AES (MH) 43628.6 4.8 43347.3 17.2 43524.1 6.5
JPEG (MH) 93642.8 42.0 92445.2 100.7 93514.6 35.2

Outcomes and learnings.Move operators may repeat with differ-
ent hyperparameters, yielding a large combinatorial search space
that is difficult to explore manually. Using an EoH-style frame-
work [33], the agent proposes alternative operator orderings and

evaluates them based on HPWL. Early results demonstrate up to
3.8% HPWL reduction (2.7% geometric mean) relative to the de-
fault OpenROAD sequence, at the cost of increased runtime due to
longer operator chains. See Table 2 for move sequence evolution
results on some ASAP7 designs. Beyond sequence optimization,
the agent can synthesize new algorithms. In one experiment, the
agent autonomously implemented a particle swarm optimization
(PSO)-based reordering heuristic, generating over 600 lines of new
C++ code. The algorithm models cells as particles and updates their
positions using PSO dynamics, followed by sorting based on re-
fined positions to derive new cell orders. This PSO-based reordering
improves HPWL by up to 0.5% while reducing runtime by up to
17% compared to the baseline. Table 2 reports reordering evolu-
tion results. Together, these results highlight two key insights: (i)
operator sequencing in detailed placement remains significantly
under-optimized and amenable to systematic discovery, and (ii)
agentic code evolution can produce non-trivial, human-competitive
heuristics when tightly constrained by correctness, interfaces, and
full-flow evaluation.

4.3 Agentic Optimization of Functional
Simulation

Fast functional simulation is critical for physical design R&D, as it
directly impacts design-space exploration, regression testing, and
iteration latency. Verilator converts RTL to C++ and compiles it
into fast executables, but its performance depends heavily on the
choice of RTL-level and compiler-level optimization flags. While
GCC-level optimizations have been extensively studied, RTL-level
flag selection exposes a much larger and less systematically ex-
plored design space, with the potential to simultaneously improve
compilation time and simulation throughput.
Agent design. We frame flag selection as a performance optimiza-
tion problem over tuples of (flag set, runtime). An LLM-based agent
proposes improved flag combinations using guided evolutionary
prompting, without full fine-tuning. This allows the agent to gen-
eralize across designs while remaining agnostic to a specific RTL
structure. The agent operates directly on Verilator’s configuration
space, enabling it to reason about interactions between RTL-level
transformations and downstream compilation behavior.

Experiments are conducted across a diverse set of RTL bench-
marks, including cryptographic cores, filters, arithmetic units, and
RISC-V processors. Performance is measured in terms of end-to-end
simulation speed (cycles per second), capturing the combined ef-
fect of compilation and execution. All configurations are evaluated
under identical toolchain settings to ensure fair comparison.
Outcomes and learnings. LLM-evolved flag configurations achieve
simulation speedups ranging from 5.7% (AES) to 48.5% (FIR filter)
relative to default Verilator settings (Table 3). Designs with regular
structure, such as filters and cryptographic cores, exhibit the largest
gains, suggesting that the agent learns to exploit architectural regu-
larities that interact favorably with RTL-level optimizations. These
results indicate that agentic optimization can uncover non-obvious
performance improvements in mature toolchains, even in domains
traditionally optimized through manual expertise.
Beyond Verilator.We extend this approach to Arcilator [80], an
LLVM-oriented Verilator fork that achieves 2–4× higher cycle-level
simulation speed for common RISC-V cores (e.g., Rocket, BOOM)



Invited: Agentic AI for Physical Design R&D: Status and Prospects ISPD ’26, March 15–18, 2026, Bonn, Germany

Table 3: Verilator simulation speedups; LLM-evolved flags.

Benchmark Speedup (%)
FIR filter 48.5
CRC32 41.7
MAC 40.0
FIFO 33.3
PicoRV32 33.3
SHA256 29.8
Matrix mul 20.5
SERV 11.3
ALU 7.4
WBUART32 5.9
AES 5.7

by operating directly at the CIRCT/MLIR IR level. Despite its per-
formance advantages, Arcilator has seen limited adoption due to
gaps in parsing, elaboration, and lowering support for common
verification environments such as UVM. Via agent-assisted develop-
ment, we achieve full parsing and elaboration for circt-verilog
on UVM testbenches (improving baseline success rates from ≈ 2%
to 100%), enable VCD-level outputs with and without DUT seman-
tics, and retain Arcilator’s inherent speedups relative to Verilator
[86].

4.4 Agentic Boosting of Classical Optimizers
Hypergraph partitioning remains a foundational optimization prob-
lem in physical design, with decades of algorithmic research [87]
culminating in highly optimized tools such as TritonPart [9]. De-
spite these advances, modern partitioners increasingly rely on com-
plex solver components (e.g., ILP-based refinement) whose behavior
can exhibit high variance across instances and solver backends. This
case study examines whether agentic AI can strengthen and stabilize
classical optimizers by improving solver robustness and solution
consistency rather than replacing established algorithms.
Agent design. TritonPart is a state-of-the-art hypergraph parti-
tioner that outperforms hMETIS and KaHyPar, and includes an
ILP-based boundary optimization step via commercial (CPLEX) or
open-source (OR-Tools) solvers. We deploy an agent that targets
variance reduction in this ILP step by proposing localized code-level
modifications. The agent operates within tight constraints: it pre-
serves TritonPart’s core algorithmic structure and interfaces, while
modifying solver formulations, heuristics, and integration logic
to improve consistency across runs and solvers. We evaluate Tri-
tonPart and an agent-enhanced FastPart [82] across a diverse set
of hypergraphs (collected from real netlists) spanning small to ex-
tremely large problem sizes, ranging from tens of thousands to over
ten million vertices. Experiments are conducted for 𝐾 ∈ {2, 3, 4}
partitions under the same imbalance factor (2%). For each configu-
ration, we report cutsize as the primary quality metric along with
wall-clock runtime to reflect practical solver efficiency. FastPart is
evaluated under a fixed time budget per run, while TritonPart is
run using its standard FM-based refinement pipeline.
Outcomes and learnings. Across the evaluated benchmarks [12]
[13] [14], FastPart consistently achieves cutsizes that match or
improve upon TritonPart while offering substantial runtime reduc-
tions (Table 4 presents detailed results). On large-scale instances
(e.g., MPG and MPC), FastPart attains comparable or lower cutsizes
with one to two orders of magnitude lower runtime, demonstrating

Table 4: Comparing TritonPart/FastPart cuts and runtimes.

Design #V #E K TritonPart FastPart

Cut Time (s) Cut Time (s)

JPEG 51352 54784
2 1088 67.8 1091 15
3 1214 125.8 1216 300
4 1308 314.2 1283 300

ARIANE133 89088 95321
2 912 100.8 748 240
3 1200 152.9 1089 180
4 1603 310.2 1331 240

ARIANE136 91877 95575
2 660 80.9 630 15
3 1032 115.0 979 15
4 1249 219.4 1111 120

BSG 586364 700967
2 1953 277.2 1924 15
3 2879 198.1 2684 300
4 3363 279.7 3081 300

NVDLA 152764 164999
2 323 83.7 332 30
3 383 111.6 378 30
4 648 161.2 639 180

ARIANE_X4 331816 337036
2 0 117.5 0 10
3 896 162.8 902 15
4 0 166.4 0 10

MPG 2460278 2488257
2 2229 871.5 2157 30
3 3338 923.5 3369 240
4 3784 996.3 3517 180

MPC 10486897 10726018
2 707 3876.3 665 120
3 5193 4193.1 5390 300
4 1060 4074.3 943 30

significantly improved scalability. On medium-sized designs (e.g.,
ARIANE133, ARIANE136, BSG), FastPart often produces strictly
better cutsizes, particularly for higher partition counts, while main-
taining runtimes capped at a few minutes. These results indicate
that agent-driven modifications can stabilize and accelerate ILP-
based refinement, yielding competitive or best-known solutions.

5 Vision and Near-Term Prospects
We envision a future in which physical design tools are no longer
static software artifacts, but continuously evolving systems shaped
by autonomous agents operating alongside human developers (Fig-
ure 6). In this paradigm, agentic AI does not merely accelerate
isolated design tasks; instead, it participates directly in EDA re-
search and development, proposing, implementing, and evaluating
algorithmic improvements over time. This shift represents a funda-
mental change in how physical design tools are created, maintained,
and advanced.
From single agents tomulti-agent tool ecosystems.While early
successes in agentic AI often focus on single, monolithic agents,
we believe the long-term trajectory lies in multi-agent ecosystems.
Different aspects of physical design — placement, routing, timing
analysis, partitioning, and flow orchestration — naturally decom-
pose into specialized roles. A multi-agent framework allows agents
with complementary expertise to collaborate, critique one another,
and jointly refine solutions. In such a system, flow-level agents
may explore configuration spaces and identify performance bot-
tlenecks, while code-level agents focus on targeted algorithmic
modifications within specific tool components. Meta-agents may
monitor progress, detect stagnation, and allocate computational
effort across agents and objectives. This cooperative structure mir-
rors how human EDA teams operate today, but with the ability to
scale exploration and iteration far beyond human limits.



ISPD ’26, March 15–18, 2026, Bonn, Germany Amur Ghose, Andrew Kahng, Sayak Kundu, and Bodhisatta Pramanik

Fig. 6: Vision of agentic AI–driven physical design R&D lever-
aging OpenROAD.

OpenROAD as a continuous learning platform.We see Open-
ROAD as a natural foundation for realizing this vision. Its transpar-
ent codebase, reproducible flows, and permissive licensing make
it uniquely suited to serve as a shared substrate for agentic ex-
perimentation and learning. Rather than treating OpenROAD as
a fixed reference implementation, we envision it as a continuous
learning platform in which agents iteratively improve heuristics,
cost functions, and workflow structures. Over time, this process
can yield a growing corpus of agent-discovered optimizations, de-
sign patterns, and algorithmic variants, all grounded in measured
quality-of-results across diverse designs and technologies. Such a
corpus would not only benefit autonomous agents, but also provide
human researchers with new insights into physical design tradeoffs
and algorithmic structure.
Near-term impact: agent-assisted algorithm development. In
the near term, the most immediate impact of agentic AI is likely
to be in accelerating algorithm prototyping and evaluation. Code-
level agents can already propose localized modifications to cost
functions, heuristics, and control logic within existing placement,
routing, and partitioning engines; see, e.g., [21]. When coupled
with automated benchmarking pipelines, these agents enable rapid
iteration over design alternatives that would be prohibitively time-
consuming for human researchers alone. We expect such workflows
to become increasingly common for exploring large design spaces,
tuning heuristic parameters, and stress-testing algorithms across
diverse benchmarks and technology nodes.
Data-driven heuristic discovery and refinement. A second
near- to medium-term prospect lies in the emergence of data-driven
heuristic design. As agent-driven experimentation produces large
volumes of structured performance data, agents can begin to iden-
tify patterns linking algorithmic choices to quality-of-results out-
comes. Rather than replacing analytical insight, this empirical feed-
back can help surface non-obvious tradeoffs, regime-dependent
behaviors, and corner cases that inform subsequent human-guided
refinement. This tight loop between data and interpretation offers
a practical path toward more robust and adaptable physical design
algorithms.
Incremental evolution of PD infrastructures. In the medium
term, we anticipate that open-source infrastructures such as Open-
ROAD will increasingly support agent-oriented workflows natively.

This includes standardized APIs for instrumentation, metric extrac-
tion, controlled codemodification, and regression tracking. Progress
is likely to occur incrementally, with agents contributing small, vali-
dated improvements that accumulate into substantial tool evolution.
Such incrementalism aligns well with the conservative validation
culture required for trustworthy physical design tools.
Human–agent co-evolution and gating challenges. Impor-
tantly, this trajectory does not imply fully autonomous tool develop-
ment that excludes human expertise. Instead, we anticipate a model
of human–agent co-evolution, in which agents handle large-scale
exploration, implementation, and regression testing, while human
designers provide high-level guidance, domain knowledge, and
judgment. At the same time, several challenges remain. Ensuring
correctness, reproducibility, and interpretability of agent-generated
code, as well as avoiding overfitting to specific benchmarks or met-
rics, will be essential for translating early successes into sustained,
community-wide impact.

6 Conclusion
This paper has examined the emerging role of agentic AI in physical
design research and development, arguing that recent advances in
large language models and tool-integrated agents enable a quali-
tative shift in how EDA tools are improved. We have introduced
a taxonomy distinguishing flow-level agents, which optimize tool
orchestration and parameterization, from code-level agents, which
directly modify algorithms and implementation logic. Through case
studies in the OpenROAD ecosystem, we have shown that agen-
tic systems can already deliver meaningful improvements across
multiple stages of physical design, including flow tuning, detailed
placement, simulation, and hypergraph partitioning. These results
demonstrate that autonomous, tool-aware agents can function as
effective R&D collaborators rather than merely assistive optimiza-
tion components. Looking forward, agentic AI points toward a
model of continuous human–agent co-evolution of physical design
tools. Open-source platforms such as OpenROAD provide a strong
foundation for this transition by enabling transparent experimenta-
tion, reproducible evaluation, and data-driven algorithm discovery.
While challenges remain in verification, benchmarking, and multi-
objective reasoning, agentic systems are poised to increasingly
shoulder the burden of large-scale exploration and implementation,
allowing human experts to focus on objectives, constraints, and
architectural insight.
Acknowledgments. Partial support for this research was provided
by the Samsung AI Center.

References
[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman et al., “GPT-4 technical

report”, arXiv:2303.08774, 2023, https://www.arxiv.org/abs/2303.08774.
[2] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng et al., “Toward an

Open-Source Digital Flow: First Learnings from the OpenROAD Project”, Proc. DAC, 2019, pp.
1–4.

[3] Algorithmic Superintelligence, “OpenEvolve: Evolutionary code optimization”.
https://github.com/algorithmicsuperintelligence/openevolve

[4] C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu and M. D. F. Wong, “BOOM-Explorer: RISC-V BOOM
microarchitecture design space exploration framework”, Proc. ICCAD, 2021, pp. 1–9.

[5] J. Blocklove, S. Thakur, B. Tan, H. Pearce, S. Garg and R. Karri, “Automatically improving
LLM-based Verilog generation using EDA tool feedback”, ACM Trans. DAES 30(6) (2025), pp.
100:1–100:26.

[6] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx et al., “On the opportu-
nities and risks of foundation models”, arXiv:2108.07258, 2021, https://www.arxiv.org/abs/2108.
07258.

[7] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal et al., “Language models
are few-shot learners”, Proc. NeurIPS, 2020, pp. 1877–1901.

[8] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan et al., “Hyper-heuristics:
A survey of the state of the art”, Journal of the Operational Research Society 64(12) (2013), pp.

https://www.arxiv.org/abs/2303.08774
https://github.com/algorithmicsuperintelligence/openevolve
https://www.arxiv.org/abs/2108.07258
https://www.arxiv.org/abs/2108.07258


Invited: Agentic AI for Physical Design R&D: Status and Prospects ISPD ’26, March 15–18, 2026, Bonn, Germany

1695–1724.
[9] I. Bustany, G. Gasparyan, A. B. Kahng, Y. Koutis, B. Pramanik and Z. Wang, “An Open-Source

Constraints-Driven General Partitioning Multi-Tool for VLSI Physical Design”, Proc. ICCAD,
2023, pp. 1–8.

[10] Cadence, “Cadence Cerebrus intelligent chip explorer”, 2021. https://www.cadence.com/en_US/
home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/cerebrus-
intelligent-chip-explorer.html

[11] K. Chang, Y. Wang, H. Ren, M. Wang, S. Liang, Y. Han et al., “ChipGPT: How far are we from
natural language hardware design”, arXiv:2305.14019, 2023, https://arxiv.org/abs/2305.14019.

[12] C.-K. Cheng, A. B. Kahng, S. Kundu, Y. Wang and Z. Wang, “Assessment of Reinforcement
Learning for Macro Placement”, Proc. ISPD, 2023, pp. 158–166.

[13] C.-K. Cheng, A. B. Kahng, S. Kundu, Y. Wang and Z. Wang, “An Updated Assess-
ment of Reinforcement Learning for Macro Placement”, IEEE Trans. CAD (2025) (DOI
10.1109/TCAD.2025.3644293).

[14] V. A. Chhabria, V. Gopalakrishnan, A. B. Kahng, S. Kundu, Z. Wang, B.-Y. Wu and D. Yoon,
“Strengthening the Foundations of IC Physical Design and ML EDA Research”, Proc. ICCAD,
2024, pp. 1–9.

[15] Y.-C. Fang, H.-Y. Lin, M.-Y. Sui, C.-M. Li and E. J.-W. Fang, “Machine-learning-based dynamic
IR drop prediction for ECO”, Proc. ICCAD, 2018, pp. 1–7.

[16] W. Fang, J. Wang, Y. Lu, S. Liu, Y. Wu, Y. Ma et al., “A survey of circuit foundation model:
Foundation AI models for VLSI circuit design and EDA”, arXiv:2504.03711, 2025, https://www.
arxiv.org/abs/2504.03711.

[17] W. Fang, S. Liu, H. Zhang and Z. Xie, “Annotating slack directly on your Verilog: Fine-grained
RTL timing evaluation for early optimization”, Proc. DAC, 2024, pp. 1–6.

[18] W. Fang, Y. Lu, S. Liu, Q. Zhang, C. Xu, L. W. Wills et al., “MasterRTL: A pre-synthesis PPA
estimation framework for any RTL design”, Proc. ICCAD, 2023, pp. 1–9.

[19] W. Fang, Y. Lu, S. Liu, Q. Zhang, C. Xu, L. W. Wills, H. Zhang and Z. Xie, “Transferable pre-
synthesis PPA estimation for RTL designs with data augmentation techniques”, IEEE Trans.
CAD 44(1) (2024), pp. 200–213.

[20] Gemini team, “Gemini 2.5: Our most intelligent AI model”, The Keyword, 2025.
[21] A. Ghose, J. Jang, A. B. Kahng and J. Lee, “Automated QoR improvement in OpenROAD with

coding agents”, arXiv:2601.06268, 2026, https://arxiv.org/abs/2601.06268.
[22] A. Ghose, A. B. Kahng, S. Kundu and Z. Wang, “ORFS-agent: Tool-using agents for chip design

optimization”, Proc. MLCAD, 2025, pp. 1–13.
[23] D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, Addison-

Wesley, 1989.
[24] Z. He, H. Wu, X. Zhang, X. Yao, S. Zheng, H. Zheng et al., “ChatEDA: A large language model

powered autonomous agent for EDA”, Proc. MLCAD, 2023, pp. 1–6.
[25] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen et al., “Machine learning for electronic design

automation: A survey”, ACM Trans. DAES 26(5) (2021), pp. 1–46.
[26] Y.-H. Huang, Z. Xie, G.-Q. Fang, T.-C. Yu, H. Ren et al., “Routability-driven macro placement

with embedded CNN-based prediction model”, Proc. DATE, 2019, pp. 180–185.
[27] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “ParamILS: An automatic algorithm

configuration framework”, Journal of Artificial Intelligence Research 36 (2009), pp. 267–306.
[28] J. Jung, A. B. Kahng, S. Kim and R. Varadarajan, “METRICS2.1 and flow tuning in the IEEE

CEDA robust design flow and OpenROAD”, Proc. ICCAD, 2021, pp. 1–9.
[29] A. Kaintura, Palaniappan R, S. S. Luar and I. Iyer Almeida, “ORAssistant: A Custom RAG-based

conversational assistant for OpenROAD”, arXiv:2410.03845, 2024, https://arxiv.org/abs/2410.
03845.

[30] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child et al., “Scaling laws for
neural language models”, arXiv:2001.08361, 2020, https://www.arxiv.org/abs/2001.08361.

[31] W. B. Langdon and J. Petke, “Genetic improvement of software for multiple objectives”, Proc.
ISSBSE, 2015, pp. 12–28.

[32] R. Liang, J. Jung, H. Xiang, L. Reddy, A. Lvov, J. Hu and G.-J. Nam, “FlowTuner: A multi-stage
EDA flow tuner exploiting parameter knowledge transfer”, Proc. ICCAD, 2021, pp. 1–9.

[33] F. Liu, X. Tong, M. Yuan, X. Lin, F. Luo, Z. Wang et al., “Evolution of heuristics: towards
efficient automatic algorithm design using large language model”, arXiv:2401.02051, 2024,
https://arxiv.org/abs/2401.02051.

[34] F. Liu, Y. Yao, P. Guo, Z. Yang, Z. Zhao, X. Lin et al., “A systematic survey on large language
models for algorithm design”, arXiv:2410.14716, 2024, https://arxiv.org/abs/2410.14716.

[35] M. Liu, N. Pinckney, B. Khailany and H. Ren, “ChipNemo: Domain-adapted LLMs for chip
design”, arXiv:2311.00176, 2023, https://arxiv.org/abs/2311.00176.

[36] M. Liu, N. Pinckney, B. Khailany and H. Ren, “VerilogEval: Evaluating large language models
for verilog code generation”, Proc. ICCAD, 2023, pp. 1–8.

[37] S. Liu, W. Fang, Y. Lu, J. Wang, Q. Zhang, H. Zhang and Z. Xie, “RTLCoder: fully open-source
and efficient LLM-assisted RTL code generation technique”, IEEE Trans. CAD, 2024.

[38] M. L.-Ibáñez, J. D.-Lacoste, L. P. Cáceres, M. Birattari and T. Stützle, “The irace package:
Iterated racing for automatic algorithm configuration”, Operations Research Perspectives, 2016,
pp. 43–58.

[39] Y.-C. Lu, S. Nath, V. Khandelwal and S. K. Lim, “RL-Sizer: VLSI gate sizing for timing optimiza-
tion using deep reinforcement learning”, Proc. DAC, 2021, pp. 733–738.

[40] Y.-C. Lu, W.-T. Chan, D. Guo, S. Kundu, V. Khandelwal and S. K. Lim, “RL-CCD: Concurrent
clock and data optimization using attention-based self-supervised reinforcement learning”,
Proc. DAC, 2023, pp. 1–6.

[41] Y. Lu, S. Liu, Q. Zhang and Z. Xie, “RTLLM: An open-source benchmark for design RTL
generation with large language model”, arXiv:2308.05345, 2023, https://arxiv.org/abs/2308.
05345.

[42] Y. Lu, H. I. Au, J. Zhang, J. Pan, Y. Wang, A. Li et al., “AutoEDA: Enabling EDA flow automation
through microservice-based LLM agents”, arXiv:2508.01012, 2025, https://arxiv.org/abs/2508.
01012.

[43] D. J. Mankowitz, A. Michi, A. Zhernov, M. Gelmi, M. Selvi, C. Paduraru et al., “Faster sorting
algorithms discovered using deep reinforcement learning”, Nature 618(7964) (2023), pp. 257–
263.

[44] A. Novikov, N. Vũ, M. Eisenberger, E. Dupont, P.-S. Huang, A. Z. Wagner et al., “AlphaEvolve:
A coding agent for scientific and algorithmic discovery”, arXiv:2506.13131, 2025, https://arxiv.
org/abs/2506.13131.

[45] OpenAI team, “Introducing OpenAI o3 and o4-mini”, OpenAI, 2025, https://openai.com/index/
introducing-o3-and-o4-mini/.

[46] OpenAI, “Evaluating large language models trained on code”, arXiv:2107.03374, 2021, https:
//www.arxiv.org/abs/2107.03374.

[47] M. Papermaster, “AMD CDNA 2 architecture”, IEEE Int. Solid-State Circuits Conf., 2022, pp. 1–3.
[48] H. Pearce, B. Tan and R. Karri, “Dave: Deriving automatically Verilog from English”, Proc.

MLCAD, 2020, pp. 27–32.
[49] Z. Pei, H.-L. Zhen, M. Yuan, Y. Huang and B. Yu, “BetterV: Controlled Verilog generation with

discriminative guidance”, Proc. ICML (PMLR 235), 2024, pp. 40145–40153.
[50] M. Rapp, H. Amrouch, Y. Lin, B. Yu, D. Z. Pan, M. Wolf et al., “MLCAD: A survey of research

in machine learning for CAD keynote paper”, IEEE Trans. CAD 41(10) (2021), pp. 3162–3181.
[51] J. R. Rice, “The algorithm selection problem”, Advances in Computers, 1976, pp. 65–118.
[52] B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog, M. P. Kumar, E. Dupont et al.,

“Mathematical discoveries from program search with large language models”, Nature 625(7995)
(2024), pp. 468–475.

[53] B. C. Schafer and Z. Wang, “High-level synthesis design space exploration: Past, present, and
future”, IEEE Trans. CAD 39(10) (2020), pp. 2628–2639 .

[54] T. Schick, J. D.-Yu, R. Dessì, R. Raileanu, M. Lomeli, L. Zettlemoyer et al., “Toolformer: Language
models can teach themselves to use tools”, Proc. NeurIPS, 2023, pp. 68539–68551.

[55] P. Sengupta, A. Tyagi, Y. Chen and J. Hu, “How good is your Verilog RTL code? A quick answer
from machine learning”, Proc. ICCAD, 2022, pp. 1–9.

[56] N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan and S. Yao, “Reflexion: Language agents
with verbal reinforcement learning”, Proc. NeurIPS, 2023, pp. 8634–8655.

[57] Synopsys, “DSO.ai: AI-driven design applications”, 2021. https://www.synopsys.com/ai/ai-
powered-eda/dso-ai.html

[58] S. Thakur, J. Blocklove, H. Pearce, B. Tan, S. Garg and R. Karri, “AutoChip: Automating HDL
generation using LLM feedback”, arXiv:2311.04887, 2023, https://arxiv.org/abs/2311.04887.

[59] S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri, B. Dolan-Gavitt and S. Garg, “Bench-
marking large language models for automated Verilog RTL code generation”, Proc. DATE, 2023,
pp. 1–6.

[60] S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri and S. Garg, “VeriGen: A
large language model for Verilog code generation”, ACM Trans. DAES 29(3) (2024), pp. 1–31.

[61] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez et al., “Attention is all
you need”, Proc. NeurIPS, 2017, pp. 5998–6008.

[62] Y. Wang, W. Ye, Y. He, Y. Chen, G. Qu and A. Li, “MCP4EDA: LLM-powered model context pro-
tocol RTL-to-GDSII automation with backend aware synthesis optimization”, arXiv:2507.19570,
2025, https://arxiv.org/abs/2507.19570.

[63] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud et al., “Emergent abilities of large
language models”, arXiv:2206.07682, 2022, https://www.arxiv.org/abs/2206.07682.

[64] H. Wu, Z. He, X. Zhang, X. Yao, S. Zheng, H. Zheng and B. Yu, “ChatEDA: A large language
model powered autonomous agent for EDA”, IEEE Trans. CAD 43(9) (2024), pp. 2717–2730.

[65] H. Wu, H. Zheng, Z. He and B. Yu, “Divergent thoughts toward one goal: LLM-based multi-
agent collaboration system for electronic design automation”, arXiv:2502.10857, 2025, https:
//www.arxiv.org/abs/2502.10857.

[66] Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu et al., “AutoGen: Enabling next-gen LLM
applications via multi-agent conversation”, arXiv:2308.08155, 2023, https://arxiv.org/abs/2308.
08155

[67] B.-Y. Wu, U. Sharma, S. R. D. Kankipati, A. Yadav, B. K. George, S. R. Guntupalli et al.,
“EDA Corpus: A large language model dataset for enhanced interaction with OpenROAD”,
arXiv:2405.06676, 2024, https://arxiv.org/abs/2405.06676.

[68] Z. Xie, R. Liang, X. Xu, J. Hu, C.-C. Chang, J. Pan et al., “Pre-placement net length and timing
estimation by customized graph neural network”, IEEE Trans. CAD 41(11) (2022), pp. 4667–4680.

[69] Z. Xie, H. Ren, B. Khailany, Y. Sheng, S. Santosh, J. Hu and Y. Chen, “PowerNet: Transferable
dynamic IR drop estimation via maximum convolutional neural network”, Proc. ASP-DAC,
2020, pp. 13–18.

[70] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen and J. Hu, “RouteNet: Routability
prediction for mixed-size designs using convolutional neural network”, Proc. ICCAD, 2018, pp.
1–8.

[71] Z. Xie, G.-Q. Fang, Y.-H. Huang, H. Ren, Y. Zhang, B. Khailany, S.-Y. Fang, J. Hu, Y. Chen and
E. C. Barboza, “FIST: A feature-importance sampling and tree-based method for automatic
design flow parameter tuning”, Proc. ASP-DAC, 2020, pp. 19–25.

[72] K. Xu, D. Schwachhofer, J. Blocklove, I. Polian, P. Domanski, D. Pflüger et al., “Large language
models (LLMs) for electronic design automation (EDA)”, arXiv:2508.20030, 2025, https://www.
arxiv.org/abs/2508.20030.

[73] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. R. Narasimhan and Y. Cao, “ReAct: synergizing
reasoning and acting in language models”, arXiv:2210.03629, 2022, https://arxiv.org/abs/2210.
03629.

[74] S. Yao, F. Liu, X. Lin, Z. Lu, Z. Wang and Q. Zhang, “Multi-objective evolution of heuristic
using large language model”, Proc. AAAI, 2025, pp. 27144–27152.

[75] X. Yao, J. Jiang, Y. Zhao, P. Liao, Y. Lin and B. Yu, “Evolution of optimization algorithms for global
placement via large language models”, arXiv:2504.17801, 2025, https://arxiv.org/abs/2504.17801.

[76] B. Yu, “Machine learning in EDA: When and how”, ACM/IEEE MLCAD, 2023, pp. 1–6.
[77] C. Yu, R. Liang, C.-T. Ho and H. Ren, “Autonomous code evolution meets NP-completeness”,

arXiv:2509.07367, 2025, https://arxiv.org/abs/2509.07367.
[78] Q. Zhang, Y. Lu, M. Li and Z. Xie, “AutoPower: Automated few-shot architecture-level power

modeling by power group decoupling”, Proc. DAC, 2025, pp. 1–7.
[79] Y. Zhang, H. Ren and B. Khailany, “GRANNITE: Graph neural network inference for transfer-

able power estimation”, Proc. DAC, 2020, pp. 1–6.
[80] CIRCT: Circuit IR compilers and tools, https://circt.llvm.org/.
[81] Claude Code, https://github.com/anthropics/claude-code.
[82] FastPart, https://vlsicad.ucsd.edu/hypergraphs/.
[83] Model Context Protocol, “Model context protocol specification”, Version 2025-03-26, 2025.

https://modelcontextprotocol.io/specification/2025-03-26.
[84] OpenROAD. https://github.com/The-OpenROAD-Project/OpenROAD
[85] OpenROAD-flow-scripts,

https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
[86] Ergodex-Core. circt-verilog https://github.com/Ergodex-Core/circt-verilog,

sv-tests-arcilator https://github.com/Ergodex-Core/sv-tests-arcilator.
[87] Hypergraph partitioning leaderboard,

https://github.com/TILOS-AI-Institute/HypergraphPartitioning.

https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/cerebrus-intelligent-chip-explorer.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/cerebrus-intelligent-chip-explorer.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/cerebrus-intelligent-chip-explorer.html
https://arxiv.org/abs/2305.14019
https://www.arxiv.org/abs/2504.03711
https://www.arxiv.org/abs/2504.03711
https://arxiv.org/abs/2601.06268
https://arxiv.org/abs/2410.03845
https://arxiv.org/abs/2410.03845
https://www.arxiv.org/abs/2001.08361
https://arxiv.org/abs/2401.02051
https://arxiv.org/abs/2410.14716
https://arxiv.org/abs/2311.00176
https://arxiv.org/abs/2308.05345
https://arxiv.org/abs/2308.05345
https://arxiv.org/abs/2508.01012
https://arxiv.org/abs/2508.01012
https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://www.arxiv.org/abs/2107.03374
https://www.arxiv.org/abs/2107.03374
https://www.synopsys.com/ai/ai-powered-eda/dso-ai.html
https://www.synopsys.com/ai/ai-powered-eda/dso-ai.html
https://arxiv.org/abs/2311.04887
https://arxiv.org/abs/2507.19570
https://www.arxiv.org/abs/2206.07682
https://www.arxiv.org/abs/2502.10857
https://www.arxiv.org/abs/2502.10857
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2405.06676
https://www.arxiv.org/abs/2508.20030
https://www.arxiv.org/abs/2508.20030
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2504.17801
https://arxiv.org/abs/2509.07367
https://circt.llvm.org/
https://github.com/anthropics/claude-code
https://vlsicad.ucsd.edu/hypergraphs/
https://modelcontextprotocol.io/specification/2025-03-26
https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/Ergodex-Core/circt-verilog
https://github.com/Ergodex-Core/sv-tests-arcilator
https://github.com/TILOS-AI-Institute/HypergraphPartitioning

	Abstract
	1 Introduction
	2 Background and Related Trends
	2.1 Evolution of ML in EDA
	2.2 LLMs and Agents
	2.3 Automated Heuristic Discovery
	2.4 Autonomous Code Evolution

	3 Agentic AI for Physical Design R&D
	3.1 Flow-Level Agents
	3.2 Code-Level Agents

	4 Agentic OpenROAD: Case Studies
	4.1 Flow-Level Agent: End-to-End RTL-to-GDS Optimization
	4.2 Code-Level Agent: Detailed Placement Algorithm Evolution
	4.3 Agentic Optimization of Functional Simulation
	4.4 Agentic Boosting of Classical Optimizers

	5 Vision and Near-Term Prospects
	6 Conclusion
	References

